US20100152460A1 - Process for the preparation of opioid modulators - Google Patents
Process for the preparation of opioid modulators Download PDFInfo
- Publication number
- US20100152460A1 US20100152460A1 US12/625,973 US62597309A US2010152460A1 US 20100152460 A1 US20100152460 A1 US 20100152460A1 US 62597309 A US62597309 A US 62597309A US 2010152460 A1 US2010152460 A1 US 2010152460A1
- Authority
- US
- United States
- Prior art keywords
- formula
- compound
- alkyl
- phenyl
- yield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 138
- 238000002360 preparation method Methods 0.000 title claims abstract description 94
- 230000008569 process Effects 0.000 title claims abstract description 83
- 150000001875 compounds Chemical class 0.000 claims description 426
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 79
- 239000003960 organic solvent Substances 0.000 claims description 68
- 239000001257 hydrogen Substances 0.000 claims description 62
- 229910052739 hydrogen Inorganic materials 0.000 claims description 62
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 57
- -1 quinolizinyl Chemical group 0.000 claims description 53
- 125000001072 heteroaryl group Chemical group 0.000 claims description 49
- 229910052801 chlorine Inorganic materials 0.000 claims description 41
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 38
- 229910052794 bromium Inorganic materials 0.000 claims description 36
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 35
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 34
- 239000003054 catalyst Substances 0.000 claims description 30
- 150000007530 organic bases Chemical class 0.000 claims description 29
- 229910052740 iodine Inorganic materials 0.000 claims description 28
- 229910052763 palladium Inorganic materials 0.000 claims description 26
- 229910052757 nitrogen Inorganic materials 0.000 claims description 25
- 125000000623 heterocyclic group Chemical group 0.000 claims description 24
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 23
- 150000007529 inorganic bases Chemical class 0.000 claims description 22
- 125000001153 fluoro group Chemical group F* 0.000 claims description 15
- 125000002541 furyl group Chemical group 0.000 claims description 15
- 125000004076 pyridyl group Chemical group 0.000 claims description 15
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 14
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 12
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 claims description 6
- 125000004618 benzofuryl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 claims description 6
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 claims description 6
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 claims description 6
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 claims description 6
- 125000002883 imidazolyl group Chemical group 0.000 claims description 6
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 claims description 6
- 125000001041 indolyl group Chemical group 0.000 claims description 6
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 claims description 6
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 claims description 6
- 125000002971 oxazolyl group Chemical group 0.000 claims description 6
- 125000003373 pyrazinyl group Chemical group 0.000 claims description 6
- 125000003226 pyrazolyl group Chemical group 0.000 claims description 6
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 6
- 125000000168 pyrrolyl group Chemical group 0.000 claims description 6
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 claims description 6
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 claims description 6
- 125000000335 thiazolyl group Chemical group 0.000 claims description 6
- 125000001544 thienyl group Chemical group 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 12
- 238000003786 synthesis reaction Methods 0.000 abstract description 11
- 208000018522 Gastrointestinal disease Diseases 0.000 abstract description 5
- 239000000543 intermediate Substances 0.000 abstract description 5
- 208000027520 Somatoform disease Diseases 0.000 abstract description 3
- 208000027753 pain disease Diseases 0.000 abstract description 3
- 239000000556 agonist Substances 0.000 abstract description 2
- 239000005557 antagonist Substances 0.000 abstract description 2
- 230000002265 prevention Effects 0.000 abstract description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 106
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 94
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 93
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 59
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 58
- 125000001424 substituent group Chemical group 0.000 description 56
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 55
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 54
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 48
- 125000003118 aryl group Chemical group 0.000 description 43
- 239000000460 chlorine Substances 0.000 description 40
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 39
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 37
- 229910021529 ammonia Inorganic materials 0.000 description 35
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 35
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 34
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 33
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 29
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 29
- 239000002585 base Substances 0.000 description 28
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 27
- 229910002091 carbon monoxide Inorganic materials 0.000 description 27
- LVEYOSJUKRVCCF-UHFFFAOYSA-N 1,3-bis(diphenylphosphino)propane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCCP(C=1C=CC=CC=1)C1=CC=CC=C1 LVEYOSJUKRVCCF-UHFFFAOYSA-N 0.000 description 26
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 26
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 26
- 125000000217 alkyl group Chemical group 0.000 description 23
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 22
- 239000003446 ligand Substances 0.000 description 22
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 150000002431 hydrogen Chemical group 0.000 description 21
- XYFCBTPGUUZFHI-UHFFFAOYSA-N P Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 19
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 18
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 18
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 17
- 229910000027 potassium carbonate Inorganic materials 0.000 description 17
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 16
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 16
- 125000000753 cycloalkyl group Chemical group 0.000 description 15
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 14
- 125000004093 cyano group Chemical group *C#N 0.000 description 14
- 235000019439 ethyl acetate Nutrition 0.000 description 14
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 14
- 229910002666 PdCl2 Inorganic materials 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 13
- 229910052736 halogen Inorganic materials 0.000 description 13
- 150000002367 halogens Chemical class 0.000 description 13
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 13
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 13
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 12
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 12
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 12
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 12
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 12
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 12
- 235000019254 sodium formate Nutrition 0.000 description 12
- 125000004890 (C1-C6) alkylamino group Chemical group 0.000 description 11
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 11
- 208000002193 Pain Diseases 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 229910000029 sodium carbonate Inorganic materials 0.000 description 11
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 10
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 10
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 10
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 10
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 10
- 125000001309 chloro group Chemical group Cl* 0.000 description 9
- 239000007822 coupling agent Substances 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 238000010992 reflux Methods 0.000 description 9
- 0 CC.CC(=O)N(C)C.P.[1*]N(C(=O)C(CC)N([Rb])[RaH])C([2*])C.[3*]C.[5*]C Chemical compound CC.CC(=O)N(C)C.P.[1*]N(C(=O)C(CC)N([Rb])[RaH])C([2*])C.[3*]C.[5*]C 0.000 description 8
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 8
- 125000004457 alkyl amino carbonyl group Chemical group 0.000 description 8
- 235000019270 ammonium chloride Nutrition 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 125000006274 (C1-C3)alkoxy group Chemical group 0.000 description 7
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 125000000304 alkynyl group Chemical group 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 125000005553 heteroaryloxy group Chemical group 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 6
- 125000004454 (C1-C6) alkoxycarbonyl group Chemical group 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical group [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- 108090000137 Opioid Receptors Proteins 0.000 description 6
- 102000003840 Opioid Receptors Human genes 0.000 description 6
- 125000006517 heterocyclyl carbonyl group Chemical group 0.000 description 6
- 239000008194 pharmaceutical composition Substances 0.000 description 6
- ZLUHLTMMROGKKD-ZDUSSCGKSA-N (2s)-3-(4-carbamoyl-2,6-dimethylphenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC1=CC(C(N)=O)=CC(C)=C1C[C@H](NC(=O)OC(C)(C)C)C(O)=O ZLUHLTMMROGKKD-ZDUSSCGKSA-N 0.000 description 5
- DIOHEXPTUTVCNX-UHFFFAOYSA-N 1,1,1-trifluoro-n-phenyl-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)N(S(=O)(=O)C(F)(F)F)C1=CC=CC=C1 DIOHEXPTUTVCNX-UHFFFAOYSA-N 0.000 description 5
- ZLUHLTMMROGKKD-UHFFFAOYSA-N 3-(4-carbamoyl-2,6-dimethylphenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC1=CC(C(N)=O)=CC(C)=C1CC(NC(=O)OC(C)(C)C)C(O)=O ZLUHLTMMROGKKD-UHFFFAOYSA-N 0.000 description 5
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 125000005241 heteroarylamino group Chemical group 0.000 description 5
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 5
- 125000002950 monocyclic group Chemical group 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 125000006239 protecting group Chemical group 0.000 description 5
- 125000003831 tetrazolyl group Chemical group 0.000 description 5
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 5
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 5
- QFMZQPDHXULLKC-UHFFFAOYSA-N 1,2-bis(diphenylphosphino)ethane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCP(C=1C=CC=CC=1)C1=CC=CC=C1 QFMZQPDHXULLKC-UHFFFAOYSA-N 0.000 description 4
- YEVNAPIHXRPLMB-UHFFFAOYSA-N CC.CC(=O)N(C)C.CCC(NC)C(=O)O.P Chemical compound CC.CC(=O)N(C)C.CCC(NC)C(=O)O.P YEVNAPIHXRPLMB-UHFFFAOYSA-N 0.000 description 4
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 4
- 125000001246 bromo group Chemical group Br* 0.000 description 4
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 4
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 4
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- HBENZIXOGRCSQN-VQWWACLZSA-N (1S,2S,6R,14R,15R,16R)-5-(cyclopropylmethyl)-16-[(2S)-2-hydroxy-3,3-dimethylpentan-2-yl]-15-methoxy-13-oxa-5-azahexacyclo[13.2.2.12,8.01,6.02,14.012,20]icosa-8(20),9,11-trien-11-ol Chemical compound N1([C@@H]2CC=3C4=C(C(=CC=3)O)O[C@H]3[C@@]5(OC)CC[C@@]2([C@@]43CC1)C[C@@H]5[C@](C)(O)C(C)(C)CC)CC1CC1 HBENZIXOGRCSQN-VQWWACLZSA-N 0.000 description 3
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OIOYVBGKFHMMLW-QZUCYZRJSA-N C/C=C(\NC)C(C)=O.C=C(NC)C(C)=O.CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.C[Y]P.P.P Chemical compound C/C=C(\NC)C(C)=O.C=C(NC)C(C)=O.CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.C[Y]P.P.P OIOYVBGKFHMMLW-QZUCYZRJSA-N 0.000 description 3
- GYZKBJPAKZEGHH-IXYDGZKFSA-N C/C=C(\NC)C(C)=O.CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.CCC(NC)C(C)=O.P.P Chemical compound C/C=C(\NC)C(C)=O.CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.CCC(NC)C(C)=O.P.P GYZKBJPAKZEGHH-IXYDGZKFSA-N 0.000 description 3
- ZISKGUGZZKWJCB-UHFFFAOYSA-N CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.CCC(NC)C(=O)O.CCC(NC)C(C)=O.I.P.P Chemical compound CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.CCC(NC)C(=O)O.CCC(NC)C(C)=O.I.P.P ZISKGUGZZKWJCB-UHFFFAOYSA-N 0.000 description 3
- DHDCOYNDXQHWSQ-ALKXEWLGSA-N CC1=CC(C(N)=O)=CC(C)=C1C[C@H](NC(=O)OC(C)(C)C)C(=O)O.COC(=O)[C@H](CC1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C Chemical compound CC1=CC(C(N)=O)=CC(C)=C1C[C@H](NC(=O)OC(C)(C)C)C(=O)O.COC(=O)[C@H](CC1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C DHDCOYNDXQHWSQ-ALKXEWLGSA-N 0.000 description 3
- BDTSBQNFAMWEAI-UHFFFAOYSA-N CNC(CP(C)C(=O)N(C)C)C(=O)O.CNC(CP(C)C(=O)N(C)C)C(C)=O.I Chemical compound CNC(CP(C)C(=O)N(C)C)C(=O)O.CNC(CP(C)C(=O)N(C)C)C(C)=O.I BDTSBQNFAMWEAI-UHFFFAOYSA-N 0.000 description 3
- WMTAUGQVESSKMI-GGSSHPAVSA-N COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C.COC(=O)[C@H](CC1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C Chemical compound COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C.COC(=O)[C@H](CC1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C WMTAUGQVESSKMI-GGSSHPAVSA-N 0.000 description 3
- 239000007832 Na2SO4 Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 125000001769 aryl amino group Chemical group 0.000 description 3
- 125000004104 aryloxy group Chemical group 0.000 description 3
- 125000005605 benzo group Chemical group 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 150000001721 carbon Chemical group 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 3
- 238000000524 positive electrospray ionisation mass spectrometry Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 208000011580 syndromic disease Diseases 0.000 description 3
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 2
- PHDIJLFSKNMCMI-ITGJKDDRSA-N (3R,4S,5R,6R)-6-(hydroxymethyl)-4-(8-quinolin-6-yloxyoctoxy)oxane-2,3,5-triol Chemical compound OC[C@@H]1[C@H]([C@@H]([C@H](C(O1)O)O)OCCCCCCCCOC=1C=C2C=CC=NC2=CC=1)O PHDIJLFSKNMCMI-ITGJKDDRSA-N 0.000 description 2
- 125000006559 (C1-C3) alkylamino group Chemical group 0.000 description 2
- 125000006602 (C1-C3) alkylsulfonylamino group Chemical group 0.000 description 2
- 125000004916 (C1-C6) alkylcarbonyl group Chemical group 0.000 description 2
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 description 2
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 2
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- ATWMWAQQPBRPCA-UHFFFAOYSA-N 4-bromo-3,5-dimethylbenzamide Chemical compound CC1=CC(C(N)=O)=CC(C)=C1Br ATWMWAQQPBRPCA-UHFFFAOYSA-N 0.000 description 2
- HIHOEGPXVVKJPP-JTQLQIEISA-N 5-fluoro-2-[[(1s)-1-(5-fluoropyridin-2-yl)ethyl]amino]-6-[(5-methyl-1h-pyrazol-3-yl)amino]pyridine-3-carbonitrile Chemical compound N([C@@H](C)C=1N=CC(F)=CC=1)C(C(=CC=1F)C#N)=NC=1NC=1C=C(C)NN=1 HIHOEGPXVVKJPP-JTQLQIEISA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- IIQNSAZGMCGFSG-UVOCCRBZSA-N C/C=C(\NC)C(C)=O.CC.CC(=O)N(C)C.P Chemical compound C/C=C(\NC)C(C)=O.CC.CC(=O)N(C)C.P IIQNSAZGMCGFSG-UVOCCRBZSA-N 0.000 description 2
- JTRKHURHLHATAD-ZROIWOOFSA-N CC(C)(C)OC(N/C(/C(OC)=O)=C\c(c(C)c1)c(C)cc1C(N)=O)=O Chemical compound CC(C)(C)OC(N/C(/C(OC)=O)=C\c(c(C)c1)c(C)cc1C(N)=O)=O JTRKHURHLHATAD-ZROIWOOFSA-N 0.000 description 2
- RAWWCVZOEPVSGK-UHFFFAOYSA-N CC.CC.CC.CC(=O)N(C)C.C[Y]P.C[Y]P.P.P Chemical compound CC.CC.CC.CC(=O)N(C)C.C[Y]P.C[Y]P.P.P RAWWCVZOEPVSGK-UHFFFAOYSA-N 0.000 description 2
- VBGXATQIRHKPDO-UHFFFAOYSA-N CC1=CC(C(N)=O)=CC(C)=C1[Y]P.CC1=CC(C)=C([Y]P)C(C)=C1 Chemical compound CC1=CC(C(N)=O)=CC(C)=C1[Y]P.CC1=CC(C)=C([Y]P)C(C)=C1 VBGXATQIRHKPDO-UHFFFAOYSA-N 0.000 description 2
- WAVBJFSOFIZNCX-QPEQYQDCSA-N CN/C(=C\C1=C(C)C=C(C(N)=O)C=C1C)C(C)=O Chemical compound CN/C(=C\C1=C(C)C=C(C(N)=O)C=C1C)C(C)=O WAVBJFSOFIZNCX-QPEQYQDCSA-N 0.000 description 2
- SKVYLPICHPQPEV-SEUOEIGTSA-N CN/C(=C\P(C)C(=O)N(C)C)C(C)=O.CNC(CP(C)C(=O)N(C)C)C(C)=O Chemical compound CN/C(=C\P(C)C(=O)N(C)C)C(C)=O.CNC(CP(C)C(=O)N(C)C)C(C)=O SKVYLPICHPQPEV-SEUOEIGTSA-N 0.000 description 2
- ZEMPMGGLTHBXQS-UHFFFAOYSA-N CNC(CP(C)C(=O)N(C)C)C(=O)O Chemical compound CNC(CP(C)C(=O)N(C)C)C(=O)O ZEMPMGGLTHBXQS-UHFFFAOYSA-N 0.000 description 2
- 208000000094 Chronic Pain Diseases 0.000 description 2
- 206010010774 Constipation Diseases 0.000 description 2
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 206010054048 Postoperative ileus Diseases 0.000 description 2
- 101100244562 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) oprD gene Proteins 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- 125000000000 cycloalkoxy group Chemical group 0.000 description 2
- 108700023159 delta Opioid Receptors Proteins 0.000 description 2
- 102000048124 delta Opioid Receptors Human genes 0.000 description 2
- DHCWLIOIJZJFJE-UHFFFAOYSA-L dichlororuthenium Chemical compound Cl[Ru]Cl DHCWLIOIJZJFJE-UHFFFAOYSA-L 0.000 description 2
- QVQGTNFYPJQJNM-UHFFFAOYSA-N dicyclohexylmethanamine Chemical compound C1CCCCC1C(N)C1CCCCC1 QVQGTNFYPJQJNM-UHFFFAOYSA-N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 125000005844 heterocyclyloxy group Chemical group 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 208000002551 irritable bowel syndrome Diseases 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- AKXSOBOVDSGMSO-AWEZNQCLSA-N methyl (2s)-3-(4-carbamoyl-2,6-dimethylphenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoate Chemical compound CC(C)(C)OC(=O)N[C@H](C(=O)OC)CC1=C(C)C=C(C(N)=O)C=C1C AKXSOBOVDSGMSO-AWEZNQCLSA-N 0.000 description 2
- AKXSOBOVDSGMSO-UHFFFAOYSA-N methyl 3-(4-carbamoyl-2,6-dimethylphenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoate Chemical compound CC(C)(C)OC(=O)NC(C(=O)OC)CC1=C(C)C=C(C(N)=O)C=C1C AKXSOBOVDSGMSO-UHFFFAOYSA-N 0.000 description 2
- 230000004899 motility Effects 0.000 description 2
- 102000051367 mu Opioid Receptors Human genes 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 208000004296 neuralgia Diseases 0.000 description 2
- 208000021722 neuropathic pain Diseases 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical compound [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 2
- 229910003446 platinum oxide Inorganic materials 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- WJUFSDZVCOTFON-UHFFFAOYSA-N veratraldehyde Chemical compound COC1=CC=C(C=O)C=C1OC WJUFSDZVCOTFON-UHFFFAOYSA-N 0.000 description 2
- 229910052727 yttrium Chemical group 0.000 description 2
- 108020001612 μ-opioid receptors Proteins 0.000 description 2
- CMIBUZBMZCBCAT-HZPDHXFCSA-N (2r,3r)-2,3-bis[(4-methylbenzoyl)oxy]butanedioic acid Chemical compound C1=CC(C)=CC=C1C(=O)O[C@@H](C(O)=O)[C@H](C(O)=O)OC(=O)C1=CC=C(C)C=C1 CMIBUZBMZCBCAT-HZPDHXFCSA-N 0.000 description 1
- WJJGAKCAAJOICV-JTQLQIEISA-N (2s)-2-(dimethylamino)-3-(4-hydroxyphenyl)propanoic acid Chemical compound CN(C)[C@H](C(O)=O)CC1=CC=C(O)C=C1 WJJGAKCAAJOICV-JTQLQIEISA-N 0.000 description 1
- BNFVLWAYCBUPHK-UHFFFAOYSA-N (4-bromo-3,5-dimethylphenyl) trifluoromethanesulfonate Chemical compound CC1=CC(OS(=O)(=O)C(F)(F)F)=CC(C)=C1Br BNFVLWAYCBUPHK-UHFFFAOYSA-N 0.000 description 1
- 125000006563 (C1-3) alkylaminocarbonyl group Chemical group 0.000 description 1
- 125000004739 (C1-C6) alkylsulfonyl group Chemical group 0.000 description 1
- 125000004845 (C1-C6) alkylsulfonylamino group Chemical group 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- XQFMQMXJXWTGON-UHFFFAOYSA-N 1-(5-phenyl-1h-imidazol-2-yl)ethanamine Chemical compound N1C(C(N)C)=NC=C1C1=CC=CC=C1 XQFMQMXJXWTGON-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical group C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- AWONIZVBKXHWJP-UHFFFAOYSA-N 1-methoxy-2,3,5-trimethylbenzene Chemical compound COC1=CC(C)=CC(C)=C1C AWONIZVBKXHWJP-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- JZIBVTUXIVIFGC-UHFFFAOYSA-N 2H-pyrrole Chemical compound C1C=CC=N1 JZIBVTUXIVIFGC-UHFFFAOYSA-N 0.000 description 1
- 125000004364 3-pyrrolinyl group Chemical group [H]C1=C([H])C([H])([H])N(*)C1([H])[H] 0.000 description 1
- OKEOADKQDIJJMU-UHFFFAOYSA-N 4-bromo-3,5-dimethylbenzoic acid Chemical compound CC1=CC(C(O)=O)=CC(C)=C1Br OKEOADKQDIJJMU-UHFFFAOYSA-N 0.000 description 1
- WMUWDPLTTLJNPE-UHFFFAOYSA-N 4-bromo-3,5-dimethylphenol Chemical compound CC1=CC(O)=CC(C)=C1Br WMUWDPLTTLJNPE-UHFFFAOYSA-N 0.000 description 1
- OSWMTSBLFGVAPZ-UHFFFAOYSA-N 5-[[[2-amino-3-(4-carbamoyl-2,5-dimethylphenyl)propanoyl]-[1-(5-phenyl-1h-imidazol-2-yl)ethyl]amino]methyl]-2-methoxybenzoic acid Chemical compound C1=C(C(O)=O)C(OC)=CC=C1CN(C(=O)C(N)CC=1C(=CC(=C(C)C=1)C(N)=O)C)C(C)C1=NC(C=2C=CC=CC=2)=CN1 OSWMTSBLFGVAPZ-UHFFFAOYSA-N 0.000 description 1
- QFNHIDANIVGXPE-UHFFFAOYSA-N 5-[[[2-amino-3-(4-carbamoyl-2,6-dimethylphenyl)propanoyl]-[1-(5-phenyl-1h-imidazol-2-yl)ethyl]amino]methyl]-2-methoxybenzoic acid Chemical compound C1=C(C(O)=O)C(OC)=CC=C1CN(C(=O)C(N)CC=1C(=CC(=CC=1C)C(N)=O)C)C(C)C1=NC(C=2C=CC=CC=2)=CN1 QFNHIDANIVGXPE-UHFFFAOYSA-N 0.000 description 1
- MIBGTAUGJDRYIZ-UHFFFAOYSA-N 5-[[[2-amino-3-(4-carbamoyl-2,6-dimethylphenyl)propanoyl]-[1-[5-(4-iodophenyl)-1h-imidazol-2-yl]ethyl]amino]methyl]-2-methoxybenzoic acid Chemical compound C1=C(C(O)=O)C(OC)=CC=C1CN(C(=O)C(N)CC=1C(=CC(=CC=1C)C(N)=O)C)C(C)C1=NC(C=2C=CC(I)=CC=2)=CN1 MIBGTAUGJDRYIZ-UHFFFAOYSA-N 0.000 description 1
- CVBROCMWRIDGFZ-UHFFFAOYSA-N 5-[[[3-(4-carbamoyl-2,6-dimethylphenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoyl]-[1-(5-phenyl-1h-imidazol-2-yl)ethyl]amino]methyl]-2-methoxybenzoic acid Chemical compound C1=C(C(O)=O)C(OC)=CC=C1CN(C(=O)C(CC=1C(=CC(=CC=1C)C(N)=O)C)NC(=O)OC(C)(C)C)C(C)C1=NC(C=2C=CC=CC=2)=CN1 CVBROCMWRIDGFZ-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- CLYQSCJTAZHCIV-IJLASORRSA-N C.C/C=C(\NC)C(C)=O.C=C(NC)C(C)=O.CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.C[Y]P.P.P Chemical compound C.C/C=C(\NC)C(C)=O.C=C(NC)C(C)=O.CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.C[Y]P.P.P CLYQSCJTAZHCIV-IJLASORRSA-N 0.000 description 1
- JGTANRDRTQCBRO-SYTBRISTSA-N C.C/C=C(\NC)C(C)=O.CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.CCC(NC)C(C)=O.P.P Chemical compound C.C/C=C(\NC)C(C)=O.CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.CCC(NC)C(C)=O.P.P JGTANRDRTQCBRO-SYTBRISTSA-N 0.000 description 1
- IBXYIDPEFICUGA-VZPGORIXSA-N C.C/C=C(\NC)C(C)=O.CC.CC.CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.CC(=O)O.CC(=O)O.CC=O.CC=O.CNC(C=O)C(C)=O.C[Y]P.P.P.P.P Chemical compound C.C/C=C(\NC)C(C)=O.CC.CC.CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.CC(=O)O.CC(=O)O.CC=O.CC=O.CNC(C=O)C(C)=O.C[Y]P.P.P.P.P IBXYIDPEFICUGA-VZPGORIXSA-N 0.000 description 1
- RTQRPDLPZPAMEJ-HAXLXZNCSA-N C.C/C=C(\NC)C(C)=O.CC.CC.CC.CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.CC(=O)N(C)C.CC(=O)N(C)C.CC(=O)O.CC=O.CNC(C=O)C(C)=O.CO.CO.COS(=O)(=O)C(F)(F)F.P.P.P.P.P Chemical compound C.C/C=C(\NC)C(C)=O.CC.CC.CC.CC.CC.CC(=O)N(C)C.CC(=O)N(C)C.CC(=O)N(C)C.CC(=O)N(C)C.CC(=O)O.CC=O.CNC(C=O)C(C)=O.CO.CO.COS(=O)(=O)C(F)(F)F.P.P.P.P.P RTQRPDLPZPAMEJ-HAXLXZNCSA-N 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- UCCMDWRCQYBIOI-PORJIIKGSA-N C=C(NC(=O)OC(C)(C)C)C(=O)OC.CC1=CC(C(=O)O)=CC(C)=C1Br.CC1=CC(C(N)=O)=CC(C)=C1Br.CC1=CC(C(N)=O)=CC(C)=C1C[C@H](NC(=O)OC(C)(C)C)C(=O)O.CC1=CC(O)=CC(C)=C1Br.CC1=CC(OS(=O)(=O)C(F)(F)F)=CC(C)=C1Br.COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C.COC(=O)C(CO)NC(=O)OC(C)(C)C.COC(=O)[C@H](CC1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C Chemical compound C=C(NC(=O)OC(C)(C)C)C(=O)OC.CC1=CC(C(=O)O)=CC(C)=C1Br.CC1=CC(C(N)=O)=CC(C)=C1Br.CC1=CC(C(N)=O)=CC(C)=C1C[C@H](NC(=O)OC(C)(C)C)C(=O)O.CC1=CC(O)=CC(C)=C1Br.CC1=CC(OS(=O)(=O)C(F)(F)F)=CC(C)=C1Br.COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C.COC(=O)C(CO)NC(=O)OC(C)(C)C.COC(=O)[C@H](CC1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C UCCMDWRCQYBIOI-PORJIIKGSA-N 0.000 description 1
- RPQSQYHYSWWULW-SLYOBIJPSA-N C=C(NC(=O)OC(C)(C)C)C(=O)OC.CC1=CC(C(N)=O)=CC(C)=C1Br.COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C Chemical compound C=C(NC(=O)OC(C)(C)C)C(=O)OC.CC1=CC(C(N)=O)=CC(C)=C1Br.COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C RPQSQYHYSWWULW-SLYOBIJPSA-N 0.000 description 1
- GYWNGLOTBNEPKN-VWHRHGOESA-N C=C(NC(=O)OC(C)(C)C)C(=O)OC.CC1=CC(C(N)=O)=CC(C)=C1[Y]P.COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C Chemical compound C=C(NC(=O)OC(C)(C)C)C(=O)OC.CC1=CC(C(N)=O)=CC(C)=C1[Y]P.COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C GYWNGLOTBNEPKN-VWHRHGOESA-N 0.000 description 1
- OUIUSXIAFHJOLR-VGOACDDLSA-N CB(O)N[C@@H](CC1=C(C)C=C(C(N)=O)C=C1C)C(=O)O.COC(=O)[C@H](CC1=C(C)C=C(C(=O)O)C=C1C)NB(C)O.COC(=O)[C@H](CC1=C(C)C=C(C(N)=O)C=C1C)NB(C)O.COC(=O)[C@H](CC1=C(C)C=C(OS(=O)(=O)C(F)(F)F)C=C1C)NB(C)O Chemical compound CB(O)N[C@@H](CC1=C(C)C=C(C(N)=O)C=C1C)C(=O)O.COC(=O)[C@H](CC1=C(C)C=C(C(=O)O)C=C1C)NB(C)O.COC(=O)[C@H](CC1=C(C)C=C(C(N)=O)C=C1C)NB(C)O.COC(=O)[C@H](CC1=C(C)C=C(OS(=O)(=O)C(F)(F)F)C=C1C)NB(C)O OUIUSXIAFHJOLR-VGOACDDLSA-N 0.000 description 1
- MVZAULXVYUAGEL-DHDCSXOGSA-N CC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C Chemical compound CC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C MVZAULXVYUAGEL-DHDCSXOGSA-N 0.000 description 1
- MNHTUFZUVAKCSU-HNNXBMFYSA-N CC(=O)[C@H](CC1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C Chemical compound CC(=O)[C@H](CC1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C MNHTUFZUVAKCSU-HNNXBMFYSA-N 0.000 description 1
- BPTQHPQTNLIGTA-UHFFFAOYSA-N CC(C)(C)CC(=O)NCC1=CC=CC=C1 Chemical compound CC(C)(C)CC(=O)NCC1=CC=CC=C1 BPTQHPQTNLIGTA-UHFFFAOYSA-N 0.000 description 1
- ACLGMCREVFRPOZ-SVJCYSSNSA-N CC(C)(C)OC(=O)N[C@@H](COCC1=CC=CC=C1)C(=O)NCC(=O)C1=CC=CC=C1.CC(C)(C)OC(=O)N[C@@H](COCC1=CC=CC=C1)C1=NC(C2=CC=CC=C2)=CN1.CC(C)N[C@@H](COCC1=CC=CC=C1)C1=NC(C2=CC=CC=C2)=CN1.CC1=CC(C(N)=O)=CC(C)=C1C[C@H](NC(=O)OC(C)(C)C)C(=O)N(C(C)C)[C@@H](COCC1=CC=CC=C1)C1=NC(C2=CC=CC=C2)=CN1.N[C@@H](COCC1=CC=CC=C1)C1=NC(C2=CC=CC=C2)=CN1 Chemical compound CC(C)(C)OC(=O)N[C@@H](COCC1=CC=CC=C1)C(=O)NCC(=O)C1=CC=CC=C1.CC(C)(C)OC(=O)N[C@@H](COCC1=CC=CC=C1)C1=NC(C2=CC=CC=C2)=CN1.CC(C)N[C@@H](COCC1=CC=CC=C1)C1=NC(C2=CC=CC=C2)=CN1.CC1=CC(C(N)=O)=CC(C)=C1C[C@H](NC(=O)OC(C)(C)C)C(=O)N(C(C)C)[C@@H](COCC1=CC=CC=C1)C1=NC(C2=CC=CC=C2)=CN1.N[C@@H](COCC1=CC=CC=C1)C1=NC(C2=CC=CC=C2)=CN1 ACLGMCREVFRPOZ-SVJCYSSNSA-N 0.000 description 1
- DCMSGBHSZZLSGS-XZUUTBEESA-N CC(C)N[C@@H](C)C1=NC(C2=CC=CC=C2)=CN1.CC1=CC(O)=CC(C)=C1C[C@H](N)C(=O)N(C(C)C)[C@@H](C)C1=NC(C2=CC=CC=C2)=CN1.CC1=CC(O)=CC(C)=C1C[C@H](NC(=O)OC(C)(C)C)C(=O)N(C(C)C)[C@@H](C)C1=NC(C2=CC=CC=C2)=CN1.C[C@H](N)C1=NC(C2=CC=CC=C2)=CN1.C[C@H](NC(=O)OCC1=CC=CC=C1)C(=O)NCC(=O)C1=CC=CC=C1.C[C@H](NC(=O)OCC1=CC=CC=C1)C1=NC(C2=CC=CC=C2)=CN1.O=C(O)C(F)(F)F Chemical compound CC(C)N[C@@H](C)C1=NC(C2=CC=CC=C2)=CN1.CC1=CC(O)=CC(C)=C1C[C@H](N)C(=O)N(C(C)C)[C@@H](C)C1=NC(C2=CC=CC=C2)=CN1.CC1=CC(O)=CC(C)=C1C[C@H](NC(=O)OC(C)(C)C)C(=O)N(C(C)C)[C@@H](C)C1=NC(C2=CC=CC=C2)=CN1.C[C@H](N)C1=NC(C2=CC=CC=C2)=CN1.C[C@H](NC(=O)OCC1=CC=CC=C1)C(=O)NCC(=O)C1=CC=CC=C1.C[C@H](NC(=O)OCC1=CC=CC=C1)C1=NC(C2=CC=CC=C2)=CN1.O=C(O)C(F)(F)F DCMSGBHSZZLSGS-XZUUTBEESA-N 0.000 description 1
- GPOJNIPHJDXHMA-UNJSKTHBSA-N CC(N)C1=NC(C2=CC=CC=C2Br)=CN1.CC(NC(=O)OC(C)(C)C)C(=O)NCC(=O)C1=CC=CC=C1Br.COC1=CC=C(CN(C(=O)[C@H](CC2=C(C)C=C(C(N)=O)C=C2C)NC(=O)OC(C)(C)C)[C@@H](C)C2=NC(C3=CC=CC=C3Br)=CN2)C=C1OC.COC1=CC=C(CNC(C)C2=NC(C3=CC=CC=C3Br)=CN2)C=C1OC.C[C@H](NC(=O)OC(C)(C)C)C1=NC(C2=CC=CC=C2Br)=CN1 Chemical compound CC(N)C1=NC(C2=CC=CC=C2Br)=CN1.CC(NC(=O)OC(C)(C)C)C(=O)NCC(=O)C1=CC=CC=C1Br.COC1=CC=C(CN(C(=O)[C@H](CC2=C(C)C=C(C(N)=O)C=C2C)NC(=O)OC(C)(C)C)[C@@H](C)C2=NC(C3=CC=CC=C3Br)=CN2)C=C1OC.COC1=CC=C(CNC(C)C2=NC(C3=CC=CC=C3Br)=CN2)C=C1OC.C[C@H](NC(=O)OC(C)(C)C)C1=NC(C2=CC=CC=C2Br)=CN1 GPOJNIPHJDXHMA-UNJSKTHBSA-N 0.000 description 1
- DZCDFIJVJSEYJG-UHFFFAOYSA-N CC.CC.CC.CC.CC(=O)N(C)C.CC(N)=O.CNC.C[Y]P.C[Y]P.C[Y]P.P.P.P Chemical compound CC.CC.CC.CC.CC(=O)N(C)C.CC(N)=O.CNC.C[Y]P.C[Y]P.C[Y]P.P.P.P DZCDFIJVJSEYJG-UHFFFAOYSA-N 0.000 description 1
- CTYLFQRLHFKWRV-UHFFFAOYSA-N CC.CC.CC.CC.CC.CC.CC(=O)Cl.CC(=O)N(C)C.CC(=O)O.CNC.CNC.CNC.CNC.COC(=O)OC(C)=O.C[Y]P.C[Y]P.C[Y]P.C[Y]P.C[Y]P.P.P.P.P.P Chemical compound CC.CC.CC.CC.CC.CC.CC(=O)Cl.CC(=O)N(C)C.CC(=O)O.CNC.CNC.CNC.CNC.COC(=O)OC(C)=O.C[Y]P.C[Y]P.C[Y]P.C[Y]P.C[Y]P.P.P.P.P.P CTYLFQRLHFKWRV-UHFFFAOYSA-N 0.000 description 1
- HUOAFHLGCOMVEA-UHFFFAOYSA-N CC.CC.CC.CC.CC.CC.CC.CC(=O)Cl.CC(=O)N(C)C.CC(=O)O.CNC.CNC.CNC.COC(=O)OC(C)=O.COS(=O)(=O)C(F)(F)F.C[Y]P.C[Y]P.C[Y]P.C[Y]P.C[Y]P.C[Y]P.P.P.P.P.P.P Chemical compound CC.CC.CC.CC.CC.CC.CC.CC(=O)Cl.CC(=O)N(C)C.CC(=O)O.CNC.CNC.CNC.COC(=O)OC(C)=O.COS(=O)(=O)C(F)(F)F.C[Y]P.C[Y]P.C[Y]P.C[Y]P.C[Y]P.C[Y]P.P.P.P.P.P.P HUOAFHLGCOMVEA-UHFFFAOYSA-N 0.000 description 1
- MWEKZBBDBJWLAX-UHFFFAOYSA-N CC1=CC(C(=O)Cl)=CC(C)=C1[Y]P.CC1=CC(C(=O)O)=CC(C)=C1[Y]P.CC1=CC(C(N)=O)=CC(C)=C1[Y]P.CC1=CC(C)=C([Y]P)C(C)=C1.CC1=CC(OS(=O)(=O)C(F)(F)F)=CC(C)=C1[Y]P.COC(=O)OC(=O)C1=CC(C)=C([Y]P)C(C)=C1 Chemical compound CC1=CC(C(=O)Cl)=CC(C)=C1[Y]P.CC1=CC(C(=O)O)=CC(C)=C1[Y]P.CC1=CC(C(N)=O)=CC(C)=C1[Y]P.CC1=CC(C)=C([Y]P)C(C)=C1.CC1=CC(OS(=O)(=O)C(F)(F)F)=CC(C)=C1[Y]P.COC(=O)OC(=O)C1=CC(C)=C([Y]P)C(C)=C1 MWEKZBBDBJWLAX-UHFFFAOYSA-N 0.000 description 1
- MSXKLVCKEXWHBW-UHFFFAOYSA-N CC1=CC(C(=O)Cl)=CC(C)=C1[Y]P.CC1=CC(C(=O)O)=CC(C)=C1[Y]P.CC1=CC(C(N)=O)=CC(C)=C1[Y]P.CC1=CC(C)=C([Y]P)C(C)=C1.COC(=O)OC(=O)C1=CC(C)=C([Y]P)C(C)=C1 Chemical compound CC1=CC(C(=O)Cl)=CC(C)=C1[Y]P.CC1=CC(C(=O)O)=CC(C)=C1[Y]P.CC1=CC(C(N)=O)=CC(C)=C1[Y]P.CC1=CC(C)=C([Y]P)C(C)=C1.COC(=O)OC(=O)C1=CC(C)=C([Y]P)C(C)=C1 MSXKLVCKEXWHBW-UHFFFAOYSA-N 0.000 description 1
- HTJCQUPQCRAXIC-BISOTBBPSA-N CC1=CC(C(=O)O)=CC(C)=C1Br.CC1=CC(C(=O)O)=CC(C)=C1C=O.CC1=CC(C(N)=O)=CC(C)=C1C=O.CC1=CC(O)=CC(C)=C1Br.CC1=CC(OS(=O)(=O)C(F)(F)F)=CC(C)=C1Br.COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OCC1=CC=CC=C1 Chemical compound CC1=CC(C(=O)O)=CC(C)=C1Br.CC1=CC(C(=O)O)=CC(C)=C1C=O.CC1=CC(C(N)=O)=CC(C)=C1C=O.CC1=CC(O)=CC(C)=C1Br.CC1=CC(OS(=O)(=O)C(F)(F)F)=CC(C)=C1Br.COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OCC1=CC=CC=C1 HTJCQUPQCRAXIC-BISOTBBPSA-N 0.000 description 1
- IVRGPQAMMDKRMK-JIURHNPLSA-N CC1=CC(C(=O)O)=CC(C)=C1C=O.CC1=CC(C(=O)O)=CC(C)=C1[Y]P.CC1=CC(C(N)=O)=CC(C)=C1C=O.CN/C(=C\C1=C(C)C=C(C(N)=O)C=C1C)C(=O)OC.CNC(C=O)C(=O)OC Chemical compound CC1=CC(C(=O)O)=CC(C)=C1C=O.CC1=CC(C(=O)O)=CC(C)=C1[Y]P.CC1=CC(C(N)=O)=CC(C)=C1C=O.CN/C(=C\C1=C(C)C=C(C(N)=O)C=C1C)C(=O)OC.CNC(C=O)C(=O)OC IVRGPQAMMDKRMK-JIURHNPLSA-N 0.000 description 1
- ALCORHXDEUZQLK-CUXNBJLQSA-N CC1=CC(C(=O)O)=CC(C)=C1O.CC1=CC(C(N)=O)=CC(C)=C1C=O.CC1=CC(C(N)=O)=CC(C)=C1O.CC1=CC(C(N)=O)=CC(C)=C1OS(=O)(=O)C(F)(F)F.CN/C(=C\C1=C(C)C=C(C(N)=O)C=C1C)C(=O)OC.CNC(C=O)C(=O)OC Chemical compound CC1=CC(C(=O)O)=CC(C)=C1O.CC1=CC(C(N)=O)=CC(C)=C1C=O.CC1=CC(C(N)=O)=CC(C)=C1O.CC1=CC(C(N)=O)=CC(C)=C1OS(=O)(=O)C(F)(F)F.CN/C(=C\C1=C(C)C=C(C(N)=O)C=C1C)C(=O)OC.CNC(C=O)C(=O)OC ALCORHXDEUZQLK-CUXNBJLQSA-N 0.000 description 1
- IFSDPGLFUIGFAR-AJPNQLRRSA-N CC1=CC(C(=O)O)=CC(C)=C1O.CC1=CC(C(N)=O)=CC(C)=C1C=O.CC1=CC(C(N)=O)=CC(C)=C1O.CC1=CC(C(N)=O)=CC(C)=C1OS(=O)(=O)C(F)(F)F.COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OCC1=CC=CC=C1 Chemical compound CC1=CC(C(=O)O)=CC(C)=C1O.CC1=CC(C(N)=O)=CC(C)=C1C=O.CC1=CC(C(N)=O)=CC(C)=C1O.CC1=CC(C(N)=O)=CC(C)=C1OS(=O)(=O)C(F)(F)F.COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OCC1=CC=CC=C1 IFSDPGLFUIGFAR-AJPNQLRRSA-N 0.000 description 1
- CRIKVMVCPAHPRM-XQKBYGRFSA-N CC1=CC(C(N)=O)=CC(C)=C1CC(NC(=O)OC(C)(C)C)C(=O)O.COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C.COC(=O)C(CC1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C Chemical compound CC1=CC(C(N)=O)=CC(C)=C1CC(NC(=O)OC(C)(C)C)C(=O)O.COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C.COC(=O)C(CC1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C CRIKVMVCPAHPRM-XQKBYGRFSA-N 0.000 description 1
- ZXMRDWAZFPXSPX-GMAHTHKFSA-N CC1=CC(C(N)=O)=CC(C)=C1C[C@H](N)C(=O)N(C(C)C)[C@@H](CO)C1=NC(C2=CC=CC=C2)=CN1.O=C(O)C(F)(F)F Chemical compound CC1=CC(C(N)=O)=CC(C)=C1C[C@H](N)C(=O)N(C(C)C)[C@@H](CO)C1=NC(C2=CC=CC=C2)=CN1.O=C(O)C(F)(F)F ZXMRDWAZFPXSPX-GMAHTHKFSA-N 0.000 description 1
- GOYJEWVXCWRZCM-LDOMGCCCSA-N CC1=CC(C(N)=O)=CC(C)=C1C[C@H](NC(=O)OC(C)(C)C)C(=O)O.COC(=O)C1=CC(CN(C(=O)[C@H](CC2=C(C)C=C(C(N)=O)C=C2C)NC(=O)OC(C)(C)C)C(C)C2=NC(C3=CC=CC=C3)=CN2)=CC=C1OC.COC(=O)C1=CC(CNC(C)C2=NC(C3=CC=CC=C3)=CN2)=CC=C1OC.COC1=CC=C(CN(C(=O)[C@H](CC2=C(C)C=C(C(N)=O)C=C2C)NC(=O)OC(C)(C)C)C(C)C2=NC(C3=CC=CC=C3)=CN2)C=C1C(=O)O Chemical compound CC1=CC(C(N)=O)=CC(C)=C1C[C@H](NC(=O)OC(C)(C)C)C(=O)O.COC(=O)C1=CC(CN(C(=O)[C@H](CC2=C(C)C=C(C(N)=O)C=C2C)NC(=O)OC(C)(C)C)C(C)C2=NC(C3=CC=CC=C3)=CN2)=CC=C1OC.COC(=O)C1=CC(CNC(C)C2=NC(C3=CC=CC=C3)=CN2)=CC=C1OC.COC1=CC=C(CN(C(=O)[C@H](CC2=C(C)C=C(C(N)=O)C=C2C)NC(=O)OC(C)(C)C)C(C)C2=NC(C3=CC=CC=C3)=CN2)C=C1C(=O)O GOYJEWVXCWRZCM-LDOMGCCCSA-N 0.000 description 1
- KFBHIQCHVLTCBV-UHFFFAOYSA-N CN(C)C(=O)P(C)[Y]P.CP(C)[Y]P Chemical compound CN(C)C(=O)P(C)[Y]P.CP(C)[Y]P KFBHIQCHVLTCBV-UHFFFAOYSA-N 0.000 description 1
- VVMOPGXRUBRRQV-UHFFFAOYSA-N CNC(CC1=C(C)C=C(C(=O)N(C)C)C=C1C)C(=O)O Chemical compound CNC(CC1=C(C)C=C(C(=O)N(C)C)C=C1C)C(=O)O VVMOPGXRUBRRQV-UHFFFAOYSA-N 0.000 description 1
- WMTAUGQVESSKMI-FUFZTOQCSA-N COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C.COC(=O)C(CC1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C Chemical compound COC(=O)/C(=C/C1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C.COC(=O)C(CC1=C(C)C=C(C(N)=O)C=C1C)NC(=O)OC(C)(C)C WMTAUGQVESSKMI-FUFZTOQCSA-N 0.000 description 1
- MIBGTAUGJDRYIZ-SXMXNQBWSA-N COC1=CC=C(CN(C(=O)C(N)CC2=C(C)C=C(C(N)=O)C=C2C)[C@@H](C)C2=NC(C3=CC=C(I)C=C3)=CN2)C=C1C(=O)O Chemical compound COC1=CC=C(CN(C(=O)C(N)CC2=C(C)C=C(C(N)=O)C=C2C)[C@@H](C)C2=NC(C3=CC=C(I)C=C3)=CN2)C=C1C(=O)O MIBGTAUGJDRYIZ-SXMXNQBWSA-N 0.000 description 1
- OSWMTSBLFGVAPZ-FNZWTVRRSA-N COC1=CC=C(CN(C(=O)[C@@H](N)CC2=C(C)C=C(C(N)=O)C(C)=C2)[C@@H](C)C2=NC(C3=CC=CC=C3)=CN2)C=C1C(=O)O Chemical compound COC1=CC=C(CN(C(=O)[C@@H](N)CC2=C(C)C=C(C(N)=O)C(C)=C2)[C@@H](C)C2=NC(C3=CC=CC=C3)=CN2)C=C1C(=O)O OSWMTSBLFGVAPZ-FNZWTVRRSA-N 0.000 description 1
- QFNHIDANIVGXPE-GHZUAHJPSA-N COC1=CC=C(CN(C(=O)[C@@H](N)CC2=C(C)C=C(C(N)=O)C=C2C)C(C)C2=NC(C3=CC=CC=C3)=CN2)C=C1C(=O)O Chemical compound COC1=CC=C(CN(C(=O)[C@@H](N)CC2=C(C)C=C(C(N)=O)C=C2C)C(C)C2=NC(C3=CC=CC=C3)=CN2)C=C1C(=O)O QFNHIDANIVGXPE-GHZUAHJPSA-N 0.000 description 1
- DUZSWZYYHFJNOI-AWEZNQCLSA-N COC1=CC=C(CN[C@@H](C)C2=NC(C3=CC=CC=C3)=CN2)C=C1OC Chemical compound COC1=CC=C(CN[C@@H](C)C2=NC(C3=CC=CC=C3)=CN2)C=C1OC DUZSWZYYHFJNOI-AWEZNQCLSA-N 0.000 description 1
- 208000006561 Cluster Headache Diseases 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910004373 HOAc Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 206010027603 Migraine headaches Diseases 0.000 description 1
- 206010068620 Post procedural constipation Diseases 0.000 description 1
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 1
- 208000004550 Postoperative Pain Diseases 0.000 description 1
- 229910006124 SOCl2 Inorganic materials 0.000 description 1
- 208000026137 Soft tissue injury Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- YSUPVMKELSKKIP-YCRIXZIFSA-N [C-]#[N+]C1=CC=CC=C1C1=CNC([C@H](C)N(CC2=CC=C(OC)C(OC)=C2)C(=O)[C@@H](N)CC2=C(C)C=C(C(N)=O)C=C2C)=N1.[C-]#[N+]C1=CC=CC=C1C1=CNC([C@H](C)N(CC2=CC=C(OC)C(OC)=C2)C(=O)[C@H](CC2=C(C)C=C(C(N)=O)C=C2C)NC(=O)OC(C)(C)C)=N1 Chemical compound [C-]#[N+]C1=CC=CC=C1C1=CNC([C@H](C)N(CC2=CC=C(OC)C(OC)=C2)C(=O)[C@@H](N)CC2=C(C)C=C(C(N)=O)C=C2C)=N1.[C-]#[N+]C1=CC=CC=C1C1=CNC([C@H](C)N(CC2=CC=C(OC)C(OC)=C2)C(=O)[C@H](CC2=C(C)C=C(C(N)=O)C=C2C)NC(=O)OC(C)(C)C)=N1 YSUPVMKELSKKIP-YCRIXZIFSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- YLEIFZAVNWDOBM-ZTNXSLBXSA-N ac1l9hc7 Chemical compound C([C@H]12)C[C@@H](C([C@@H](O)CC3)(C)C)[C@@]43C[C@@]14CC[C@@]1(C)[C@@]2(C)C[C@@H]2O[C@]3(O)[C@H](O)C(C)(C)O[C@@H]3[C@@H](C)[C@H]12 YLEIFZAVNWDOBM-ZTNXSLBXSA-N 0.000 description 1
- WEVYAHXRMPXWCK-FIBGUPNXSA-N acetonitrile-d3 Chemical compound [2H]C([2H])([2H])C#N WEVYAHXRMPXWCK-FIBGUPNXSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 208000005298 acute pain Diseases 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- SRVFFFJZQVENJC-IHRRRGAJSA-N aloxistatin Chemical compound CCOC(=O)[C@H]1O[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)NCCC(C)C SRVFFFJZQVENJC-IHRRRGAJSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000005100 aryl amino carbonyl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000004603 benzisoxazolyl group Chemical group O1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000005874 benzothiadiazolyl group Chemical group 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N c1ccccc1 Chemical compound c1ccccc1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000004296 chiral HPLC Methods 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000012230 colorless oil Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- CPPKAGUPTKIMNP-UHFFFAOYSA-N cyanogen fluoride Chemical group FC#N CPPKAGUPTKIMNP-UHFFFAOYSA-N 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- HOXDXGRSZJEEKN-UHFFFAOYSA-N cycloocta-1,5-diene;rhodium Chemical compound [Rh].C1CC=CCCC=C1 HOXDXGRSZJEEKN-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 208000010643 digestive system disease Diseases 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- SRCZQMGIVIYBBJ-UHFFFAOYSA-N ethoxyethane;ethyl acetate Chemical compound CCOCC.CCOC(C)=O SRCZQMGIVIYBBJ-UHFFFAOYSA-N 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000001640 fractional crystallisation Methods 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 208000018685 gastrointestinal system disease Diseases 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 125000000455 heteroaryl-fused-cycloalkyl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- JFOZKMSJYSPYLN-QHCPKHFHSA-N lifitegrast Chemical compound CS(=O)(=O)C1=CC=CC(C[C@H](NC(=O)C=2C(=C3CCN(CC3=CC=2Cl)C(=O)C=2C=C3OC=CC3=CC=2)Cl)C(O)=O)=C1 JFOZKMSJYSPYLN-QHCPKHFHSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- DUZSWZYYHFJNOI-UHFFFAOYSA-N n-[(3,4-dimethoxyphenyl)methyl]-1-(5-phenyl-1h-imidazol-2-yl)ethanamine Chemical compound C1=C(OC)C(OC)=CC=C1CNC(C)C1=NC(C=2C=CC=CC=2)=CN1 DUZSWZYYHFJNOI-UHFFFAOYSA-N 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- LVSJDHGRKAEGLX-UHFFFAOYSA-N oxolane;2,2,2-trifluoroacetic acid Chemical compound C1CCOC1.OC(=O)C(F)(F)F LVSJDHGRKAEGLX-UHFFFAOYSA-N 0.000 description 1
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 238000005897 peptide coupling reaction Methods 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- FVZVCSNXTFCBQU-UHFFFAOYSA-N phosphanyl Chemical group [PH2] FVZVCSNXTFCBQU-UHFFFAOYSA-N 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004237 preparative chromatography Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 229940080818 propionamide Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000006513 pyridinyl methyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000001422 pyrrolinyl group Chemical group 0.000 description 1
- 238000006476 reductive cyclization reaction Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- 206010044652 trigeminal neuralgia Diseases 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 208000009935 visceral pain Diseases 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/36—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D211/60—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/10—Laxatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/12—Antidiarrhoeals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/02—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
- C07C233/11—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C237/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
- C07C237/02—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
- C07C237/14—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being saturated and containing rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D217/00—Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
- C07D217/22—Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
- C07D217/26—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
- C07D233/61—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/64—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
Definitions
- the present invention is directed to a novel process for the preparation of opioid modulators (agonists and antagonists), and intermediates in their synthesis.
- opioid modulators are useful in the treatment and prevention of such disorders as pain, visceral pain including post-operative pain, gastrointestinal disorders including diarrheic syndromes, motility disorders including post-operative ileus, constipation, irritable bowel syndrome and inflammatory bowel disorders.
- the present invention is directed to the preparation of novel opioid receptor modulators and intermediates in their synthesis. More specifically, the present invention is directed to novel processes for the preparation of compounds of formula (II)
- the present invention is directed to a process for the preparation of compounds of formula (I)
- aryl or a heteroaryl selected from the group consisting of furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, isoindolyl, indolinyl, benzofuryl, benzothienyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, quinolizinyl, quinolinyl, isoquinolinyl and quinazolinyl;
- each R 41P is independently selected from C 1-6 alkyl, C 1-6 alkoxy or fluoro;
- R J and R K are each independently selected from hydrogen or C 1-4 alkyl; alternatively, R J and R K are taken together with the nitrogen atom to which they are bound to form a five to seven membered heterocyclyl;
- Pg 1 is a nitrogen protecting group
- the present invention is further directed to a process for the preparation of a compound of formula (I)
- aryl or a heteroaryl selected from the group consisting of furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, isoindolyl, indolinyl, benzofuryl, benzothienyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, quinolizinyl, quinolinyl, isoquinolinyl and quinazolinyl;
- each R 41P is independently selected from C 1-6 alkyl, C 1-6 alkoxy or fluoro;
- R J and R K are each independently selected from hydrogen or C 1-4 alkyl; alternatively, R J and R K are taken together with the nitrogen atom to which they are bound to form a five to seven membered heterocyclyl;
- Pg 1 is a nitrogen protecting group
- the present invention is further directed to a process for the preparation of a compound of formula (Ia) (also known as, 4-(aminocarbonyl)-N-[(1,1-dimethylethoxy)carbonyl]-2,6-dimethyl-L-phenylalanine)
- a compound of formula (Ia) also known as, 4-(aminocarbonyl)-N-[(1,1-dimethylethoxy)carbonyl]-2,6-dimethyl-L-phenylalanine
- the present invention is further directed to a process for the preparation of the compound of formula (Ia)
- the present invention is further directed to processes for the preparation of compounds of formula (XIX)
- the present invention is further directed to processes for the preparation of the compound of formula (XIXb)
- the present invention is further directed to a process for the preparation of compounds of formula (II)
- aryl or a heteroaryl selected from the group consisting of furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, isoindolyl, indolinyl, benzofuryl, benzothienyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, quinolizinyl, quinolinyl, isoquinolinyl and quinazolinyl;
- each R 41P is independently selected from C 1-6 alkyl, C 1-6 alkoxy or fluoro;
- R J and R K are each independently selected from hydrogen or C 1-4 alkyl; alternatively, R J and R K are taken together with the nitrogen atom to which they are bound to form a five to seven membered heterocyclyl;
- R 1 is selected from the group consisting of hydrogen, C 1-6 alkyl, cycloalkyl, heterocyclyl, aryl(C 1-6 )alkyl, and heteroaryl(C 1-6 )alkyl;
- R 2 is hydrogen, C 1-8 alkyl, hydroxy(C 1-8 )alkyl, C 6-10 aryl(C 1-6 )alkoxy(C 1-6 )alkyl, or C 6-10 aryl(C 1-8 )alkyl;
- A is selected from the group consisting of aryl, ring system a-1, a-2, a-3, and a-4, optionally substituted with R 3 and R 5 ;
- R 3 is one to two substituents independently selected from the group consisting of C 1-6 alkyl, aryl, aryl(C 1-6 )alkyl, aryl(C 2-6 )alkenyl, aryl(C 2-6 )alkynyl, heteroaryl, heteroaryl(C 1-6 )alkyl, heteroaryl(C 2-6 )alkenyl, heteroaryl(C 2-6 )alkynyl, amino, C 1-6 alkylamino, (C 1-6 alkyl) 2 -amino, arylamino, heteroarylamino, aryloxy, heteroaryloxy, trifluoromethyl, and halogen;
- R 5 is a substituent on a nitrogen atom of ring A selected from the group consisting of hydrogen and C 1-4 alkyl;
- R a and R b are independently selected from the group consisting of hydrogen, C 1-6 alkyl, and C 1-6 alkoxycarbonyl; alternatively, when R a and R b are each other than hydrogen, R a and R b are optionally taken together with the nitrogen atom to which they are both attached to form a five to eight membered monocyclic ring;
- the present invention is directed to processes for the preparation of the compound of formula (IV)
- the present invention is directed to processes for the preparation of the compound of formula (V)
- the present invention is further directed to a product prepared according to any of the processes described herein.
- Illustrative of the invention is a pharmaceutical composition comprising a pharmaceutically acceptable carrier and at a product prepared according to the process described herein.
- An illustration of the invention is a pharmaceutical composition made by mixing a product prepared according to the process described herein and a pharmaceutically acceptable carrier.
- Illustrating the invention is a process for making a pharmaceutical composition comprising mixing a product prepared according to the process described herein and a pharmaceutically acceptable carrier.
- Exemplifying the invention are methods of treating or preventing a disorder mediated by at least one opioid receptor, preferably the ⁇ or ⁇ opioid receptor selected from the group consisting of pain and gastrointestinal disorders, in a subject in need thereof comprising administering to the subject a therapeutically effective amount of any of the compounds or pharmaceutical compositions prepared as described above.
- the present invention is directed to processes for the preparation of compounds of formula (I)
- R J , R K and R 41P are as herein defined.
- the compounds of formula (I) are useful in the preparation of opioid receptor modulators—compounds of formula (II) as defined herein.
- the present invention is further directed to processes for the preparation of the compound of formula (Ia) as herein defined, useful as intermediates in the synthesis of opioid receptor modulators.
- the present invention is directed to processes for the preparation of compounds wherein the
- R 41P group which is bound at the 2- or 6-position.
- the present invention is directed to processes for the preparation of compounds wherein the
- the present invention is directed to processes for the preparation of compounds of formula (Ic)
- R 41Q is selected from methyl, ethyl, methoxy, ethoxy or fluoro and wherein R J , R K and Pg 1 are as herein defined.
- the present invention is directed to processes for the preparation of the compound of formula (Ib)
- R J and R K are each hydrogen; the phenyl ring is further substituted with two R 41P groups, which are each methyl and Pg 1 is Boc), also known as 2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionic acid.
- the present invention is directed to processes for the preparation of the compound of formula (Ia)
- the present invention is further directed to processes for the preparation of compounds of formula (XIX)
- the present invention is directed to processes for the preparation of the compound of formula (XIXb),
- the present invention is directed to processes for the preparation of the compound of formula (XIXa)
- the present invention is further directed to processes for the preparation of compound of formula (II)
- the compounds of the present invention are opioid receptor modulators, useful in the treatment of disorders mediated by at least one opioid receptor (preferably ⁇ or ⁇ opioid receptor), including, but not limited to pain and gastrointestinal disorders.
- Embodiments of the present invention include processes for the preparation of compounds wherein R 1 is selected from the group consisting of hydrogen, C 1-6 alkyl, aryl(C 1-4 )alkyl, and heteroaryl(C 1-4 )alkyl; wherein the aryl and heteroaryl portion of aryl(C 1-4 )alkyl and heteroaryl(C 1-4 )alkyl are optionally substituted with one to three R 11 substituents independently selected from the group consisting of C 1-6 alkoxy; heteroaryl optionally substituted with one to two substituents independently selected from the group consisting of C 1-4 alkyl, C 1-4 -alkoxy, and carboxy; carboxy; C 1-4 alkoxycarbonyl; C 1-4 alkoxycarbonyloxy; aminocarbonyl; C 1-4 alkylaminocarbonyl; C 3-6 cycloalkylaminocarbonyl; hydroxy(C 1-6 )alkylaminocarbonyl; C 6-10 arylaminocarbony
- Embodiments of the present invention further include processes for the preparation of compounds wherein R 1 is selected from the group consisting of C 6-10 aryl(C 1-4 )alkyl, pyridinyl(C 1-4 alkyl, and furanyl(C 1-4 )alkyl; wherein C 6-10 aryl, pyridinyl, and furanyl are optionally substituted with one to three R 11 substituents independently selected from the group consisting of C 1-3 alkoxy; tetrazolyl; carboxy; C 1-4 alkoxycarbonyl; aminocarbonyl; C 1-4 alkylaminocarbonyl; C 3-6 cycloalkylaminocarbonyl; hydroxy(C 1-4 alkylaminocarbonyl; C 6-10 -arylaminocarbonyl wherein C 6-10 aryl is optionally substituted with carboxy or C 1-4 alkoxycarbonyl; morpholin-4-ylcarbonyl; cyano; halogen; and trifluoromethoxy
- Embodiments of the present invention further include processes for the preparation of compounds wherein R 1 is selected from the group consisting of phenyl(C 1-3 )alkyl, pyridinyl(C 1-3 )alkyl, and furanyl(C 1-3 )alkyl; wherein phenyl, pyridinyl, and furanyl are optionally substituted with one to three R 11 substituents independently selected from the group consisting of C 1-3 alkoxy; tetrazolyl, C 3-6 cycloalkylaminocarbonyl; hydroxy(C 1-4 alkylaminocarbonyl; C 6 arylaminocarbonyl wherein C 6-10 aryl is optionally substituted with carboxy or C 1-4 alkoxycarbonyl; morpholin-4-ylcarbonyl; chloro; fluoro; trifluoromethoxy; C 1-4 alkoxycarbonyl; and carboxy; provided that that no more than one R 11 is C 6-10 arylaminocarbonyl
- Embodiments of the present invention further include processes for the preparation of compounds wherein R 1 is phenylmethyl, pyridinylmethyl, or furanylmethyl; wherein phenyl, pyridinyl, and furanyl are optionally substituted with one to three R 11 substituents independently selected from the group consisting of methoxy; tetrazolyl; cyclopropylaminocarbonyl; (2-hydroxyeth-1-yl)aminocarbonyl; methoxycarbonyl; phenylaminocarbonyl wherein phenyl is optionally substituted with carboxy; morpholin-4-ylcarbonyl; and carboxy; provided that that no more than one R 11 is phenylaminocarbonyl.
- Embodiments of the present invention include processes for the preparation of compounds wherein R 2 is a substituent selected from the group consisting of hydrogen, C 1-4 alkyl, hydroxy(C 1-4 )alkyl, and phenyl(C 1-6 )alkoxy(C 1-4 )alkyl; wherein said phenyl is optionally substituted with one to two substituents independently selected from the group consisting of C 1-3 alkyl, C 1-3 alkoxy, hydroxy, cyano, fluoro, chloro, bromo, trifluoromethyl, and trifluoromethoxy.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R 2 is selected from the group consisting of hydrogen and C 1-4 alkyl. Embodiments of the present invention further include processes for the preparation of those compounds wherein R 2 is hydrogen or methyl.
- Embodiments of the present invention include processes for the preparation of compounds wherein ring A is a-1. Embodiments of the present invention further include processes for the preparation of compounds wherein A-B of ring a-1 is N—C.
- Embodiments of the present invention include processes for the preparation of compounds wherein R 3 is one to two substituents independently selected from the group consisting of C 1-6 alkyl, halogen, and aryl; wherein aryl is optionally substituted with one to three substituents independently selected from the group consisting of halogen, carboxy, aminocarbonyl, C 1-3 alkylsulfonylamino, cyano, hydroxy, amino, C 1-3 alkylamino, and (C 1-3 alkyl) 2 -amino.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R 3 is one to two substituents independently selected from the group consisting of C 1-3 alkyl, bromo, and phenyl; wherein phenyl is optionally substituted with one to three substituents independently selected from the group consisting of chloro, fluoro, carboxy, aminocarbonyl, and cyano.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R 3 is one to two substituents independently selected from the group consisting of methyl and phenyl; wherein phenyl is optionally substituted with one to three substituents independently selected from the group consisting of chloro and carboxy.
- Embodiments of the present invention further include processes for the preparation of compounds wherein at least one R 3 substituent is phenyl.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R 3 is a substituent selected from the group consisting of methyl and phenyl; wherein phenyl is optionally substituted with one to two substituents independently selected from the group consisting of chloro and carboxy.
- Embodiments of the present invention further include processes for the preparation of compounds wherein
- Embodiments of the present invention include processes for the preparation of compounds wherein R 41P is selected from C 1-3 alkyl, C 1-6 alkoxy or fluoro. Embodiments of the present invention further include processes for the preparation of compounds wherein R 41P is selected from C 1-3 alkyl or C 1-3 alkoxy. Embodiments of the present invention further include processes for the preparation of compounds wherein R 41P is selected from methyl, ethyl, methoxy, ethoxy or fluoro. Embodiments of the present invention further include processes for the preparation of compounds wherein R 41P is selected from methyl or methoxy.
- Embodiments of the present invention include processes for the preparation of compounds wherein R 5 is hydrogen or methyl. Embodiments of the present invention further include processes for the preparation of compounds wherein R 5 is hydrogen.
- Embodiments of the present invention include processes for the preparation of compounds wherein R a and R b are independently selected from the group consisting of hydrogen and C 1-3 alkyl; or, when R a and R b are each other than hydrogen, R a and R b are optionally taken together with the nitrogen atom to which they are both attached to form a five to seven membered monocyclic ring.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R a and R b are independently hydrogen or methyl.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R a and R b are each hydrogen.
- Embodiments of the present invention include processes for the preparation of compounds of formula (I) wherein the stereo-center denoted with a “*” as shown below,
- Embodiments of the present invention include processes for the preparation of compounds of formula (II) that are present in their RR, SS, RS, or SR configuration. Embodiments of the present invention further include processes for the preparation of compounds of formula (II) that are present in their S,S configuration.
- Embodiments of the present invention include processes for the preparation of compounds of formula (Ile)
- R 1 is selected from the group consisting of hydrogen, C 1-6 alkyl, aryl(C 1-4 )alkyl, and heteroaryl(C 1-4 )alkyl;
- R 2 is selected from the group consisting of hydrogen, C 1-4 alkyl, hydroxy(C 1-4 )alkyl, and phenyl(C 1-6 )alkoxy(C 1-4 )alkyl;
- R 3 is one to two substituents independently selected from the group consisting of C 1-6 alkyl, halogen, and aryl; wherein aryl is optionally substituted with one to three substituents independently selected from the group consisting of halogen, carboxy, aminocarbonyl, C 1-3 alkylsulfonylamino, cyano, hydroxy, amino, C 1-3 alkylamino, and (C 1-3 alkyl) 2 -amino;
- R 5 is hydrogen or methyl
- R a and R b are independently hydrogen or C1.3alkyl; or, when R a and R b are each other than hydrogen, R a and R b are optionally taken together with the nitrogen atom to which they are both attached to form a five to seven membered monocyclic ring;
- R 41P is selected from C 1-3 alkyl, C 1-6 alkoxy or fluoro;
- R J and R K are each independently selected from hydrogen or C 1-4 alkyl; alternatively, R J and R K are taken together with the nitrogen atom to which they are bound to form a five to seven membered heterocyclyl;
- Embodiments of the present invention further include processes for the preparation of compounds of formula (Ile) wherein
- R 1 is selected from the group consisting of C 6-10 aryl(C 1-4 )alkyl, Pyridinyl(C 1-4 )alkyl, and furanyl(C 1-4 )alkyl; wherein C 6-10 aryl, pyridinyl, and furanyl are optionally substituted with one to three R 11 substituents independently selected from the group consisting of C 1-3 alkoxy; tetrazolyl; carboxy; C 1-3 alkoxycarbonyl; aminocarbonyl; C 1-4 alkylaminocarbonyl; C 1-3 alkylaminocarbonyl; C 3-6 cycloalkylaminocarbonyl; hydroxy(C 1-4 )alkylaminocarbonyl; C 6-10 arylaminocarbonyl wherein C 6-10 aryl is optionally substituted with carboxy or C 1-4 alkoxycarbonyl; morpholin-4-ylcarbonyl; cyano; halogen; and trifluoromethoxy; provided that no
- R 2 is hydrogen or C 1-4 alkyl
- R 3 is one to two substituents independently selected from the group consisting of C 1-3 alkyl, bromo, and phenyl; wherein phenyl is optionally substituted with one to three substituents independently selected from the group consisting of chloro, fluoro, carboxy, aminocarbonyl, and cyano;
- R 5 is hydrogen
- R a and R b are independently hydrogen or methyl
- R 41P is selected from C 1-3 alkyl or C 1-6 alkoxy
- R J and R K are each independently selected from hydrogen or C 1-4 alkyl
- Embodiments of the present invention further include processes for the preparation of compounds of formula (Ile) wherein
- R 1 is selected from the group consisting of phenyl(C 1-3 )alkyl, pyridinyl(C 1-3 )alkyl, and furanyl(C 1-3 )alkyl; wherein phenyl, pyridinyl, and furanyl are optionally substituted with one to three R 11 substituents independently selected from the group consisting of C 1-3 alkoxy; tetrazolyl, C 3-6 cycloalkylaminocarbonyl; hydroxy(C 1-4 )alkylaminocarbonyl; C 6-10 arylaminocarbonyl wherein C 6-10 aryl is optionally substituted with carboxy or C 1-4 alkoxycarbonyl; morpholin-4-ylcarbonyl; chloro; fluoro; trifluoromethoxy; and carboxy;
- R 2 is hydrogen or methyl
- R 3 is one to two substituents independently selected from the group consisting of methyl and phenyl; wherein phenyl is optionally substituted with one to three substituents independently selected from the group consisting of chloro and carboxy;
- R 5 is hydrogen
- R a and R b are each hydrogen
- R 41P is selected from methyl, ethyl, methoxy, ethoxy or fluoro.
- R J and R K are each independently selected from hydrogen or C 1-3 alkyl
- Additional embodiments of the present invention include processes for the preparation of compounds wherein the substituents for one or more of the variables defined herein (i.e.
- R J , R K , R 41P , Pg 1 , etc. are independently selected to be, any individual substituent or any subset of substituents selected from the complete list as defined herein.
- alkyl whether used alone or as part of a substituent group refers to straight and branched carbon chains having 1 to 8 carbon atoms or any number within this range.
- alkoxy refers to an —Oalkyl substituent group, wherein alkyl is as defined supra.
- alkenyl and alkynyl refer to straight and branched carbon chains having 2 to 8 carbon atoms or any number within this range, wherein an alkenyl chain has at least one double bond in the chain and an alkynyl chain has at least one triple bond in the chain.
- An alkyl and alkoxy chain may be substituted on a carbon atom.
- substituent groups with multiple alkyl groups such as (C 1-6 alkyl) 2 -amino—the C 1-6 alkyl groups of the dialkylamino may be the same or different.
- cycloalkyl refers to saturated or partially unsaturated, monocyclic or polycyclic hydrocarbon rings of from 3 to 14 carbon atom members. Examples of such rings include, and are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and adamantyl.
- the cycloalkyl ring may be fused to a benzene ring (benzo fused cycloalkyl), a 5 or 6 membered heteroaryl ring (containing one of O, S or N and, optionally, one additional nitrogen) to form a heteroaryl fused cycloalkyl.
- heterocyclyl refers to a nonaromatic cyclic ring of 5 to 7 members in which 1 to 2 members are nitrogen, or a nonaromatic cyclic ring of 5 to 7 members in which zero, one or two members are nitrogen and up to two members are oxygen or sulfur; wherein, optionally, the ring contains zero to one unsaturated bonds, and, optionally, when the ring is of 6 or 7 members, it contains up to two unsaturated bonds.
- heterocyclyl includes 5 to 7 membered monocycle wherein the heterocyclyl may be fused to a benzene ring (benzo fused heterocyclyl), a 5 or 6 membered heteroaryl ring (containing one of O, S or N and, optionally, one additional nitrogen), a 5 to 7 membered cycloalkyl or cycloalkenyl ring, a 5 to 7 membered heterocyclyl ring (of the same definition as above but absent the option of a further fused ring) or fused with the carbon of attachment of a cycloalkyl, cycloalkenyl or heterocyclyl ring to form a spiro moiety.
- heterocyclyl include a 5 to 7 membered monocyclic ring bridged to form bicyclic rings. Such compounds are not considered to be fully aromatic and are not referred to as heteroaryl compounds.
- heterocyclyl groups include, and are not limited to, pyrrolinyl (including 2H-pyrrole, 2-pyrrolinyl or 3-pyrrolinyl), pyrrolidinyl, 2-imidazolinyl, imidazolidinyl, 2-pyrazolinyl, pyrazolidinyl, piperidinyl, morpholinyl, thiomorpholinyl and piperazinyl.
- aryl refers to an unsaturated, aromatic monocyclic ring of 6 carbon members or to an unsaturated, aromatic polycyclic ring of from 10 to 14 carbon members. Examples of such aryl rings include, and are not limited to, phenyl, naphthalenyl or anthracenyl. Preferred aryl groups for the practice of this invention are phenyl and naphthalenyl.
- heteroaryl refers to an aromatic ring of 5 or 6 members wherein the ring consists of carbon atoms and has at least one heteroatom member. Suitable heteroatoms include nitrogen, oxygen or sulfur. In the case of 5 membered rings, the heteroaryl ring contains one member of nitrogen, oxygen or sulfur and, in addition, may contain up to three additional nitrogens. In the case of 6 membered rings, the heteroaryl ring may contain from one to three nitrogen atoms. For the case wherein the 6 membered ring has three nitrogens, at most two nitrogen atoms are adjacent.
- the heteroaryl ring is fused to a benzene ring (benzo fused heteroaryl), a 5 or 0.6 membered heteroaryl ring (containing one of O, S or N and, optionally, one additional nitrogen), a 5 to 7 membered cycloalkyl ring or a 5 to 7 membered heterocyclo ring (as defined supra but absent the option of a further fused ring).
- heteroaryl groups include, and are not limited to, furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl or pyrazinyl; fused heteroaryl groups include indolyl, isoindolyl, indolinyl, benzofuryl, benzothienyl, indazolyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, benzisoxazolyl, benzothiadiazolyl, benzotriazolyl, quinolizinyl, quinolinyl, isoquinolinyl or quinazolinyl.
- arylalkyl means an alkyl group substituted with an aryl group (e.g., benzyl, phenethyl).
- arylalkoxy indicates an alkoxy group substituted with an aryl group (e.g., benzyloxy).
- halogen refers to fluorine, chlorine, bromine and iodine. Substituents that are substituted with multiple halogens are substituted in a manner that provides compounds, which are stable.
- alkyl or aryl or either of their prefix roots appear in a name of a substituent (e.g., arylalkyl, alkylamino) it shall be interpreted as including those limitations given above for “alkyl” and “aryl.”
- Designated numbers of carbon atoms e.g., C 1 -C 6
- the designated number of carbon atoms includes all of the independent members included in the range specified individually and all the combination of ranges within in the range specified.
- C 1-6 alkyl would include methyl, ethyl, propyl, butyl, pentyl and hexyl individually as well as sub-combinations thereof (e.g. C 1-2 , C 1-3 , C 1-4 , C 1-5 , C 2-6 , C 3-6 , C 4-6 , C 5-6 , C 2-5 , etc.).
- the compounds according to this invention may accordingly exist as enantiomers. Where the compounds possess two or more chiral centers, they may additionally exist as diastereomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention. Furthermore, some of the crystalline forms for the compounds may exist as polymorphs and as such are intended to be included in the present invention. In addition, some of the compounds may form solvates with water (i.e., hydrates) or common organic solvents, and such solvates are also intended to be encompassed within the scope of this invention.
- a “phenyl-(C 1-6 alkyl)amino-carbonyl-(C 1-6 alkyl)” substituent refers to a group of the formula
- pain shall include centrally mediated pain, peripherally mediated pain, structural or soft tissue injury related pain, pain related to inflammation, progressive disease related pain, neuropathic pain, acute pain and chronic pain.
- chronic pain shall include neuropathic pain conditions, diabetic peripheral neuropathy, post-herpetic neuralgia, trigeminal neuralgia, post-stroke pain syndromes and cluster or migraine headaches.
- gastrointestinal disorder shall include diarrheic syndromes, motility disorders such as diarrhea-predominant, constipation-predominant, alternating irritable bowel syndrome, post-operative ileus and constipation, and inflammatory bowel disease.
- motility disorders such as diarrhea-predominant, constipation-predominant, alternating irritable bowel syndrome, post-operative ileus and constipation
- inflammatory bowel disease shall include ulcerative colitis and Crohn's disease.
- subject refers to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment.
- terapéuticaally effective amount means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the disease or disorder being treated.
- composition is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combinations of the specified ingredients in the specified amounts.
- aprotic solvent shall mean any solvent that does not yield a proton. Suitable examples include, but are not limited to DMF, dioxane, THF, acetonitrile, pyridine, dichloroethane, dichloromethane, MTBE, toluene, and the like.
- reaction step of the present invention may be carried out in a variety of solvents or solvent systems, said reaction step may also be carried out in a mixture of the suitable solvents or solvent systems.
- the processes for the preparation of the compounds according to the invention give rise to mixture of stereoisomers
- these isomers may be separated by conventional techniques such as preparative chromatography.
- the compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution.
- the compounds may, for example, be resolved into their component enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation with an optically active acid, such as ( ⁇ )-di-p-toluoyl-D-tartaric acid and/or (+)-di-p-toluoyl-L-tartaric acid followed by fractional crystallization and regeneration of the free base.
- the compounds may also be resolved by formation of diastereomeric esters or amides, followed by chromatographic separation and removal of the chiral auxiliary. Alternatively, the compounds may be resolved using a chiral HPLC column.
- any of the processes for preparation of the compounds of the present invention it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in Protective Groups in Organic Chemistry , ed. J. F. W. McOmie, Plenum Press, 1973; and T. W. Greene & P. G. M. Wuts, Protective Groups in Organic Synthesis , John Wiley & Sons, 1991.
- the protecting groups may be removed at a convenient subsequent stage using methods known from the art.
- nitrogen protecting group shall mean a group which may be attached to a nitrogen atom to protect said nitrogen atom from participating in a reaction and which may be readily removed following the reaction.
- Suitable nitrogen protecting groups include, but are not limited to carbamates—groups of the formula —C(O)O—R wherein R is for example methyl, ethyl, t-butyl, benzyl, phenylethyl, CH 2 ⁇ CH—CH 2 —, and the like; amides groups of the formula C(O)—R′ wherein R′ is for example methyl, phenyl, trifluoromethyl, and the like; N-sulfonyl derivatives—groups of the formula —SO 2 —R′′ wherein R′′ is for example tolyl, phenyl, trifluoromethyl, 2,2,5,7,8-pentamethylchroman-6-yl-, 2,3,6-trimethyl-4-methoxybenzene, and
- salts of the compounds of this invention refer to nontoxic pharmaceutically acceptable salts.
- the present invention is directed to processes for the preparation of compounds of formula (I) as outlined in Scheme 1 below.
- Step 1 Preparation of Compounds of Formula (XII), wherein X is —OH and Y is selected from Br or Cl
- Step 1 Preparation of Compounds of Formula (XII), wherein X is —OC(O)—C 1-4 alkyl and Y is selected from Br, Cl or I
- Step 1 Preparation of Compounds of Formula (XII), wherein X is —CN and Y is selected from Br, Cl or I
- Step 1 Wherein X is OH and Y is selected from Br or Cl
- a suitably substituted compound of formula (X), wherein X P is OH and wherein Y P is Br or Cl, preferably Y P is Br, a known compound or compound prepared by known methods; is reacted with a triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like; in the presence of an organic or inorganic base such as pyridine, TEA, DIPEA, K 3 PO 4 , K 2 CO 3 , and the like; optionally in an organic solvent such as DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XI).
- a triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like
- organic or inorganic base such as pyridine, TEA, DIPEA, K 3 PO 4 , K 2 CO 3 , and the like
- organic solvent such as DCM
- the compound of formula (XI) is reacted with carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett.
- a compound of formula NR J R K (a compound of formula (XIV)) or when R J and R K are each hydrogen, with a suitable source of ammonia such as HMDS, ammonia gas, and the like; in the presence of a palladium catalyst such PdCl 2 , Pd 2 (OAc) 2 , and the like, in combination with a suitable ligand, such DPPP, DPPF, P(Ph) 3 , and the like; or in the presence of a palladium:ligand complex such as Pd(PPh 3 ) 4 , and the like; in an organic solvent such as DMF, THF, dioxane, and the like, preferably DMF; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 120° C.; to yield the corresponding compound of formula (XI)
- the compound of formula (XI) is reacted with carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K 2 CO 3 , Na 2 CO 3 , and the like, in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIII).
- carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa
- the compound of formula (XIII) is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when R J and R K are each hydrogen, with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or an amount of the compound of formula (XIV) or source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XII).
- a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS
- a coupling agent such as EDCl, HOBT, PyB
- the compound of formula (XI) is reacted with carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K 2 CO 3 , Na 2 CO 3 , and the like, in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIII).
- carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa
- the compound of formula (XIII) is reacted with a suitably source of chlorine such as thionyl chloride, PCl 3 , PCl 5 , oxalyl chloride, oxalyl chloride in DMF, and the like; in an organic solvent such as DCM, chloroform, and the like, preferably at a temperature greater than about room temperature, more preferably at a temperature in the range of about 35° C. to about 60° C.; to yield the corresponding compound of formula (XV).
- a suitably source of chlorine such as thionyl chloride, PCl 3 , PCl 5 , oxalyl chloride, oxalyl chloride in DMF, and the like
- an organic solvent such as DCM, chloroform, and the like
- the compound of formula (XV) is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when R J and R K are each hydrogen, with a suitable source of ammonia such as ammonium chloride, NH 4 OH, HMDS, ammonia gas, and the like, preferably ammonium chloride; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or an amount of the compound of formula (XIV) or source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XII).
- a suitable source of ammonia such as ammonium chloride, NH 4 OH, HMDS, ammonia gas, and the like, preferably ammonium chloride
- an organic base such as TEA, DIPEA, pyridine, the like, or
- the compound of formula (XIII) is reacted with C 1-4 alkyl-chloroformate, preferably, methylchloroformate; in the presence of a organic base such as TEA, DIPEA, pyridine and the like; preferably at a temperature less than about room temperature, more preferably at a temperature in the range of from about 0° C.; in an organic solvent such as DMF, DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XVI) wherein A 1 is the corresponding C 1-4 alkyl, preferably methyl.
- a organic base such as TEA, DIPEA, pyridine and the like
- the compound of formula (XVI) is reacted with a suitably substituted compound of formula (XIV) or where R J and R K are each hydrogen, with a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like, preferably NH 4 OH; in the presence of a palladium catalyst such PdCl 2 , Pd 2 (OAc) 2 , and the like, in combination with a suitable ligand, such DPPP, DPPF, P(Ph) 3 , and the like; or in the presence of a palladium:ligand complex such as Pd(PPh 3 ) 4 , and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XII).
- a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and
- Step 1 Wherein X is —C(O)—OC 1-4 alkyl and wherein Y P is Br, Cl or I
- a suitably substituted compound of formula (X), wherein X P is —C(O)—OC 1-4 alkyl and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when R J and R K are each hydrogen, with a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like; at a temperature greater than room temperature, preferably at about reflux temperature; to yield the corresponding compound of formula (XII).
- a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like
- a suitably substituted compound of formula (X), wherein X P is —C(O)—OC 1-4 alkyl and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when R J and R K are each hydrogen, with a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like; in the presence of an activating agent such as trimethylaluminum, triisopropylaluminum, and the like; in an aprotic organic solvent such as THF, dioxane, toluene, DCM, and the like; preferably at a temperature in the range of . about 0° C. to about reflux temperature; to yield the corresponding compound of formula (XII).
- a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the
- a suitably substituted compound of formula (X), wherein X P is —C(O)—OC 1-4 alkyl and wherein Y P is selected from Br, Cl or I a known compound or compound prepared by known methods, is hydrolyzed according to known methods, for example by reacting with a base such as NaOH, LiOH, KOH, and the like, or by reacting with an acid such as HCl, H 2 SO 4 , and the like; preferably, the compound of formula (X) is reacted with an acid at a temperature greater than about room temperature, preferably at a temperature in the range of from about 60° to about 120° C., more preferably at a temperature of about 100° C.; to yield the corresponding compound of formula (XIII).
- a base such as NaOH, LiOH, KOH, and the like
- an acid such as HCl, H 2 SO 4 , and the like
- the compound of formula (X) is reacted with an acid at a temperature greater than about room temperature, preferably at
- the compound of formula (XIII) is reacted with a suitably substituted compound of formula'(XIV), a known compound or compound prepared by known methods, or when R J and R K are each hydrogen, with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or in the presence of an amount of the compound of formula (XIV) or source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like, to yield the corresponding compound of formula (XII).
- a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS
- a coupling agent such as EDCl,
- the compound of formula (X), wherein X P is —C(O)—OC 1-4 alkyl and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett.
- the compound of formula (XIII) is reacted with a suitably source of chlorine such as thionyl chloride, PCl S , PCl S , oxalyl chloride, oxalyl chloride in DMF, and the like; in an organic solvent such as DCM, chloroform, and the like, preferably at a temperature greater than about room temperature, more preferably at a temperature in the range of about 35° C. to about 60° C., to yield the corresponding compound of formula (XV).
- a suitably source of chlorine such as thionyl chloride, PCl S , PCl S , oxalyl chloride, oxalyl chloride in DMF, and the like
- an organic solvent such as DCM, chloroform, and the like
- the compound of formula (XV) is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when R J and R K are each hydrogen, with a suitable source of ammonia such as ammonium chloride, NH 4 OH, HMDS, ammonia gas, and the like, preferably ammonium chloride; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or in the presence of an amount of the compound of formula (XIV) or source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XII).
- a suitable source of ammonia such as ammonium chloride, NH 4 OH, HMDS, ammonia gas, and the like, preferably ammonium chloride
- an organic base such as TEA, DIPEA, pyridine,
- the compound of formula (X), wherein X P is —C(O)—OC 1-4 alkyl and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett.
- the compound of formula (XIII) is reacted with C 1-4 alkyl-chloroformate, preferably, methylchloroformate; in the presence of a organic base such as TEA, DIPEA, pyridine and the like; preferably at a temperature less than about room temperature, more preferably at a temperature of about 0° C.; in an organic solvent such as DMF, DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XVI), wherein A 1 is the corresponding C 1-4 alkyl, preferably methyl.
- a organic base such as TEA, DIPEA, pyridine and the like
- the compound of formula (XVI) is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when R J and R K are each hydrogen, with a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like, preferably NH 4 OH; in the presence of a palladium catalyst such PdCl 2 , Pd 2 (OAc) 2 , and the like, in combination with a ligand, such DPPP, DPPF, P(Ph) 3 , and the like; or in the presence of a palladium:ligand complex such as Pd(PPh 3 ) 4 , and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XII).
- a suitable source of ammonia such as NH 4 OH,
- Step 1 Wherein X is —CN and wherein Y P is Br, Cl or I
- a suitably substituted compound of formula (X), wherein X P is CN and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, according to known methods (for example as described in Parris, C. L., Org. Syn. Coll., (1973), 5, p 73; Lin, S., Synthesis, (April 1978), p.
- a suitably substituted compound of formula (X), wherein X P is CN and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with an acid such as concentrated sulfuric acid, and the like; at a temperature greater than about room temperature, preferably at reflux temperature; to yield the corresponding compound of formula (XVI).
- a suitably substituted compound of formula (X), wherein X P is CN and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with an inorganic base such as NaOH, KOH, and the like; at a temperature greater than about room temperature, preferably at about reflux temperature; to yield the corresponding compound of formula (XVI).
- an inorganic base such as NaOH, KOH, and the like
- the compound of formula (XVI) is reacted according to known methods, for example, by alkylating in the presence of a base, to yield the corresponding compound of formula (XII).
- the compound of formula (XII) is reacted with a suitably substituted compound of formula (XVII), wherein Pg 1 is a suitable nitrogen protecting group such as Boc, Cbz, Fmoc, acetyl, and the like, preferably Pg 1 is Boc, a known compound or compound prepared by known methods; in the presence of palladium catalyst such as Pd 2 (dba) 3 , Pd(OAc) 2 , PdCl 2 , and the like, preferably Pd 2 (dba) 3 ; and preferably in the presence of a phosphorous ligand such as P(o-toluene) 3 , P(Ph) 3 , P(t-butyl) 3 , DPPE, and the like, preferably P(t-butyl) 3 or P(o-toluene) 3 ; or in the presence of a palladium:ligand complex such as Pd(PPh 3 ) 4 , and the like; in the presence of an
- the compound of formula (XIX) is hydrogenated according to known methods; for example by reacting with hydrogen or a source of hydrogen (such as cyclohexadiene, and the like); in the presence of a catalyst such as platinum oxide, palladium on carbon, nickel, ClRh(PPh 3 ) 3 , RuCl 2 , and the like, preferably palladium on carbon; in an organic solvent such as methanol, ethanol, THF, ethyl acetate, and the like, preferably methanol; at a temperature greater than room temperature, preferably at a temperature in the range of about 60° C. to about 120° C., to yield the corresponding compound of formula (XX).
- a catalyst such as platinum oxide, palladium on carbon, nickel, ClRh(PPh 3 ) 3 , RuCl 2 , and the like, preferably palladium on carbon
- an organic solvent such as methanol, ethanol, THF, ethyl acetate, and the like, preferably
- the compound of formula (XX) is reacted with an aqueous base such as NaOH, LiOH, KOH, and the like; in an organic solvent such as methanol, THF, ethanol, and the like; to yield the corresponding compound of formula (I).
- an aqueous base such as NaOH, LiOH, KOH, and the like
- an organic solvent such as methanol, THF, ethanol, and the like
- the present invention is directed to processes for the preparation of compounds of formula (Ic).
- the present invention is directed to processes for the preparation of a compound of formula (Ib), a compound of formula (I) wherein
- R J and R K are each hydrogen; the phenyl ring is further substituted with two R 41P groups, which are each methyl and Pg 1 is Boc, also known as 2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionic acid, as described in Scheme 1 above.
- the present invention is further directed to processes for the preparation of the compound of formula (Ia) as outlined in Scheme 2 below.
- Step 1a Preparation of the Compound of Formula (XIIa), wherein X is —OH and Y is selected from Br or Cl
- Step 1a Preparation of the Compound of Formula (XIIa), wherein X is —OC(O)—C 1-4 alkyl and Y is selected from Br, Cl or I
- Step 1a Preparation of the Compound of Formula (XIIa), wherein X is —CN and Y is selected from Br, Cl or I
- Step 2a Preparation of the Compound of Formula (XIXa)
- Step 3a Preparation of the Compound of Formula (XXa)
- Step 4a Preparation of the Compound of Formula (Ia)
- Step 1a Wherein X is —OH and Y is selected from Br or Cl
- a suitably substituted compound of formula (Xa), wherein X P is OH and wherein Y P is Br or Cl, preferably Y P is Br, a known compound or compound prepared by known methods, is reacted with a triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like; in the presence of an organic or inorganic base such as pyridine, TEA, DIPEA, K 3 PO 4 , K 2 CO 3 , and the like, preferably pyridine; optionally in an organic solvent such as DCM, chloroform, THF, and the like, to yield the corresponding compound of formula (XIa).
- a triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like
- the compound of formula (XIa) is reacted with carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett.
- a suitable source of ammonia such as HMDS, ammonia gas, and the like
- a palladium catalyst such PdCl 2 , Pd 2 (OAc) 2 , and the like, in combination with a ligand, such DPPP, DPPF, P(Ph) 3 , and the like; or in the presence of a palladium:ligand complex such as Pd(PPh 3 ) 4 , and the like; in an organic solvent such as DMF, THF, dioxane, and the like, preferably DMF; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 120° C.; to yield the corresponding compound of formula (XIIa).
- the compound of formula (XIa) is reacted with carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K 2 CO 3 , Na 2 CO 3 , and the like; in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIIIa).
- carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa
- the compound of formula (XIIIa) is reacted with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or in the presence of an amount of the source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like, to yield the corresponding compound of formula (XIIa).
- a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS
- a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like
- an organic base such as TEA, DIPEA, pyridine, the like
- an organic solvent such as
- the compound of formula (XIa) is reacted with carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K 2 CO 3 , Na 2 CO 3 , and the like; in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIIIa).
- carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa
- the compound of formula (XII la) is reacted with a suitable source of chlorine such as thionyl chloride, PCl 3 , PCl 5 , oxalyl chloride, oxalyl chloride in DMF, and the like; in an organic solvent such as DCM, chloroform, and the like; preferably at a temperature greater than about room temperature, more preferably at a temperature in the range of about 35° C. to about 60° C.; to yield the corresponding compound of formula (XVa).
- a suitable source of chlorine such as thionyl chloride, PCl 3 , PCl 5 , oxalyl chloride, oxalyl chloride in DMF, and the like
- an organic solvent such as DCM, chloroform, and the like
- the compound of formula (XVa) is reacted with a suitable source of ammonia such as ammonium chloride, NH 4 OH, HMDS, ammonia gas, and the like, preferably ammonium chloride; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or in the presence of an amount of the source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XIIa).
- a suitable source of ammonia such as ammonium chloride, NH 4 OH, HMDS, ammonia gas, and the like, preferably ammonium chloride
- an organic base such as TEA, DIPEA, pyridine, the like
- an organic solvent such as THF, dioxane, DMF, and the like
- the compound of formula (XIa) is reacted with carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. 20. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K 2 CO 3 , Na 2 CO 3 , and the like; in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIIIa).
- carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa
- the compound of formula (XIIIa) is reacted with C 1-4 alkyl-chloroformate, preferably, methylchloroformate; in the presence of a organic base such as TEA, DIPEA, pyridine and the like; preferably at a temperature less than about room temperature, more preferably at a temperature of about 0° C.; in an organic solvent such as DMF, DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XVIa), wherein A 1 is the corresponding C 1-4 alkyl, preferably methyl.
- a organic base such as TEA, DIPEA, pyridine and the like
- the compound of formula (XVIa) is reacted with a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like, preferably NH 4 OH; in the presence of a palladium catalyst such PdCl 2 , Pd 2 (OAc) 2 , and the like, in combination with a ligand, such DPPP, DPPF, P(Ph) 3 , and the like; or in the presence of a palladium:ligand complex such as Pd(PPh 3 ) 4 , and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIIa).
- a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like, preferably NH 4 OH
- a palladium catalyst such PdCl 2
- Step 1a Wherein X is —C(O)—OC 1-4 alkyl and wherein Y P is Br Cl or I
- a suitably substituted compound of formula (Xa), wherein X P is —C(O)—OC 1-4 alkyl and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like; at a temperature greater than room temperature, preferably at about reflux temperature; to yield the corresponding compound of formula (XIIa).
- a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like
- a suitably substituted compound of formula (Xa), wherein X P is —C(O)—OC 1-4 alkyl and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods is reacted with a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like; in the presence of a activating agent such as trimethylaluminum, triisopropylaluminum, and the like; in an aprotic organic solvent such as THF, dioxane, toluene, DCM, and the like; preferably, at a temperature in the range of about 0° C. to reflux temperature; to yield the corresponding compound of formula (XIIa).
- a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like
- a activating agent such as trimethylaluminum, triisopropylaluminum, and the like
- a suitably substituted compound of formula (Xa), wherein X P is —C(O)—OC 1-4 alkyl and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods is hydrolyzed according to known methods; for example by reacting with a base such as NaOH, KOH, and the like, or by reacting with an acid such as HCl, H 2 SO 4 , and the like; preferably, the compound of formula (Xa) is reacted with an acid at a temperature greater than about room temperature, preferably at a temperature in the range of from about 60° to about 120° C., preferably at a temperature of about 100° C.; to yield the corresponding compound of formula (XIIIa).
- the compound of formula (XIIIa) is reacted with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or in the presence of an amount of the source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like, to yield the corresponding compound of formula (XIIa).
- a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS
- a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like
- an organic base such as TEA, DIPEA, pyridine, the like
- an organic solvent such as
- the compound of formula (Xa), wherein X P is —C(O)—OC 1-4 alkyl and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa (see, for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett.
- the compound of formula (XIIIa) is reacted with a suitably source of chlorine such as thionyl chloride, PCl S , PCl 5 , oxalyl chloride, oxalyl chloride in DMF, and the like; in an organic solvent such as DCM, chloroform, and the like; preferably at a temperature greater than about room temperature, more preferably at a temperature in the range of about 35° C. to about 60° C., to yield the corresponding compound of formula (XVa).
- a suitably source of chlorine such as thionyl chloride, PCl S , PCl 5 , oxalyl chloride, oxalyl chloride in DMF, and the like
- an organic solvent such as DCM, chloroform, and the like
- the compound of formula (XVa) is reacted with a suitable source of ammonia such as ammonium chloride, NH 4 OH, HMDS, ammonia gas, and the like, preferably ammonium chloride; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like; or in the presence of an amount of the source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XIIa).
- a suitable source of ammonia such as ammonium chloride, NH 4 OH, HMDS, ammonia gas, and the like, preferably ammonium chloride
- an organic base such as TEA, DIPEA, pyridine, the like
- an organic solvent such as THF, dioxane, DMF, and the like
- the compound of formula (Xa), wherein X P is —C(O)—OC 1-4 alkyl and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett.
- the compound of formula (XIIIa) is reacted with C 1-4 alkyl-chloroformate, preferably, methylchloroformate; in the presence of a organic base such as TEA, DIPEA, pyridine and the like; preferably at a temperature less than about room temperature, more preferably at a temperature of about 0° C.; in an organic solvent such as DMF, DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XVIa), wherein A 1 is the corresponding C 1-4 alkyl, preferably methyl.
- a organic base such as TEA, DIPEA, pyridine and the like
- the compound of formula (XVIa) is reacted with a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like, preferably NH 4 OH; in the presence of a palladium catalyst such PdCl 2 , Pd 2 (OAc) 2 , and the like, in combination with a ligand, such DPPP, DPPF, P(Ph) 3 , and the like, or in the presence of a palladium:ligand complex such as Pd(PPh 3 ) 4 , and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIIa).
- a suitable source of ammonia such as NH 4 OH, HMDS, ammonia gas, and the like, preferably NH 4 OH
- a palladium catalyst such PdCl 2
- Step 1a Wherein X is —CN and wherein Y P is Br, Cl or I
- a suitably substituted compound of formula (Xa), wherein X P is CN and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with an acid such as concentrated sulfuric acid, and the like; at a temperature greater than about room temperature, preferably at about reflux temperature; to yield the corresponding compound of formula (XVIa).
- a suitably substituted compound of formula (Xa), wherein X P is CN and wherein Y P is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with an inorganic base such as NaOH, KOH, and the like; at a temperature greater than about room temperature, preferably at about reflux temperature; to yield the corresponding compound of formula (XVIa).
- an inorganic base such as NaOH, KOH, and the like
- a suitably substituted compound of formula (Xa), a known compound or compound prepared by known methods is reacted with a triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like, preferably triflic anhydride; in the presence of an organic or inorganic base such as pyridine, TEA, DIPEA, K 3 PO 4 , K 2 CO 3 , and the like, preferably pyridine; optionally in an organic solvent such as DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XIa).
- a triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like, preferably triflic anhydride
- an organic or inorganic base such as pyridine, TEA, DIPEA, K 3 PO 4 , K 2 CO 3 , and the like, preferably pyridine
- the compound of formula (XIa) is reacted with carbon monoxide or a source of carbon monoxide such as Ac 2 O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272) and a suitable source of ammonia such as HMDS, ammonia gas, and the like; preferably the compound of formula (XIa) is reacted with carbon monoxide and HMDS; in the presence of a palladium catalyst such PdCl 2 , Pd 2 (OAc) 2 , and the like, in combination with a suitable ligand, such.
- a palladium catalyst such PdCl 2 , Pd 2 (OAc) 2 , and the like
- DPPP DPPF, P(Ph) 3 , and the like; or in the presence of a palladium:ligand complex such as Pd(PPh 3 ) 4 , and the like; preferably, in the presence of PdCl 2 in combination with DPPP; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 120° C., more preferably, at a temperature of about 100° C.; in an organic solvent such as DMF, THF, dioxane, and the like, preferably, in DMF; to yield the corresponding compound of formula (XII).
- the compound of formula (XIIa) is reacted with a suitably substituted compound of formula (XVIIIa), a known compound or compound prepared by known methods, in the presence of palladium catalyst such as Pd 2 (dba) 3 , Pd(OAc) 2 , PdCl 2 , and the like, preferably Pd 2 (dba) 3 ; and preferably in the presence of a phosphorous ligand such as P(o-toluene) 3 , P(Ph) 3 , P(t-butyl) 3 , DPPE, and the like, preferably P(o-toluene) 3 ; or in the presence of a palladium:ligand complex such as Pd(PPh 3 ) 4 , and the like; in the presence of an organic or inorganic base such as dicyclohexylmethylamine, Na 2 CO 3 , K 2 CO 3 , TEA, DIPEA, pyridine, and the like, preferably TEA
- the compound of formula (XIXa) is reacted with hydrogen gas, at a pressure sufficient to hydrogenate, preferably at a pressure greater than about 500 psi, more preferably, at a pressure greater than about 800 psi, more preferably still, at a pressure about 1000 psi; in the presence of a suitable chiral catalyst such as [Rh(cod)(R,R-DIPAMP)] + BF 4 ⁇ , [Rh(cod)(R,R-DIPAMP)] + SO 2 CF 3 , and the like; wherein the chiral catalyst is preferably present in an amount greater than about 0.01 equivalents, more preferably, in an amount of about 0.04 equivalents; at a temperature greater than about room temperature, preferably at a temperature in the range of about 60° C.
- a suitable chiral catalyst such as [Rh(cod)(R,R-DIPAMP)] + BF 4 ⁇ , [Rh(cod)(R,R-DIPAMP
- the hydrogenation reaction vessel is purged with an inert gas such as argon, nitrogen, and the like, prior to charging the vessel with the oxygen sensitive catalyst reagents and hydrogen gas.
- an inert gas such as argon, nitrogen, and the like
- the compound of formula (XIXa) is reacted with hydrogen gas; at a pressure sufficient to hydrogenate, preferably at a pressure greater than about 40 psi, more preferably at a pressure of about 51 psi; in a solvent such as methanol, ethanol, THF, and the like, preferably methanol; preferably, at about room temperature; to yield the corresponding compound of formula (XXb).
- a pressure sufficient to hydrogenate, preferably at a pressure greater than about 40 psi, more preferably at a pressure of about 51 psi; in a solvent such as methanol, ethanol, THF, and the like, preferably methanol; preferably, at about room temperature; to yield the corresponding compound of formula (XXb).
- the compound of formula (XXa) is reacted with an aqueous base such as NaOH, LiOH, KOH, and the like, preferably LiOH; in an organic solvent such as methanol, THF, ethanol, and the like, preferably THF; to yield the corresponding compound of formula (Ia).
- an aqueous base such as NaOH, LiOH, KOH, and the like, preferably LiOH
- an organic solvent such as methanol, THF, ethanol, and the like, preferably THF
- the present invention is further directed to processes for the preparation of compounds of formula (II).
- the compounds of formula (I) may be further reacted according to known processes, for example as disclosed in U.S. patent application Ser. No. 11/079,647, filed Mar. 14, 2005, and published as US Patent Publication US-2005-0203143-A1, Sep. 15, 2005, to yield the corresponding compounds of formula (II). More specifically, the compounds of formula (II) may be prepared according to the process outlined in Scheme 3 below.
- a suitably substituted compound of formula (I) is reacted with a suitably substituted compound of formula (L), a known compound or compound prepared by known methods, under standard peptide coupling conditions (for example, with a coupling agent such as EDCl and an additive such as HOBT), to yield the corresponding compound of formula (LI).
- a coupling agent such as EDCl and an additive such as HOBT
- the compound of formula (LI) is then de-protected according to known methods, and then further, optionally reacted according to know methods, to yield the corresponding compound of formula (II) wherein R a and R b are each other than hydrogen.
- the compound of formula (LI) is de-protected and the alkylated, according to known methods, to yield the corresponding compound of formula (II) wherein one or both of R a and R b is alkyl.
- the compound of formula (LI) is de-protected and then converted to the corresponding ring by reductive cyclization with a suitably selected di-aldehyde.
- the present invention is further directed to processes for the preparation of compounds of formula (XIX). More specifically, in an embodiment, the present invention is directed to a process for the preparation of compounds of formula (XIX) as outlined in Scheme 4.
- a suitably substituted compound of formula (XIII), wherein Y P is Br or Cl, is reacted with a formylating reagent such as a DMF, HC(O)—N(CH 3 )(OCH 3 ), and the like; in the presence of a base such as n-butyl lithium, NaH, and the like; in an organic solvent such as THF, dioxane, and the like; at a temperature less than about room temperature, preferably at a temperature in the range of about ⁇ 130° C. to about 0° C., more preferably, at about ⁇ 100° C.; to yield the corresponding compound of formula (XXI).
- a formylating reagent such as a DMF, HC(O)—N(CH 3 )(OCH 3 ), and the like
- a base such as n-butyl lithium, NaH, and the like
- organic solvent such as THF, dioxane, and the like
- the compound of formula (XXI) is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when R J and R K are each hydrogen, with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or an amount of the compound of formula (XIV) or source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XXII).
- a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS
- a coupling agent such as EDCl, HOBT,
- the compound of formula (XXII) is reacted with a suitably selected compound of formula (XXIII), a known compound or compound prepared by known methods; in the presence of a base such as DBU, potassium t-butoxide, NaH, and the like; in an organic solvent such as THF, dioxane, and the like; preferably at about room temperature, to yield the corresponding compound of formula (XIX).
- a base such as DBU, potassium t-butoxide, NaH, and the like
- organic solvent such as THF, dioxane, and the like
- the present invention is directed to a process for the preparation of compounds of formula (XIX) as outlined in Scheme 5.
- a suitably substituted compound of formula (XXIV), a known compound or compound prepared by known methods is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when R J and R K are each hydrogen, with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or an amount of the compound of formula (XIV) or source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XXV).
- a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS
- the compound of formula (XXV) is reacted with triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like; in the presence of an organic or inorganic base such as pyridine, TEA, DIPEA, K 3 PO 4 , K 2 CO 3 , and the like; optionally in an organic solvent such as DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XXVI).
- triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like
- organic or inorganic base such as pyridine, TEA, DIPEA, K 3 PO 4 , K 2 CO 3 , and the like
- organic solvent such as DCM, chloroform, THF, and the like
- the compound of formula (XXVI) is reacted with carbon monoxide; in the presence of a palladium catalyst such PdCl 2 , Pd 2 (OAc) 2 , and the like, in combination with a suitable ligand, such DPPP, DPPF, P(Ph) 3 , and the like; or in the presence of a palladium:ligand complex such as Pd(PPh 3 ) 4 , and the like; in the presence of an organic base such as TEA, DIPEA, pyridine, and the like; in the presence of (alkyl) 3 SiH; in an organic solvent such as DMF, THF, dioxane, and the like; to yield the corresponding compound of formula (XXVII).
- a palladium catalyst such PdCl 2 , Pd 2 (OAc) 2 , and the like
- a suitable ligand such as DPPP, DPPF, P(Ph) 3 , and the like
- the compound of formula (XXVII) is reacted with a suitably selected compound of formula (XXIII), a known compound or compound prepared by known methods; in the presence of a base such as DBU, potassium t-butoxide, NaH, and the like; in an organic solvent such as THF, dioxane, and the like; preferably at about room temperature, to yield the corresponding compound of formula (XIX).
- a base such as DBU, potassium t-butoxide, NaH, and the like
- organic solvent such as THF, dioxane, and the like
- the present invention is directed to processes for the preparation of the compound of formula (XIX). More specifically, in an embodiment, the present invention is directed to a process for the preparation of compounds of formula (XIXa) as outlined in Scheme 6.
- a suitably substituted compound of formula (XIIIa), wherein Y P is Br or Cl, is reacted with a formylating reagent such as a DMF, HC(O)—N(CH 3 )(OCH 3 ), and the like; in the presence of a base such as n-butyl lithium, NaH, and the like; in an organic solvent such as THF, dioxane, and the like; at a temperature less than about room temperature, preferably at a temperature in the range of about ⁇ 130° C. to about 0° C., more preferably, at about ⁇ 100° C.; to yield the corresponding compound of formula (XXIa).
- a formylating reagent such as a DMF, HC(O)—N(CH 3 )(OCH 3 ), and the like
- a base such as n-butyl lithium, NaH, and the like
- organic solvent such as THF, dioxane, and the like
- the compound of formula (XXIa) is reacted with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or an amount of the source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XXIIa).
- a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS
- a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like
- an organic base such as TEA, DIPEA, pyridine, the like, or an amount of the source of am
- the compound of formula (XXIIa) is reacted with a suitably selected compound of formula (XXIIIa), wherein Pg1 is a suitable nitrogen protecting group such as Boc, Cbz, and the like, a known compound or compound prepared by known methods; in the presence of a base such as DBU, potassium t-butoxide, NaH, and the like; in an organic solvent such as THF, dioxane, and the like; preferably at about room temperature, to yield the corresponding compound of formula (XIXb).
- Pg1 is a suitable nitrogen protecting group such as Boc, Cbz, and the like, a known compound or compound prepared by known methods
- a base such as DBU, potassium t-butoxide, NaH, and the like
- organic solvent such as THF, dioxane, and the like
- the present invention is directed a process for the preparation of compounds of formula (XIXa) as outlined in Scheme 7.
- a suitably substituted compound of formula (XXIVa), a known compound or compound prepared by known methods, is reacted with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or in the presence of an amount of the source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XXVa).
- a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS
- a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like
- an organic base such as TEA,
- the compound of formula (XXVa) is reacted with triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like; in the presence of an organic or inorganic base such as pyridine, TEA, DIPEA, K 3 PO 4 , K 2 CO 3 , and the like; optionally in an organic solvent such as DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XXVIa).
- triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like
- organic or inorganic base such as pyridine, TEA, DIPEA, K 3 PO 4 , K 2 CO 3 , and the like
- organic solvent such as DCM, chloroform, THF, and the like
- the compound of formula (XXVIa) is reacted with carbon monoxide; in the presence of a palladium catalyst such PdCl 2 , Pd 2 (OAc) 2 , and the like, in combination with a suitable ligand, such DPPP, DPPF, P(Ph) 3 , and the like; or in the presence of a palladium:ligand complex such as Pd(PPh 3 ) 4 , and the like; in the presence of an organic base such as TEA, DIPEA, pyridine, and the like; in the presence of (alkyl) 3 SiH; in an organic solvent such as DMF, THF, dioxane, and the like; to yield the corresponding compound of formula (XXVIIa).
- a palladium catalyst such PdCl 2 , Pd 2 (OAc) 2 , and the like
- a suitable ligand such as DPPP, DPPF, P(Ph) 3 , and the like
- the compound of formula (XXVIIa) is reacted with a suitably selected compound of formula (XXIIIa), wherein Pg1 is a suitable nitrogen protecting group such as Boc, Cbz, and the like, a known compound or compound prepared by known methods; in the presence of a base such as DBU, potassium t-butoxide, NaH, and the like; in an organic solvent such as THF, dioxane, and the like; preferably at about room temperature, to yield the corresponding compound of formula (XIXb).
- Pg1 is a suitable nitrogen protecting group such as Boc, Cbz, and the like, a known compound or compound prepared by known methods
- a base such as DBU, potassium t-butoxide, NaH, and the like
- organic solvent such as THF, dioxane, and the like
- the present invention further comprises pharmaceutical compositions containing one or more compounds prepared according to any of the processes described herein with a pharmaceutically acceptable carrier.
- Pharmaceutical compositions containing one or more of the compounds of the invention described herein as the active ingredient can be prepared by intimately mixing the compound or compounds with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques.
- the carrier may take a wide variety of forms depending upon the desired route of administration (e.g., oral, parenteral).
- suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, stabilizers, coloring agents and the like;
- suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like.
- Solid oral preparations may also be coated with substances such as sugars or be enteric-coated so as to modulate major site of absorption.
- the carrier will usually consist of sterile water and other ingredients may be added to increase solubility or preservation.
- injectable suspensions or solutions may also be prepared utilizing aqueous carriers along with appropriate additives.
- Optimal dosages to be administered may be readily determined by those skilled in the art, and will vary with the particular compound used, the mode of administration, the strength of the preparation, the mode of administration, and the advancement of the disease condition. In addition, factors associated with the particular patient being treated, including patient age, weight, diet and time of administration, will result in the need to adjust dosages.
- synthesis products are listed as having been isolated as a residue. It will be understood by one of ordinary skill in the art that the term “residue” does not limit the physical state in which the product was isolated and may include, for example, a solid, an oil, a foam, a gum, a syrup, and the like.
- aqueous phase was separated, acidified with aqueous 6N HCl, extracted with EtOAc, and then dried over Na 2 SO 4 . Filtration and concentration of the filtrate yielded crude compound 1c as a brown residue, which was used in the next step without further purification.
- Step C Method A: 4-Bromo-3,5-dimethyl-benzamide
- Step E (Z)-2-tert-Butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)acrylic acid methyl ester
- Step F (S)-2-tert-Butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)propionic acid methyl ester
- Step G (S)-2-tert-Butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)propionic acid
- Step A Racemic 2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)propionic acid methyl ester
- Step B Racemic 2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)propionic acid
- reaction was quenched by addition of saturated aqueous NaHCO 3 solution; the separated organic phase was washed with 2N citric acid, saturated NaHCO 3 solution and brine, then dried over MgSO 4 overnight. After filtration and concentration, the residue was purified by column chromatography on silica gel (eluent, EtOAc:hexane—1:1) to yield the title compound, [1-(2-oxo-2-phenyl-ethylcarbamoyl)-ethyl]-carbamic acid benzyl ester.
- Step B [1-(4-Phenyl-1H-imidazol-2-yl)-ethyl]-carbamic acid benzyl ester
- Step E (2-(4-Hydroxy-2,6-dimethyl-phenyl)-1- ⁇ isopropyl-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-carbamoyl ⁇ -ethyl)-carbamic acid tert-butyl ester
- reaction mixture was extracted with EtOAc and the combined organic extracts were washed sequentially with saturated aqueous NaHCO 3 solution, 1N HCl, saturated aqueous NaHCO 3 solution, and brine.
- the organic phase was then dried over MgSO 4 , filtered, and the filtrate was concentrated under reduced pressure.
- the resulting residue was purified by flash column chromatography (eluent: EtOAc) to yield the product (2-(4-hydroxy-2,6-dimethyl-phenyl)-1- ⁇ isopropyl-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-carbamoyl ⁇ -ethyl)-carbamic acid tert-butyl ester.
- Step F 2-Amino-3-(4-hydroxy-2,6-dimethyl-phenyl)-N-isopropyl-N-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-propionamide
- Step B 5-( ⁇ [2-tert-Butoxycarbonylmethyl-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-amino ⁇ -methyl)-2-methoxy-benzoic acid methyl ester
- Step C 5-( ⁇ [2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-amino ⁇ -methyl)-2-methoxy-benzoic acid
- the solvent system was a gradient MeOH/CH 2 Cl 2 system as follows: Initial 100% CH 2 Cl 2 , 98%-92% over 40 min; 90% over 12 min, and then 88% over 13 min. The desired product eluted cleanly between 44-61 min. The desired fractions were combined and concentrated under reduced pressure to yield 5-( ⁇ [2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-amino ⁇ -methyl)-2-methoxy-benzoic acid, Cpd 5b, as a white solid.
- Step D 5-( ⁇ [2-Amino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-amino ⁇ -methyl)-2-methoxy-benzoic acid
- Step A ⁇ 1-[2-(2-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-ethyl ⁇ -carbamic acid tert-butyl ester
- Compound 6a was prepared according to Example 3 using the appropriate reagents, starting materials and methods known to those skilled in the art.
- Step B ⁇ 1-[4-(2-Bromo-phenyl)-1H-imidazol-2-yl]-ethyl ⁇ -carbamic acid tert-butyl ester
- Step D [1-[ ⁇ 1-[4-(2-Bromo-phenyl)-1H-imidazol-2-yl]-ethyl ⁇ -(3,4-dimethoxy-benzyl)-carbamoyl]-2-(4-carbamoyl-2,6-dimethyl-phenyl)-ethyl]-carbamic acid tert-butyl ester
- Step E ⁇ 2-(4-Carbamoyl-2,6-dimethyl-phenyl)-1-[ ⁇ 1-[4-(2-cyano-phenyl)-1H-imidazol-2-yl]-ethyl ⁇ -(3,4-dimethoxy-benzyl)-carbamoyl]-ethyl ⁇ -carbamic acid tert-butyl ester
- Step F 4- ⁇ 2-Amino-2-[ ⁇ 1-[4-(2-cyano-phenyl)-1H-imidazol-2-yl]-ethyl ⁇ -(3,4-dimethoxy-benzyl)-carbamoyl]-ethyl ⁇ -3,5-dimethyl-benzamide
- ⁇ 2-(4-carbamoyl-2,6-dimethyl-phenyl)-1-[ ⁇ 1-[4-(2-cyano-phenyl)-1H-imidazol-2-yl]-ethyl ⁇ -(3,4-dimethoxy-benzyl)-carbamoyl]-ethyl ⁇ -carbamic acid tert-butyl ester may be BOC-deprotected using the procedure described in Example 3 for the conversion of Cpd 3e to Cpd 3f to yield the title compound.
- Step B ⁇ 1-[4-(3-Bromo-phenyl)-1H-imidazol-2-yl]-ethyl ⁇ -(3,4-dimethoxy-benzyl)-amine
- Step C [1-[ ⁇ 1-[4-(3-Bromo-phenyl)-1H-imidazol-2-yl]-ethyl ⁇ -(3,4-dimethoxy-benzyl)-carbamoyl]-2-(4-carbamoyl-2,6-dimethyl-phenyl)-ethyl]-carbamic acid tert-butyl ester
- Step D 3-(2- ⁇ 1-[[2-tert-Butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-(3,4-dimethoxy-benzyl)-amino]-ethyl ⁇ -1H-imidazol-4-yl)-benzoic acid
- Step E 3-(2- ⁇ 1-[[2-Amino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-(3,4-dimethoxy-benzyl)amino]-ethyl ⁇ -1H-imidazol-4-yl)-benzoic acid
- 3-(2- ⁇ 1-[[2-tert-Butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-(3,4-dimethoxy-benzyl)-amino]-ethyl ⁇ -1H-imidazol-4-yl)-benzoic acid may be BOC-de-protected using the procedure described in Example 3 for the conversion of Cpd 3e to Cpd 3f to yield the title compound.
- Step A [2-Benzyloxy-1-(2-oxo-2-phenyl-ethylcarbamoyl-ethyl]-carbamic acid tert butyl ester
- Step B [2-Benzyloxy-1-(4-phenyl-1H-imidazol-2-yl-ethyl]-carbamic acid tert butyl ester
- [2-benzyloxy-1-(4-phenyl-1H-imidazol-2-yl-ethyl]-carbamic acid tert butyl ester may be BOC-deprotected using the procedure described in Example 3 for the conversion of Cpd 3e to Cpd 3f to give the product.
- Step E [1- ⁇ [2-Benzyloxy-1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-isopropyl-carbamoyl ⁇ -2-(4-carbamoyl-2,6-dimethyl-phenyl)-ethyl]-carbamic acid tert-butyl ester
- Step F 4-(2-Amino-2- ⁇ [2-hydroxy-1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-isopropyl-carbamoyl ⁇ -ethyl)-3,5-dimethyl-benzamide (TFA salt)
- reaction was cooled in an ice bath to 5-10° C. and treated with 100 mL of MeOH.
- the quenched mixture was stirred at 5-10° C. for 30 min, removed from the ice bath and stirred for an additional 30 min, and concentrated in vacuo to yield an orange residue that was subjected to reverse phase HPLC (water/acetonitrile/0.1% TFA).
- the cool mixture was partitioned between NaHCO 3 and EtOAc, and filtered.
- the aqueous layer was separated, acidified with 10% citric acid aqueous solution, extracted with EtOAc, and finally dried over Na 2 SO 4 . Filtration and concentration of the filtrate resulted in a residue.
- the residue was recrystallized from EtOAc-hexanes to yield the desired product.
- the separated organic phase was washed sequentially with 2N citric acid aqueous solution, saturated aqueous NaHCO 3 solution, and brine, then dried over Na 2 SO 4 overnight. After filtration and concentration, the residue was purified by flash column chromatography (eluent: EtOAc) to yield the product.
- the aqueous phase layer was separated, acidified with aqueous 6N HCl, extracted with EtOAc, and then dried over Na 2 SO 4 . Filtration and concentration of the filtrate resulted in the crude product (10b) as a brown residue, which was used in the next step without further purification.
- Step E (2)-2-Benzyloxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)acrylic acid methyl ester
- Step D (Z)-2-Benzyloxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)acrylic acid methyl ester
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pain & Pain Management (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Rheumatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
The present invention is directed to novel processes for the preparation of opioid modulators (agonists and antagonists) and intermediates in their synthesis. The opioid modulators are useful for the treatment and prevention of as pain and gastrointestinal disorders.
Description
- This application claims the benefit of U.S. Provisional Application 60/661,784, filed on Mar. 14, 2005, which is incorporated by reference herein in its entirety.
- The present invention is directed to a novel process for the preparation of opioid modulators (agonists and antagonists), and intermediates in their synthesis. The opioid modulators are useful in the treatment and prevention of such disorders as pain, visceral pain including post-operative pain, gastrointestinal disorders including diarrheic syndromes, motility disorders including post-operative ileus, constipation, irritable bowel syndrome and inflammatory bowel disorders.
- The present invention is directed to the preparation of novel opioid receptor modulators and intermediates in their synthesis. More specifically, the present invention is directed to novel processes for the preparation of compounds of formula (II)
- wherein all variables are as hereinafter defined, disclosed in U.S. patent application Ser. No. 11/079,647, filed Mar. 15, 2004, and published as US Patent Publication US-2005-0203143-A1, Sep. 15, 2005, which is hereby incorporated by reference in its entirety.
- Known methods for the preparation of the compounds of formula (II) and compounds of formula (I), as herein defined, require the use of dimethyl-tyrosine, which is expensive and thus not suitable for large scale synthesis. Thus there remains a need for a process for the preparation of compounds of formula (I) and compounds of formula (II) which is suitable for large scale production.
- The present invention is directed to a process for the preparation of compounds of formula (I)
- wherein
- is C6-10aryl or a heteroaryl selected from the group consisting of furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, isoindolyl, indolinyl, benzofuryl, benzothienyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, quinolizinyl, quinolinyl, isoquinolinyl and quinazolinyl;
- each R41P is independently selected from C1-6alkyl, C1-6alkoxy or fluoro;
- RJ and RK are each independently selected from hydrogen or C1-4alkyl; alternatively, RJ and RK are taken together with the nitrogen atom to which they are bound to form a five to seven membered heterocyclyl;
- Pg1 is a nitrogen protecting group;
- comprising
- reacting a compound of formula (X), wherein XP is selected from OH, CN, —CO2H, —C(O)—CL or —C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, to yield the corresponding compound of formula (XII);
- reacting the compound of formula (XII) with a suitably substituted compound of formula (XVIII); in the presence of palladium catalyst; in the presence of an organic or inorganic base; in an organic solvent; at a temperature greater than about room temperature; to yield the corresponding compound of formula (XIX);
- reacting the compound of formula (XIX) with hydrogen or a source of hydrogen; in the presence of a catalyst; in a solvent; at a temperature greater than about room temperature; to yield the corresponding compound of formula (XX);
- reacting the compound of formula (XX) with an aqueous base; in an organic solvent; to yield the corresponding compound of formula (I).
- The present invention is further directed to a process for the preparation of a compound of formula (I)
- wherein
- is C6-10aryl or a heteroaryl selected from the group consisting of furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, isoindolyl, indolinyl, benzofuryl, benzothienyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, quinolizinyl, quinolinyl, isoquinolinyl and quinazolinyl;
- each R41P is independently selected from C1-6alkyl, C1-6alkoxy or fluoro;
- RJ and RK are each independently selected from hydrogen or C1-4alkyl; alternatively, RJ and RK are taken together with the nitrogen atom to which they are bound to form a five to seven membered heterocyclyl;
- Pg1 is a nitrogen protecting group;
- comprising
- reacting the compound of formula (XIX) with hydrogen or a source of hydrogen; in the presence of a catalyst; in a solvent; at a temperature greater than about room temperature; to yield the corresponding compound of formula (XX);
- reacting the compound of formula (XX) with an aqueous base; in an organic solvent; to yield the corresponding compound of formula (I).
- The present invention is further directed to a process for the preparation of a compound of formula (Ia) (also known as, 4-(aminocarbonyl)-N-[(1,1-dimethylethoxy)carbonyl]-2,6-dimethyl-L-phenylalanine)
- comprising
- reacting a compound of formula (Xa), wherein XP is selected from OH, CN, —CO2H, —C(O)—Cl or C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, yield the corresponding compound of formula (XIIa);
- reacting
- the compound of formula (XIIa) with a suitably substituted compound of formula (XVIIIa); in the presence of palladium catalyst; in the presence of an organic or inorganic base; in an organic solvent; at a temperature greater than about room temperature; to yield the corresponding compound of formula (XIXa);
- reacting compound of formula (XIXa) with hydrogen gas, at a pressure sufficient to hydrogenate; in the presence of a suitable chiral catalyst; at a temperature greater than about room temperature; in an organic solvent; to yield the corresponding compound of formula (XXa);
- reacting the compound of formula (XXa) with an aqueous base; in an organic solvent; to yield the corresponding compound of formula (Ia).
- The present invention is further directed to a process for the preparation of the compound of formula (Ia)
- comprising
- reacting compound of formula (XIXa) with hydrogen gas, at a pressure sufficient to hydrogenate; in the presence of a suitable chiral catalyst; at a temperature greater than about room temperature; in an organic solvent; to yield the corresponding compound of formula (XXa);
- reacting the compound of formula (XXa) with an aqueous base; in an organic solvent; to yield the corresponding compound of formula (Ia).
- The present invention is further directed to processes for the preparation of compounds of formula (XIX)
- The present invention is further directed to processes for the preparation of the compound of formula (XIXb)
- The present invention is further directed to a process for the preparation of compounds of formula (II)
- wherein
- is C6-10aryl or a heteroaryl selected from the group consisting of furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, isoindolyl, indolinyl, benzofuryl, benzothienyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, quinolizinyl, quinolinyl, isoquinolinyl and quinazolinyl;
- each R41P is independently selected from C1-6alkyl, C1-6alkoxy or fluoro;
- RJ and RK are each independently selected from hydrogen or C1-4alkyl; alternatively, RJ and RK are taken together with the nitrogen atom to which they are bound to form a five to seven membered heterocyclyl;
- R1 is selected from the group consisting of hydrogen, C1-6alkyl, cycloalkyl, heterocyclyl, aryl(C1-6)alkyl, and heteroaryl(C1-6)alkyl;
-
- wherein when R1 is phenyl(C1-6)alkyl, phenyl is optionally fused to a heterocyclyl or cycloalkyl;
- wherein when R1 is C1-2alkyl, said C1-2alkyl is optionally substituted with one to two substituents independently selected from the group consisting of C1-6alkoxy, aryl, cycloalkyl, heterocyclyl, hydroxy, cyano, amino, C1-6alkylamino, (C1-6alkyl)2-amino, trifluoromethyl, and carboxy;
- and further, wherein when R1 is C3-6alkyl, said C3-6alkyl is optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkoxy, aryl, cycloalkyl, heterocyclyl, hydroxy, cyano, amino, C1-6alkylamino, (C1-6alkyl)2-amino, trifluoromethyl, and carboxy;
- wherein the cycloalkyl and heterocyclyl of C1-2alkyl and C3-6alkyl are optionally substituted with one to two substituents independently selected from the group consisting of C1-salkyl, hydroxy(C1-6)alkyl, C1-6alkoxy, hydroxy, cyano, amino, C1-6alkylamino, (C1-6alkyl)2-amino, trifluoromethyl, carboxy, aryl(C1-6)alkoxycarbonyl, C1-salkoxycarbonyl, aminocarbonyl, C1-6alkylaminocarbonyl, (C1-6alkyl)2-aminocarbonyl, and aminosulfonyl;
- furthermore, wherein the cycloalkyl and heterocyclyl of R1 are optionally substituted with one to two substituents independently selected from the group consisting of C1-6alkyl, hydroxy(C1-6)alkyl, C1-6alkoxy, hydroxy, cyano, amino, C1-6alkylamino, (C1-6alkyl)2-amino, trifluoromethyl, carboxy, aryl(C1-6)alkoxycarbonyl, C1-6alkoxycarbonyl, aminocarbonyl, C1-6alkylaminocarbonyl, (C1-6alkyl)2-aminocarbonyl, and aminosulfonyl;
- furthermore, wherein the aryl and heteroaryl portion of the R1 substituents aryl(C1-6)alkyl and heteroaryl(C1-6)alkyl, are optionally substituted with one to three R11 substituents independently selected from the group consisting of C1-6alkyl; hydroxy(C1-6)alkyl; C1-salkoxy; C6-10aryl(C1-6)alkyl; C6-10aryl(C1-6)alkoxy; C6-10aryl; heteroaryl optionally substituted with one to two substituents independently selected from the group consisting of C1-4alkyl, C1-4alkoxy, and carboxy; cycloalkyl; heterocyclyl; C6-10aryloxy; heteroaryloxy; cycloalkyloxy; heterocyclyloxy;. amino; C1-6alkylamino; (C1-6alkyl)2-amino; C3-6cycloalkylaminocarbonyl; HYDROXY(C1-6)alkylaminocarbonyl; C6-10arylaminocarbonyl wherein C6-10aryl is optionally substituted with carboxy or C1-4alkoxycarbonyl; heterocyclylcarbonyl; carboxy; C1-6alkylcarbonyloxy; C1-6alkoxycarbonyl; C1-6alkylcarbonyl; C1-6alkylcarbonylamino; aminocarbonyl; C1-6alkylaminocarbonyl; (C1-6alkyl)2-aminocarbonyl; cyano; halogen; trifluoromethyl; trifluoromethoxy; and hydroxy;
- provided that no more than one R11 substituent is selected from the group consisting of C6-10aryl(C1-6)alkyl; C6-10aryl(C1-6)alkoxy; C6-10aryl; heteroaryl optionally substituted with one to two substituents independently selected from the group consisting of C1-4alkyl, C1-4alkoxy, and carboxy; cycloalkyl; heterocyclyl; C6-10aryloxy; heteroaryloxy; cycloalkyloxy; C6-10arylaminocarbonyl, heterocyclylcarbonyl; and heterocyclyloxy;
- R2 is hydrogen, C1-8alkyl, hydroxy(C1-8)alkyl, C6-10aryl(C1-6)alkoxy(C1-6)alkyl, or C6-10aryl(C1-8)alkyl;
-
- wherein the C6-10aryl group in the C6-10aryl-containing substituents of R2 is optionally substituted with one to two substituents independently selected from the group consisting of C1-salkyl, C1-6alkoxy, hydroxy, amino, C1-6alkylamino, (C1-6alkyl)2-amino, aminocarbonyl, C1-6alkylaminocarbonyl, (C1-6alkyl)2-aminocarbonyl, cyano, fluoro, chloro, bromo, trifluoromethyl, and trifluoromethoxy; and, wherein the C1-6alkyl and C1-6alkoxy substituents of aryl are optionally substituted with hydroxy, amino, C1-6alkylamino, (C1-6alkyl)2-amino, or C6-10aryl;
- A is selected from the group consisting of aryl, ring system a-1, a-2, a-3, and a-4, optionally substituted with R3 and R5;
-
- wherein A-B is selected from the group consisting of N—C, C—N, N—N and C—C; wherein D-E is selected from the group consisting of O—C, S—C, and O—N; and wherein F-G is selected from the group consisting of N—O and C—O;
- R3 is one to two substituents independently selected from the group consisting of C1-6alkyl, aryl, aryl(C1-6)alkyl, aryl(C2-6)alkenyl, aryl(C2-6)alkynyl, heteroaryl, heteroaryl(C1-6)alkyl, heteroaryl(C2-6)alkenyl, heteroaryl(C2-6)alkynyl, amino, C1-6alkylamino, (C1-6alkyl)2-amino, arylamino, heteroarylamino, aryloxy, heteroaryloxy, trifluoromethyl, and halogen;
-
- wherein the aryl, heteroaryl, and the aryl and heteroaryl of aryl(C1-6)alkyl, aryl(C2-6)alkenyl, aryl(C2-6)alkynyl, heteroaryl(C1-6)alkyl, heteroaryl(C2-6)alkenyl, heteroaryl(C2-6)alkynyl, arylamino, heteroarylamino, aryloxy, and heteroaryloxy, are optionally substituted with one to five fluoro substituents or one to three substituents independently selected from the group consisting of C1-6alkyl, hydroxy(C1-6)alkyl, C1-6alkoxy, C6-10aryl(C1-6)alkyl, C6-10aryl(C1-6)alkoxy, C6-10aryl, C6-10aryloxy, heteroaryl(C1-6)alkyl, heteroaryl(C1-6)alkoxy, heteroaryl, heteroaryloxy, C6-10arylamino, heteroarylamino, amino, C1-6alkylamino, (C1-6alkyl)2-amino, carboxy(C1-6)alkylamino, carboxy, C1-6alkylcarbonyl, C1-6alkoxycarbonyl, C1-6-alkylcarbonylamino, aminocarbonyl, C1-6alkylaminocarbonyl, (C1-6alkyl)2-aminocarbonyl, carbon(C1-6)alkylaminocarbonyl, cyano, halogen, trifluoromethyl, trifluoromethoxy, hydroxy, C1-6alkylsulfonyl, and C1-6alkylsulfonylamino; provided that not more than one such substituent on aryl and heteroaryl portion of R3 is selected from the group consisting of C6-10,aryl, heteroaryl, C6-10aryl(C1-6)alkyl, C6-10 aryl(C6-10)alkoxy, aryl(C2-6)alkenyl, aryl(C2-6)alkynyl, heteroaryl, heteroaryl(C1-6)alkyl, heteroaryl(C2-6)alkoxy, C6-10arylamino, heteroarylamino, C6-10aryloxy, and heteroaryloxy;
- and wherein C1-6alkyl, and C1-salkyl of aryl(C1-6)alkyl and heteroaryl(C1-6)alkyl, are optionally substituted with a substituent selected from the group consisting of hydroxy, carboxy, C1-4alkoxycarbonyl, amino, C1-6alkylamino, (C1-6alkyl)2-amino, aminocarbonyl, (C1-4)alkylaminocarbonyl, di(C1-4)alkylaminocarbonyl, aryl, heteroaryl, arylamino, heteroarylamino, aryloxy, heteroaryloxy, aryl(C1-4)alkoxy, and heteroaryl(C1-4)alkoxy;
- R5 is a substituent on a nitrogen atom of ring A selected from the group consisting of hydrogen and C1-4alkyl;
- Ra and Rb are independently selected from the group consisting of hydrogen, C1-6alkyl, and C1-6alkoxycarbonyl; alternatively, when Ra and Rb are each other than hydrogen, Ra and Rb are optionally taken together with the nitrogen atom to which they are both attached to form a five to eight membered monocyclic ring;
- and pharmaceutically acceptable enantiomers, diastereomers, racemates, and salts thereof;
- comprising
- reacting a compound of formula (X), wherein XP is selected from OH, CN, —CO2H, —C(O)—Cl or C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, to yield the corresponding compound of formula (XII);
- reacting the compound of formula (XII) with a suitably substituted compound of formula (XVIII) wherein Pg1 is a nitrogen protecting group; in the presence of palladium catalyst; in the presence of an organic or inorganic base; in an organic solvent; at a temperature greater than about room temperature; to yield the corresponding compound of formula (XIX);
- reacting the compound of formula (XIX) with hydrogen or a source of hydrogen; in the presence of a catalyst; in a solvent; at a temperature greater than about room temperature; to yield the corresponding compound of formula (XX);
- reacting the compound of formula (XX) with an aqueous base; in an organic solvent; to yield the corresponding compound of formula (I);
- reacting the compound of formula (I), to yield the corresponding compound of formula (II).
- In an embodiment, the present invention is directed to processes for the preparation of the compound of formula (IV)
- also known as, 5-({[2-amino-3-(4-carbamoyl-2,5-dimethyl-phenyl)-propionyl]-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-amino}-methyl)-2-methoxy-benzoic acid.
- In an embodiment, the present invention is directed to processes for the preparation of the compound of formula (V)
- also known as, 5-[([2-Amino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-{1-[4-(4-iodo-phenyl)-1H-imidazol-2-yl]-ethyl}-amino)-methyl]-2-methoxy-benzoic acid.
- The present invention is further directed to a product prepared according to any of the processes described herein.
- Illustrative of the invention is a pharmaceutical composition comprising a pharmaceutically acceptable carrier and at a product prepared according to the process described herein. An illustration of the invention is a pharmaceutical composition made by mixing a product prepared according to the process described herein and a pharmaceutically acceptable carrier. Illustrating the invention is a process for making a pharmaceutical composition comprising mixing a product prepared according to the process described herein and a pharmaceutically acceptable carrier.
- Exemplifying the invention are methods of treating or preventing a disorder mediated by at least one opioid receptor, preferably the δ or μ opioid receptor selected from the group consisting of pain and gastrointestinal disorders, in a subject in need thereof comprising administering to the subject a therapeutically effective amount of any of the compounds or pharmaceutical compositions prepared as described above.
- The present invention is directed to processes for the preparation of compounds of formula (I)
- wherein Pg1,
- RJ, RK and R41P are as herein defined. The compounds of formula (I) are useful in the preparation of opioid receptor modulators—compounds of formula (II) as defined herein. The present invention is further directed to processes for the preparation of the compound of formula (Ia) as herein defined, useful as intermediates in the synthesis of opioid receptor modulators.
- In an embodiment, the present invention is directed to processes for the preparation of compounds wherein the
- ring is unsubstituted. In an embodiment of the present invention, the
- ring is substituted with one
- R41P group, which is bound at the 2- or 6-position. In another embodiment, the present invention is directed to processes for the preparation of compounds wherein the
- ring is substituted with two R41P groups, which are bound at the 2- and 6-positions. For example, processes wherein
- is phenyl, the compound of formula (I) is of the following structure:
- In an embodiment, the present invention is directed to processes for the preparation of compounds of formula (Ic)
- wherein R41Q is selected from methyl, ethyl, methoxy, ethoxy or fluoro and wherein RJ, RK and Pg1 are as herein defined.
- In another embodiment, the present invention is directed to processes for the preparation of the compound of formula (Ib)
- (i.e. a compound of formula (I) wherein
- is phenyl; RJ and RK are each hydrogen; the phenyl ring is further substituted with two R41P groups, which are each methyl and Pg1 is Boc), also known as 2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionic acid.
- In another embodiment, the present invention is directed to processes for the preparation of the compound of formula (Ia)
- The present invention is further directed to processes for the preparation of compounds of formula (XIX)
- In an embodiment, the present invention is directed to processes for the preparation of the compound of formula (XIXb),
- Preferably, the present invention is directed to processes for the preparation of the compound of formula (XIXa)
- The compounds of formula (XIX) are useful as intermediates in the synthesis of compounds of formula (II).
- The present invention is further directed to processes for the preparation of compound of formula (II)
- wherein
-
- are as herein defined. The compounds of the present invention are opioid receptor modulators, useful in the treatment of disorders mediated by at least one opioid receptor (preferably δ or μ opioid receptor), including, but not limited to pain and gastrointestinal disorders.
- Embodiments of the present invention include processes for the preparation of compounds wherein R1 is selected from the group consisting of hydrogen, C1-6alkyl, aryl(C1-4)alkyl, and heteroaryl(C1-4)alkyl; wherein the aryl and heteroaryl portion of aryl(C1-4)alkyl and heteroaryl(C1-4)alkyl are optionally substituted with one to three R11 substituents independently selected from the group consisting of C1-6alkoxy; heteroaryl optionally substituted with one to two substituents independently selected from the group consisting of C1-4alkyl, C1-4-alkoxy, and carboxy; carboxy; C1-4alkoxycarbonyl; C1-4alkoxycarbonyloxy; aminocarbonyl; C1-4alkylaminocarbonyl; C3-6cycloalkylaminocarbonyl; hydroxy(C1-6)alkylaminocarbonyl; C6-10arylaminocarbonyl wherein C6-10aryl is optionally substituted with carboxy or C1-4alkoxycarbonyl; heterocyclylcarbonyl; cyano; halogen; trifluoromethoxy; and hydroxy; provided that no more than one R11 is heteroaryl (optionally substituted with one to two C1-4alkyl substituents); C6-10arylaminocarbonyl wherein C6-10aryl is optionally substituted with carboxy or C1-4alkoxycarbonyl; or heterocyclylcarbonyl.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R1 is selected from the group consisting of C6-10aryl(C1-4)alkyl, pyridinyl(C1-4alkyl, and furanyl(C1-4)alkyl; wherein C6-10aryl, pyridinyl, and furanyl are optionally substituted with one to three R11 substituents independently selected from the group consisting of C1-3alkoxy; tetrazolyl; carboxy; C1-4alkoxycarbonyl; aminocarbonyl; C1-4alkylaminocarbonyl; C3-6cycloalkylaminocarbonyl; hydroxy(C1-4alkylaminocarbonyl; C6-10-arylaminocarbonyl wherein C6-10aryl is optionally substituted with carboxy or C1-4alkoxycarbonyl; morpholin-4-ylcarbonyl; cyano; halogen; and trifluoromethoxy; provided that that no more than one R11 is C6-10arylaminocarbonyl.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R1 is selected from the group consisting of phenyl(C1-3)alkyl, pyridinyl(C1-3)alkyl, and furanyl(C1-3)alkyl; wherein phenyl, pyridinyl, and furanyl are optionally substituted with one to three R11 substituents independently selected from the group consisting of C1-3alkoxy; tetrazolyl, C3-6cycloalkylaminocarbonyl; hydroxy(C1-4alkylaminocarbonyl; C6 arylaminocarbonyl wherein C6-10aryl is optionally substituted with carboxy or C1-4alkoxycarbonyl; morpholin-4-ylcarbonyl; chloro; fluoro; trifluoromethoxy; C1-4alkoxycarbonyl; and carboxy; provided that that no more than one R11 is C6-10arylaminocarbonyl.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R1 is phenylmethyl, pyridinylmethyl, or furanylmethyl; wherein phenyl, pyridinyl, and furanyl are optionally substituted with one to three R11 substituents independently selected from the group consisting of methoxy; tetrazolyl; cyclopropylaminocarbonyl; (2-hydroxyeth-1-yl)aminocarbonyl; methoxycarbonyl; phenylaminocarbonyl wherein phenyl is optionally substituted with carboxy; morpholin-4-ylcarbonyl; and carboxy; provided that that no more than one R11 is phenylaminocarbonyl.
- Embodiments of the present invention include processes for the preparation of compounds wherein R2 is a substituent selected from the group consisting of hydrogen, C1-4alkyl, hydroxy(C1-4)alkyl, and phenyl(C1-6)alkoxy(C1-4)alkyl; wherein said phenyl is optionally substituted with one to two substituents independently selected from the group consisting of C1-3alkyl, C1-3alkoxy, hydroxy, cyano, fluoro, chloro, bromo, trifluoromethyl, and trifluoromethoxy.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R2 is selected from the group consisting of hydrogen and C1-4alkyl. Embodiments of the present invention further include processes for the preparation of those compounds wherein R2 is hydrogen or methyl.
- Embodiments of the present invention include processes for the preparation of compounds wherein ring A is a-1. Embodiments of the present invention further include processes for the preparation of compounds wherein A-B of ring a-1 is N—C.
- Embodiments of the present invention include processes for the preparation of compounds wherein R3 is one to two substituents independently selected from the group consisting of C1-6alkyl, halogen, and aryl; wherein aryl is optionally substituted with one to three substituents independently selected from the group consisting of halogen, carboxy, aminocarbonyl, C1-3alkylsulfonylamino, cyano, hydroxy, amino, C1-3alkylamino, and (C1-3alkyl)2-amino.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R3 is one to two substituents independently selected from the group consisting of C1-3alkyl, bromo, and phenyl; wherein phenyl is optionally substituted with one to three substituents independently selected from the group consisting of chloro, fluoro, carboxy, aminocarbonyl, and cyano.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R3 is one to two substituents independently selected from the group consisting of methyl and phenyl; wherein phenyl is optionally substituted with one to three substituents independently selected from the group consisting of chloro and carboxy.
- Embodiments of the present invention further include processes for the preparation of compounds wherein at least one R3 substituent is phenyl.
- Embodiments of the present invention further include processes for the preparation of compounds wherein R3 is a substituent selected from the group consisting of methyl and phenyl; wherein phenyl is optionally substituted with one to two substituents independently selected from the group consisting of chloro and carboxy.
- Embodiments of the present invention include processes for the preparation of compounds wherein
- is C6-10aryl. Embodiments of the present invention further include processes for the preparation of compounds wherein
- is phenyl.
- Embodiments of the present invention include processes for the preparation of compounds wherein R41P is selected from C1-3alkyl, C1-6alkoxy or fluoro. Embodiments of the present invention further include processes for the preparation of compounds wherein R41P is selected from C1-3alkyl or C1-3alkoxy. Embodiments of the present invention further include processes for the preparation of compounds wherein R41P is selected from methyl, ethyl, methoxy, ethoxy or fluoro. Embodiments of the present invention further include processes for the preparation of compounds wherein R41P is selected from methyl or methoxy.
- Embodiments of the present invention include processes for the preparation of compounds wherein R5 is hydrogen or methyl. Embodiments of the present invention further include processes for the preparation of compounds wherein R5 is hydrogen.
- Embodiments of the present invention include processes for the preparation of compounds wherein Ra and Rb are independently selected from the group consisting of hydrogen and C1-3alkyl; or, when Ra and Rb are each other than hydrogen, Ra and Rb are optionally taken together with the nitrogen atom to which they are both attached to form a five to seven membered monocyclic ring. Embodiments of the present invention further include processes for the preparation of compounds wherein Ra and Rb are independently hydrogen or methyl. Embodiments of the present invention further include processes for the preparation of compounds wherein Ra and Rb are each hydrogen.
- Embodiments of the present invention include processes for the preparation of compounds of formula (I) wherein the stereo-center denoted with a “*” as shown below,
- is in the S-configuration. In another embodiment are processes for the preparation of compounds of formula (I) wherein the stereo-center denoted with a “*” on the compound of formula (I) is in the R-configuration.
- Embodiments of the present invention include processes for the preparation of compounds of formula (II) that are present in their RR, SS, RS, or SR configuration. Embodiments of the present invention further include processes for the preparation of compounds of formula (II) that are present in their S,S configuration.
- Embodiments of the present invention include processes for the preparation of compounds of formula (Ile)
- wherein:
- R1 is selected from the group consisting of hydrogen, C1-6alkyl, aryl(C1-4)alkyl, and heteroaryl(C1-4)alkyl;
-
- wherein the aryl and heteroaryl portion of aryl(C1-4)alkyl and heteroaryl(C1-4alkyl are optionally substituted with one to three R11 substituents independently selected from the group consisting of C1-6alkoxy; heteroaryl optionally substituted with one to two substituents independently selected from the group consisting of C1-4alkyl, C1-4alkoxy, and carboxy; carboxy; C1-4alkoxycarbonyloxy; C1-4alkoxycarbonyl; aminocarbonyl; C1-4alkylaminocarbonyl; C3-6cycloalkylaminocarbonyl; hydroxy(C1-6)alkylaminocarbonyl; C6-10arylaminocarbonyl wherein C6-10aryl is optionally substituted with carboxy or C1-4alkoxycarbonyl; heterocyclylcarbonyl; cyano; halogen; trifluoromethoxy; and hydroxy; provided that no more than one R11 is heteroaryl (optionally substituted with one to two C1-4alkyl substituents); C6-10arylaminocarbonyl wherein C6-10aryl is optionally substituted with carboxy or C1-4alkoxycarbonyl; or heterocyclylcarbonyl;
- R2 is selected from the group consisting of hydrogen, C1-4alkyl, hydroxy(C1-4)alkyl, and phenyl(C1-6)alkoxy(C1-4)alkyl;
-
- wherein said phenyl is optionally substituted with one to two substituents independently selected from the group consisting of C1-3alkyl, C1-3alkoxy, hydroxy, cyano, fluorine, chlorine, bromine, trifluoromethyl, and trifluoromethoxy;
- R3 is one to two substituents independently selected from the group consisting of C1-6alkyl, halogen, and aryl; wherein aryl is optionally substituted with one to three substituents independently selected from the group consisting of halogen, carboxy, aminocarbonyl, C1-3alkylsulfonylamino, cyano, hydroxy, amino, C1-3alkylamino, and (C1-3alkyl)2-amino;
- R5 is hydrogen or methyl;
- Ra and Rb are independently hydrogen or C1.3alkyl; or, when Ra and Rb are each other than hydrogen, Ra and Rb are optionally taken together with the nitrogen atom to which they are both attached to form a five to seven membered monocyclic ring;
- is C6-10aryl;
- R41P is selected from C1-3alkyl, C1-6alkoxy or fluoro;
- RJ and RK are each independently selected from hydrogen or C1-4alkyl; alternatively, RJ and RK are taken together with the nitrogen atom to which they are bound to form a five to seven membered heterocyclyl;
- and pharmaceutically acceptable enantiomers, diastereomers, racemates, and salts thereof.
- Embodiments of the present invention further include processes for the preparation of compounds of formula (Ile) wherein
- R1 is selected from the group consisting of C6-10aryl(C1-4)alkyl, Pyridinyl(C1-4)alkyl, and furanyl(C1-4)alkyl; wherein C6-10aryl, pyridinyl, and furanyl are optionally substituted with one to three R11 substituents independently selected from the group consisting of C1-3alkoxy; tetrazolyl; carboxy; C1-3alkoxycarbonyl; aminocarbonyl; C1-4alkylaminocarbonyl; C1-3alkylaminocarbonyl; C3-6cycloalkylaminocarbonyl; hydroxy(C1-4)alkylaminocarbonyl; C6-10arylaminocarbonyl wherein C6-10aryl is optionally substituted with carboxy or C1-4alkoxycarbonyl; morpholin-4-ylcarbonyl; cyano; halogen; and trifluoromethoxy; provided that no more than one R11 is C6-10arylaminocarbonyl;
- R2 is hydrogen or C1-4alkyl;
- R3 is one to two substituents independently selected from the group consisting of C1-3alkyl, bromo, and phenyl; wherein phenyl is optionally substituted with one to three substituents independently selected from the group consisting of chloro, fluoro, carboxy, aminocarbonyl, and cyano;
- R5 is hydrogen;
- Ra and Rb are independently hydrogen or methyl;
- is C6-10aryl;
- R41P is selected from C1-3alkyl or C1-6alkoxy;
- RJ and RK are each independently selected from hydrogen or C1-4alkyl;
- and pharmaceutically acceptable enantiomers, diastereomers, racemates, and salts thereof.
- Embodiments of the present invention further include processes for the preparation of compounds of formula (Ile) wherein
- R1 is selected from the group consisting of phenyl(C1-3)alkyl, pyridinyl(C1-3)alkyl, and furanyl(C1-3)alkyl; wherein phenyl, pyridinyl, and furanyl are optionally substituted with one to three R11 substituents independently selected from the group consisting of C1-3alkoxy; tetrazolyl, C3-6cycloalkylaminocarbonyl; hydroxy(C1-4)alkylaminocarbonyl; C6-10arylaminocarbonyl wherein C6-10aryl is optionally substituted with carboxy or C1-4alkoxycarbonyl; morpholin-4-ylcarbonyl; chloro; fluoro; trifluoromethoxy; and carboxy;
- R2 is hydrogen or methyl;
- R3 is one to two substituents independently selected from the group consisting of methyl and phenyl; wherein phenyl is optionally substituted with one to three substituents independently selected from the group consisting of chloro and carboxy;
- R5 is hydrogen;
- Ra and Rb are each hydrogen;
- is phenyl;
- R41P is selected from methyl, ethyl, methoxy, ethoxy or fluoro.
- RJ and RK are each independently selected from hydrogen or C1-3alkyl;
- and pharmaceutically acceptable enantiomers, diastereomers, racemates, and salts thereof.
- Additional embodiments of the present invention, include processes for the preparation of compounds wherein the substituents for one or more of the variables defined herein (i.e.
- RJ, RK, R41P, Pg1, etc.) are independently selected to be, any individual substituent or any subset of substituents selected from the complete list as defined herein.
- As used herein, unless otherwise noted, “alkyl” whether used alone or as part of a substituent group refers to straight and branched carbon chains having 1 to 8 carbon atoms or any number within this range. The term “alkoxy” refers to an —Oalkyl substituent group, wherein alkyl is as defined supra. Similarly, the terms “alkenyl” and “alkynyl” refer to straight and branched carbon chains having 2 to 8 carbon atoms or any number within this range, wherein an alkenyl chain has at least one double bond in the chain and an alkynyl chain has at least one triple bond in the chain. An alkyl and alkoxy chain may be substituted on a carbon atom. In substituent groups with multiple alkyl groups such as (C1-6alkyl)2-amino—the C1-6alkyl groups of the dialkylamino may be the same or different.
- The term “cycloalkyl” refers to saturated or partially unsaturated, monocyclic or polycyclic hydrocarbon rings of from 3 to 14 carbon atom members. Examples of such rings include, and are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and adamantyl. Alternatively, the cycloalkyl ring may be fused to a benzene ring (benzo fused cycloalkyl), a 5 or 6 membered heteroaryl ring (containing one of O, S or N and, optionally, one additional nitrogen) to form a heteroaryl fused cycloalkyl.
- The term “heterocyclyl” refers to a nonaromatic cyclic ring of 5 to 7 members in which 1 to 2 members are nitrogen, or a nonaromatic cyclic ring of 5 to 7 members in which zero, one or two members are nitrogen and up to two members are oxygen or sulfur; wherein, optionally, the ring contains zero to one unsaturated bonds, and, optionally, when the ring is of 6 or 7 members, it contains up to two unsaturated bonds. The term heterocyclyl includes 5 to 7 membered monocycle wherein the heterocyclyl may be fused to a benzene ring (benzo fused heterocyclyl), a 5 or 6 membered heteroaryl ring (containing one of O, S or N and, optionally, one additional nitrogen), a 5 to 7 membered cycloalkyl or cycloalkenyl ring, a 5 to 7 membered heterocyclyl ring (of the same definition as above but absent the option of a further fused ring) or fused with the carbon of attachment of a cycloalkyl, cycloalkenyl or heterocyclyl ring to form a spiro moiety. For instant compounds of the invention, the carbon atom ring members that form the heterocyclyl ring are fully saturated. Other compounds of the invention may have a partially saturated heterocyclyl ring. The term heterocyclyl include a 5 to 7 membered monocyclic ring bridged to form bicyclic rings. Such compounds are not considered to be fully aromatic and are not referred to as heteroaryl compounds. Examples of heterocyclyl groups include, and are not limited to, pyrrolinyl (including 2H-pyrrole, 2-pyrrolinyl or 3-pyrrolinyl), pyrrolidinyl, 2-imidazolinyl, imidazolidinyl, 2-pyrazolinyl, pyrazolidinyl, piperidinyl, morpholinyl, thiomorpholinyl and piperazinyl.
- The term “aryl” refers to an unsaturated, aromatic monocyclic ring of 6 carbon members or to an unsaturated, aromatic polycyclic ring of from 10 to 14 carbon members. Examples of such aryl rings include, and are not limited to, phenyl, naphthalenyl or anthracenyl. Preferred aryl groups for the practice of this invention are phenyl and naphthalenyl.
- The term “heteroaryl” refers to an aromatic ring of 5 or 6 members wherein the ring consists of carbon atoms and has at least one heteroatom member. Suitable heteroatoms include nitrogen, oxygen or sulfur. In the case of 5 membered rings, the heteroaryl ring contains one member of nitrogen, oxygen or sulfur and, in addition, may contain up to three additional nitrogens. In the case of 6 membered rings, the heteroaryl ring may contain from one to three nitrogen atoms. For the case wherein the 6 membered ring has three nitrogens, at most two nitrogen atoms are adjacent. Optionally, the heteroaryl ring is fused to a benzene ring (benzo fused heteroaryl), a 5 or 0.6 membered heteroaryl ring (containing one of O, S or N and, optionally, one additional nitrogen), a 5 to 7 membered cycloalkyl ring or a 5 to 7 membered heterocyclo ring (as defined supra but absent the option of a further fused ring). Examples of heteroaryl groups include, and are not limited to, furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl or pyrazinyl; fused heteroaryl groups include indolyl, isoindolyl, indolinyl, benzofuryl, benzothienyl, indazolyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, benzisoxazolyl, benzothiadiazolyl, benzotriazolyl, quinolizinyl, quinolinyl, isoquinolinyl or quinazolinyl.
- The term “arylalkyl” means an alkyl group substituted with an aryl group (e.g., benzyl, phenethyl). Similarly, the term “arylalkoxy” indicates an alkoxy group substituted with an aryl group (e.g., benzyloxy).
- The term “halogen” refers to fluorine, chlorine, bromine and iodine. Substituents that are substituted with multiple halogens are substituted in a manner that provides compounds, which are stable.
- Whenever the term “alkyl” or “aryl” or either of their prefix roots appear in a name of a substituent (e.g., arylalkyl, alkylamino) it shall be interpreted as including those limitations given above for “alkyl” and “aryl.” Designated numbers of carbon atoms (e.g., C1-C6) shall refer independently to the number of carbon atoms in an alkyl moiety or to the alkyl portion of a larger substituent in which alkyl appears as its prefix root. For alkyl, and alkoxy substituents the designated number of carbon atoms includes all of the independent members included in the range specified individually and all the combination of ranges within in the range specified. For example C1-6 alkyl would include methyl, ethyl, propyl, butyl, pentyl and hexyl individually as well as sub-combinations thereof (e.g. C1-2, C1-3, C1-4, C1-5, C2-6, C3-6, C4-6, C5-6, C2-5, etc.).
- Where the compounds according to this invention have at least one chiral center, they may accordingly exist as enantiomers. Where the compounds possess two or more chiral centers, they may additionally exist as diastereomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention. Furthermore, some of the crystalline forms for the compounds may exist as polymorphs and as such are intended to be included in the present invention. In addition, some of the compounds may form solvates with water (i.e., hydrates) or common organic solvents, and such solvates are also intended to be encompassed within the scope of this invention.
- An “independently” selected substituent refers to a group of substituents, wherein the substituents may be different. Therefore, designated numbers of carbon atoms (e.g. C1-8) shall refer independently to the number of carbon atoms in an alkyl or cycloalkyl moiety or to the alkyl portion of a larger substituent in which alkyl appears as its prefix root.
- Under standard nomenclature used throughout this disclosure, the terminal portion of the designated side chain is described first, followed by the adjacent functionality toward the point of attachment. Thus, for example, a “phenyl-(C1-6alkyl)amino-carbonyl-(C1-6alkyl)” substituent refers to a group of the formula
- Abbreviations used in the specification, particularly the Schemes and Examples, are as follows:
-
Ac = Acetyl group (—C(O)—CH3) Ac2O = Acetic anhydride Cbz or CBZ = Benzyloxy-carbonyl- Cpd = Compound DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene DCM = Dichloromethane DIPEA or DIEA = Diisopropylethylamine DMF = N,N-Dimethylformamide DPPE = 1,2-Bis(diphenylphosphino)ethane DPPF = 1,1′-Bis(diphenylphosphino)ferrocene DPPP = 1,3-Bis(diphenylphosphino)propane EDCI or EDC = 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride Et2O = Diethyl ether EtOAc = Ethyl acetate Fmoc = 9-fluorenyl-methoxy-carbonyl- HOAc = Acetic acid HOBT = 1-Hydroxybenzotriazole Me Methyl MeOH = Methanol MeO = Methoxy MTBE = Methyl-tert-butyl ether NaBH(OAc)3 = Sodium triacetoxybrohydride Pd—C = Palladium on Carbon Catalyst Pd2(OAc)2 = Palladium(II)acetate Pd2(dba)3 = Tris(dibenzylidene acetone)dipalladium(0) Pd(PPh3)4 = Tetrakis(triphenylphosphine)palladium (0) Ph = Phenyl P(Ph)3 = Triphenylphosphine PyBop = Benzotriazol-1-yloxy- tris(pyrrolidino)phosphonium hexafluorophosphate PyBrop = Bromotri(pyrrolidino)phsophonium hexafluorophosphate [Rh(cod)(R,R- (R,R)-(−)-Bis[(o- DIPAMP)]+BF4 − methoxyphenyl)(phenyl)phosphino]ethane(1,5- cyclo-octadiene)rhodium (I) tetrafluoroborate rt or RT = Room temperature t-BOC or Boc = tert-Butdxycarbonyl TEA = Triethylamine Tf = Trifluoromethyl-sulfonyl-(—SO2—CF3) TFA = Trifluoroacetic acid THF = Tetrahydrofuran Tyr = Tyrosine - As used herein, the term “pain” shall include centrally mediated pain, peripherally mediated pain, structural or soft tissue injury related pain, pain related to inflammation, progressive disease related pain, neuropathic pain, acute pain and chronic pain. Further, the term “chronic pain” shall include neuropathic pain conditions, diabetic peripheral neuropathy, post-herpetic neuralgia, trigeminal neuralgia, post-stroke pain syndromes and cluster or migraine headaches.
- As used herein, the term “gastrointestinal disorder” shall include diarrheic syndromes, motility disorders such as diarrhea-predominant, constipation-predominant, alternating irritable bowel syndrome, post-operative ileus and constipation, and inflammatory bowel disease. Further, the term “inflammatory bowel disease” shall include ulcerative colitis and Crohn's disease.
- The term “subject” as used herein, refers to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment.
- The term “therapeutically effective amount” as used herein, means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the disease or disorder being treated.
- As used herein, the term “composition” is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combinations of the specified ingredients in the specified amounts.
- To provide a more concise description, some of the quantitative expressions given herein are not qualified with the term “about”. It is understood that whether the term “about” is used explicitly or not, every quantity given herein is meant to refer to the actual given value, and it is also meant to refer to the approximation to such given value that would reasonably be inferred based on the ordinary skill in the art, including approximations due to the experimental and/or measurement conditions for such given value.
- As used herein, unless otherwise noted, the term “aprotic solvent” shall mean any solvent that does not yield a proton. Suitable examples include, but are not limited to DMF, dioxane, THF, acetonitrile, pyridine, dichloroethane, dichloromethane, MTBE, toluene, and the like.
- One skilled in the art will recognize that wherein a reaction step of the present invention may be carried out in a variety of solvents or solvent systems, said reaction step may also be carried out in a mixture of the suitable solvents or solvent systems.
- Where the processes for the preparation of the compounds according to the invention give rise to mixture of stereoisomers, these isomers may be separated by conventional techniques such as preparative chromatography. The compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution. The compounds may, for example, be resolved into their component enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation with an optically active acid, such as (−)-di-p-toluoyl-D-tartaric acid and/or (+)-di-p-toluoyl-L-tartaric acid followed by fractional crystallization and regeneration of the free base. The compounds may also be resolved by formation of diastereomeric esters or amides, followed by chromatographic separation and removal of the chiral auxiliary. Alternatively, the compounds may be resolved using a chiral HPLC column.
- During any of the processes for preparation of the compounds of the present invention, it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in Protective Groups in Organic Chemistry, ed. J. F. W. McOmie, Plenum Press, 1973; and T. W. Greene & P. G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, 1991. The protecting groups may be removed at a convenient subsequent stage using methods known from the art.
- As used herein, unless otherwise noted, the term “nitrogen protecting group” shall mean a group which may be attached to a nitrogen atom to protect said nitrogen atom from participating in a reaction and which may be readily removed following the reaction. Suitable nitrogen protecting groups include, but are not limited to carbamates—groups of the formula —C(O)O—R wherein R is for example methyl, ethyl, t-butyl, benzyl, phenylethyl, CH2═CH—CH2—, and the like; amides groups of the formula C(O)—R′ wherein R′ is for example methyl, phenyl, trifluoromethyl, and the like; N-sulfonyl derivatives—groups of the formula —SO2—R″ wherein R″ is for example tolyl, phenyl, trifluoromethyl, 2,2,5,7,8-pentamethylchroman-6-yl-, 2,3,6-trimethyl-4-methoxybenzene, and the like. Other suitable nitrogen protecting groups may be found in texts such as T. W. Greene & P. G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, 1991.
- For use in medicine, the salts of the compounds of this invention refer to nontoxic pharmaceutically acceptable salts.
- The present invention is directed to processes for the preparation of compounds of formula (I) as outlined in Scheme 1 below.
-
-
-
-
-
-
- Accordingly, a suitably substituted compound of formula (X), wherein XP is OH and wherein YP is Br or Cl, preferably YP is Br, a known compound or compound prepared by known methods; is reacted with a triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like; in the presence of an organic or inorganic base such as pyridine, TEA, DIPEA, K3PO4, K2CO3, and the like; optionally in an organic solvent such as DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XI).
- The compound of formula (XI) is reacted with carbon monoxide or a source of carbon monoxide such as Ac2O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272) and a suitably substituted amine, a compound of formula NRJRK (a compound of formula (XIV)) or when RJ and RK are each hydrogen, with a suitable source of ammonia such as HMDS, ammonia gas, and the like; in the presence of a palladium catalyst such PdCl2, Pd2(OAc)2, and the like, in combination with a suitable ligand, such DPPP, DPPF, P(Ph)3, and the like; or in the presence of a palladium:ligand complex such as Pd(PPh3)4, and the like; in an organic solvent such as DMF, THF, dioxane, and the like, preferably DMF; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 120° C.; to yield the corresponding compound of formula (XII).
- Alternatively, the compound of formula (XI) is reacted with carbon monoxide or a source of carbon monoxide such as Ac2O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K2CO3, Na2CO3, and the like, in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIII).
- The compound of formula (XIII) is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when RJ and RK are each hydrogen, with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or an amount of the compound of formula (XIV) or source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XII).
- Alternatively, the compound of formula (XI) is reacted with carbon monoxide or a source of carbon monoxide such as Ac2O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K2CO3, Na2CO3, and the like, in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIII).
- The compound of formula (XIII) is reacted with a suitably source of chlorine such as thionyl chloride, PCl3, PCl5, oxalyl chloride, oxalyl chloride in DMF, and the like; in an organic solvent such as DCM, chloroform, and the like, preferably at a temperature greater than about room temperature, more preferably at a temperature in the range of about 35° C. to about 60° C.; to yield the corresponding compound of formula (XV).
- The compound of formula (XV) is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when RJ and RK are each hydrogen, with a suitable source of ammonia such as ammonium chloride, NH4OH, HMDS, ammonia gas, and the like, preferably ammonium chloride; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or an amount of the compound of formula (XIV) or source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XII).
- Alternatively, the compound of formula (XIII) is reacted with C1-4alkyl-chloroformate, preferably, methylchloroformate; in the presence of a organic base such as TEA, DIPEA, pyridine and the like; preferably at a temperature less than about room temperature, more preferably at a temperature in the range of from about 0° C.; in an organic solvent such as DMF, DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XVI) wherein A1 is the corresponding C1-4alkyl, preferably methyl.
- The compound of formula (XVI) is reacted with a suitably substituted compound of formula (XIV) or where RJ and RK are each hydrogen, with a suitable source of ammonia such as NH4OH, HMDS, ammonia gas, and the like, preferably NH4OH; in the presence of a palladium catalyst such PdCl2, Pd2(OAc)2, and the like, in combination with a suitable ligand, such DPPP, DPPF, P(Ph)3, and the like; or in the presence of a palladium:ligand complex such as Pd(PPh3)4, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XII).
- One skilled in the art will further recognize that the compound of formula (XI) may be reacted according to known methods, to yield the corresponding compound of formula (X) wherein XP is —C(O)—OC1-4alkyl or CN.
- Alternatively, a suitably substituted compound of formula (X), wherein XP is —C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when RJ and RK are each hydrogen, with a suitable source of ammonia such as NH4OH, HMDS, ammonia gas, and the like; at a temperature greater than room temperature, preferably at about reflux temperature; to yield the corresponding compound of formula (XII).
- Alternatively, a suitably substituted compound of formula (X), wherein XP is —C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when RJ and RK are each hydrogen, with a suitable source of ammonia such as NH4OH, HMDS, ammonia gas, and the like; in the presence of an activating agent such as trimethylaluminum, triisopropylaluminum, and the like; in an aprotic organic solvent such as THF, dioxane, toluene, DCM, and the like; preferably at a temperature in the range of . about 0° C. to about reflux temperature; to yield the corresponding compound of formula (XII).
- Alternatively, a suitably substituted compound of formula (X), wherein XP is —C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is hydrolyzed according to known methods, for example by reacting with a base such as NaOH, LiOH, KOH, and the like, or by reacting with an acid such as HCl, H2SO4, and the like; preferably, the compound of formula (X) is reacted with an acid at a temperature greater than about room temperature, preferably at a temperature in the range of from about 60° to about 120° C., more preferably at a temperature of about 100° C.; to yield the corresponding compound of formula (XIII).
- The compound of formula (XIII) is reacted with a suitably substituted compound of formula'(XIV), a known compound or compound prepared by known methods, or when RJ and RK are each hydrogen, with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or in the presence of an amount of the compound of formula (XIV) or source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like, to yield the corresponding compound of formula (XII).
- Alternatively, the compound of formula (X), wherein XP is —C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with carbon monoxide or a source of carbon monoxide such as Ac2O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K2CO3, Na2CO3, and the like, in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIII).
- The compound of formula (XIII) is reacted with a suitably source of chlorine such as thionyl chloride, PClS, PClS, oxalyl chloride, oxalyl chloride in DMF, and the like; in an organic solvent such as DCM, chloroform, and the like, preferably at a temperature greater than about room temperature, more preferably at a temperature in the range of about 35° C. to about 60° C., to yield the corresponding compound of formula (XV).
- The compound of formula (XV) is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when RJ and RK are each hydrogen, with a suitable source of ammonia such as ammonium chloride, NH4OH, HMDS, ammonia gas, and the like, preferably ammonium chloride; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or in the presence of an amount of the compound of formula (XIV) or source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XII).
- Alternatively, the compound of formula (X), wherein XP is —C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with carbon monoxide or a source of carbon monoxide such as Ac2O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K2CO3, Na2CO3, and the like, in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIII).
- Alternatively, the compound of formula (XIII) is reacted with C1-4alkyl-chloroformate, preferably, methylchloroformate; in the presence of a organic base such as TEA, DIPEA, pyridine and the like; preferably at a temperature less than about room temperature, more preferably at a temperature of about 0° C.; in an organic solvent such as DMF, DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XVI), wherein A1 is the corresponding C1-4alkyl, preferably methyl.
- The compound of formula (XVI) is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when RJ and RK are each hydrogen, with a suitable source of ammonia such as NH4OH, HMDS, ammonia gas, and the like, preferably NH4OH; in the presence of a palladium catalyst such PdCl2, Pd2(OAc)2, and the like, in combination with a ligand, such DPPP, DPPF, P(Ph)3, and the like; or in the presence of a palladium:ligand complex such as Pd(PPh3)4, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XII).
- Alternatively, a suitably substituted compound of formula (X), wherein XP is CN and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, according to known methods (for example as described in Parris, C. L., Org. Syn. Coll., (1973), 5, p 73; Lin, S., Synthesis, (April 1978), p. 330; Murahashi, S., Takeshi Naota, T., and Eiichiro Saito, E., JAGS, (1986), 108(24), p 7846), to yield the corresponding compound of formula (XII).
- Alternatively, a suitably substituted compound of formula (X), wherein XP is CN and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with an acid such as concentrated sulfuric acid, and the like; at a temperature greater than about room temperature, preferably at reflux temperature; to yield the corresponding compound of formula (XVI).
- Alternatively, a suitably substituted compound of formula (X), wherein XP is CN and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with an inorganic base such as NaOH, KOH, and the like; at a temperature greater than about room temperature, preferably at about reflux temperature; to yield the corresponding compound of formula (XVI).
- The compound of formula (XVI) is reacted according to known methods, for example, by alkylating in the presence of a base, to yield the corresponding compound of formula (XII).
- The compound of formula (XII) is reacted with a suitably substituted compound of formula (XVII), wherein Pg1 is a suitable nitrogen protecting group such as Boc, Cbz, Fmoc, acetyl, and the like, preferably Pg1 is Boc, a known compound or compound prepared by known methods; in the presence of palladium catalyst such as Pd2(dba)3, Pd(OAc)2, PdCl2, and the like, preferably Pd2(dba)3; and preferably in the presence of a phosphorous ligand such as P(o-toluene)3, P(Ph)3, P(t-butyl)3, DPPE, and the like, preferably P(t-butyl)3 or P(o-toluene)3; or in the presence of a palladium:ligand complex such as Pd(PPh3)4, and the like; in the presence of an organic or inorganic base such as dicyclohexylmethylamine, Na2CO3, K2CO3, TEA, DIPEA, pyridine, and the like, preferably TEA; in an organic solvent such as DMF, dioxane, and the like; at a temperature greater than about room temperature, preferably at a temperature in the range of about 60° C. to about 120° C.; to yield the corresponding compound of formula (XIX).
- The compound of formula (XIX) is hydrogenated according to known methods; for example by reacting with hydrogen or a source of hydrogen (such as cyclohexadiene, and the like); in the presence of a catalyst such as platinum oxide, palladium on carbon, nickel, ClRh(PPh3)3, RuCl2, and the like, preferably palladium on carbon; in an organic solvent such as methanol, ethanol, THF, ethyl acetate, and the like, preferably methanol; at a temperature greater than room temperature, preferably at a temperature in the range of about 60° C. to about 120° C., to yield the corresponding compound of formula (XX).
- One skilled in the art will recognize that the compound of formula (XIX) may be optionally reacted in the presence of a chiral catalyst, to yield the corresponding compound of formula (XX), wherein one stereo-isomer is present in an enantiomeric excess.
- The compound of formula (XX) is reacted with an aqueous base such as NaOH, LiOH, KOH, and the like; in an organic solvent such as methanol, THF, ethanol, and the like; to yield the corresponding compound of formula (I).
- In an embodiment, the present invention is directed to processes for the preparation of compounds of formula (Ic).
- In an embodiment, the present invention is directed to processes for the preparation of a compound of formula (Ib), a compound of formula (I) wherein
- is phenyl; RJ and RK are each hydrogen; the phenyl ring is further substituted with two R41P groups, which are each methyl and Pg1 is Boc, also known as 2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionic acid, as described in Scheme 1 above.
- The present invention is further directed to processes for the preparation of the compound of formula (Ia) as outlined in Scheme 2 below.
-
-
-
- or
-
-
-
-
- Accordingly, a suitably substituted compound of formula (Xa), wherein XP is OH and wherein YP is Br or Cl, preferably YP is Br, a known compound or compound prepared by known methods, is reacted with a triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like; in the presence of an organic or inorganic base such as pyridine, TEA, DIPEA, K3PO4, K2CO3, and the like, preferably pyridine; optionally in an organic solvent such as DCM, chloroform, THF, and the like, to yield the corresponding compound of formula (XIa).
- The compound of formula (XIa) is reacted with carbon monoxide or a source of carbon monoxide such as Ac2O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272) and a suitable source of ammonia such as HMDS, ammonia gas, and the like; in the presence of a palladium catalyst such PdCl2, Pd2(OAc)2, and the like, in combination with a ligand, such DPPP, DPPF, P(Ph)3, and the like; or in the presence of a palladium:ligand complex such as Pd(PPh3)4, and the like; in an organic solvent such as DMF, THF, dioxane, and the like, preferably DMF; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 120° C.; to yield the corresponding compound of formula (XIIa).
- Alternatively, the compound of formula (XIa) is reacted with carbon monoxide or a source of carbon monoxide such as Ac2O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K2CO3, Na2CO3, and the like; in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIIIa).
- The compound of formula (XIIIa) is reacted with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or in the presence of an amount of the source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like, to yield the corresponding compound of formula (XIIa).
- Alternatively, the compound of formula (XIa) is reacted with carbon monoxide or a source of carbon monoxide such as Ac2O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K2CO3, Na2CO3, and the like; in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIIIa).
- The compound of formula (XII la) is reacted with a suitable source of chlorine such as thionyl chloride, PCl3, PCl5, oxalyl chloride, oxalyl chloride in DMF, and the like; in an organic solvent such as DCM, chloroform, and the like; preferably at a temperature greater than about room temperature, more preferably at a temperature in the range of about 35° C. to about 60° C.; to yield the corresponding compound of formula (XVa).
- The compound of formula (XVa) is reacted with a suitable source of ammonia such as ammonium chloride, NH4OH, HMDS, ammonia gas, and the like, preferably ammonium chloride; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or in the presence of an amount of the source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XIIa).
- Alternatively, the compound of formula (XIa) is reacted with carbon monoxide or a source of carbon monoxide such as Ac2O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. 20. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K2CO3, Na2CO3, and the like; in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIIIa).
- Alternatively, the compound of formula (XIIIa) is reacted with C1-4alkyl-chloroformate, preferably, methylchloroformate; in the presence of a organic base such as TEA, DIPEA, pyridine and the like; preferably at a temperature less than about room temperature, more preferably at a temperature of about 0° C.; in an organic solvent such as DMF, DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XVIa), wherein A1 is the corresponding C1-4alkyl, preferably methyl.
- The compound of formula (XVIa) is reacted with a suitable source of ammonia such as NH4OH, HMDS, ammonia gas, and the like, preferably NH4OH; in the presence of a palladium catalyst such PdCl2, Pd2(OAc)2, and the like, in combination with a ligand, such DPPP, DPPF, P(Ph)3, and the like; or in the presence of a palladium:ligand complex such as Pd(PPh3)4, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIIa).
- One skilled in the art will further recognize that the compound of formula (XIa) may be reacted according to known methods, to yield the corresponding. compound of formula (Xa) wherein XP is —C(O)—OC1-4alkyl or CN.
- Alternatively, a suitably substituted compound of formula (Xa), wherein XP is —C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with a suitable source of ammonia such as NH4OH, HMDS, ammonia gas, and the like; at a temperature greater than room temperature, preferably at about reflux temperature; to yield the corresponding compound of formula (XIIa).
- Alternatively, a suitably substituted compound of formula (Xa), wherein XP is —C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with a suitable source of ammonia such as NH4OH, HMDS, ammonia gas, and the like; in the presence of a activating agent such as trimethylaluminum, triisopropylaluminum, and the like; in an aprotic organic solvent such as THF, dioxane, toluene, DCM, and the like; preferably, at a temperature in the range of about 0° C. to reflux temperature; to yield the corresponding compound of formula (XIIa).
- Alternatively, a suitably substituted compound of formula (Xa), wherein XP is —C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is hydrolyzed according to known methods; for example by reacting with a base such as NaOH, KOH, and the like, or by reacting with an acid such as HCl, H2SO4, and the like; preferably, the compound of formula (Xa) is reacted with an acid at a temperature greater than about room temperature, preferably at a temperature in the range of from about 60° to about 120° C., preferably at a temperature of about 100° C.; to yield the corresponding compound of formula (XIIIa).
- The compound of formula (XIIIa) is reacted with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or in the presence of an amount of the source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like, to yield the corresponding compound of formula (XIIa).
- Alternatively, the compound of formula (Xa), wherein XP is —C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with carbon monoxide or a source of carbon monoxide such as Ac2O in combination with HCOONa (see, for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K2CO3, Na2CO3, and the like; in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIIIa).
- The compound of formula (XIIIa) is reacted with a suitably source of chlorine such as thionyl chloride, PClS, PCl5, oxalyl chloride, oxalyl chloride in DMF, and the like; in an organic solvent such as DCM, chloroform, and the like; preferably at a temperature greater than about room temperature, more preferably at a temperature in the range of about 35° C. to about 60° C., to yield the corresponding compound of formula (XVa).
- The compound of formula (XVa) is reacted with a suitable source of ammonia such as ammonium chloride, NH4OH, HMDS, ammonia gas, and the like, preferably ammonium chloride; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like; or in the presence of an amount of the source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XIIa).
- Alternatively, the compound of formula (Xa), wherein XP is —C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with carbon monoxide or a source of carbon monoxide such as Ac2O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272); in the presence of an inorganic base such as K2CO3, Na2CO3, and the like; in an organic solvent such as DMF, dioxane, THF, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIIIa).
- Alternatively, the compound of formula (XIIIa) is reacted with C1-4alkyl-chloroformate, preferably, methylchloroformate; in the presence of a organic base such as TEA, DIPEA, pyridine and the like; preferably at a temperature less than about room temperature, more preferably at a temperature of about 0° C.; in an organic solvent such as DMF, DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XVIa), wherein A1 is the corresponding C1-4alkyl, preferably methyl.
- The compound of formula (XVIa) is reacted with a suitable source of ammonia such as NH4OH, HMDS, ammonia gas, and the like, preferably NH4OH; in the presence of a palladium catalyst such PdCl2, Pd2(OAc)2, and the like, in combination with a ligand, such DPPP, DPPF, P(Ph)3, and the like, or in the presence of a palladium:ligand complex such as Pd(PPh3)4, and the like; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 80° C.; to yield the corresponding compound of formula (XIIa).
- Alternatively, a suitably substituted compound of formula (Xa), wherein XP is CN and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with an acid such as concentrated sulfuric acid, and the like; at a temperature greater than about room temperature, preferably at about reflux temperature; to yield the corresponding compound of formula (XVIa).
- Alternatively, a suitably substituted compound of formula (Xa), wherein XP is CN and wherein YP is selected from Br, Cl or I, a known compound or compound prepared by known methods, is reacted with an inorganic base such as NaOH, KOH, and the like; at a temperature greater than about room temperature, preferably at about reflux temperature; to yield the corresponding compound of formula (XVIa).
- Preferably, a suitably substituted compound of formula (Xa), a known compound or compound prepared by known methods, is reacted with a triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like, preferably triflic anhydride; in the presence of an organic or inorganic base such as pyridine, TEA, DIPEA, K3PO4, K2CO3, and the like, preferably pyridine; optionally in an organic solvent such as DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XIa).
- The compound of formula (XIa) is reacted with carbon monoxide or a source of carbon monoxide such as Ac2O in combination with HCOONa (see for example, S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Lett. (2003), 5(23), pp 4269-4272) and a suitable source of ammonia such as HMDS, ammonia gas, and the like; preferably the compound of formula (XIa) is reacted with carbon monoxide and HMDS; in the presence of a palladium catalyst such PdCl2, Pd2(OAc)2, and the like, in combination with a suitable ligand, such. DPPP, DPPF, P(Ph)3, and the like; or in the presence of a palladium:ligand complex such as Pd(PPh3)4, and the like; preferably, in the presence of PdCl2 in combination with DPPP; at a temperature in the range of from about 50° C. to about 160° C., preferably at a temperature in the range of from about 60° C. to about 120° C., more preferably, at a temperature of about 100° C.; in an organic solvent such as DMF, THF, dioxane, and the like, preferably, in DMF; to yield the corresponding compound of formula (XII).
- The compound of formula (XIIa) is reacted with a suitably substituted compound of formula (XVIIIa), a known compound or compound prepared by known methods, in the presence of palladium catalyst such as Pd2(dba)3, Pd(OAc)2, PdCl2, and the like, preferably Pd2(dba)3; and preferably in the presence of a phosphorous ligand such as P(o-toluene)3, P(Ph)3, P(t-butyl)3, DPPE, and the like, preferably P(o-toluene)3; or in the presence of a palladium:ligand complex such as Pd(PPh3)4, and the like; in the presence of an organic or inorganic base such as dicyclohexylmethylamine, Na2CO3, K2CO3, TEA, DIPEA, pyridine, and the like, preferably TEA; in an organic solvent such as DMF, dioxane, and the like, preferably DMF; at a temperature greater than about room temperature, preferably at a temperature in the range of about 60° C. to about 120° C., preferably at about 120° C.; to yield the corresponding compound of formula (XIXa).
- The compound of formula (XIXa) is reacted with hydrogen gas, at a pressure sufficient to hydrogenate, preferably at a pressure greater than about 500 psi, more preferably, at a pressure greater than about 800 psi, more preferably still, at a pressure about 1000 psi; in the presence of a suitable chiral catalyst such as [Rh(cod)(R,R-DIPAMP)]+BF4 −, [Rh(cod)(R,R-DIPAMP)]+SO2CF3, and the like; wherein the chiral catalyst is preferably present in an amount greater than about 0.01 equivalents, more preferably, in an amount of about 0.04 equivalents; at a temperature greater than about room temperature, preferably at a temperature in the range of about 60° C. to about 100° C., more preferably, at a temperature of about 60° C.; in an organic solvent such as methanol, ethanol, THF, ethyl acetate, and the like, preferably methanol; preferably not under vacuum; to yield the corresponding compound of formula (XXa), wherein the S-enantiomer is present in an enantiomeric excess of greater than about 80%, preferably, in an enantiomeric excess of greater than about 90%, more preferably, in an enantiomeric excess of greater than about 95%, more preferably, in an enantiomeric excess of greater than about 98%, most preferably, in an enantiomeric excess of greater than about 99%.
- One skilled in the art will recognize that if the chiral catalyst is oxygen sensitive, then the hydrogenation reaction vessel is purged with an inert gas such as argon, nitrogen, and the like, prior to charging the vessel with the oxygen sensitive catalyst reagents and hydrogen gas.
- One skilled in the art will recognize that the compound of formula (XIXa) may be optionally reacted to yield the corresponding racemic compound of formula (XXb), as outlined in the scheme below,
- by hydrogenating the compound of formula (XIXa) according to known methods, for example, by reacting with hydrogen or a source of hydrogen (such as cyclohexadiene, and the like); in the presence of a catalyst such as platinum oxide, palladium on carbon, nickel, ClRh(PPh3)3, RuCl2, and the like, preferably palladium on carbon; in a solvent such as methanol, ethanol, THF, ethyl acetate, and the like; in an organic solvent such as methanol, ethanol, THF, ethyl acetate, and the like, preferably methanol; at a temperature greater than room temperature, preferably at a temperature in the range of about 60° C. to about 120° C.
- Preferably, for the preparation of the compound of formula (Ib), the compound of formula (XIXa) is reacted with hydrogen gas; at a pressure sufficient to hydrogenate, preferably at a pressure greater than about 40 psi, more preferably at a pressure of about 51 psi; in a solvent such as methanol, ethanol, THF, and the like, preferably methanol; preferably, at about room temperature; to yield the corresponding compound of formula (XXb).
- The compound of formula (XXb) is then reacted according to the process described in Step 4a below, to yield the corresponding compound of formula (Ib).
- The compound of formula (XXa) is reacted with an aqueous base such as NaOH, LiOH, KOH, and the like, preferably LiOH; in an organic solvent such as methanol, THF, ethanol, and the like, preferably THF; to yield the corresponding compound of formula (Ia).
- The present invention is further directed to processes for the preparation of compounds of formula (II).
- The compounds of formula (I) may be further reacted according to known processes, for example as disclosed in U.S. patent application Ser. No. 11/079,647, filed Mar. 14, 2005, and published as US Patent Publication US-2005-0203143-A1, Sep. 15, 2005, to yield the corresponding compounds of formula (II). More specifically, the compounds of formula (II) may be prepared according to the process outlined in Scheme 3 below.
- Accordingly, a suitably substituted compound of formula (I) is reacted with a suitably substituted compound of formula (L), a known compound or compound prepared by known methods, under standard peptide coupling conditions (for example, with a coupling agent such as EDCl and an additive such as HOBT), to yield the corresponding compound of formula (LI).
- The compound of formula (LI) is then de-protected according to known methods, and then further, optionally reacted according to know methods, to yield the corresponding compound of formula (II) wherein Ra and Rb are each other than hydrogen. For example, the compound of formula (LI) is de-protected and the alkylated, according to known methods, to yield the corresponding compound of formula (II) wherein one or both of Ra and Rb is alkyl. Alternatively, for compounds of formula (II) wherein Ra and Rb are taken together to form a ring, the compound of formula (LI) is de-protected and then converted to the corresponding ring by reductive cyclization with a suitably selected di-aldehyde.
- The present invention is further directed to processes for the preparation of compounds of formula (XIX). More specifically, in an embodiment, the present invention is directed to a process for the preparation of compounds of formula (XIX) as outlined in Scheme 4.
- Accordingly, .a suitably substituted compound of formula (XIII), wherein YP is Br or Cl, is reacted with a formylating reagent such as a DMF, HC(O)—N(CH3)(OCH3), and the like; in the presence of a base such as n-butyl lithium, NaH, and the like; in an organic solvent such as THF, dioxane, and the like; at a temperature less than about room temperature, preferably at a temperature in the range of about −130° C. to about 0° C., more preferably, at about −100° C.; to yield the corresponding compound of formula (XXI).
- The compound of formula (XXI) is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when RJ and RK are each hydrogen, with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or an amount of the compound of formula (XIV) or source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XXII).
- The compound of formula (XXII) is reacted with a suitably selected compound of formula (XXIII), a known compound or compound prepared by known methods; in the presence of a base such as DBU, potassium t-butoxide, NaH, and the like; in an organic solvent such as THF, dioxane, and the like; preferably at about room temperature, to yield the corresponding compound of formula (XIX).
- In another embodiment, the present invention is directed to a process for the preparation of compounds of formula (XIX) as outlined in Scheme 5.
- Accordingly, a suitably substituted compound of formula (XXIV), a known compound or compound prepared by known methods, is reacted with a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, or when RJ and RK are each hydrogen, with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or an amount of the compound of formula (XIV) or source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XXV).
- The compound of formula (XXV) is reacted with triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like; in the presence of an organic or inorganic base such as pyridine, TEA, DIPEA, K3PO4, K2CO3, and the like; optionally in an organic solvent such as DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XXVI).
- The compound of formula (XXVI) is reacted with carbon monoxide; in the presence of a palladium catalyst such PdCl2, Pd2(OAc)2, and the like, in combination with a suitable ligand, such DPPP, DPPF, P(Ph)3, and the like; or in the presence of a palladium:ligand complex such as Pd(PPh3)4, and the like; in the presence of an organic base such as TEA, DIPEA, pyridine, and the like; in the presence of (alkyl)3SiH; in an organic solvent such as DMF, THF, dioxane, and the like; to yield the corresponding compound of formula (XXVII).
- The compound of formula (XXVII) is reacted with a suitably selected compound of formula (XXIII), a known compound or compound prepared by known methods; in the presence of a base such as DBU, potassium t-butoxide, NaH, and the like; in an organic solvent such as THF, dioxane, and the like; preferably at about room temperature, to yield the corresponding compound of formula (XIX).
- In an embodiment, the present invention is directed to processes for the preparation of the compound of formula (XIX). More specifically, in an embodiment, the present invention is directed to a process for the preparation of compounds of formula (XIXa) as outlined in Scheme 6.
- Accordingly, a suitably substituted compound of formula (XIIIa), wherein YP is Br or Cl, is reacted with a formylating reagent such as a DMF, HC(O)—N(CH3)(OCH3), and the like; in the presence of a base such as n-butyl lithium, NaH, and the like; in an organic solvent such as THF, dioxane, and the like; at a temperature less than about room temperature, preferably at a temperature in the range of about −130° C. to about 0° C., more preferably, at about −100° C.; to yield the corresponding compound of formula (XXIa).
- The compound of formula (XXIa) is reacted with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or an amount of the source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XXIIa).
- The compound of formula (XXIIa) is reacted with a suitably selected compound of formula (XXIIIa), wherein Pg1 is a suitable nitrogen protecting group such as Boc, Cbz, and the like, a known compound or compound prepared by known methods; in the presence of a base such as DBU, potassium t-butoxide, NaH, and the like; in an organic solvent such as THF, dioxane, and the like; preferably at about room temperature, to yield the corresponding compound of formula (XIXb).
- In another embodiment, the present invention is directed a process for the preparation of compounds of formula (XIXa) as outlined in Scheme 7.
- Accordingly, a suitably substituted compound of formula (XXIVa), a known compound or compound prepared by known methods, is reacted with a suitable source of ammonia such as HMDS, ammonia gas, and the like, preferably HMDS; in the presence of a coupling agent such as EDCl, HOBT, PyBop, PyBrop, and the like; preferably in the presence of an organic base such as TEA, DIPEA, pyridine, the like, or in the presence of an amount of the source of ammonia sufficient to act as the base, preferably greater than about 2 equivalents; in an organic solvent such as THF, dioxane, DMF, and the like; to yield the corresponding compound of formula (XXVa).
- The compound of formula (XXVa) is reacted with triflating reagent such as triflic anhydride, N-phenyltrifluoromethanesulfonimide, and the like; in the presence of an organic or inorganic base such as pyridine, TEA, DIPEA, K3PO4, K2CO3, and the like; optionally in an organic solvent such as DCM, chloroform, THF, and the like; to yield the corresponding compound of formula (XXVIa).
- The compound of formula (XXVIa) is reacted with carbon monoxide; in the presence of a palladium catalyst such PdCl2, Pd2(OAc)2, and the like, in combination with a suitable ligand, such DPPP, DPPF, P(Ph)3, and the like; or in the presence of a palladium:ligand complex such as Pd(PPh3)4, and the like; in the presence of an organic base such as TEA, DIPEA, pyridine, and the like; in the presence of (alkyl)3SiH; in an organic solvent such as DMF, THF, dioxane, and the like; to yield the corresponding compound of formula (XXVIIa).
- The compound of formula (XXVIIa) is reacted with a suitably selected compound of formula (XXIIIa), wherein Pg1 is a suitable nitrogen protecting group such as Boc, Cbz, and the like, a known compound or compound prepared by known methods; in the presence of a base such as DBU, potassium t-butoxide, NaH, and the like; in an organic solvent such as THF, dioxane, and the like; preferably at about room temperature, to yield the corresponding compound of formula (XIXb).
- The present invention further comprises pharmaceutical compositions containing one or more compounds prepared according to any of the processes described herein with a pharmaceutically acceptable carrier. Pharmaceutical compositions containing one or more of the compounds of the invention described herein as the active ingredient can be prepared by intimately mixing the compound or compounds with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending upon the desired route of administration (e.g., oral, parenteral). Thus for liquid oral preparations such as suspensions, elixirs and solutions, suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, stabilizers, coloring agents and the like; for solid oral preparations, such as powders, capsules and tablets, suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like. Solid oral preparations may also be coated with substances such as sugars or be enteric-coated so as to modulate major site of absorption. For parenteral administration, the carrier will usually consist of sterile water and other ingredients may be added to increase solubility or preservation. Injectable suspensions or solutions may also be prepared utilizing aqueous carriers along with appropriate additives.
- Optimal dosages to be administered may be readily determined by those skilled in the art, and will vary with the particular compound used, the mode of administration, the strength of the preparation, the mode of administration, and the advancement of the disease condition. In addition, factors associated with the particular patient being treated, including patient age, weight, diet and time of administration, will result in the need to adjust dosages.
- The following Examples are set forth to aid in the understanding of the invention, and are not intended and should not be construed to limit in any way the invention set forth in the claims which follow thereafter.
- In the Examples which follow, some synthesis products are listed as having been isolated as a residue. It will be understood by one of ordinary skill in the art that the term “residue” does not limit the physical state in which the product was isolated and may include, for example, a solid, an oil, a foam, a gum, a syrup, and the like.
-
- To a cooled (0° C.) solution of 4-bromo-3,5-dimethylphenol (3.05 g, 15.2 mmol) in pyridine (8 mL) was added trifluoromethanesulfonic anhydride (5.0 g, 17.7 mmol) dropwise. After completion of addition, the resulting mixture was stirred at 0° C. for 15 min, and then at room temperature overnight. The reaction was quenched by addition of water, and then extracted with EtOAc. The organic extracts were washed sequentially with water, 2N HCl (2×), brine, and then dried over MgSO4. Filtration and evaporation to dryness yielded compound 1b as a colorless oil.
- 1H NMR (300 MHz, CDCl3): δ 2.45 (6H, s), 7.00 (2H, s).
- Into a solution of compound 1b (6.57 g, 19.7 mmol) in DMF (65 mL) were added K2CO3 (13.1 g, 94.7 mmol), Pd(OAc)2 (0.44 g, 1.97 mmol) and 1,1′-bis(diphenylphosphino)ferrocene (2.29 g, 4.14 mmol). The resulting mixture was bubbled in gaseous CO for 10 min and was heated to 60° C. for 7.5h with a CO(g) balloon. The cooled mixture was partitioned between aqueous NaHCO3 and EtOAc, and filtered. The aqueous phase was separated, acidified with aqueous 6N HCl, extracted with EtOAc, and then dried over Na2SO4. Filtration and concentration of the filtrate yielded crude compound 1c as a brown residue, which was used in the next step without further purification.
- Into a suspension of compound 1c in DCM (40 mL) was added SOCl2 (3.1 mL, 42 mmol) and the mixture was heated at reflux for 2 h. Upon removal of the solvent by evaporation, the residue was dissolved in DCM (40 mL) and then ammonium hydroxide (28% NH3 in water, 2.8 mL) was added. The reaction mixture was heated at 50° C. for 2 h and concentrated. The residue was diluted with H2O, extracted with EtOAc, and the organic portion was dried over Na2SO4. After filtration and evaporation, the residue was purified by flash column chromotography (eluent: EtOAc) to yield compound 1d as an off-white solid.
- 1H NMR (300 MHz, CD3CN): δ 2.45 (6H, s), 5.94 (1H, br s), 6.71 (1H, br s), 7.57 (2H, s)
- MS (ES+) (relative intensity): 228.0 (100%) (M+1).
- A mixture of compound 1b (3.33 g, 10 mmol), PdCl2 (0.053 g, 0.3 mmol), hexamethyldisilazane (HMDS, 8.4 mL, 40 mmol), and DPPP (0.12 g, 0.3 mmol) was bubbled with gaseous CO for 5 min and then stirred in a CO balloon at 80° C. for 4 h. To the reaction mixture was added MeOH (5 mL). The reaction mixture was stirred for 10 min, diluted with 2NH2SO4 (200 mL), and then extracted with EtOAc. The EtOAc extract was washed with saturated aqueous NaHCO3, brine, and then dried over Na2SO4. Filtration and evaporation of the resultant filtrate yielded a residue, which was purified by flash column chromatography (eluent: EtOAc) to yield compound 1d as a white solid.
- To a suspension of N-Boc-serine methyl ester (Compound 1e, 2.19 g, 10 mmol) and EDCl (2.01 g, 10.5 mmol) in DCM (70 mL) was added CuCl (1.04 g, 10.5 mmol). the reaction mixture was stirred at room temperature for 72 h. Upon removal of the solvent, the residue was diluted with EtOAc, washed sequentially with water and brine and then dried over MgSO4. The crude product was purified by flash column chromatography (eluent: EtOAc:hexane—1:4) to yield compound 1f as a colorless oil.
- 1H NMR (300 MHz, CDCl3): δ 1.49 (9H, s), 3.83 (31-1, s), 5.73 (1H, d, J=1.5 Hz), 6.16 (1H, s), 7.02 (1H, s).
- A flask charged with compound 1d (0.46 g, 2.0 mmol), compound 1f (0.80 g, 4.0 mmol), tri-o-tolylphosphine (0.098 g, 0.32 mmol) and DMF (8 mL) was purged with N2(g) 3 times. After the addition of tris(dibenzylideneacetone)dipalladium (0) (0.074 g, 0.08 mmol) and TEA (0.31 mL, 2.2 mol), the reaction mixture was heated at 110° C. for 24 h. At that time, the reaction was quenched by addition of water, and then extracted with EtOAc. The organic phase was washed with 1N HCl, saturated aqueous NaHCO3, brine, and dried over MgSO4. The mixture was concentrated to a residue, which was purified by flash column chromatography (eluent: EtOAc:hexane—1:1 to EtOAc only) to yield compound 1g as a white solid.
- 1H NMR (300 MHz, CD3OD): δ 1.36 (9H, s), 2.26 (6H, s), 3.83 (3H, s), 7.10 (1H, s), 7.56 (2H, s);
- 13C NMR (75 MHz, DMSO-d6): δ 17.6, 25.7, 50.2, 78.7, 124.9, 126.4, 128.3, 131.2, 135.2, 135.5, 152.8, 164.3, 169.6;
- MS (ES+) (relative intensity): 349.1 (38%) (M+1).
- Into a reactor charged with a solution of compound 1g (0.56 g, 1.6 mmol) in degassed MeOH (80 mL) was added [Rh(cod)(R,R-DIPAMP)]+BF4 − under a stream of argon. The reactor was sealed and flushed with H2, stirred at 60° C. under 1000 psi of H2 for 14 days. The crude product was purified by flash column chromatography (eluent: EtOAc:hexane˜1:1) to yield compound 1h as a white solid.
- ee: >99%;
- 1H NMR (300 MHz, CDCl3): δ 1.36 (9H, s), 2.39 (6H, s), 3.11 (2H, J=7.2 Hz), 3.65 (3H, s), 4.53-4.56 (1H, m), 5.12 (1H, d, J=8.7 Hz), 5.65 (1H, br s), 6.09 (1H, br s), 7.46 (2H, s);
- MS (ES+) (relative intensity): 250.9 (100) (M-Boc)+.
- Into an ice-cooled solution of compound 1h (0.22 g, 0.63 mmol) in THF (3.5 mL) was added an aqueous LiOH solution (1 N, 3.5 mL) and the reaction mixture stirred at 0° C. Upon completion of the reaction, the reaction mixture was concentrated and the aqueous phase was neutralized with cooled aqueous 1 N HCl at 0° C., and then extracted with EtOAc. The combined extracts were dried over Na2SO4 overnight. Filtration and evaporation of the filtrate to dryness yielded compound 1j as a white solid.
- 1H NMR (300 MHz, DMSO-d6): δ 1.30 (9H, s), 2.32 (6H, s), 2.95 (1H, dd, J=8.8, 13.9 Hz), 3.10 (1H, dd, J=6.2, 14.0 Hz), 4.02-4.12 (1H, m), 7.18-7.23 (2H, m), 7.48 (2H, s), 7.80 (1H, s);
- MS (ES+) (relative intensity): 236.9 (6) (M-Boc)+.
- Racemic 2-tert-Butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionic acid
- To a reactor charged with a solution of compound 1g (0.68 g, 1.95 mmol) in MeOH (80 mL) was added 10% Pd—C (0.5 g). The reactor was connected to a hydrogenator and shaken under 51 psi of H2 overnight. The mixture was filtered through a pad of Celite and the filtrate was concentrated to dryness to yield compound 2a as a white solid.
- The 1H NMR spectrum was identical to that of (S)-2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)propionic acid methyl ester, compound 1 h.
- Following the procedure described for Example 1, STEP G (preparation of (S)-2-tert-Butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)propionic acid), compound 2b —racemic 2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)propionic acid—was prepared.
-
- To a solution of commercially available N-α-CBZ-L-alanine (2.11 g, 9.5 mmol) in dichloromethane (50 mL) was added 2-aminoacetophenone hydrochloride (1.62 g, 9.5 mmol). The resulting solution was cooled to 0° C. and N-methylmorpholine (1.15 g, 11 mmol), 1-hydroxybenzotriazole (2.55 g, 18.9 mmol) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (2.35 g, 12.3 mmol), in that order, were added under an Argon atmosphere. The reaction mixture was warmed to room temperature and stirred overnight. The reaction was quenched by addition of saturated aqueous NaHCO3 solution; the separated organic phase was washed with 2N citric acid, saturated NaHCO3 solution and brine, then dried over MgSO4 overnight. After filtration and concentration, the residue was purified by column chromatography on silica gel (eluent, EtOAc:hexane—1:1) to yield the title compound, [1-(2-oxo-2-phenyl-ethylcarbamoyl)-ethyl]-carbamic acid benzyl ester.
- 1H NMR (300 MHz, CDCl3): δ 1.46 (3H, d), 4.39 (1H, m), 4.75 (2H, d), 5.13 (2H, d), 5.40 (1H, m), 7.03 (1H, m), 7.36 (5H, m), 7.50 (2H, m), 7.63 (1H, m), 7.97 (2H, m)
- MS (ES+): 341.1 (100%).
- To a suspension of [1-(2-oxo-2-phenyl-ethylcarbamoyl)-ethyl]-carbamic acid benzyl ester (2.60 g, 7.64 mmol) in xylene (60 mL) was added NH4OAc (10.3 g, 134 mmol) and HOAc (5 mL). The resulting mixture was heated at reflux for 7 h. After being cooled to room temperature, brine was added and the mixture was separated. The aqueous phase was extracted with EtOAc, and the combined organic phases were dried over Na2SO4 overnight. After filtration and concentration, the residue was purified by column chromatography on silica gel (eluent, EtOAc:hexane—1:1) to yield the title compound.
- 1H NMR (300 MHz, CDCl3): δ 1.65 (3H, d), 5.06 (1H, m), 5.14 (2H, q), 5.94 (1H, d), 7.32 (10H, m), 7.59 (2H, d)
- MS (ES+): 322.2 (100%).
- To a solution of [1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-carbamic acid benzyl ester (1.5 g, 4.67 mmol) in methanol (25 mL) was added 10% palladium on carbon (0.16 g). The mixture was shaken in a hydrogenation apparatus at rt under a hydrogen atmosphere (10 psi) for 8 h. Filtration followed by evaporation to dryness under reduced pressure yielded the crude product 1-(4-phenyl-1H-imidazol-2-yl)-ethylamine.
- 1H NMR (300 MHz, CDCl3): δ 1.53 (3H, d), 4.33 (1H, q), 7.23 (3H, m), 7.37 (2H, m), 7.67 (2H, m)
- MS (ES+): 188.1 (38%).
- 1-(4-Phenyl-1H-imidazol-2-yl)-ethylamine (0.20 g, 1.07 mmol) and acetone (0.062 g, 1.07 mmol) were mixed in 1,2-dichloroethane (4 mL), followed by the addition of NaBH(OAc)3(0.34 g, 1.61 mmol). The resulting mixture was stirred at rt for 3 h. The reaction was quenched with saturated NaHCO3 solution. The mixture was extracted with EtOAc and the combined extracts were dried over Na2SO4. Filtration followed by evaporation to dryness under reduced pressure yielded crude isopropyl-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-amine, which was used for the next reaction without further purification.
- 1H NMR (300 MHz, CDCl3): δ 1.10 (3H, d), 1.18 (3H, d), 1.57 (3H, d), 2.86 (1H, m), 4.32 (1H, m), 7.24 (2H, m), 7.36 (2H, m), 7.69 (2H, m)
- MS (ES+): 230.2 (100%).
- Into a solution of 2-tert-Butoxycarbonylamino-3-(4-hydroxy-2,6-dimethyl-phenyl)-propionic acid (0.18 g, 0.6 mmol) in DMF (7 mL) was added isopropyl-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-amine (0.11 g, 0.5 mmol), 1-hydroxybenzotriazole (0.22 g, 1.6 mmol) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (0.12 g, 0.6 mmol). The resulting mixture was stirred under an Argon atmosphere at room temperature overnight. The reaction mixture was extracted with EtOAc and the combined organic extracts were washed sequentially with saturated aqueous NaHCO3 solution, 1N HCl, saturated aqueous NaHCO3 solution, and brine. The organic phase was then dried over MgSO4, filtered, and the filtrate was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (eluent: EtOAc) to yield the product (2-(4-hydroxy-2,6-dimethyl-phenyl)-1-{isopropyl-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-carbamoyl}-ethyl)-carbamic acid tert-butyl ester.
- MS (ES+): 521.5 (100%).
- Step F. 2-Amino-3-(4-hydroxy-2,6-dimethyl-phenyl)-N-isopropyl-N-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-propionamide
- A solution of (2-(4-hydroxy-2,6-dimethyl-phenyl)-1-{isopropyl-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-carbamoyl}-ethyl)-carbamic acid tert-butyl ester (0.13 g, 0.25 mmol) in trifluoroacetic acid (5 mL) was stirred at room temperature for 2 h. Upon removal of the solvents, the residue was purified by preparative LC and lyophilized to yield the TFA salt of the title compound as a white powder.
- 1H NMR (300 MHz, CDCl3): δ 0.48 (3H, d), 1.17 (3H, d), 1.76 (3H, d), 2.28 (6H, s), 3.19 (2H, m), 3.74 (1H, m), 4.70 (1H, m), 4.82 (1H, q), 6.56 (2H, s), 7.45 (4H, m), 7.74 (2H, m)
- MS (ES+): 421.2 (100%).
-
- A solution of 1-(4-phenyl-1H-imidazol-2-yl)-ethylamine (0.061 g, 0.33 mmol) of Example 3, and 0.55 g (0.33 mmol) of 3,4-dimethoxybenzaldehyde in mL of anhydrous methanol was stirred at room temperature for 1 h and then cooled to about 0-10° C. in an ice bath for 1 h. The reaction was treated carefully with 0.019 g (0.49 mmol) of sodium borohydride in one portion and maintained at about 0-10° C. for 21 h. Cold 2M aqueous HCl was added dropwise (30 drops), the mixture was stirred for 5 min, and then partially concentrated in vacuo unheated. The residual material was taken up in EtOAc to yield a suspension that was treated with 5 mL of cold 3M aqueous NaOH and stirred vigorously until clear. The phases were separated and the aqueous layer was extracted three times additional with EtOAc. The combined extracts were dried over MgSO4, filtered, and concentrated to yield (3,4-dimethoxy-benzyl)-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-amine as a light yellow oil (HPLC: 87% 254 nm and 66% 214 nm).
- MS (ES+) (relative intensity): 338.1 (100) (M+1)
- This sample was of sufficient quality to use in the next reaction without further purification.
-
- Using the procedures described for Example 4, substituting 5-formyl-2-methoxy-benzoic acid methyl ester (WO 02/22612) for 3,4-dimethoxybenzaldehyde, 2-methoxy-5-{[1-(4-phenyl-1H-imidazol-2-yl)-ethylamino]-methyl}-benzoic acid methyl ester was prepared.
- Using the procedure of Example 3 for the conversion of Cpd 3d to Cpd 3e, substituting 2-methoxy-5-{[1-(4-phenyl-1H-imidazol-2-yl)-ethylamino]-methyl}-benzoic acid methyl ester for Cpd 3d and substituting 2-tert-Butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionic acid for 2-tert-Butoxycarbonylamino-3-(4-hydroxy-2,6-dimethyl-phenyl)-propionic acid, Cpd 5a was prepared.
- 5-({[2-tent-Butoxycarbonylmethyl-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-amino}-methyl)-2-methoxy-benzoic acid methyl ester was dissolved in an ice-chilled (0-10° C.), mixed solvent system of THF (10 mL) and MeOH (5 mL). A LiOH.H2O/water suspension (2.48 M; 3.77 mL) was added dropwise, then the reaction was allowed to warm to room temperature and stirred overnight. The resulting mixture was cooled in an ice bath and the basic solution was neutralized with 2N citric acid until slightly acidic. The mixture was concentrated under reduced pressure to remove the volatile materials, after which time the remaining aqueous phase was extracted with EtOAc (3×26 mL). These combined organic phases were dried over MgSO4, filtered, and concentrated under reduced pressure to yield a pale yellowish white solid. This crude material was dissolved in a 10% MeOH/CH2Cl2 solution and adsorbed onto 30g of silica. The adsorbed material was divided and chromatographed on an ISCO normal phase column over two runs, using a 40g Redi-Sep column for both runs. The solvent system was a gradient MeOH/CH2Cl2 system as follows: Initial 100% CH2Cl2, 98%-92% over 40 min; 90% over 12 min, and then 88% over 13 min. The desired product eluted cleanly between 44-61 min. The desired fractions were combined and concentrated under reduced pressure to yield 5-({[2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-amino}-methyl)-2-methoxy-benzoic acid, Cpd 5b, as a white solid.
- A portion of Cpd 5b (0.27 g, 0.41 mmol) was dissolved in EtOAc (39 mL)/THF (5 mL), filtered, and subsequently treated with gaseous HCl for 15 min. After completion of the HCl addition, the reaction was slowly warmed to room temperature and a solid precipitate formed. After 5 h the reaction appeared >97% complete by LC (@214 nm; 2.56 min.). The stirring was continued over 3 d, then the solid was collected and rinsed with a small amount of EtOAc. The resulting solid was dried under high vacuum under refluxing toluene for 2.5 h to yield Cpd 5c as a white solid di-HCl salt.
-
- Compound 6a was prepared according to Example 3 using the appropriate reagents, starting materials and methods known to those skilled in the art.
- Following the procedure described in Example 3 for the conversion of Compound 3a to Compound 3b, and using the appropriate reagents and methods known to those skilled in the art, Cpd 6b, was prepared.
- Using the procedure described for the conversion of Cpd 3e to 3f, Compound 6c was prepared.
- Using the procedure described in Example 5, STEP B, and substituting 1-[4-(4-bromo-phenyl)-1H-imidazol-2-yl]-ethylamine for 1-(4-phenyl-1H-imidazol-2-yl)-ethyl amine , the product was prepared.
- To a solution of [1-[{1-[4-(2-bromo-phenyl)-1H-imidazol-2-yl]-ethyl}-(3,4-dimethoxy-benzyl)-carbamoyl]-2-(4-carbamoyl-2,6-dimethyl-phenyl)-ethyl]-carbamic acid tert-butyl ester (294 mg; 0.4 mmol) in DMF (2 mL) was added Zn(CN)2 (28 mg; 0.24 mmol). The resulting mixture was degassed with Argon for 5 min, then Pd(PPh3)4 (92 mg; 0.08 mmol) was added neat, and the system was immediately warmed to 100° C. After heating for 6 h, the reaction was cooled to room temperature and partitioned between EtOAc and water. The organic phase was dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude material was subjected to reverse phase HPLC (water/acetonitrile/0.1% TFA). The fractions of interest were combined, basified with saturated aqueous NaHCO3 and extracted twice with EtOAc. The EtOAc extracts were combined, dried over Na2SO4, filtered, and concentrated to yield {2-(4-carbamoyl-2,6-dimethyl-phenyl)-1-[{1-[4-(2-cyano-phenyl)-1H-imidazol-2-yl]-ethyl}-(3,4-dimethoxy-benzyl)-carbamoyl]-ethyl}-carbamic acid tert-butyl ester (HPLC: 96% @ 254 nm and 97% @ 214 nm). This sample was of sufficient quality to use in the next reaction without further purification.
- {2-(4-carbamoyl-2,6-dimethyl-phenyl)-1-[{1-[4-(2-cyano-phenyl)-1H-imidazol-2-yl]-ethyl}-(3,4-dimethoxy-benzyl)-carbamoyl]-ethyl}-carbamic acid tert-butyl ester may be BOC-deprotected using the procedure described in Example 3 for the conversion of Cpd 3e to Cpd 3f to yield the title compound.
-
- Using the procedure described in Example 6, and the appropriately substituted starting materials and reagents, 1-[4-(3-bromo-phenyl)-1H-imidazol-2-yl]-ethylamine was prepared.
- Using the procedure described in Example 4, and substituting 1-[4-(3-bromo-phenyl)-1H-imidazol-2-yl]-ethylamine for 1-(4-phenyl-1H-imidazol-2-yl)-ethylamine, the product was prepared.
- Using the procedure of Example 3 for the conversion of Cpd 3d to Cpd 3e, substituting {1-[4-(3-Bromo-phenyl)-1H-imidazol-2-yl]-ethyl}-(3,4-dimethoxy-benzyl)-amine for Cpd 3d and substituting 2-tert-Butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionic acid for 2-tert-Butoxycarbonylamino-3-(4-hydroxy-2,6-dimethyl-phenyl)-propionic acid, the product was prepared.
- To a solution of [1-[{1-[4-(3-bromo-phenyl)-1H-imidazol-2-yl]-ethyl}-(3,4-dimethoxy-benzyl)-carbamoyl]-2-(4-carbamoyl-2,6-dimethyl-phenyl)-ethyl]-carbamic acid tert-butyl ester (290 mg; 0.40 mmol) in DMF (5 mL) was added K2CO3 (262 mg; 1.9 mmol) and the resulting mixture was degassed with Argon for 5 min. At this time, Pd(OAc)2 (8.9 mg; 0.04 mmol) and 1,1-bis(diphenylphosphino) ferrocene (46 mg; 0.083 mmol) were added. Carbon monoxide was then bubbled through the resulting mixture for 10 min at room temperature, the reaction was capped, and warmed to 100° C. for 6 h. After cooling to room temperature the mixture was partitioned between EtOAc and water, filtered through Celite, and then separated. The aqueous phase was then washed with a second portion of EtOAc. The aqueous phase was then acidified to pH 5 with 2N citric acid and the resulting aqueous solution extracted with EtOAc (4×). These latter EtOAc extracts were combined, dried over Na2SO4, filtered, and concentrated under reduced pressure to yield the crude product (HPLC: 87% at 254 nm).
- 3-(2-{1-[[2-tert-Butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-(3,4-dimethoxy-benzyl)-amino]-ethyl}-1H-imidazol-4-yl)-benzoic acid may be BOC-de-protected using the procedure described in Example 3 for the conversion of Cpd 3e to Cpd 3f to yield the title compound.
-
- The product was prepared using the procedure described in Example 3 and substituting N-α-BOC-L-serine benzyl ester for N-α-CBZ-L-alanine.
- By the procedure described in Example 3 for the conversion of Cpd 3a to Cpd 3b, [2-benzyloxy-1-(2-oxo-2-phenyl-ethylcarbamoyl-ethyl]-carbamic acid tert butyl ester was converted to the product.
- [2-benzyloxy-1-(4-phenyl-1H-imidazol-2-yl-ethyl]-carbamic acid tert butyl ester may be BOC-deprotected using the procedure described in Example 3 for the conversion of Cpd 3e to Cpd 3f to give the product.
- By the procedure described in Example 3 for the conversion of Cpd 3c to Cpd 3d, [2-benzyloxy-1-(4-phenyl-1H-imidazol-2-yl-ethylamine was converted to the product.
- Using the procedure of Example 3 for the conversion of Cpd 3d to Cpd 3e, substituting [2-benzyloxy-1-(4-phenyl-1H-imidazol-2-yl-ethyl]-isopropyl-amine for Cpd 3d and substituting 2-tert-Butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionic acid for 2-tert-butoxycarbonylamino-3-(4-hydroxy-2,6-dimethyl-phenyl)-propionic acid, the product was prepared.
- A solution of [1-{[2-benzyloxy-1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-isopropyl-carbamoyl}-2-(4-carbamoyl-2,6-dimethyl-phenyl)-ethyl]-carbamic acid tert-butyl ester, (0.287 g, 0.439 mmol), in chloroform (10 mL) was cooled in an ice bath and treated with 0.62 mL (4.4 mmol) of iodotrimethylsilane. The reaction, which immediately clouded, was warmed slowly to room temperature while stirring. After 16 h, the reaction was cooled in an ice bath to 5-10° C. and treated with 100 mL of MeOH. The quenched mixture was stirred at 5-10° C. for 30 min, removed from the ice bath and stirred for an additional 30 min, and concentrated in vacuo to yield an orange residue that was subjected to reverse phase HPLC (water/acetonitrile/0.1% TFA). The fractions of interest were combined and the sample was lyophilized to yield 4-(2-amino-2-{[2-hydroxy-1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-isopropyl-carbamoyl}-ethyl)-3,5-dimethyl-benzamide (TFA salt) as a white powder (HPLC: 99% @ 254 nm and 100% 214 nm)
- MS (ES+) (relative intensity): 464.1 (100) (M+1).
-
- Into a cool solution of Boc-L-(2,6-diMe)Tyr-OMe (7.0 g, 21.6 mmol; Sources: Chiramer or RSP AminoAcidAnalogues) and N-phenyltrifluoromethanesulfonimide (7.9 g, 22.0 mmol) in dichloromethane (60 mL) was added triethylamine (3.25 mL, 23.3 mmol). The resulting solution was stirred at 0° C. for 1 hand slowly warmed to room temperature. Upon completion, the reaction was quenched by addition of water. The separated organic phase was washed with 1N NaOH aqueous solution, water and dried over Na2SO4 overnight. After filtration and evaporation, the residue was purified by flash column chromatography (eluent: EtOAc-hexane: 3:7) to yield the desired product as a clear oil.
- 1H NMR (300 MHz, CDCl3): δ 1.36 (9H, s), 2.39 (6H, s), 3.06 (2H, d, J=7.7 Hz), 3.64 (3H, s), 4.51-4.59 (1H, m), 5.12 (1H, d, J=8.5 Hz), 6.92 (2H, s)
- MS (ES+) (relative intensity): 355.8 (100) (M-Boc)+.
- To a suspension of (S)-2-tert-butoxycarbonylamino-3-(2,6-dimethyl-4-trifluoromethanesulfonylphenyl)-propionic acid methyl ester (9.68 g, 21.3 mmol), K2CO3 (14.1 g, 0.102 mol), Pd(OAc)2 (0.48 g, 2.13 mmol) and 1,1′-bis(diphenylphosphino)ferrocene (2.56 g, 4.47 mmol) in DMF (48 mL) was bubbled in gaseous CO for 15 min. The mixture was heated to 60° C. for 8 h with a CO balloon. The cool mixture was partitioned between NaHCO3 and EtOAc, and filtered. The aqueous layer was separated, acidified with 10% citric acid aqueous solution, extracted with EtOAc, and finally dried over Na2SO4. Filtration and concentration of the filtrate resulted in a residue. The residue was recrystallized from EtOAc-hexanes to yield the desired product.
- 1H NMR (300 MHz, CDCl3): δ 1.36 (9H, s), 2.42 (6H, s), 3.14 (2H, J=7.4 Hz), 3.65 (3H, s), 4.57-4.59 (1H, m), 5.14 (1H, d, J=8.6 Hz), 7.75 (2H, s)
- MS (ES+) (relative intensity): 251.9 (100) (M-Boc)+.
- Into a stirring solution of (S)-4-(2-tert-butoxycarbonylamino-2-methoxycarbonylethyl)-3,5-dimethylbenzoic acid (3.00 g, 8.54 mmol), PyBOP (6.68 g, 12.8 mmol) and HOBt (1.74 g, 12.8 mmol) in DMF (36 mL) was added DIPEA (5.96 mL, 34.2 mmol) and NH4Cl (0.92 g, 17.1 mmol). The resulting mixture was stirred at rt for 40 min before being partitioned between aqueous NH4Cl solution and EtOAc. The separated organic phase was washed sequentially with 2N citric acid aqueous solution, saturated aqueous NaHCO3 solution, and brine, then dried over Na2SO4 overnight. After filtration and concentration, the residue was purified by flash column chromatography (eluent: EtOAc) to yield the product.
- 1H NMR (300 MHz, CDCl3): δ 1.36 (9H, s), 2.39 (6H, s), 3.11 (2H, J=7.2 Hz), 3.65 (3H, s), 4.53-4.56 (1H, m), 5.12 (1H, d, J. 8.7 Hz), 5.65 (1H, br s), 6.09 (1H, br s), 7.46 (2H, s)
- MS (ES+) (relative intensity): 250.9 (100) (M-Boc)+.
- Into an ice-cooled solution of methyl ester from Step C (2.99 g, 8.54 mmol) in THF (50 mL) was added an aqueous LiOH solution (1N, 50 mL) and stirred at 0° C. Upon consumption of the starting materials, the organic solvents were removed and the aqueous phase was neutralized with cooled 1N HCl at 0° C., and extracted with EtOAc, and dried over Na2SO4 overnight. Filtration and evaporation to dryness yielded the title acid (S)-2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethylphenyl)propionic acid.
- 1H NMR (300 MHz, DMSO-d6): δ 1.30 (9H, s), 2.32 (6H, s), 2.95 (1H, dd, J=8.8, 13.9 Hz), 3.10 (1H, dd, J=.5.2, 14.0 Hz), 4.02-4.12 (1H, m), 7.18-7.23 (2H, m), 7.48 (2H, s), 7.80 (1H, s)
- MS (ES+) (relative intensity): 236.9 (6) (M-Boc)+.
- (Z)-2-Benzyloxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)acrylic acid methyl ester
- To a cooled (0° C.) solution of 4-bromo-3,5-dimethylphenol (3.05 g, 15.2 mmol) in pyridine (8 mL) was added trifluoromethanesulfonic anhydride (5.0 g, 17.7 mmol) dropwise. After completion of addition, the resulting mixture was stirred at 0° C. for 15 min and at room temperature overnight. The reaction was then quenched by addition of water, then extracted with EtOAc. The EtOAc extracts were washed with water, 2N HCl (2×), brine and dried over MgSO4. Filtration and evaporation to dryness yield the product (10a) as a colorless oil.
- 1H NMR (300 MHz, CDCl3): δ 2.45 (6H, s), 7.00 (2H, s).
- Into a solution of trifluoro-methanesulfonic acid 4-bromo-3,5-dimethyl-phenyl ester (6.57 g, 19.7 mmol) in DMF (65 mL) were added K2CO3 (13.1 g, 94.7 mmol), Pd(OAc)2 (0.44 g, 1.97 mmol) and 1,1′-bis(diphenylphosphino)ferrocene (2.29 g, 4.14 mmol). The resulting mixture was bubbled in gaseous CO for 10 min and was then heated to 60° C. for 7.5 h with a CO balloon. The cooled mixture was partitioned between aqueous NaHCO3 and EtOAc, and filtered. The aqueous phase layer was separated, acidified with aqueous 6N HCl, extracted with EtOAc, and then dried over Na2SO4. Filtration and concentration of the filtrate resulted in the crude product (10b) as a brown residue, which was used in the next step without further purification.
- A solution of 4-bromo-3,5-dimethylbenzoic acid (0.92 g, 4 mmol) in THF (10 mL) was cooled down to −100 C with N2(I)-Et2O bath and added n-butyllithium (1.6 M in hexanes, 5 mL, 8 mmol) slowly. After completion of addition, the reaction mixture was warmed to −78° C. and DMF (0.74 mL, 8 mmol) was added dropwise. The resulting mixture was stirred at −78° C. for 1.5 h and allowed to warm to −20° C., followed by the addition of 2N aqueous HCl (30 mL). The organic phase was separated and the aqueous phase was extracted with EtOAc, the combined organic phases were dried over MgSO4. The solvent was removed and the resulting residue was purified by flash column chromatography (eluent: EtOAc-hexanes-1:1) to yield 4-formyl-3,5-dimethyl-benzoic acid (10c).
- 1H NMR (300 MHz, CDCl3): δ 2.65 (6H, s), 7.82 (2H, s), 10.67 (1H, s).
- To a solution of 4-formyl-3,5-dimethyl-benzoic acid (0.15 g, 0.85 mmol) in DMF (6 mL) were added PyBOP (1.0 g, 1.92 mmol), HOBt (0.26 g, 1.92 mmol), DIPEA (0.89 mL, 5.12 mmol) and NH4Cl (0.14 g, 2.56 mmol). The resulting mixture was stirred at room temperature for 1 h, and quenched by addition of brine, then extracted with EtOAc. The organic phase was washed with 2N aqueous HCl, saturated NaHCO3, brine and then dried over MgSO4. The solvent was removed to yield the crude product (10d), which was used in the next step without further purification.
- Into a solution of N-(benzyloxycarbonyl)-a-phosphinoglycine trimethyl ester (0.46 g, 1.4 mmol) in DCM (5 mL) was added DBU (0.21 mL, 1.4 mmol). After stirring for 10 min, a solution of the above made 4-formyl-3,5-dimethyl-benzamide in DCM (5 mL) was added dropwise. The resulting mixture was stirred at room temperature for 5.5 h and the solvent was removed by rotary evaporation. The residue was dissolved in EtOAc and washed with 1N aqueous HCl, brine and then dried over MgSO4. The solvent was removed and the residue purified by flash column chromatography (eluent: EtOAc-hexanes-1:1) to yield (Z)-2-tert-butoxycarbonylamino-3-(4-carbamoyl-2,6-dimethyl-phenyl)acrylic acid methyl ester (10e) as a white solid.
- MS (ES+) (relative intensity): 383.4 (10%) (M+1).
-
- Using the procedure described in Example 10, Step D, 4-hydroxy-3,5-dimethyl-benzamide (11a) was prepared as a yellowish solid.
- 1H NMR (300 MHz, CDCl3): δ 2.82 (6H, s), 5.51 (1H, br s), 5.90 (1H, br s), 7.48 (2H, s);
- MS (ES+) (relative intensity): 166.2 (8%) (M+1).
- Into a solution of 4-hydroxy-3,5-dimethyl-benzamide (3.72 g, 22.5 mmol) and N-phenyltrifluoromethanesulfoniunimide (9.4 g, 25 mmol) in DCM (80 mL) was added TEA (3.48 mL, 25 mmol) at room temperature, then the resulting mixture was stirred at room temperature overnight. After the reaction was quenched by addition of water, the separated organic phase was washed with 1N NaOH, water and then dried over MgSO4. The solvent was removed and the residue purified by flash column chromatography (eluent: EtOAc-hexanes˜1:1) to yield trifluoromethanesulfonic acid 4-carbamoyl-2,6-dimethyl-phenyl ester (11b) as a white solid.
- 1H NMR (300 MHz, CDCl3): δ 2.42 (6H, s), 6.28 (2H, br s), 7.57 (2H, s)
- MS (ES+) (relative intensity): 298.1 (63%) (M+1).
- Into a solution of trifluoro-methanesulfonic acid 4-carbamoyl-2,6-dimethyl-phenyl ester (1.49 g, 5 mmol), Pd(OAc)2 (0.037 g, 0.15 mmol), DPPP (0.062 g, 0.15 mmol) and TEA (1.74 mL, 12.5 mmol) in DMF (25 mL) was bubbled CO (gas) for 10 min, then triethylsilane (1.6 mL, 10 mmol) was added. The resulting mixture was stirred at 75° C. under a CO gas balloon for 6.5 hr. After cooling to room temperature, the reaction was quenched by addition of water, then extracted with EtOAc. The EtOAc extracts were washed with water, brine and then dried over MgSO4. After filtration and evaporation, the residue was purified by column chromatography (eluent, EtOAc-hexanes˜1:1) to yield 4-formyl-3,5-dimethyl-benzamide (11c) as a yellowish solid.
- 1H NMR (300 MHz, CDCl3): δ 2.65 (6H, s), 5.75 (1H, br s), 6.13 (1H, br s), 7.52 (2H, s), 10.64 (1H, s).
- The title compound was prepared as described in Example 10, Step E.
- The optical rotation of a representative sample of the compound of formula (Ia), prepared as in Example 1, was measured as [α]D=−12 (c 1.5, MeOH).
- The optical rotation of a representative sample of the compound of formula (Ia), prepared as in Example 9, from commercially purchased (S)—N-BOC-Tyr-OMe was measured as [α]D=−10.8 (c 1.7, MeOH).
- While the foregoing specification teaches the principles of the present invention, with examples provided for the purpose of illustration, it will be understood that the practice of the invention encompasses all of the usual variations, adaptations and/or modifications as come within the scope of the following claims and their equivalents.
Claims (3)
1. A process for the preparation of a compound of formula (I)
is C6-10aryl or a heteroaryl selected from the group consisting of furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, isoindolyl, indolinyl, benzofuryl, benzothienyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, quinolizinyl, quinolinyl, isoquinolinyl and quinazolinyl;
each R41P is independently selected from C1-6alkyl, C1-6alkoxy or fluoro;
RJ and RK are each independently selected from hydrogen or C1-4alkyl; alternatively, RJ and RK are taken together with the nitrogen atom to which they are bound to form a five to seven membered heterocyclyl;
Pg1 is a nitrogen protecting group;
comprising
reacting a compound of formula (X), wherein XP is selected from OH, CN, —CO2H, —C(O)—Cl or —C(O)—OC1-4alkyl and wherein YP is selected from Br, Cl or I, to yield the corresponding compound of formula (XII);
reacting the compound of formula (XII) with a compound of formula (XVIII); in the presence of palladium catalyst; in the presence of an organic or inorganic base; in an organic solvent; at a temperature greater than about room temperature; to yield the corresponding compound of formula (XIX);
reacting the compound of formula (XIX) with hydrogen or a source of hydrogen; in the presence of a catalyst; in a solvent; at a temperature greater than about room temperature; to yield the corresponding compound of formula (XX);
2. A process for the preparation of a compound of formula (I)
is C6-10aryl or a heteroaryl selected from the group consisting of furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, isoindolyl, indolinyl, benzofuryl, benzothienyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, quinolizinyl, quinolinyl, isoquinolinyl and quinazolinyl;
each R41P is independently selected from C1-6alkyl, C1-6alkoxy or fluoro;
RJ and RK are each independently selected from hydrogen or C1-4alkyl; alternatively, RJ and RK are taken together with the nitrogen atom to which they are bound to form a five to seven membered heterocyclyl;
Pg1 is a nitrogen protecting group;
comprising
reacting the compound of formula (XIX) with hydrogen or a source of hydrogen; in the presence of a catalyst; in a solvent; at a temperature greater than about room temperature; to yield the corresponding compound of formula (XX);
3.-18. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/625,973 US20100152460A1 (en) | 2005-03-14 | 2009-11-25 | Process for the preparation of opioid modulators |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66178405P | 2005-03-14 | 2005-03-14 | |
US11/368,588 US20060211861A1 (en) | 2005-03-14 | 2006-03-06 | Process for the preparation of opioid modulators |
US12/580,641 US20100036132A1 (en) | 2005-03-14 | 2009-10-16 | Process for the preparation of opiod modulators |
US12/625,973 US20100152460A1 (en) | 2005-03-14 | 2009-11-25 | Process for the preparation of opioid modulators |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/580,641 Division US20100036132A1 (en) | 2005-03-14 | 2009-10-16 | Process for the preparation of opiod modulators |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100152460A1 true US20100152460A1 (en) | 2010-06-17 |
Family
ID=36646011
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/368,564 Active 2028-03-05 US7629488B2 (en) | 2005-03-14 | 2006-03-06 | Process for the preparation of opioid modulators |
US11/368,588 Abandoned US20060211861A1 (en) | 2005-03-14 | 2006-03-06 | Process for the preparation of opioid modulators |
US12/580,641 Abandoned US20100036132A1 (en) | 2005-03-14 | 2009-10-16 | Process for the preparation of opiod modulators |
US12/625,973 Abandoned US20100152460A1 (en) | 2005-03-14 | 2009-11-25 | Process for the preparation of opioid modulators |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/368,564 Active 2028-03-05 US7629488B2 (en) | 2005-03-14 | 2006-03-06 | Process for the preparation of opioid modulators |
US11/368,588 Abandoned US20060211861A1 (en) | 2005-03-14 | 2006-03-06 | Process for the preparation of opioid modulators |
US12/580,641 Abandoned US20100036132A1 (en) | 2005-03-14 | 2009-10-16 | Process for the preparation of opiod modulators |
Country Status (30)
Country | Link |
---|---|
US (4) | US7629488B2 (en) |
EP (2) | EP1863764A1 (en) |
JP (3) | JP5384933B2 (en) |
KR (2) | KR101280929B1 (en) |
CN (2) | CN101175726A (en) |
AR (2) | AR053170A1 (en) |
AU (2) | AU2006223394B2 (en) |
BR (2) | BRPI0607792A2 (en) |
CA (2) | CA2601674A1 (en) |
CR (1) | CR9438A (en) |
CY (1) | CY1116104T1 (en) |
DK (1) | DK1858850T3 (en) |
EA (2) | EA014366B1 (en) |
ES (1) | ES2535048T3 (en) |
HR (1) | HRP20150417T1 (en) |
HU (1) | HUE024912T2 (en) |
IL (3) | IL185972A (en) |
ME (1) | ME02110B (en) |
MX (2) | MX2007011409A (en) |
MY (1) | MY145333A (en) |
NI (1) | NI200700237A (en) |
NO (2) | NO20075268L (en) |
NZ (1) | NZ590570A (en) |
PL (1) | PL1858850T3 (en) |
PT (1) | PT1858850E (en) |
RS (1) | RS53873B1 (en) |
SI (1) | SI1858850T1 (en) |
TW (3) | TWI500595B (en) |
WO (2) | WO2006098982A1 (en) |
ZA (2) | ZA200708809B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9789125B2 (en) | 2007-07-09 | 2017-10-17 | Allergan Holdings Unlimited Company | Crystals and process of making 5-({[2-amino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-amino}-methyl)-2-methoxy-benzoic acid |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7041681B2 (en) * | 2002-04-29 | 2006-05-09 | Janssen Pharmaceutica N.V. | Compounds as opioid receptor modulators |
ES2428008T3 (en) * | 2004-03-15 | 2013-11-05 | Janssen Pharmaceutica Nv | Opioid receptor modulators |
EP1863764A1 (en) * | 2005-03-14 | 2007-12-12 | Janssen Pharmaceutica, N.V. | Process for the preparation of opioid modulators |
TWI468375B (en) * | 2008-10-27 | 2015-01-11 | Janssen Pharmaceutica Nv | Process for the preparation of protected l-alanine derivatives |
IS2977B (en) | 2015-02-23 | 2017-07-15 | Actavis Group Ptc Ehf. | Process for the preparation of intermediates useful in the synthesis of eluxadoline |
CN108026032B (en) * | 2015-09-11 | 2020-09-29 | 株式会社钟化 | Method for producing optically active 4-carbamoyl-2, 6-dimethylphenylalanine derivative |
CN105777584B (en) * | 2016-03-28 | 2018-01-02 | 成都伊诺达博医药科技有限公司 | The preparation method of alanine derivatives |
CN105693554B (en) * | 2016-04-06 | 2017-08-08 | 成都伊诺达博医药科技有限公司 | The preparation method of alanine derivatives |
WO2017221213A1 (en) * | 2016-06-23 | 2017-12-28 | Sun Pharmaceutical Industries Limited | Processes for the preparation of eluxadoline |
WO2018047131A1 (en) * | 2016-09-09 | 2018-03-15 | Sun Pharmaceutical Industries Limited | Amorphous eluxadoline |
US10479769B2 (en) | 2016-09-20 | 2019-11-19 | Sun Pharmaceutical Industries Limited | Processes for the preparation of eluxadoline |
CN106866463B (en) * | 2017-01-24 | 2018-08-28 | 富乐马鸿凯(大连)医药有限公司 | The preparation method of Ai Shadulin intermediates |
WO2018138272A1 (en) | 2017-01-27 | 2018-08-02 | Quimica Sintetica, S. A. | Eluxadoline crystalline form and process for the preparation thereof |
US10738013B2 (en) | 2017-01-27 | 2020-08-11 | Quimica Sintetica, S.A. | Eluxadoline crystalline forms and processes for their preparation |
CN111377832A (en) * | 2018-12-27 | 2020-07-07 | 江苏联昇化学有限公司 | Novel method for preparing irudoline intermediate |
CN115298173A (en) | 2020-03-31 | 2022-11-04 | 田边三菱制药株式会社 | Hydroxypyrrolidine derivatives and medical use thereof |
CN114163348A (en) * | 2020-11-27 | 2022-03-11 | 成都泰蓉生物科技有限公司 | Synthesis method of aminoacyl-substituted L-phenylalanine |
CN114507252B (en) * | 2022-02-21 | 2023-10-27 | 广西大学 | Novel method for synthesizing arylsilane compound |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5430129A (en) * | 1977-08-09 | 1979-03-06 | Mitsubishi Gas Chem Co Inc | Preparation of toluic acid amide |
JPS5528959A (en) * | 1978-08-22 | 1980-02-29 | Sumitomo Chem Co Ltd | Production of amide derivative |
FR2584401B1 (en) * | 1985-07-04 | 1987-11-20 | Ile De France | NOVEL BENZAMIDE, METHOD FOR PREPARING THE SAME, AND APPLICATION THEREOF IN THE THERAPEUTIC FIELD |
JP2727243B2 (en) * | 1988-12-27 | 1998-03-11 | 日本化薬株式会社 | Method for producing 2-acylaminocinnamic acid derivatives |
US5684175A (en) * | 1993-02-05 | 1997-11-04 | Napro Biotherapeutics, Inc. | C-2' hydroxyl-benzyl protected, N-carbamate protected (2R, 3S)- 3-phenylisoserine and production process therefor |
JP3493206B2 (en) * | 1993-03-19 | 2004-02-03 | ダイセル化学工業株式会社 | Process for producing optically active β-amino acids |
JP3486922B2 (en) * | 1993-08-23 | 2004-01-13 | 住友化学工業株式会社 | Method for producing acid amide |
CZ238197A3 (en) * | 1995-01-27 | 1997-12-17 | Novo Nordisk As | Growth hormone formation stimulating compounds |
JPH09295939A (en) * | 1995-09-26 | 1997-11-18 | Takeda Chem Ind Ltd | Phosphoric amide derivative, its production and use |
CU23047A3 (en) * | 1998-03-11 | 2005-04-26 | Searle & Co | DERIVATIVES OF USEFUL HALOGENATED AMINO ACIDS AS INHIBITORS OF NITRICO-SINTASA OXIDE. |
EP1055665B1 (en) * | 1999-05-28 | 2003-10-22 | Pfizer Products Inc. | 3-(3-Hydroxyphenyl)-3-amino-propionamide derivatives |
AU2002224797B2 (en) * | 2000-10-30 | 2006-10-26 | Janssen Pharmaceutica N.V. | Tripeptidyl peptidase inhibitors |
US7041681B2 (en) * | 2002-04-29 | 2006-05-09 | Janssen Pharmaceutica N.V. | Compounds as opioid receptor modulators |
ES2428008T3 (en) * | 2004-03-15 | 2013-11-05 | Janssen Pharmaceutica Nv | Opioid receptor modulators |
EP1863764A1 (en) * | 2005-03-14 | 2007-12-12 | Janssen Pharmaceutica, N.V. | Process for the preparation of opioid modulators |
-
2006
- 2006-03-06 EP EP06737413A patent/EP1863764A1/en not_active Withdrawn
- 2006-03-06 CA CA002601674A patent/CA2601674A1/en not_active Abandoned
- 2006-03-06 BR BRPI0607792-7A patent/BRPI0607792A2/en not_active IP Right Cessation
- 2006-03-06 US US11/368,564 patent/US7629488B2/en active Active
- 2006-03-06 AU AU2006223394A patent/AU2006223394B2/en not_active Ceased
- 2006-03-06 US US11/368,588 patent/US20060211861A1/en not_active Abandoned
- 2006-03-06 ES ES06737611.1T patent/ES2535048T3/en active Active
- 2006-03-06 EP EP06737611.1A patent/EP1858850B1/en active Active
- 2006-03-06 JP JP2008501919A patent/JP5384933B2/en not_active Expired - Fee Related
- 2006-03-06 EA EA200701979A patent/EA014366B1/en not_active IP Right Cessation
- 2006-03-06 CA CA2601481A patent/CA2601481C/en active Active
- 2006-03-06 PL PL06737611T patent/PL1858850T3/en unknown
- 2006-03-06 EA EA200701978A patent/EA015512B1/en unknown
- 2006-03-06 KR KR1020077022664A patent/KR101280929B1/en active IP Right Grant
- 2006-03-06 MX MX2007011409A patent/MX2007011409A/en unknown
- 2006-03-06 JP JP2008501912A patent/JP2008533141A/en not_active Withdrawn
- 2006-03-06 WO PCT/US2006/008240 patent/WO2006098982A1/en active Application Filing
- 2006-03-06 MX MX2007011412A patent/MX2007011412A/en active IP Right Grant
- 2006-03-06 CN CNA2006800166320A patent/CN101175726A/en active Pending
- 2006-03-06 NZ NZ590570A patent/NZ590570A/en not_active IP Right Cessation
- 2006-03-06 ME MEP-2015-31A patent/ME02110B/en unknown
- 2006-03-06 BR BRPI0607793-5A patent/BRPI0607793A2/en not_active Application Discontinuation
- 2006-03-06 CN CN2006800163712A patent/CN101175725B/en not_active Expired - Fee Related
- 2006-03-06 SI SI200631907T patent/SI1858850T1/en unknown
- 2006-03-06 DK DK06737611.1T patent/DK1858850T3/en active
- 2006-03-06 HU HUE06737611A patent/HUE024912T2/en unknown
- 2006-03-06 AU AU2006223482A patent/AU2006223482A1/en not_active Abandoned
- 2006-03-06 KR KR1020077023282A patent/KR20070112255A/en not_active Application Discontinuation
- 2006-03-06 PT PT67376111T patent/PT1858850E/en unknown
- 2006-03-06 RS RS20150121A patent/RS53873B1/en unknown
- 2006-03-06 WO PCT/US2006/008450 patent/WO2006099060A2/en active Application Filing
- 2006-03-14 TW TW101129655A patent/TWI500595B/en not_active IP Right Cessation
- 2006-03-14 AR ARP060100974A patent/AR053170A1/en not_active Application Discontinuation
- 2006-03-14 TW TW095108512A patent/TWI414518B/en not_active IP Right Cessation
- 2006-03-14 MY MYPI20061110A patent/MY145333A/en unknown
- 2006-03-14 TW TW095108513A patent/TW200700388A/en unknown
- 2006-03-14 AR ARP060100973A patent/AR054745A1/en active IP Right Grant
-
2007
- 2007-09-13 NI NI200700237A patent/NI200700237A/en unknown
- 2007-09-16 IL IL185972A patent/IL185972A/en active IP Right Grant
- 2007-09-16 IL IL185974A patent/IL185974A0/en unknown
- 2007-10-12 ZA ZA200708809A patent/ZA200708809B/en unknown
- 2007-10-12 CR CR9438A patent/CR9438A/en not_active Application Discontinuation
- 2007-10-12 ZA ZA200708810A patent/ZA200708810B/en unknown
- 2007-10-15 NO NO20075268A patent/NO20075268L/en not_active Application Discontinuation
- 2007-10-15 NO NO20075269A patent/NO340604B1/en not_active IP Right Cessation
-
2009
- 2009-10-16 US US12/580,641 patent/US20100036132A1/en not_active Abandoned
- 2009-11-25 US US12/625,973 patent/US20100152460A1/en not_active Abandoned
-
2010
- 2010-11-18 IL IL209402A patent/IL209402A/en active IP Right Grant
-
2013
- 2013-07-16 JP JP2013147688A patent/JP5802242B2/en not_active Expired - Fee Related
-
2015
- 2015-02-19 CY CY20151100172T patent/CY1116104T1/en unknown
- 2015-04-14 HR HRP20150417TT patent/HRP20150417T1/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9789125B2 (en) | 2007-07-09 | 2017-10-17 | Allergan Holdings Unlimited Company | Crystals and process of making 5-({[2-amino-3-(4-carbamoyl-2,6-dimethyl-phenyl)-propionyl]-[1-(4-phenyl-1H-imidazol-2-yl)-ethyl]-amino}-methyl)-2-methoxy-benzoic acid |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7629488B2 (en) | Process for the preparation of opioid modulators | |
US6346532B1 (en) | Amide derivatives or salts thereof | |
SK129297A3 (en) | Inhibitors of farnesyl-protein transferase | |
US20040157818A1 (en) | Cxcr4-antagonistic drugs composed of nitrogen-containing compound | |
CN111344281B (en) | Potassium channel inhibitors substituted benzimidazoles | |
US12030856B2 (en) | Potassium channel inhibitors | |
Treder et al. | New imidazoline/α2-adrenoceptors affecting compounds—4 (5)-(2-aminoethyl) imidazoline (dihydrohistamine) derivatives. Synthesis and receptor affinity studies | |
US20230406845A1 (en) | Novel potassium channel inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |