US20100181360A1 - Tension Control System for Deformable Nip Rollers - Google Patents
Tension Control System for Deformable Nip Rollers Download PDFInfo
- Publication number
- US20100181360A1 US20100181360A1 US12/357,718 US35771809A US2010181360A1 US 20100181360 A1 US20100181360 A1 US 20100181360A1 US 35771809 A US35771809 A US 35771809A US 2010181360 A1 US2010181360 A1 US 2010181360A1
- Authority
- US
- United States
- Prior art keywords
- nip rollers
- web
- tension
- deformable
- driver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 11
- 238000005259 measurement Methods 0.000 claims abstract description 5
- 238000010586 diagram Methods 0.000 description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H23/00—Registering, tensioning, smoothing or guiding webs
- B65H23/04—Registering, tensioning, smoothing or guiding webs longitudinally
- B65H23/18—Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web
- B65H23/188—Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in connection with running-web
- B65H23/1888—Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in connection with running-web and controlling web tension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2404/00—Parts for transporting or guiding the handled material
- B65H2404/10—Rollers
- B65H2404/11—Details of cross-section or profile
- B65H2404/112—Means for varying cross-section
- B65H2404/1122—Means for varying cross-section for rendering elastically deformable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2513/00—Dynamic entities; Timing aspects
- B65H2513/10—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2515/00—Physical entities not provided for in groups B65H2511/00 or B65H2513/00
- B65H2515/30—Forces; Stresses
- B65H2515/31—Tensile forces
- B65H2515/314—Tension profile, i.e. distribution of tension, e.g. across the material feeding direction or along diameter of web roll
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2515/00—Physical entities not provided for in groups B65H2511/00 or B65H2513/00
- B65H2515/30—Forces; Stresses
- B65H2515/32—Torque e.g. braking torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2557/00—Means for control not provided for in groups B65H2551/00 - B65H2555/00
- B65H2557/20—Calculating means; Controlling methods
- B65H2557/26—Calculating means; Controlling methods with key characteristics based on open loop control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2557/00—Means for control not provided for in groups B65H2551/00 - B65H2555/00
- B65H2557/20—Calculating means; Controlling methods
- B65H2557/264—Calculating means; Controlling methods with key characteristics based on closed loop control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2801/00—Application field
- B65H2801/03—Image reproduction devices
- B65H2801/21—Industrial-size printers, e.g. rotary printing press
Definitions
- the present invention relates generally to web printing presses and more particularly to a method and apparatus for controlling the tension of the web in a printing press including two or more sets of nip rollers with deformable covers.
- Web printing presses print a continuous web of material, such as paper.
- the web travels through nips formed by opposing nip rollers.
- the web is moved on its way by driven nip rollers which are driven by respective nip roller drivers.
- Tension in the web must be maintained within a desired range in order to achieve smooth operation of the printing press. At the same time, the velocity of the web, and hence the rotational speed of nip rollers, must be held relatively constant to achieve good print product quality. Tension in a web span between two nips can be adjusted by controlling the speed of the nip roller driver in the downstream nip.
- Nip rollers with a deformable surface were found to provide less than ideal operation because of uneven ribbon-to-ribbon tension in upstream web spans.
- nip rollers formed with a deformable surface such as microcellular foamed urethane were introduced (see, U.S. Patent Publication No. 2006/0157924 A1 published on Jul. 20, 2006 and incorporated herein by reference).
- Nip rollers with this type of deformable surface layer were found to overcome the uneven ribbon-to-ribbon tension problem of the earlier nip rollers.
- any nips with non-rigid covers have an effective gain that is a function of the tension difference across the nip roller, so that if the tension of the web downstream from the nip roller is changed, the tension of the upstream web will also change requiring an additional tension adjustment.
- An object of the present invention is to provide a method and apparatus which allows for adjustment of the tension of a downstream span of web without affecting the tension of an upstream span of web.
- the present invention provides a method for controlling web tension in a web printing press having a plurality of sets of deformable nip rollers, each set of deformable nip rollers driven by a separate driver, the web passing sequentially through each set of deformable nip rollers, each adjacent set of deformable nip rollers forming a web segment therebetween.
- a first characteristic of the driver of a downstream set of deformable nip rollers is adjusted to set the tension of a first web segment which is between the downstream set of deformable nip rollers and an upstream set of deformable nip rollers.
- a first characteristic of the driver of the upstream set of deformable nip rollers is adjusted to maintain a constant tension on a second web segment which is immediately preceding the upstream set of deformable nip rollers.
- a second characteristic of the second web segment is measured and the first characteristic of the driver of the upstream set of deformable nip rollers is adjusted based on the measurement of the second characteristic.
- the present invention also provides an apparatus for controlling web tension in a web printing press having a plurality of sets of deformable nip rollers, each set of deformable nip rollers driven by a separate driver, the web passing sequentially through each set of deformable nip rollers, each adjacent set of deformable nip rollers forming a web segment therebetween.
- the apparatus includes a circuit for adjusting a first characteristic of the driver of a downstream set of deformable nip rollers to set the tension of a first web segment which is between the downstream set of deformable nip rollers and an upstream set of deformable nip rollers.
- the apparatus also includes a controller for adjusting a first characteristic of the driver of the upstream set of deformable nip rollers to maintain a constant tension on a second web segment which is immediately preceding the upstream set of deformable nip rollers.
- the apparatus also includes a sensor for measuring a second characteristic of the second web segment and the controller adjusts the first characteristic of the driver of the upstream set of deformable nip rollers based on the measurement from the sensor.
- the first characteristic may be the rotational speed of the driver.
- the second characteristic may be the tension of the second web segment, the speed of the second web segment, or the amount of torque in the driver of a set of deformable nip rollers immediately preceding the upstream set of deformable nip rollers.
- FIG. 1 is a block diagram of an embodiment of the present invention having closed loop control based on a feedback signal provided from a tension sensor;
- FIG. 2 is a block diagram of an embodiment of the present invention having closed loop control based on a feedback signal provided from a velocity sensor;
- FIG. 3 is a block diagram of an embodiment of the present invention having closed loop control based on a feedback signal provided from a torque sensor;
- FIG. 4 is a block diagram of an alternative embodiment of the present invention having open-loop control.
- FIG. 1 shows a block diagram of an apparatus for setting the tension of a downstream web without affecting the tension of an upstream web in a web printing press 10 according to one presently preferred embodiment of the invention.
- Web 12 is moved by driven nips 22 , 28 and 34 in the direction indicated by arrow 14 .
- Nips 22 , 28 and 34 are formed by nip rollers 20 and 24 , 26 and 30 , and 32 and 36 , respectively.
- Nip rollers 22 and 24 , 26 and 30 , and 32 and 36 rotate as indicated by arrows 27 and are formed with a deformable surface as described above and in more detail in U.S. Patent Publication No. 2006/0157924 A1.
- Nip rollers 20 , 26 and 32 in FIG. 1 are driven by nip roller drivers 38 , 40 and 39 , respectively.
- Nip roller drivers 38 , 40 and 39 may be, for example, electric motors, or other type of suitable drivers.
- Drive controllers 48 , 50 and 49 provide control signals to nip roller drivers 38 , 40 and 39 , respectively, to control the rotational speed of respective nip rollers 20 , 26 and 32 .
- the control signals are provided from controller 70 to the drive controllers 48 , 50 and 49 on respective signal lines 58 , 60 and 59 , respectively.
- Upstream web span 16 is formed between nips 22 and 28 , while downstream web span 18 is formed between nips 28 and 34 .
- additional nips may be provided in the printing press 10 within the context of the present invention, and the principles of this invention apply in that event as well.
- a tension sensor 92 directly measures the tension in upstream web span 16 and provides a corresponding output signal on line 93 to controller 70 .
- Controller 70 also includes an input 60 which is used by an operator to set the tension of downstream web span 18 according to principles of the invention.
- closed loop control is used to maintain the tension of upstream web span 16 at a constant value when an operator desires to change the tension of the downstream web span 18 .
- controller 70 first calculates an updated value for the control signal 59 so that drive controller 49 will adjust the rotational speed of nip roller driver 39 thereby changing the tension of downstream web span 18 to the desired value. Since the change in tension of downstream web span 18 would also result a change in the upstream web span 16 when using deformable nip roller, controller 70 also changes the rotational speed of nip roller driver 40 in a manner that will maintain the tension of upstream web span 16 at a constant value.
- controller 70 receives a signal on line 93 from tension sensor 92 , and compares the received tension signal with the desired tension level and adjusts, in a closed loop manner, the control signal 60 so that the result of the comparison between the received tension signal and the desired tension level is zero.
- FIG. 1 shows a single controller which separately sets and controls the speed of nip roller drivers 38 , 39 and 40
- each nip roller driver 38 , 39 and 40 could be separately controlled, and that the closed-loop control is only applied in this illustrative embodiment to control the nip roller driver which is upstream from the web span having its tension changed.
- the techniques of this invention can be applied to allow adjustment of any span in a printing machine without affecting the tension of any other span.
- nip roller drives 38 and 39 are shown being set by controller 70 , but could alternatively could be set by other means known to one of ordinary skill in the art.
- FIG. 1 shows a controller 70 which compares the signal from tension sensor 92 to a desired value to calculate the feedback control signal 60 to apply to drive controller 50 , as one of skill in the art would readily recognize, this could alternatively be done in the analog domain using a comparator and other ancillary circuitry, where the comparator compares an analog signal from the tension sensor 92 to a predetermined value representing the desired tension setting.
- FIG. 1 shows drive controllers 48 , 49 and 50 as separate from controller 70 , as one of ordinary skill in the art will understand, the drive controller functions could alternatively be implemented either within controller 70 or separately within nip roller drivers 38 , 39 and 40 .
- FIG. 2 shows a first alternative embodiment of the present invention which also relies on closed loop control to maintain the tension of upstream web span 16 at a constant value when the tension of downstream web span 18 is intentionally changed by the operator.
- a velocity sensor 95 is provided to monitor the velocity of upstream web span 16 and provide a corresponding velocity signal 98 to controller 70 (and tension sensor 92 is omitted).
- controller 70 compares the measured velocity signal 98 to the desired velocity value and generates a control signal 60 for the drive controller 50 connected to nip roller driver 40 which, because of the closed loop nature of the system, will cause the difference between the measured velocity signal 98 and the desired velocity value to quickly become zero, even after the tension on downstream web span 18 is changed.
- FIG. 3 shows a second alternative embodiment of the present invention which also relies on closed loop control to maintain the tension of upstream web span 16 at a constant value when the tension of downstream web span 18 is intentionally changed by the operator.
- a torque sensor 90 is provided in nip roller driver 38 to provide a torque signal 57 to controller 70 (and tension sensor 92 is omitted).
- controller 70 compares the measured torque signal 57 to a toque value that corresponds to the desired tension on upstream web span 16 and generates a control signal 60 for the drive controller 50 connected to nip roller driver 40 which, because of the closed loop nature of the system, will cause the difference between the measured torque signal 57 and the desired torque value to quickly become zero, even after a change on the tension on downstream web span 18 .
- FIG. 4 shows a third alternative embodiment of the present invention which, unlike the other embodiments, does not rely on closed loop control to maintain the tension of upstream web span 16 and thus does not require any sensor to monitor the tension of upstream web span 16 .
- controller 70 automatically calculates the amount of change necessary for both control signal 59 and control signal 60 based on characteristics stored in memory. These characteristics can be defined empirically or using predictive models, as understood by one of ordinary skill in the art, and, for example, control signal 60 could be a fixed percentage of control signal 59 .
Landscapes
- Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
- Inking, Control Or Cleaning Of Printing Machines (AREA)
Abstract
Description
- The present invention relates generally to web printing presses and more particularly to a method and apparatus for controlling the tension of the web in a printing press including two or more sets of nip rollers with deformable covers.
- Web printing presses print a continuous web of material, such as paper. The web travels through nips formed by opposing nip rollers. The web is moved on its way by driven nip rollers which are driven by respective nip roller drivers.
- Tension in the web must be maintained within a desired range in order to achieve smooth operation of the printing press. At the same time, the velocity of the web, and hence the rotational speed of nip rollers, must be held relatively constant to achieve good print product quality. Tension in a web span between two nips can be adjusted by controlling the speed of the nip roller driver in the downstream nip.
- Multiple types of nip rollers have been used in conventional web printing presses. Some nip rollers were formed with a deformable surface layer such as urethane. Nip rollers with a deformable surface were found to provide less than ideal operation because of uneven ribbon-to-ribbon tension in upstream web spans.
- As a result, nip rollers formed with a deformable surface such as microcellular foamed urethane were introduced (see, U.S. Patent Publication No. 2006/0157924 A1 published on Jul. 20, 2006 and incorporated herein by reference). Nip rollers with this type of deformable surface layer were found to overcome the uneven ribbon-to-ribbon tension problem of the earlier nip rollers. However, it was found that any nips with non-rigid covers have an effective gain that is a function of the tension difference across the nip roller, so that if the tension of the web downstream from the nip roller is changed, the tension of the upstream web will also change requiring an additional tension adjustment.
- An object of the present invention is to provide a method and apparatus which allows for adjustment of the tension of a downstream span of web without affecting the tension of an upstream span of web.
- The present invention provides a method for controlling web tension in a web printing press having a plurality of sets of deformable nip rollers, each set of deformable nip rollers driven by a separate driver, the web passing sequentially through each set of deformable nip rollers, each adjacent set of deformable nip rollers forming a web segment therebetween. A first characteristic of the driver of a downstream set of deformable nip rollers is adjusted to set the tension of a first web segment which is between the downstream set of deformable nip rollers and an upstream set of deformable nip rollers. Then, a first characteristic of the driver of the upstream set of deformable nip rollers is adjusted to maintain a constant tension on a second web segment which is immediately preceding the upstream set of deformable nip rollers.
- In an alternative embodiment, a second characteristic of the second web segment is measured and the first characteristic of the driver of the upstream set of deformable nip rollers is adjusted based on the measurement of the second characteristic.
- The present invention also provides an apparatus for controlling web tension in a web printing press having a plurality of sets of deformable nip rollers, each set of deformable nip rollers driven by a separate driver, the web passing sequentially through each set of deformable nip rollers, each adjacent set of deformable nip rollers forming a web segment therebetween. The apparatus includes a circuit for adjusting a first characteristic of the driver of a downstream set of deformable nip rollers to set the tension of a first web segment which is between the downstream set of deformable nip rollers and an upstream set of deformable nip rollers. The apparatus also includes a controller for adjusting a first characteristic of the driver of the upstream set of deformable nip rollers to maintain a constant tension on a second web segment which is immediately preceding the upstream set of deformable nip rollers.
- In an alternative embodiment, the apparatus also includes a sensor for measuring a second characteristic of the second web segment and the controller adjusts the first characteristic of the driver of the upstream set of deformable nip rollers based on the measurement from the sensor.
- The first characteristic may be the rotational speed of the driver. The second characteristic may be the tension of the second web segment, the speed of the second web segment, or the amount of torque in the driver of a set of deformable nip rollers immediately preceding the upstream set of deformable nip rollers.
- The above and related objects, features and advantages of the present invention will be more fully understood by reference to the following detailed description of the presently preferred, albeit illustrative, embodiments of the present invention when taken in conjunction with the accompanying drawings wherein:
-
FIG. 1 is a block diagram of an embodiment of the present invention having closed loop control based on a feedback signal provided from a tension sensor; -
FIG. 2 is a block diagram of an embodiment of the present invention having closed loop control based on a feedback signal provided from a velocity sensor; -
FIG. 3 is a block diagram of an embodiment of the present invention having closed loop control based on a feedback signal provided from a torque sensor; and -
FIG. 4 is a block diagram of an alternative embodiment of the present invention having open-loop control. -
FIG. 1 shows a block diagram of an apparatus for setting the tension of a downstream web without affecting the tension of an upstream web in aweb printing press 10 according to one presently preferred embodiment of the invention.Web 12 is moved by drivennips arrow 14.Nips nip rollers Nip rollers arrows 27 and are formed with a deformable surface as described above and in more detail in U.S. Patent Publication No. 2006/0157924 A1. -
Nip rollers FIG. 1 are driven bynip roller drivers Nip roller drivers Drive controllers nip roller drivers respective nip rollers controller 70 to thedrive controllers respective signal lines -
Upstream web span 16 is formed betweennips downstream web span 18 is formed betweennips printing press 10 within the context of the present invention, and the principles of this invention apply in that event as well. Atension sensor 92 directly measures the tension inupstream web span 16 and provides a corresponding output signal online 93 to controller 70.Controller 70 also includes aninput 60 which is used by an operator to set the tension ofdownstream web span 18 according to principles of the invention. - In the embodiment of
FIG. 1 , closed loop control is used to maintain the tension ofupstream web span 16 at a constant value when an operator desires to change the tension of thedownstream web span 18. In particular, when an operator inputs a tension adjustment forupstream web span 18 to controller 70 viainput 80,controller 70 first calculates an updated value for thecontrol signal 59 so thatdrive controller 49 will adjust the rotational speed ofnip roller driver 39 thereby changing the tension ofdownstream web span 18 to the desired value. Since the change in tension ofdownstream web span 18 would also result a change in theupstream web span 16 when using deformable nip roller,controller 70 also changes the rotational speed ofnip roller driver 40 in a manner that will maintain the tension ofupstream web span 16 at a constant value. This requires a decrease in the rotational speed ofnip roller driver 40 when the tension ofdownstream web span 18 is increased (by increasing the speed of nip roller driver 39), and an increase in the rotational speed ofnip roller driver 40 when the tension ofdownstream web span 18 is decreased (by decreasing the speed of nip roller driver 39). In particular,controller 70 receives a signal online 93 fromtension sensor 92, and compares the received tension signal with the desired tension level and adjusts, in a closed loop manner, thecontrol signal 60 so that the result of the comparison between the received tension signal and the desired tension level is zero. In this manner, whenever an operator changes the tension ofdownstream web 18, the tension ofupstream web 16 will be automatically kept constant by closed loop control via the feedback signal provided fromtension sensor 92. By maintaining the tension onupstream web span 16 at a constant level, the change of tension ondownstream web span 18 is invisible to all preceding nips and spans. - Although the embodiment of
FIG. 1 shows a single controller which separately sets and controls the speed ofnip roller drivers nip roller driver FIG. 1 ,nip roller drives controller 70, but could alternatively could be set by other means known to one of ordinary skill in the art. Also, althoughFIG. 1 shows acontroller 70 which compares the signal fromtension sensor 92 to a desired value to calculate thefeedback control signal 60 to apply to drivecontroller 50, as one of skill in the art would readily recognize, this could alternatively be done in the analog domain using a comparator and other ancillary circuitry, where the comparator compares an analog signal from thetension sensor 92 to a predetermined value representing the desired tension setting. Finally, althoughFIG. 1 showsdrive controllers controller 70, as one of ordinary skill in the art will understand, the drive controller functions could alternatively be implemented either withincontroller 70 or separately withinnip roller drivers -
FIG. 2 shows a first alternative embodiment of the present invention which also relies on closed loop control to maintain the tension ofupstream web span 16 at a constant value when the tension ofdownstream web span 18 is intentionally changed by the operator. The only change from the embodiment ofFIG. 1 is that avelocity sensor 95 is provided to monitor the velocity ofupstream web span 16 and provide acorresponding velocity signal 98 to controller 70 (andtension sensor 92 is omitted). Since the velocity of the web span is proportional to the tension thereof,controller 70 compares the measuredvelocity signal 98 to the desired velocity value and generates acontrol signal 60 for thedrive controller 50 connected tonip roller driver 40 which, because of the closed loop nature of the system, will cause the difference between the measuredvelocity signal 98 and the desired velocity value to quickly become zero, even after the tension ondownstream web span 18 is changed. -
FIG. 3 shows a second alternative embodiment of the present invention which also relies on closed loop control to maintain the tension ofupstream web span 16 at a constant value when the tension ofdownstream web span 18 is intentionally changed by the operator. The only change from the embodiment ofFIG. 1 is that atorque sensor 90 is provided innip roller driver 38 to provide atorque signal 57 to controller 70 (andtension sensor 92 is omitted). Since the torque of thenip roller driver 38 is proportional to the tension onupstream web span 16,controller 70 compares the measuredtorque signal 57 to a toque value that corresponds to the desired tension onupstream web span 16 and generates acontrol signal 60 for thedrive controller 50 connected tonip roller driver 40 which, because of the closed loop nature of the system, will cause the difference between the measuredtorque signal 57 and the desired torque value to quickly become zero, even after a change on the tension ondownstream web span 18. -
FIG. 4 shows a third alternative embodiment of the present invention which, unlike the other embodiments, does not rely on closed loop control to maintain the tension ofupstream web span 16 and thus does not require any sensor to monitor the tension ofupstream web span 16. Instead, when the operator inputs a tension change fordownstream web span 18,controller 70 automatically calculates the amount of change necessary for bothcontrol signal 59 andcontrol signal 60 based on characteristics stored in memory. These characteristics can be defined empirically or using predictive models, as understood by one of ordinary skill in the art, and, for example,control signal 60 could be a fixed percentage ofcontrol signal 59. - While the present invention has been particularly shown and described with reference to the preferred embodiments and various aspects thereof, it will be appreciated by those of ordinary skill in the art that various changes and modifications may be made without departing from the spirit and scope of the invention. It is intended that the appended claims be interpreted as including the embodiments described herein, the alternatives mentioned above, and all equivalents thereto.
Claims (12)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/357,718 US20100181360A1 (en) | 2009-01-22 | 2009-01-22 | Tension Control System for Deformable Nip Rollers |
CN201080004884.8A CN102292212B (en) | 2009-01-22 | 2010-01-21 | Tension control system for deformable nip rollers |
PCT/US2010/021656 WO2010085563A1 (en) | 2009-01-22 | 2010-01-21 | Tension control system for deformable nip rollers |
EP10733851A EP2389291A4 (en) | 2009-01-22 | 2010-01-21 | Tension control system for deformable nip rollers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/357,718 US20100181360A1 (en) | 2009-01-22 | 2009-01-22 | Tension Control System for Deformable Nip Rollers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100181360A1 true US20100181360A1 (en) | 2010-07-22 |
Family
ID=42336135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/357,718 Abandoned US20100181360A1 (en) | 2009-01-22 | 2009-01-22 | Tension Control System for Deformable Nip Rollers |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100181360A1 (en) |
EP (1) | EP2389291A4 (en) |
CN (1) | CN102292212B (en) |
WO (1) | WO2010085563A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110422669A (en) * | 2019-07-15 | 2019-11-08 | 佛山科学技术学院 | A kind of ultra-thin amorphous band transmission device and its autocontrol method for transmitting tension |
US20200255257A1 (en) * | 2019-02-08 | 2020-08-13 | Tesmec S.P.A. | Cable recovery machine |
US11597626B2 (en) | 2019-02-08 | 2023-03-07 | Tesmec S.P.A. | Cable recovery machine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012240786A (en) * | 2011-05-19 | 2012-12-10 | Hitachi Ltd | Web carrying device |
KR101788171B1 (en) * | 2011-08-16 | 2017-10-20 | 삼성전자주식회사 | System for roll to roll printing |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4004510A (en) * | 1973-11-13 | 1977-01-25 | J. Bobst & Fils S.A. | Equipment for introduction of a strip of paper, cardboard or similar material into a printing machine |
US6176410B1 (en) * | 1997-11-04 | 2001-01-23 | Mitsubishi Heavy Industries, Ltd. | Method and apparatus for controlling web delivery running at the start time of printing |
US6213367B1 (en) * | 1998-02-02 | 2001-04-10 | Asea Brown Boveri Ag | Method of controlling the drive transporting a paper web in a printing machine |
US20020108983A1 (en) * | 2001-02-12 | 2002-08-15 | Cote Kevin Lauren | Method and apparatus for dynamically controlling a web printing press |
US6684776B2 (en) * | 2001-02-23 | 2004-02-03 | Heidelberger Druckmaschinen Ag | Method and apparatus for determining slipping in a nip roller |
US20040044432A1 (en) * | 2002-09-04 | 2004-03-04 | Franz Michael Joseph | Method of controlling tension in a web |
US20050137738A1 (en) * | 2003-12-22 | 2005-06-23 | 3M Innovative Properties Company | Real-time determination of web tension and control using position sensors |
US20060157924A1 (en) * | 2004-11-03 | 2006-07-20 | Goss International Americas, Inc. | Compressible nip rolls for multiribbon transport |
US20060249043A1 (en) * | 2003-08-06 | 2006-11-09 | Man Roland Druckmaschinen Ag | Method and apparatus for controlling the web tensions and the cut register errors of a web-fed rotary press |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW307822B (en) * | 1994-03-11 | 1997-06-11 | Xeikon Nv | |
US6418958B1 (en) | 2001-04-02 | 2002-07-16 | Betzdearborn, Inc. | Dual solid chemical feed system |
US6820661B1 (en) | 2003-07-28 | 2004-11-23 | Ap Tech Group, Inc. | Solid concentrates dissolver system |
DE10335887B4 (en) * | 2003-08-06 | 2007-11-08 | Man Roland Druckmaschinen Ag | Method and apparatus for controlling a cut register error and web tension of a web-fed rotary press |
US8008082B2 (en) | 2006-05-18 | 2011-08-30 | Howland David R | Solution dispensing system |
CN201169118Y (en) * | 2007-10-12 | 2008-12-24 | 天津长荣印刷设备股份有限公司 | Unit type mold cutter for reeled paper |
CN201132413Y (en) * | 2007-12-30 | 2008-10-15 | 宁波欣达印刷机器有限公司 | Introducing and preprocessing device of printing machines for easy-to-draw coiling material |
-
2009
- 2009-01-22 US US12/357,718 patent/US20100181360A1/en not_active Abandoned
-
2010
- 2010-01-21 CN CN201080004884.8A patent/CN102292212B/en not_active Expired - Fee Related
- 2010-01-21 WO PCT/US2010/021656 patent/WO2010085563A1/en active Application Filing
- 2010-01-21 EP EP10733851A patent/EP2389291A4/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4004510A (en) * | 1973-11-13 | 1977-01-25 | J. Bobst & Fils S.A. | Equipment for introduction of a strip of paper, cardboard or similar material into a printing machine |
US6176410B1 (en) * | 1997-11-04 | 2001-01-23 | Mitsubishi Heavy Industries, Ltd. | Method and apparatus for controlling web delivery running at the start time of printing |
US6213367B1 (en) * | 1998-02-02 | 2001-04-10 | Asea Brown Boveri Ag | Method of controlling the drive transporting a paper web in a printing machine |
US20020108983A1 (en) * | 2001-02-12 | 2002-08-15 | Cote Kevin Lauren | Method and apparatus for dynamically controlling a web printing press |
US6684776B2 (en) * | 2001-02-23 | 2004-02-03 | Heidelberger Druckmaschinen Ag | Method and apparatus for determining slipping in a nip roller |
US20040044432A1 (en) * | 2002-09-04 | 2004-03-04 | Franz Michael Joseph | Method of controlling tension in a web |
US20060249043A1 (en) * | 2003-08-06 | 2006-11-09 | Man Roland Druckmaschinen Ag | Method and apparatus for controlling the web tensions and the cut register errors of a web-fed rotary press |
US20050137738A1 (en) * | 2003-12-22 | 2005-06-23 | 3M Innovative Properties Company | Real-time determination of web tension and control using position sensors |
US20060157924A1 (en) * | 2004-11-03 | 2006-07-20 | Goss International Americas, Inc. | Compressible nip rolls for multiribbon transport |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200255257A1 (en) * | 2019-02-08 | 2020-08-13 | Tesmec S.P.A. | Cable recovery machine |
US11014776B2 (en) * | 2019-02-08 | 2021-05-25 | Tesmec S.P.A. | Cable recovery machine |
US11597626B2 (en) | 2019-02-08 | 2023-03-07 | Tesmec S.P.A. | Cable recovery machine |
CN110422669A (en) * | 2019-07-15 | 2019-11-08 | 佛山科学技术学院 | A kind of ultra-thin amorphous band transmission device and its autocontrol method for transmitting tension |
Also Published As
Publication number | Publication date |
---|---|
EP2389291A1 (en) | 2011-11-30 |
CN102292212B (en) | 2014-04-09 |
CN102292212A (en) | 2011-12-21 |
EP2389291A4 (en) | 2012-08-15 |
WO2010085563A1 (en) | 2010-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2703160A1 (en) | Strain controlled infeed | |
US5709331A (en) | Method for calculating and regulating the elongation of a moving material web, and device for applying the method | |
US7798382B2 (en) | Regulating the web tension of a continuous material | |
EP1551741B1 (en) | Method of controlling tension in a web | |
US6499639B2 (en) | Method and apparatus for dynamically controlling a web printing press | |
US4896808A (en) | Device for the controlled infeed of a web to a printing machine, method for regulating a corresponding control signal, and device for performing the method | |
US20100181360A1 (en) | Tension Control System for Deformable Nip Rollers | |
US20050034578A1 (en) | Method and apparatus for controlling the cutting register on a web running through a web-fed rotary press | |
US8820238B2 (en) | Method and apparatus for controlling the cut register of a web-fed rotary press | |
CN101412303A (en) | Method for register correction of a processing machine, and a processing machine | |
US6684776B2 (en) | Method and apparatus for determining slipping in a nip roller | |
CA2591240C (en) | Method of controlling tension in a web | |
US20120294662A1 (en) | Method for Controlling the Web Tension in a Web Processing Machine | |
US20090293746A1 (en) | Method for operating a printing press | |
CA2087825C (en) | Method and apparatus for variably controlling the speed of a slave drive roller | |
US20130253692A1 (en) | Method For Actuating A Tandem Roll Train, Control And/Or Regulating Device For A Tandem Roll Train, Machine-Readable Program Code, Storage Medium And Tandem Roll Train | |
CN101450544B (en) | Method of correcting the axis in a processing machine and processing machine | |
EP1826002A3 (en) | Printing press with web tension control | |
JPH07108551A (en) | Automatic thickness control device of calender device | |
JPH0655560A (en) | Method and apparatus for controlling thickness of sheet in calender | |
JP2011201131A (en) | Gravure printing machine and control method of the same | |
JP3637272B2 (en) | Web tension control method and apparatus for rotary printing press | |
JP2961453B2 (en) | Optimal tension calculator for printing machines | |
JPH04266355A (en) | Winder controller | |
JP2002160351A (en) | Method and apparatus for web tension control in rotary press |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GOSS INTERNATIONAL AMERICAS, INC., NEW HAMPSHIRE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PERDUE, DANIEL MATTHEW;DAWLEY, DOUGLAS JOSEPH;RANCOURT, MICHAEL RAYMOND;SIGNING DATES FROM 20090303 TO 20090310;REEL/FRAME:022492/0378 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: SECURITY AGREEMENT;ASSIGNOR:GOSS INTERNATIONAL AMERICAS, INC.;REEL/FRAME:022951/0538 Effective date: 20090710 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: SECURITY AGREEMENT;ASSIGNOR:GOSS INTERNATIONAL AMERICAS, INC.;REEL/FRAME:022960/0316 Effective date: 20090710 |
|
AS | Assignment |
Owner name: GOSS INTERNATIONAL AMERICAS, INC., ILLINOIS Free format text: RELEASE OF SECURITY INTEREST (GRANTED IN REEL 022951; FRAME: 0538);ASSIGNOR:U.S. BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024565/0954 Effective date: 20100611 |
|
AS | Assignment |
Owner name: GOSS INTERNATIONAL AMERICAS, INC., ILLINOIS Free format text: RELEASE OF SECURITY INTEREST (GRANTED IN REEL 022960; FRAME 0316);ASSIGNOR:U.S. BANK, N.A., NATIONAL ASSOCIATION;REEL/FRAME:025012/0889 Effective date: 20100914 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |