[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20070135436A1 - Chemical compounds - Google Patents

Chemical compounds Download PDF

Info

Publication number
US20070135436A1
US20070135436A1 US11/305,344 US30534405A US2007135436A1 US 20070135436 A1 US20070135436 A1 US 20070135436A1 US 30534405 A US30534405 A US 30534405A US 2007135436 A1 US2007135436 A1 US 2007135436A1
Authority
US
United States
Prior art keywords
troxacitabine
acid
mmol
nhc
pharmaceutically acceptable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/305,344
Other languages
English (en)
Inventor
Finn Myhren
Marit Sandvold
Steinar Hagen
Ole Eriksen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clavis Pharma ASA
Original Assignee
Clavis Pharma ASA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clavis Pharma ASA filed Critical Clavis Pharma ASA
Assigned to CLAVIS PHARMA AS reassignment CLAVIS PHARMA AS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ERIKSEN, OLE HENRIK, HAGEN, STEINAR, MYHREN, FINN, SANDVOLD, MARIT LILAND
Publication of US20070135436A1 publication Critical patent/US20070135436A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/26Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
    • C07D473/28Oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/40Heterocyclic compounds containing purine ring systems with halogen atoms or perhalogeno-alkyl radicals directly attached in position 2 or 6

Definitions

  • This invention relates to certain unsaturated fatty acid derivatives of therapeutically active 1,3-dioxolane nucleoside analogues and to pharmaceutical formulations containing them.
  • the said derivatives are referred to as “Compounds of formula I” herein.
  • Compounds of formula I can be used in the treatment of a cancerous disease. Treatment of both solid tumours and haematological cancers such as leukaemias, lymphomas and multiple myelomas are included.
  • Nucleoside analogues the derivatives of the natural nucleosides found as building blocks of DNA and RNA, are effective in the clinical treatment of human cancer or viral diseases, although in the early years such compounds were evaluated as antituberculosis agents. Such compounds have been registered in the market for more than 40 years, and approximately 35 products are currently in daily use.
  • the natural nucleosides illustrated in the figure below are constructed from two classes of nitrogen bases, the purines exemplified by adenine and guanine and the pyrimidines exemplified by thymine, uracil and cytosine, and from the monosaccharide ribose or deoxyribose.
  • the natural nucleosides all exist in the so called ⁇ -D configuration as illustrated in the formula A, below.
  • the nitrogen base and the hydroxy-methyl side chain on the sugar ring are both on the same side (cis) of the plane of the sugar ring.
  • the two groups are on either side (trans), it is referred to as the ⁇ isomer.
  • chemical modifications in either the nitrogen base and/or the monosaccharide have been performed. For instance the addition of halogen atoms, the substitution of OH groups with other functional groups or a stereochemical change from ribose to arabinose may lead to products with a potential therapeutic benefit. In many products, the monosaccharide ring is conserved, while in others, the sugar ring has been changed into a chain.
  • the nucleoside analogues are small molecules with fair to excellent aqueous solubility.
  • nucleoside analogues The efficacy of nucleoside analogues depends on a large extent on their ability to mimic natural nucleosides, thus interacting with viral and/or cellular enzymes and interfering with or inhibiting critical processes in the metabolism of nucleic acids.
  • the nucleoside analogues In order to exert their antiviral or anti cancer activity, the nucleoside analogues have to be transformed, via their mono- and di-phosphates, into their corresponding tri-phosphates through the action of viral and/or cellular kinases.
  • the tri-phosphate is the active agent, but for some products, e.g. gemcitabine, even the di-phosphate may exert a clinically significant effect.
  • nucleoside analogues In order to reach the diseased, cancerous or virus infected cells or tissues, following either enteral or parenteral administration, the nucleoside analogues should have favourable pharmacokinetic characteristics. In addition to rapid excretion of the administered drug, many nucleoside analogues may be deactivated both in the blood stream and in tissues. For instance may cytosine derivatives, even at the mono-phosphate level, be rapidly deaminated through the action of a class of enzymes called deaminases, to the inactive uracil analogue. The cellular uptake and thus good therapeutic efficacy of many nucleoside analogues strongly depend on membrane bound nucleoside transport proteins (called concentrative and equilibrative nucleoside transporters).
  • concentrative and equilibrative nucleoside transporters membrane bound nucleoside transport proteins
  • an anti-cancer nucleoside analogue mono-phosphate When incorporated into the cellular DNA, it should not be removed from the cancer cell DNA due to the exonuclease activity linked to the p53 protein. However, removal of a nucleoside analogue from the DNA of a healthy cell is favourable in order to limit the side effects of the drug.
  • nucleoside analogues have been developed that to a large extent overcome some or many of the activity limiting features.
  • acyclovir (ACV) can be given to illustrate a compound with great specificity.
  • the ACV-mono-phosphate can only be formed by viral kinases meaning that ACV cannot be activated in uninfected cells.
  • ACV is not a particularly active product.
  • the intracellular formation of the nucleoside analogue mono-phosphate several phosphonate such as cidofovir or even mono-phosphate products, have been developed.
  • particular prodrugs such as Hepsera have been made.
  • nucleoside analogues In addition to the structural changes made to nucleoside analogues to facilitate enhanced clinical utility, further modifications have been made to improve the activity.
  • the Applicant of the present invention U.S. Pat. No. 6,153,594, U.S. Pat. No. 6,548,486 B1, U.S. Pat. No. 6,316,425 B1, U.S. Pat. No. 6,384,019 B1 and several other groups have modified nucleoside analogues through the addition of lipid moieties (EP-A-56265, EP-A-393920, WO 99/26958). This can be achieved by the linking of fatty acids through for instance an ester, amide, carbonate or carbamate bond.
  • nucleoside analogues such as phospholipid derivatives (Eur J Pharm Sci (2000) 11b Suppl 2: p15-27, EP 545966 B1, CA 2468099 A1, U.S. Pat. No. 6,372,725 B1 and U.S. Pat. No. 6,670,341 B1) of the nucleoside analogues.
  • Such analogues are described to have antiviral activity that is particularly suitable for the therapy and prophylaxis of infections caused by DNA, RNA or retroviruses. They are also suited for treatment of malignant tumours.
  • the nucleoside analogue lipid derivatives may serve several purposes.
  • lipid derivatives may be regarded as a prodrug that is not a substrate for deaminases, thereby protecting the nucleoside analogues from deactivation during transport in the bloodstream.
  • the lipid derivatives may also be more efficiently transported across the cellular membrane resulting in enhanced intracellular concentration of the nucleoside analogue.
  • Lipid derivatives may also be more suited for use in dermal preparations, oral products (U.S. Pat. No. 6,576,636 B2 and WO 01/18013 or particular formulations such as liposomes (U.S. Pat. No. 5,223,263) designed for tumour targeting.
  • nucleoside analogues with a conserved ⁇ -D configuration of the monosaccharide ring or for nucleoside analogues with a non-cyclic side chain, the antiviral or anticancer activity can be most efficiently improved through the formation of lipid derivatives of mono-unsaturated ⁇ -9 C18 and C20 fatty acids (Antimicrobial Agents and Chemotherapy, January 1999, p. 53-61, Cancer Research 59, 2944-2949, Jun. 15, 1999, Gene Therapy (1998) 5, 419-426, Antiviral Research 45 (2000) 157-167, Biochemical Pharmacology 67 (2004) 503-511).
  • the preferred mono-unsaturated derivatives are more crystalline and chemically stabile towards oxidation of the lipid chain, hence being more favourable compounds from a chemical and pharmaceutical manufacturing point of view.
  • the Applicant of the present invention has also demonstrated that the mono-unsaturated ⁇ -9 C18 and C20 fatty acids are suited for improvement of the therapeutic activity of a large number of non-nucleoside biologically active compounds (EP 0977725 B1).
  • nucleoside analogues are the so called 1,3-dioxolane derivatives.
  • this class of compounds the five-membered ring, analogues to the monosaccharide found in natural nucleosides, is conserved, but the CH 2 group in position 3 is exchanged with an O atom as shown in formula B below.
  • 1,3-dioxolane nucleoside derivatives can be significantly enhanced as compared to the prior art compounds through the formation of derivatives of certain unsaturated long chain fatty acids with at least one double bond in position 6 counted from the carbonyl carbon atom, commonly recognised as ⁇ 6 unsaturated fatty acid.
  • ester and amide derivatives of mono- and poly- ⁇ 6 -unsaturated fatty acid derivatives of 1,3-dioxolane nucleoside analogues have been examined, and are herein demonstrated with, and compared to the prior art compounds of the particular product troxacitabine.
  • ester and amide derivatives of petroselinic acid cis-6-octadecenoic acid
  • petroselaidic acid trans-6-octadecenoic acid
  • gamma-linolenic acid cis-6,9,12-octadecatrienoic acid
  • elaidic acid amide have been tested as a prior art comparator compound.
  • the petroselaidic acid derivatives are the most potent. They are equally active, marginally better than the gamma-linolenic acid derivative, and 20 fold more active than the prior art product, troxacitabine-N 4 -elaidic acid amide.
  • the compounds of this invention can be characterized by the general formula I: wherein the substituents in position 2 and 5 of the 1,3dioxolane ring has the possibility to be above or below the plane of the five-membered ring.
  • the said substituents can be in either a cis or a trans configuration.
  • R 2 represents a hydrogen atom or a unsaturated fatty acid acyl group R 5 C(O), R 5 CH 2 OC(O) or R 5 CH 2 NHC(O) where R 5 is a C 7-23 alkenyl residue of the general formula CH 3 —(CH 2 ) n -(CH ⁇ CH—CH 2 ) m -CH ⁇ CH—(CH 2 ) 4 — (II) wherein m is a number from 0 to 2 and n is a number from 0 to 10.
  • R 1 denotes an optionally substituted nitrogen base possibly carrying a functional group such as an alcohol or an amino group, such group optionally being acylated with an unsaturated fatty acid.
  • R 1 is and R 3 is selected from the group consisting of hydrogen, methyl, trifluoromethyl, fluorine, chlorine, bromine or iodine; and Z and W are each independently Br, Cl, I, F, OR 4 or NHR 4 and at least one of Z and W is either OR 4 or NHR 4 , and R 4 is H or R 5 C(O), R 5 CH 2 OC(O) or R 5 CH 2 NHC(O) where R 5 is a C 7-23 alkenyl of the general formula II.
  • R 2 , R 3 and R 4 cannot simultaneously be hydrogen.
  • X and Y can be either CH or a N atom with at least one of X or Y being N.
  • ⁇ 6 unsaturated fatty acids contemplated in this invention can have both cis and trans stereochemistry of the double bonds.
  • Particularly preferred embodiments of this invention is exemplified with, but not limited to, troxacitabine-2′-hydroxymethyl-trans-6-octadecenoic acid ester, troxacitabine-N 4 -trans 6-octadecenoic acid amide, troxacitabine-2′-hydroxymethyl-gamma-linolenoic acid ester and troxacitabine-N 4 -cis6-octadecenoicacid amide.
  • the breast cancer cell line MaTu was seeded, 5 ⁇ 10 3 cells per well, in 96-well-plates.
  • the medium was RMPI 1640 with 2 mM Glutamine and 10% Foetal Bovine Serum. 24 hours later the test compounds were added in 6 concentrations. The cells were incubated for 4 days. The MTT solution was added to each well and incubated for 4 hours. The samples were read by an ELISA reader at 540 nm. The IC50 values were determined from growth curves.
  • the test compounds were troxacitabine elaidic amid, troxacitabine petroselaidoate, troxacitabine-petroselaidic amide and troxacitabine ⁇ -linolenoate.
  • the human breast carcinoma cancer cell line MaTu and the adriamycin resistant cell line MaTu/ADR were seeded, 5 ⁇ 10 3 cells per well, in 96-well-plates.
  • the medium was RMPI 1640 with 2 mM Glutamine and 10% Foetal Bovine Serum. 24 hours later the test compounds were added in a final volume of 20 ⁇ l to the cells, in six different concentrations.
  • the cells were incubated for 4 days.
  • MTT solution was added to each well and incubated for 4 hours.
  • the samples were read by an ELISA reader at 540 nm.
  • the IC50 values were determined from growth curves.
  • the resistance factor is the IC50 in MaTu/Adr vs. IC50 in MaTu.
  • test compounds were troxacitabine-elaidic amide and troxacitabine-petroselinic amide.
  • the troxacitabine-petroselinic amide to be independent of the adriamycin resistance, with a resistance factor of 1.0, compared to 5.8 for troxacitabine-elaidic amide.
  • Resistance factor Compound (IC50 MaTu/Adr)/(IC50 MaTu) troxacitabine- elaidic amide 5.8 troxacitabine-petroselinic amide 1.0
  • Troxacitabine 150 mg, 0.70 mmol
  • TEA 0.1 ml, 0.74 mmol
  • DMAP 90 mg, 0.74 mmol
  • the acid chloride was prepared from elaidic acid (209 mg, 0.74 mmol), oxalyl chloride (0.4 ml, 2.96 mmol) and DMF (catalytic amount) in toluene (10 ml) by stirring at ambient temperature for 2 h and then evaporated to dryness. After stirring for 22 h at room temperature a saturated aqueous solution of NH 4 Cl was added and the phases separated.
  • Troxacitabine (0.5 g, 2.4 mmol) in dry DMF (10 ml) was added a solution of HCl in DMF (1.3 M, 2.2 ml, 2.8 mmol), which had been prepared by bubbling HCl-gas through DMF. After some seconds a colourless solid precipitated from the solution. The resulting mixture was stirred for 30 min. and petroselaidoyl chloride in DMF (5 ml) was then added.
  • the acid chloride had previously been prepared from petroselaidic acid (1.0 g, 3.5 mmol), oxalyl chloride (1.9 ml, 14 mmol) and DMF (catalytic amount) in DCM (30 ml) by stirring at ambient temperature for 1 h and then evaporated to dryness. After stirring for 64 h at room temperature the mixture was poured into water and extracted with DCM (3 ⁇ ). The combined organic extracts were washed with a saturated aqueous solution of NaHCO 3 , brine, dried (Na 2 SO 4 ), filtrated and evaporated in vacuuo. The product was purified by flash chromatography on silica gel eluting with MeOH/DCM (5:95) to give 0.52 g (46%) of the desired product as colourless crystals.
  • Troxacitabine (0.7 g, 3.3 mmol) in dry DMF (17 ml) was added a solution of HCl in DMF (1.3 M, 3.0 ml, 3.9 mmol), which had been prepared by bubbling HCl-gas through DMF. After some seconds a colourless solid precipitated from the solution. The resulting mixture was stirred for 30 min. before acid chloride in DMF (4 ml) was added. The acid chloride had previously been prepared from GLA (2.19 g, 7.9 mmol), oxalyl chloride (2.66 ml, 31.4 mmol) and DMF (catalytic amount) in DCM (50 ml) by stirring at ambient temperature for 3 h and then evaporated to dryness.
  • the aqueous phase was extracted with DCM (3 ⁇ 50 mL), and the combined organic extracts were washed with saturated NaHCO 3 (25 mL), brine (25 mL), dried (Na 2 SO 4 ), filtered and evaporated in vacuuo.
  • the product was purified by flash chromatography on silica gel eluting with MeOH/DCM (25:975-50:950) to give 599 mg (53%) of the desired product as colourless crystals.
  • Troxacitabine (0.503 g, 2.36 mmol) in dry DMF (7 mL) was added a solution of HCl in DMF (1.3 M, 2.2 ml, 2.86 mmol), which had been prepared by bubbling HCl-gas through DMF. After some seconds a colourless solid precipitated from the solution. The resulting mixture was stirred for 30 min. and petroselinic acid chloride in DMF (12 mL) was then added.
  • the acid chloride had previously been prepared from petroselinic acid (1.59 g, 5.6 mmol), oxalyl chloride (4.5 mL, 53 mmol) and DMF (0.1 mL catalytic amount) in toluene (35 mL) by stirring at ambient temperature for 2 h and then evaporated to dryness. After stirring for 43 h at room temperature the mixture was poured into water (50 mL) and extracted with DCM (3 ⁇ 100 mL) The combined organic extracts were washed with a saturated aqueous solution of NaHCO 3 (50 mL), brine (50 mL), dried (Na 2 SO 4 ), filtrated and evaporated in vacuuo. The product was purified by flash chromatography on silica gel eluting with MeOH/DCM (25:975-50:950) to give 0.686 g (61%) of the desired product as pale yellow crystals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
US11/305,344 2005-12-08 2005-12-19 Chemical compounds Abandoned US20070135436A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20055841A NO324263B1 (no) 2005-12-08 2005-12-08 Kjemiske forbindelser, anvendelse derav ved behandling av kreft, samt farmasoytiske preparater som omfatter slike forbindelser
NO20055841 2005-12-08

Publications (1)

Publication Number Publication Date
US20070135436A1 true US20070135436A1 (en) 2007-06-14

Family

ID=35539185

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/305,344 Abandoned US20070135436A1 (en) 2005-12-08 2005-12-19 Chemical compounds
US12/305,338 Expired - Fee Related US8349834B2 (en) 2005-12-08 2006-12-07 Dioxolane derivates for the treatment of cancer

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/305,338 Expired - Fee Related US8349834B2 (en) 2005-12-08 2006-12-07 Dioxolane derivates for the treatment of cancer

Country Status (14)

Country Link
US (2) US20070135436A1 (no)
EP (1) EP1968971B1 (no)
JP (1) JP5185823B2 (no)
KR (1) KR101425228B1 (no)
AU (1) AU2006323278B2 (no)
CA (1) CA2632280A1 (no)
IL (1) IL191981A0 (no)
NO (1) NO324263B1 (no)
NZ (1) NZ569140A (no)
RU (1) RU2418795C2 (no)
TW (1) TWI382978B (no)
UA (1) UA94074C2 (no)
WO (1) WO2007067071A1 (no)
ZA (1) ZA200805522B (no)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090163564A1 (en) * 2005-12-28 2009-06-25 Translational Therapeutics, Inc. Translational Dysfunction Based Therapeutics
US20090209482A1 (en) * 2007-09-26 2009-08-20 Mount Sinai School Of Medicine Azacytidine analogues and uses thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201006181D0 (en) 2010-04-14 2010-06-02 Ayanda As Composition

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223263A (en) * 1988-07-07 1993-06-29 Vical, Inc. Liponucleotide-containing liposomes
US5270315A (en) * 1988-04-11 1993-12-14 Biochem Pharma Inc. 4-(purinyl bases)-substituted-1,3-dioxlanes
US5817667A (en) * 1991-04-17 1998-10-06 University Of Georgia Research Foudation Compounds and methods for the treatment of cancer
US6153594A (en) * 1993-04-05 2000-11-28 Norsk Hydro As 5'-O-acylated antiviral nucleosides
US6316425B1 (en) * 1995-07-25 2001-11-13 Norsk Hydro Asa Therapeutic agents
US6372725B1 (en) * 1995-02-16 2002-04-16 Harald Zilch Specific lipid conjugates to nucleoside diphosphates and their use as drugs
US6384019B1 (en) * 1997-01-24 2002-05-07 Norsk Hydro Asa Gemcitabine derivatives
US20030013660A1 (en) * 2000-10-13 2003-01-16 Shire Biochem Inc. Dioxolane analogs for improved inter-cellular delivery
US6525033B1 (en) * 1993-09-10 2003-02-25 Emory University Nucleosides with anti-hepatitis B virus activity
US6548486B1 (en) * 1991-10-07 2003-04-15 Norsk Hydro A.S. Fatty acid esters of nucleoside analogs
US6566365B1 (en) * 1999-11-04 2003-05-20 Biochem Pharma Inc. Method for the treatment of Flaviviridea viral infection using nucleoside analogues
US6576636B2 (en) * 1996-05-22 2003-06-10 Protarga, Inc. Method of treating a liver disorder with fatty acid-antiviral agent conjugates
US6670341B1 (en) * 1999-10-28 2003-12-30 Wake Forest University Health Sciences Compositions and methods for double-targeting virus infections and targeting cancer cells

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3100478A1 (de) 1981-01-09 1982-08-12 Dr. Thilo & Co GmbH, 8021 Sauerlach 5'ester von pyrimidinnucleosiden mit antiviraler wirksamkeit, verfahren zur herstellung und daraus hergestellte arzneimittel
US5216142A (en) 1989-04-17 1993-06-01 Efamol Holdings Plc Anti-virals
DE4026265A1 (de) 1990-08-20 1992-02-27 Boehringer Mannheim Gmbh Neue phospholipid-derivate von nucleosiden, deren herstellung sowie deren verwendung als antivirale arzneimittel
US5444063A (en) * 1990-12-05 1995-08-22 Emory University Enantiomerically pure β-D-dioxolane nucleosides with selective anti-Hepatitis B virus activity
IL115156A (en) * 1994-09-06 2000-07-16 Univ Georgia Pharmaceutical compositions for the treatment of cancer comprising 1-(2-hydroxymethyl-1,3-dioxolan-4-yl) cytosines
EP1655033A1 (en) * 1995-06-07 2006-05-10 Emory University Nucleosides with anti-hepatitis B virus activity
GB2321455A (en) 1997-01-24 1998-07-29 Norsk Hydro As Lipophilic derivatives of biologically active compounds
EP1042341A1 (en) 1997-11-25 2000-10-11 Protarga Inc. Nucleoside analog compositions and uses thereof
WO2001018013A1 (en) 1999-09-08 2001-03-15 Metabasis Therapeutics, Inc. Prodrugs for liver specific drug delivery
US6526033B1 (en) * 1999-09-17 2003-02-25 Lucent Technologies Inc. Delivering calls to GSM subscribers roaming to CDMA networks via IP tunnels
MXPA04004712A (es) 2001-11-21 2005-06-20 Heidelberg Pharma Gmbh Derivados fosfolipidos de nucleosidos para uso como farmacos antitumorales.

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270315A (en) * 1988-04-11 1993-12-14 Biochem Pharma Inc. 4-(purinyl bases)-substituted-1,3-dioxlanes
US5223263A (en) * 1988-07-07 1993-06-29 Vical, Inc. Liponucleotide-containing liposomes
US5817667A (en) * 1991-04-17 1998-10-06 University Of Georgia Research Foudation Compounds and methods for the treatment of cancer
US6548486B1 (en) * 1991-10-07 2003-04-15 Norsk Hydro A.S. Fatty acid esters of nucleoside analogs
US6153594A (en) * 1993-04-05 2000-11-28 Norsk Hydro As 5'-O-acylated antiviral nucleosides
US6525033B1 (en) * 1993-09-10 2003-02-25 Emory University Nucleosides with anti-hepatitis B virus activity
US6372725B1 (en) * 1995-02-16 2002-04-16 Harald Zilch Specific lipid conjugates to nucleoside diphosphates and their use as drugs
US6316425B1 (en) * 1995-07-25 2001-11-13 Norsk Hydro Asa Therapeutic agents
US6576636B2 (en) * 1996-05-22 2003-06-10 Protarga, Inc. Method of treating a liver disorder with fatty acid-antiviral agent conjugates
US6384019B1 (en) * 1997-01-24 2002-05-07 Norsk Hydro Asa Gemcitabine derivatives
US6670341B1 (en) * 1999-10-28 2003-12-30 Wake Forest University Health Sciences Compositions and methods for double-targeting virus infections and targeting cancer cells
US6566365B1 (en) * 1999-11-04 2003-05-20 Biochem Pharma Inc. Method for the treatment of Flaviviridea viral infection using nucleoside analogues
US20030013660A1 (en) * 2000-10-13 2003-01-16 Shire Biochem Inc. Dioxolane analogs for improved inter-cellular delivery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090163564A1 (en) * 2005-12-28 2009-06-25 Translational Therapeutics, Inc. Translational Dysfunction Based Therapeutics
US8497292B2 (en) 2005-12-28 2013-07-30 Translational Therapeutics, Inc. Translational dysfunction based therapeutics
US10472677B2 (en) 2005-12-28 2019-11-12 Translational Therapeutics, Inc. Translational dysfunction based therapeutics
US20090209482A1 (en) * 2007-09-26 2009-08-20 Mount Sinai School Of Medicine Azacytidine analogues and uses thereof
US20090209477A1 (en) * 2007-09-26 2009-08-20 Mount Sinai School Of Medicine Azacytidine analogues and uses thereof
US8158605B2 (en) 2007-09-26 2012-04-17 Mount Sinai School Of Medicine Azacytidine analogues and uses thereof
US8399420B2 (en) 2007-09-26 2013-03-19 Mount Sanai School of Medicine Azacytidine analogues and uses thereof

Also Published As

Publication number Publication date
NO20055841D0 (no) 2005-12-08
NZ569140A (en) 2010-07-30
NO20055841L (no) 2007-06-11
KR101425228B1 (ko) 2014-08-06
US8349834B2 (en) 2013-01-08
RU2008127495A (ru) 2010-01-20
CA2632280A1 (en) 2007-06-14
AU2006323278A1 (en) 2007-06-14
EP1968971A4 (en) 2012-01-25
TW200728296A (en) 2007-08-01
UA94074C2 (ru) 2011-04-11
TWI382978B (zh) 2013-01-21
WO2007067071A1 (en) 2007-06-14
EP1968971A1 (en) 2008-09-17
US20100062996A1 (en) 2010-03-11
KR20080086481A (ko) 2008-09-25
AU2006323278B2 (en) 2012-08-09
IL191981A0 (en) 2008-12-29
JP2009518393A (ja) 2009-05-07
RU2418795C2 (ru) 2011-05-20
EP1968971B1 (en) 2013-03-27
JP5185823B2 (ja) 2013-04-17
ZA200805522B (en) 2009-04-29
NO324263B1 (no) 2007-09-17

Similar Documents

Publication Publication Date Title
AU2018217236B2 (en) Synthesis of polycyclic-carbamoylpyridone compounds
EP2891658B1 (en) Tenofovir prodrug and pharmaceutical uses thereof
EP3369738B1 (en) Method for making nicotinoyl ribosides and nicotinamide beta-riboside
US9422321B2 (en) Pyrimidine nucleoside derivatives, synthesis methods and uses thereof for preparing anti-tumor and anti-virus medicaments
EP2947070B1 (en) Multi-targeted ubenimex prodrug derivative and preparation method and use thereof
US20080132525A1 (en) Inhibitors of DNA Methyltransferase
JP6769000B2 (ja) 4’−チオヌクレオシドの新規な化合物、並びにその調製方法、その医薬組成物及びその用途
RU2413731C2 (ru) Новые растворимые в воде пролекарства
US8349834B2 (en) Dioxolane derivates for the treatment of cancer
RU2731385C1 (ru) Макрогетероциклические нуклеозидные производные и их аналоги, получение и применение
KR100537032B1 (ko) 경구 활성 a1 아데노신 수용체 작용제
EP1938823A1 (en) Agent for preventing or treating pancreas cancer, ovary cancer or liver cancer containing novel water-soluble prodrug
TW200817014A (en) 3'-ethynylcytidine derivative
US20170114087A1 (en) Method of preparation of antiviral compounds and useful intermediates thereof
US20200317711A1 (en) Cytarabine prodrug nucleoside cyclic phosphate compound based on liverspecific delivery and use
Liang et al. 5′-O-Aliphatic and amino acid ester prodrugs of (−)-β-d-(2R, 4R)-dioxolane-thymine (DOT): Synthesis, anti-HIV activity, cytotoxicity and stability studies
CN116199730A (zh) 4-硫代尿嘧啶核糖核苷磷酸酯化合物及其制备方法和应用
KR20000020792A (ko) 신규 2,5-피리딘디카복실산 유도체

Legal Events

Date Code Title Description
AS Assignment

Owner name: CLAVIS PHARMA AS, NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MYHREN, FINN;SANDVOLD, MARIT LILAND;HAGEN, STEINAR;AND OTHERS;REEL/FRAME:017710/0594

Effective date: 20051220

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION