US20070072974A1 - Antistatic polymer composition and moldings thereof - Google Patents
Antistatic polymer composition and moldings thereof Download PDFInfo
- Publication number
- US20070072974A1 US20070072974A1 US11/386,144 US38614406A US2007072974A1 US 20070072974 A1 US20070072974 A1 US 20070072974A1 US 38614406 A US38614406 A US 38614406A US 2007072974 A1 US2007072974 A1 US 2007072974A1
- Authority
- US
- United States
- Prior art keywords
- ion
- group
- polymer
- composition
- antistatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 71
- 239000000203 mixture Substances 0.000 title claims abstract description 60
- 238000000465 moulding Methods 0.000 title claims abstract description 25
- -1 polyoxymethylene Polymers 0.000 claims abstract description 76
- 150000002500 ions Chemical class 0.000 claims abstract description 33
- 239000004014 plasticizer Substances 0.000 claims abstract description 31
- 239000002322 conducting polymer Substances 0.000 claims abstract description 27
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 27
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 19
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 16
- 229920000728 polyester Polymers 0.000 claims abstract description 16
- 239000004952 Polyamide Substances 0.000 claims abstract description 10
- 229920002647 polyamide Polymers 0.000 claims abstract description 10
- 239000004793 Polystyrene Substances 0.000 claims abstract description 9
- 229920002223 polystyrene Polymers 0.000 claims abstract description 9
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 8
- 229920006380 polyphenylene oxide Polymers 0.000 claims abstract description 8
- 239000004734 Polyphenylene sulfide Substances 0.000 claims abstract description 6
- 239000004417 polycarbonate Substances 0.000 claims abstract description 6
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 6
- 229920000069 polyphenylene sulfide Polymers 0.000 claims abstract description 6
- 229930040373 Paraformaldehyde Natural products 0.000 claims abstract description 5
- 229920006324 polyoxymethylene Polymers 0.000 claims abstract description 5
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims description 19
- 125000004432 carbon atom Chemical group C* 0.000 claims description 17
- 239000005871 repellent Substances 0.000 claims description 14
- 239000002253 acid Substances 0.000 claims description 11
- 125000002252 acyl group Chemical group 0.000 claims description 10
- 229920000570 polyether Polymers 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 8
- 239000004215 Carbon black (E152) Substances 0.000 claims description 7
- 239000004698 Polyethylene Substances 0.000 claims description 7
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims description 7
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 7
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 7
- 229930195733 hydrocarbon Natural products 0.000 claims description 7
- 239000005518 polymer electrolyte Substances 0.000 claims description 7
- 239000007784 solid electrolyte Substances 0.000 claims description 7
- 150000003460 sulfonic acids Chemical class 0.000 claims description 7
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 6
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 claims description 6
- 125000003435 aroyl group Chemical group 0.000 claims description 6
- 229920000620 organic polymer Polymers 0.000 claims description 6
- 229920006146 polyetheresteramide block copolymer Polymers 0.000 claims description 6
- 229910001414 potassium ion Inorganic materials 0.000 claims description 6
- 229910001415 sodium ion Inorganic materials 0.000 claims description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 5
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 5
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims description 5
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910001416 lithium ion Inorganic materials 0.000 claims description 5
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 5
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 229920003244 diene elastomer Polymers 0.000 claims description 3
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims description 3
- 238000010422 painting Methods 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 229920005606 polypropylene copolymer Polymers 0.000 claims description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims 2
- 229910001424 calcium ion Inorganic materials 0.000 claims 2
- 229910001431 copper ion Inorganic materials 0.000 claims 2
- 229920002943 EPDM rubber Polymers 0.000 claims 1
- 150000003377 silicon compounds Chemical class 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 36
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 25
- 125000003118 aryl group Chemical group 0.000 description 18
- 229920001577 copolymer Polymers 0.000 description 13
- 239000004094 surface-active agent Substances 0.000 description 11
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 10
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000003365 glass fiber Substances 0.000 description 8
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 8
- 230000000379 polymerizing effect Effects 0.000 description 8
- 229920001296 polysiloxane Chemical class 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 150000004984 aromatic diamines Chemical class 0.000 description 7
- 230000005611 electricity Effects 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- 230000003068 static effect Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical group OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 6
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000006068 polycondensation reaction Methods 0.000 description 5
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 4
- 239000002216 antistatic agent Substances 0.000 description 4
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 4
- 238000013329 compounding Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 229920001707 polybutylene terephthalate Polymers 0.000 description 4
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 4
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 3
- KAUQJMHLAFIZDU-UHFFFAOYSA-N 6-Hydroxy-2-naphthoic acid Chemical group C1=C(O)C=CC2=CC(C(=O)O)=CC=C21 KAUQJMHLAFIZDU-UHFFFAOYSA-N 0.000 description 3
- JOPQGVJMGZXPIP-UHFFFAOYSA-N BCCC(C)C Chemical compound BCCC(C)C JOPQGVJMGZXPIP-UHFFFAOYSA-N 0.000 description 3
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 3
- 229920000106 Liquid crystal polymer Polymers 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 229920003182 Surlyn® Polymers 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000013034 phenoxy resin Substances 0.000 description 3
- 229920006287 phenoxy resin Polymers 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 2
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 2
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- XKZQKPRCPNGNFR-UHFFFAOYSA-N 2-(3-hydroxyphenyl)phenol Chemical compound OC1=CC=CC(C=2C(=CC=CC=2)O)=C1 XKZQKPRCPNGNFR-UHFFFAOYSA-N 0.000 description 2
- IJFXRHURBJZNAO-UHFFFAOYSA-N 3-hydroxybenzoic acid Chemical group OC(=O)C1=CC=CC(O)=C1 IJFXRHURBJZNAO-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 239000004609 Impact Modifier Substances 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- IPRJXAGUEGOFGG-UHFFFAOYSA-N N-butylbenzenesulfonamide Chemical compound CCCCNS(=O)(=O)C1=CC=CC=C1 IPRJXAGUEGOFGG-UHFFFAOYSA-N 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- 238000007730 finishing process Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 229920000554 ionomer Polymers 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 229940018564 m-phenylenediamine Drugs 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000113 methacrylic resin Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- RLMGYIOTPQVQJR-WDSKDSINSA-N (1s,3s)-cyclohexane-1,3-diol Chemical compound O[C@H]1CCC[C@H](O)C1 RLMGYIOTPQVQJR-WDSKDSINSA-N 0.000 description 1
- AQPHBYQUCKHJLT-UHFFFAOYSA-N 1,2,3,4,5-pentabromo-6-(2,3,4,5,6-pentabromophenyl)benzene Chemical group BrC1=C(Br)C(Br)=C(Br)C(Br)=C1C1=C(Br)C(Br)=C(Br)C(Br)=C1Br AQPHBYQUCKHJLT-UHFFFAOYSA-N 0.000 description 1
- LJDGJCNHVGGOFW-UHFFFAOYSA-N 1,2,3,4,5-pentabromo-6-(2-bromophenoxy)benzene Chemical compound BrC1=CC=CC=C1OC1=C(Br)C(Br)=C(Br)C(Br)=C1Br LJDGJCNHVGGOFW-UHFFFAOYSA-N 0.000 description 1
- ORYGKUIDIMIRNN-UHFFFAOYSA-N 1,2,3,4-tetrabromo-5-(2,3,4,5-tetrabromophenoxy)benzene Chemical compound BrC1=C(Br)C(Br)=CC(OC=2C(=C(Br)C(Br)=C(Br)C=2)Br)=C1Br ORYGKUIDIMIRNN-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- GYHPTPQZVBYHLC-UHFFFAOYSA-N 2-[2-[2-[2-(2-ethylhexanoyloxy)ethoxy]ethoxy]ethoxy]ethyl 2-ethylhexanoate Chemical compound CCCCC(CC)C(=O)OCCOCCOCCOCCOC(=O)C(CC)CCCC GYHPTPQZVBYHLC-UHFFFAOYSA-N 0.000 description 1
- AWFYPPSBLUWMFQ-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(1,4,6,7-tetrahydropyrazolo[4,3-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=C2 AWFYPPSBLUWMFQ-UHFFFAOYSA-N 0.000 description 1
- ZPXGNBIFHQKREO-UHFFFAOYSA-N 2-chloroterephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(Cl)=C1 ZPXGNBIFHQKREO-UHFFFAOYSA-N 0.000 description 1
- XGJHPGPVESLKKD-UHFFFAOYSA-N 2-ethylbutane-1,4-diamine Chemical compound CCC(CN)CCN XGJHPGPVESLKKD-UHFFFAOYSA-N 0.000 description 1
- LODHFNUFVRVKTH-ZHACJKMWSA-N 2-hydroxy-n'-[(e)-3-phenylprop-2-enoyl]benzohydrazide Chemical group OC1=CC=CC=C1C(=O)NNC(=O)\C=C\C1=CC=CC=C1 LODHFNUFVRVKTH-ZHACJKMWSA-N 0.000 description 1
- VXGAPBLISGTEKE-UHFFFAOYSA-N 2-methylbenzenesulfonamide;4-methylbenzenesulfonamide Chemical compound CC1=CC=C(S(N)(=O)=O)C=C1.CC1=CC=CC=C1S(N)(=O)=O VXGAPBLISGTEKE-UHFFFAOYSA-N 0.000 description 1
- JZUHIOJYCPIVLQ-UHFFFAOYSA-N 2-methylpentane-1,5-diamine Chemical compound NCC(C)CCCN JZUHIOJYCPIVLQ-UHFFFAOYSA-N 0.000 description 1
- UFMBOFGKHIXOTA-UHFFFAOYSA-N 2-methylterephthalic acid Chemical compound CC1=CC(C(O)=O)=CC=C1C(O)=O UFMBOFGKHIXOTA-UHFFFAOYSA-N 0.000 description 1
- WRWOYKPAJDIBLG-UHFFFAOYSA-N 2-tert-butylterephthalic acid Chemical compound CC(C)(C)C1=CC(C(O)=O)=CC=C1C(O)=O WRWOYKPAJDIBLG-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- CWLKGDAVCFYWJK-UHFFFAOYSA-N 3-aminophenol Chemical compound NC1=CC=CC(O)=C1 CWLKGDAVCFYWJK-UHFFFAOYSA-N 0.000 description 1
- 229940018563 3-aminophenol Drugs 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- SMAMQSIENGBTRV-UHFFFAOYSA-N 5-hydroxynaphthalene-2-carboxylic acid Chemical group OC1=CC=CC2=CC(C(=O)O)=CC=C21 SMAMQSIENGBTRV-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 239000004803 Di-2ethylhexylphthalate Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910003202 NH4 Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920009382 Polyoxymethylene Homopolymer Polymers 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-N Salicylic acid Chemical group OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 1
- XZAHJRZBUWYCBM-UHFFFAOYSA-N [1-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1(CN)CCCCC1 XZAHJRZBUWYCBM-UHFFFAOYSA-N 0.000 description 1
- QLBRROYTTDFLDX-UHFFFAOYSA-N [3-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCCC(CN)C1 QLBRROYTTDFLDX-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 1
- 150000001463 antimony compounds Chemical class 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 1
- PFURGBBHAOXLIO-OLQVQODUSA-N cis-cyclohexane-1,2-diol Chemical compound O[C@H]1CCCC[C@H]1O PFURGBBHAOXLIO-OLQVQODUSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- GEQHKFFSPGPGLN-UHFFFAOYSA-N cyclohexane-1,3-diamine Chemical compound NC1CCCC(N)C1 GEQHKFFSPGPGLN-UHFFFAOYSA-N 0.000 description 1
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 description 1
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 1
- WHHGLZMJPXIBIX-UHFFFAOYSA-N decabromodiphenyl ether Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1OC1=C(Br)C(Br)=C(Br)C(Br)=C1Br WHHGLZMJPXIBIX-UHFFFAOYSA-N 0.000 description 1
- YQLZOAVZWJBZSY-UHFFFAOYSA-N decane-1,10-diamine Chemical compound NCCCCCCCCCCN YQLZOAVZWJBZSY-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- PWSKHLMYTZNYKO-UHFFFAOYSA-N heptane-1,7-diamine Chemical compound NCCCCCCCN PWSKHLMYTZNYKO-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 150000005165 hydroxybenzoic acids Chemical group 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- VKHLCNWQYFQMLQ-UHFFFAOYSA-M lithium octacosanoate Chemical compound [Li+].CCCCCCCCCCCCCCCCCCCCCCCCCCCC([O-])=O VKHLCNWQYFQMLQ-UHFFFAOYSA-M 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- WNSXUAGCWVZDQC-UHFFFAOYSA-N n-ethylbenzenesulfonamide Chemical compound CCNS(=O)(=O)C1=CC=CC=C1 WNSXUAGCWVZDQC-UHFFFAOYSA-N 0.000 description 1
- SVDVKEBISAOWJT-UHFFFAOYSA-N n-methylbenzenesulfonamide Chemical compound CNS(=O)(=O)C1=CC=CC=C1 SVDVKEBISAOWJT-UHFFFAOYSA-N 0.000 description 1
- ABMFBCRYHDZLRD-UHFFFAOYSA-N naphthalene-1,4-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1 ABMFBCRYHDZLRD-UHFFFAOYSA-N 0.000 description 1
- DFFZOPXDTCDZDP-UHFFFAOYSA-N naphthalene-1,5-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1C(O)=O DFFZOPXDTCDZDP-UHFFFAOYSA-N 0.000 description 1
- SXJVFQLYZSNZBT-UHFFFAOYSA-N nonane-1,9-diamine Chemical compound NCCCCCCCCCN SXJVFQLYZSNZBT-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical class [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- 229920009441 perflouroethylene propylene Polymers 0.000 description 1
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- YKIBJOMJPMLJTB-UHFFFAOYSA-M sodium;octacosanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCCCCCCCCCCCC([O-])=O YKIBJOMJPMLJTB-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 150000008054 sulfonate salts Chemical group 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000001814 trioxo-lambda(7)-chloranyloxy group Chemical group *OCl(=O)(=O)=O 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- NSBGJRFJIJFMGW-UHFFFAOYSA-N trisodium;stiborate Chemical compound [Na+].[Na+].[Na+].[O-][Sb]([O-])([O-])=O NSBGJRFJIJFMGW-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/16—Anti-static materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0075—Antistatics
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L55/00—Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
- C08L55/02—ABS [Acrylonitrile-Butadiene-Styrene] polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
- C08L71/123—Polyphenylene oxides not modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/12—Polyester-amides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0869—Acids or derivatives thereof
- C08L23/0876—Neutralised polymers, i.e. ionomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
Definitions
- the present invention relates to an antistatic polymer composition used to mold parts for which an antistatic effect is demanded, such as the transfer medium-separating guide parts of electrophotographic devices such as copiers and laser printers, which are placed at specific locations to guide the transfer medium, e.g., paper or polyester film, to which the electrostatic latent image is transferred, from the light-sensitive drum to the transfer zone and also to the fixing roller and to convey it from the device. More specifically, it relates to an antistatic polymer composition that can maintain its antistatic effect permanently due to the combination of an ion-conducting polymer, an ion source, and a plasticizer of the ion-conducting polymer, and also to moldings thereof.
- Polymers such as polyesters and polyamides are widely used in various fields such as packaging materials, electrical/electronic parts, and automotive parts.
- the moldings are likely to become charged electrostatically, so they cause static electricity problems.
- the transfer medium-separating guide parts placed at specific locations in electrophotographic devices such as copiers and laser printers cause paper jams when the paper becomes difficult to separate because of static electricity.
- a low-molecular-weight antistatic agent composed mainly of surfactant was incorporated into the polymer at the molding process or applied to the molding's surface in a finishing process in order to control the surface specific resistance of the molding to 10 13 -10 8 ⁇ .
- the antistatic effect of surfactants is brought about by the equilibrium moisture adsorbed on the surfactant, so a sufficient antistatic effect was not manifested under low humidity. Also, the surfactant is removed by rubbing back and forth or washing, and the antistatic effect disappears.
- polymers in which conductive materials such as conductive carbon fibers or metal fibers are incorporated as filler, polymers in which hydrophilic or conductive monomers are incorporated by copolymerization to lower the electrical resistance of the polymer itself, and polymers rendered antistatic by alloying a hydrophilic polymer in the polymer have been developed.
- various antistatic agents such as polyether systems, quaternary ammonium salt systems, sulfonic acid systems, and betaine systems have been introduced as permanent antistatic agents for addition to polymers ( Plastics Age , November 1993, published by Plastics Age Co.).
- antistatic polyester compositions include an antistatic polymer composition obtained by compounding a thermoplastic resin with at least one polyoxyalkylene glycol or derivative thereof, a monomer unit comprising a vinyl-system unsaturated sulfonic acid or salt thereof, and a vinyl-system polymer to which an unsaturated aliphatic carboxylic acid alkyl ester with an alkyl group having 1-15 carbon atoms is bonded (Japanese Patent Application Kokai Publication Sho 60-202150); a polyester film with an antistatic effect obtained by compounding polyethylene terephthalate with a polyethylene glycol having a weight-average molecular weight of 4,000 to 50,000, an alkali metal salt of an alkylsulfonic acid, and an alkali metal salt of alkylbenzenesulforic acid (Japanese Patent Application Publication Hei 2-232257); a polymer mixture containing polyester and a copolyetherester block copolymer with a polyether block derived from poly(propylene
- the problem addressed by this invention is to provide an antistatic polymer composition that makes it possible for moldings to manifest a uniform antistatic effect permanently with little change in surface resistance owing to humidity. More specifically, the problem addressed by this invention is to provide an antistatic polymer composition that is ideally used for polymer moldings where static electricity is a problem, such as the transfer medium-separating guide parts placed at specific locations in electrophotographic devices.
- Another object is to provide a polymer composition giving further water-repellency with maintaining excellent antistatic effect by reducing changes in surface resistivity of molded article therefrom, which is useful in moldings requiring both antistatic effect and water-repellency.
- the present inventors discovered that an outstanding antistatic effect can be provided by compounding an ion-conducting polymer, an ion source or electrolyte, and a plasticizer of the ion-conducting polymer in the matrix polymer. That is, the antistatic polymer composition according to the first of these inventions is characterized in that it contains
- an ion source comprising (i) a source of at least one carboxyl group or sulfo group selected from the group consisting of hydrocarbon acids containing 6-54 carbon atoms, sulfonic acids and organic polymers with at least one bonded carboxyl group or sulfo group and (ii) a source of at least one metal ion that is selected from the group consisting of sodium ion, potassium ion, lithium ion, magnesium ion, and zinc ion and that can react with the carboxyl group or sulfo group of (i), solid electrolytes or polymer electrolytes; and
- the antistatic polymer composition that is the second invention is characterized in that the above-indicated polyether-system ion-conducting polymer is polyetherester amide.
- the third invention is the antistatic polymer composition of the aforementioned item (1) or (2) characterized in that the aforementioned plasticizer (D) is a plasticizer represented by formula (1): (wherein m is an integer of 1-3, n is an integer of 4-25, A is a C 1 -C 10 alkyl, acyl, or aroyl, B is a C 1 -C 10 alkyl, acyl, or aroyl, and X is H, CH 3 , or C 2 H 5 ).
- the aforementioned plasticizer (D) is a plasticizer represented by formula (1): (wherein m is an integer of 1-3, n is an integer of 4-25, A is a C 1 -C 10 alkyl, acyl, or aroyl, B is a C 1 -C 10 alkyl, acyl, or aroyl, and X is H, CH 3 , or C 2 H 5 ).
- the fourth invention is the antistatic polymer composition of any one of the aforementioned item (1) to (3) characterized in that it contains 40.0-98.4 wt % of polymer (A), 1.0-35.0 wt % of polyether-system ion-conducting polymer (B), 0.1-15.0 wt % of ion source (C), and 0.5-10.0 wt % of plasticizer (D) with respect to the weight of the composition as a whole.
- A one or more polymers selected from the group consisting of ABS (acrylonitrile butadiene styrene), polyethylene, polypropylene, polypropylene copolymer and EPDM (ethylene/propylene/diene) elastomer;
- an ion source comprising (i) a source of at least one carboxyl group or sulfo group being selected from the group consisting of hydrocarbon acids containing 6-54 carbon atoms, sulfonic acids and organic polymers with at least one bonded carboxyl group or sulfo group and (ii) a source of at least one metal ion that is selected from the group consisting of sodium ion, potassium ion, lithium ion, magnesium ion, and zinc ion and that can react with the carboxyl groups or sulfo group of (i), solid electrolytes or polymer electrolytes; and (D) a plasticizer of the aforementioned polyether-system ion-conducting polymer (B).
- the sixth invention is the antistatic polymer composition of any one of the aforementioned item (1) to (5) characterized in further comprising a water-repellent comprising fluorinated compounds, silicone compounds or a mixture thereof.
- Still another invention is moldings such as the transfer medium-separating guide parts for electrophotographic devices and any molded items requiring antistatic effect and water-repellency characterized in that they are molded from the above antistatic polymer composition.
- the antistatic polymer composition of this invention has antistatic properties of at least a degree that can control the surface specific resistance of moldings to 10 13 -10 8 ⁇ .
- Polymer (A) of this invention is one or more polymers selected from the group consisting of polyester, polycarbonate, polyamide, polyoxymethylene, polyphenylene sulfide, and compounds of polyphenylene oxide and polystyrene.
- the polyester is polyethylene terephthalate obtained by polycondensation of ethylene glycol and terephthalic acid, polybutylene terephthalate obtained by polycondensation of butanediol and terephthalic acid, or a copolymer of ethylene terephthalate or polybutylene terephthalate that contains another comonomer component in a range that provides physical or chemical properties.
- comonomer components used in manufacturing the copolymer ethylene glycol, 1,2-propylene glycol, pentanediol, hexanediol, 1,4-cyclohexanedimethanol, and the like can be mentioned as the glycol component and isophthalic acid and naphthalenedicarboxylic acid can be mentioned as the dicarboxylic acid component.
- the intrinsic viscosity of the polyester is 0.3-1.3, preferably 0.5-1.0, more preferably 0.6-0.9.
- polyesters ideally used in this invention are polyethylene terephthalate, polybutylene terephthalate, and compounds of these.
- the polyesters of this invention also include melt-processible polyesters or polyester amides that can form an anisotropic molten phase, generally called thermotropic liquid crystal polymers.
- the constituents of such polymers are aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, aromatic diols, aliphatic diols, aromatic hydroxylamines, and aromatic diamines.
- the melt-processible polyesters or polyester amides that can form an anisotropic molten phase are obtained by polymerizing one of these constituents or by copolymerizing two or more of these constituents.
- aromatic polyesters obtained by polymerizing one or more aromatic hydroxycarboxylic acids aromatic polyesters obtained by polymerizing an aromatic dicarboxylic acid, one or more aliphatic dicarboxylic acid, an aromatic diol, and one or more aliphatic diols; aromatic polyesters obtained by polymerizing an aromatic hydroxycarboxylic acid as the main component and one or more components selected from the group consisting of aromatic dicarboxylic acids, aliphatic dicarboxylic acids, aromatic diols, and aliphatic diols; aromatic polyester amides obtained by polymerizing an aromatic hydroxylamine, one or more aromatic diamines, and one or more aromatic hydroxycarboxylic acids; aromatic polyester amides obtained by polymerizing an aromatic hydroxylamine, one or more aromatic diamines, one or more aromatic hydroxycarboxylic acids, an aromatic dicarboxylic acid, and one or more aliphatic carboxylic acid; and aromatic polyester amides obtained by polymerizing an aromatic hydroxycarboxylic acids
- aromatic hydroxycarboxylic acids 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and 5-hydroxy-2-naphthoic acid, and hydroxybenzoic acids substituted with halogens, alkyls, and aryls can be mentioned.
- aromatic dicarboxylic acids terephthalic acid, isophthalic acid, 3,3N-diphenyldicarboxylic acid, 4,4 N-diphenyldicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and alkyl- and halogen-substituted aromatic dicarboxylic acids such as tert-butylterephthalic acid and chloroterephthalic acid can be mentioned.
- aliphatic dicarboxylic acids cyclic aliphatic dicarboxylic acids such as trans-1,4-cyclohexanedicarboxylic acid, cis-1,4-cyclohexanedicarboxylic acid, and 1,3-cyclohexanedicarboxylic acid and substituted derivatives of these can be mentioned.
- aromatic diols the following can be mentioned: hydroquinone, diphenol, 4,4 N-dihydroxydiphenyl ether, 3,4 N-dihydroxydiphenyl ether, bisphenol A, 3,4 N-dihydroxydiphenylmethane, 3,3 N-dihydroxydiphenylmethane, 4,4 N-dihydroxydiphenylsulfone, 3,4 N-dihydroxy-diphenylsulfone, 4,4 N-dihydroxydiphenyl sulfide, 3,4 N-dihydroxydiphenyl sulfide, 2,6 N-naphthalenediol, 1,6 N-naphthalenediol, 4,4 N-dihydroxybenzophenone, 3,4 N-dihydroxybenzophenone, 3,3 N-dihydroxybenzophenone, 4,4 N-dihydroxydiphenyldimethylsilane, and alkyl- and halogen-substituted derivatives of these.
- aliphatic diols such as trans-1,4-hexanediol, cis-1,4-hexanediol, trans-1,3-cyclohexanediol, cis-1,2-cyclohexanediol, ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, trans-1,4-cyclohexanedimethanol, cis-1,4-cyclohexanedimethanol, and cis-1,4-cyclohexanedimethanol and substituted derivatives of these can be mentioned.
- aromatic hydroxylamines and aromatic diamines 4-aminophenol, 3-aminophenol, p-phenylenediamine, and m-phenylenediamine, and substituted derivatives of these can be mentioned.
- the liquid crystal polymers used in this invention generally have a number-average molecular weight of approximately 2,000-200,000, preferably 5,000-50,000, and more preferably 10,000-20,000.
- the liquid crystal polymers ideally used in this invention are copolymers of 4-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and copolymers of hydroquinone, diphenol, terephthalic acid, 2,6-naphthalenedicarboxylic acid, 4-hydroxybenzoic acid, and 6-hydroxy-2-naphthoic acid.
- the polyamide that is another matrix polymer of this invention is obtained by polycondensation of a diamine component and a dicarboxylic acid component.
- polyamides obtained by polymerizing one or more diamines selected from the group consisting of aliphatic alkylenediamines, aromatic diamines, and alicyclic diamines and one or more dicarboxylic acid selected from the group consisting of aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and aliphatic aminocarboxylic acids, and compounds of these can be mentioned.
- the aliphatic alkylenediamine may be linear or branched.
- ethylenediamine, trimethylenediamine, tetramethylenediamine pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 2-methylpentamethylenediamine, and 2-ethyltetramethylenediamine can be mentioned.
- These aliphatic alkylenediamines can be used alone, or two or more can be used combined.
- the aromatic diamines may be used alone, or two or more may be used combined.
- p-phenylenediamine, o-phenylenediamine, m-phenylenediamine, p-xylenediamine, and m-xylenediamine can be mentioned.
- 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,3-bis(aminomethyl)cyclohexane, bis(aminomethyl)cyclohexane, bis(4-aminocyclohexyl)methane, 4,4N-diamino-3,3N-dimethyldicyclohexylmethane, isophoronediamine, and piperazine can be mentioned. These can be used alone, or two or more can be used combined.
- aliphatic dicarboxylic acids adipic acid, sebacic acid, azelaic acid, and dodecanedioic acid can be mentioned. These can be used alone, or two or more can be used combined.
- aromatic dicarboxylic acids terephthalic acid, isophthalic acid, phthalic acid, 2-methylterephthalic acid, and naphthalenedicarboxylic acid can be mentioned, and as an example of aromatic aminocarboxylic acids, p-aminobenzoic acid can be mentioned.
- aromatic monomers can be used alone, or two or more can be used combined.
- aminocarboxylic acids As specific examples of aminocarboxylic acids, ,-aminocaproic acid and T-aminoundecanoic acid can be mentioned. These can be used alone, or two or more can be used combined.
- the number-average molecular weight of the polyamide is 2,000-50,000, preferably 5,000-40,000, and still more preferably 7,000-30,000.
- the polyamides ideally used in this invention are nylon 66, nylon 6, copolymer of nylon 66 and nylon 6, and compounds of these.
- Polycarbonates are obtained by the ester-exchange method, which reacts bisphenol A with diphenyl carbonate in a molten state, and by the solution polycondensation method, which reacts bisphenol A with phosgene in pyridine as solvent and acid-acceptor.
- the number-average molecular weight of the polycarbonate is 6,000-100,000, preferably 10,000-80,000, and still more preferably 15,000-50,000.
- Polyoxymethylene homopolymer is obtained by polymerization of formaldehyde, and copolymer is obtained by polymerization of trioxane with a cyclic ether or cyclic formal.
- the number-average molecular weight of polyoxymethylene is 8,000-150,000, preferably 12,000-100,000, and still more preferably 20,000-80,000 for both homopolymer and copolymer.
- Polyphenylene sulfide is obtained by reacting p-dichlorobenzene and sodium sulfide in a polar solvent such as N-methylpyrrolidone at a high temperature of 200° C. or above.
- the weight-average molecular weight of polyphenylene sulfide is 5,000-90,000, preferably 8,000-70,000, and still more preferably 10,000-60,000.
- polyphenylene oxide and polystyrene have the property of mutually dissolving completely in all ratios, so they may be mixed in any ratio.
- the compound of polyphenylene oxide and polystyrene ideally used in this invention is a compound for which the weight ratio of polyphenylene oxide to polystyrene is 70:30 to 50:50.
- suitable matrix polymers of the present invention may be, for example, ABS (acrylonitrile butadiene styrene), polyethylene, polypropylene, polypropylene copolymer and EPDM(ethylene/propylene/diene) elastomer.
- Ion-conducting polymer (B) used in this invention is a polyether-system ion-conducting polymer.
- Polyethers have good compatibility with the matrix polymers, polyester and polyamide, so a uniform antistatic effect can be provided to the surface of moldings.
- polyethylene oxide, polyetherester amide, polyetheramideimide, ethylene oxide-epihalohydrin copolymer, and methoxypolyethylene glycol (meth)acrylate copolymer can be mentioned.
- Polyethers of low degree of crystallization are preferred, and polyetherester amides are especially preferred.
- the content of the polyether-system ion-conducting polymer is 1.0-35.0 wt %, preferably 3.0-20.0 wt %, and still more preferably 4.5-12.5 wt %, with respect to the weight of the composition. If less than 1.0 wt %, the antistatic effect will be insufficient, and if more than 35.0 wt %, this will lead to a decline in mechanical properties.
- Ion source (C) used in this invention comprises
- a source of at least one carboxyl group or sulfo group selected from the group composed of hydrocarbon acids with 6-54 carbon atoms, sulfonic acids and organic polymers with at least one bonded carboxyl group or sulfo group and
- a source of at least one metal ion that is selected from the group composed of sodium ion, potassium ion, lithium ion, magnesium ion, and zinc ion and that can react with the carboxyl groups or sulfo group of (i), solid electrolytes or polymer electrolytes.
- Solid electrolytes or polymer electrolytes are used instead of the ion source comprising the source of carboxyl group or sulfo group defined (i) and metal ion source defined (ii) in the antistatic polymer composition of this invention according to the intended application of use.
- the solid electrolytes include chemical composition which is expressed by XY or XW2 wherein X is Li, Na, K, or NH 4 , Y is ClO4, I, BF 4 , or CF3SO3 and W is Mg, Ca, Zn, or Cu.
- polymer electrolytes capable of being used in this invention represent a wide range of compositions that can, for example, be polystyrenesulfonic acid sodium salt and acrylate copolymer ammonium salt.
- ions can be sufficiently supplied to the aforementioned ion-conducting polymer, so the ion-conducting polymer can sufficiently manifest an antistatic effect.
- carboxyl-group or sulfo group source (i) is a source of at least one carboxyl group or sulfo group [selected from the group] consisting of hydrocarbon acids containing 7 6-25 carbon atoms, sulfonic acids and organic polymers that contain pendant carboxyl groups or sulfo groups.
- ionomers composed of organic ionic hydrocarbon copolymers of ⁇ -olefins with 2-5 carbon atoms and ⁇ , ⁇ -ethylenically unsaturated carboxylic acids with 3-5 carbon atoms whose carboxyl groups are at least partially neutralized with sodium or potassium cations are ideally used.
- Suitable ionomers contain (i) polyethylene terephthalate and/or polybutylene terephthalate oligomer and (ii) a substance derived from a sodium and/or potassium ion source that can react with the oligomer-like carboxyl end groups of (i).
- the content of the ion source is 0.1-15.0 wt %, preferably 0.3-12.0 wt %, more preferably 1.0-8.0 wt %, with respect to the weight of the composition. If less than 0.1 wt %, the antistatic effect will be insufficient, and if more than 15.0 wt %, this will lead to a decline in mechanical properties.
- the ion source contains a sufficient amount of the metal ion source that the concentration of metal in the composition will be greater than 1.0 wt %.
- Plasticizer (D) used in this invention has a plasticizing effect on the polyether-system ion-conducting polymer used.
- phthalate ester plasticizers such as dimethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, and di-2-ethylhexyl phthalate
- phosphate ester plasticizers such as tricresyl phosphate and triphenyl phosphate
- sulfonamide plasticizers such as o,p-toluenesulfonamide, N-ethyl-o,p-toluenesulfonamide, N-methylbenzenesulfonamide, N-ethylbenzenesulfonamide, and N-butylbenzenesulfonamide
- polyether system plasticizers can be mentioned.
- the preferred plasticizer is represented by formula (1): wherein m is an integer of 1-3, n is an integer of 4-25, A is a C 1 -C 10 alkyl, acyl, or aroyl, B is a C 1 -C 10 alkyl, acyl, or aroyl, and X is H, CH 3 , or C 2 H 5 .
- composition of this invention contains a plasticizer, the ions can easily move under high-temperature conditions, so the higher the temperature at which the molding is used, the more outstanding the antistatic effect that can be manifested.
- the preferred plasticizer is obtained when m is 1, or n is 4-14, or X is H, and especially when m is 1, n is 4-14, and also X is H.
- the more preferred plasticizer is obtained when m is 1, or n is 7-13, or X is H, or A is an acyl with 8 carbon atoms or methyl, or B is an acyl with 8 carbon atoms, and especially when m is 1, n is 7-13, X is H, A is an acyl with 8 carbon atoms or methyl, and B is an acyl with 8 carbon atoms.
- the amount of plasticizer contained is 0.5-10.0 wt %, preferably 1.0-8.0 wt %, and still more preferably 2.0-6.0 wt % with respect to the weight of the composition. If less than 0.5 wt %, the antistatic effect will not be sufficient, and if more than 10.0 wt %, this will lead to a decline in mechanical properties.
- flame retardants can be mixed in the composition of this invention.
- brominated flame retardants such as polydibromostyrene, polytribromostyrene, polypentabromostyrene, decabromodiphenyl, tetrabromodiphenyl, hexabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromodiphenyl sulfide, polypentabromobenzyl acrylate, brominated phenoxy resin, and epoxy-terminated phenoxy resin [sic] can be mentioned. Epoxy-terminated phenoxy resin [sic] and brominated polystyrene are preferred.
- the loading of flame retardant is usually 7-20 wt % based on the weight of the composition.
- antimony compounds well known as flame-retarding assistants, such as antimony oxides and sodium antimonate, may be compounded.
- Inorganic fillers commonly used to reinforce engineering plastics can also be compounded.
- glass fibers, carbon fibers, potassium titanate, whiskers, kaolin, clay, talc, wollastonite, calcium carbonate, silica, and mica can be mentioned. Glass fibers are ideally used.
- the loading of inorganic filler is usually 5-60 wt % based on the weight of the composition.
- composition of this invention may be compounded with commonly used additives such as impact modifiers, heat stabilizers, antioxidants, dyes, pigments, and release agents in ranges that do not impair its properties.
- additives such as impact modifiers, heat stabilizers, antioxidants, dyes, pigments, and release agents in ranges that do not impair its properties.
- water-repellents such as fluorinated compounds, silicone compounds or chemical compositions thereof that have low surface free energy and well know in the art, in appropriate amounts in addition to the aforementioned antistatic polymer composition of this invention.
- a low-molecular-weight antistatic agent composed mainly of surfactant incorporated into the polymer at the molding process or applied to the molding's surface in a finishing process, it may be able to improve sliding characteristics by reducing coefficient of kinetic friction, but can easily cause static electricity resulting into static electricity problem.
- water-repellents examples include PTFE,PFA,FEP,ETFE, modified silicone such as silicone oil, silicone gum, amino-modified silicone and epoxy-modified silicone, fluorosilicone and perfluoroalkyl group containing oligomer.
- the polymer composition of this invention can be manufactured by any well-known method used in the past. For example, it can be melt blended using the mixing devices generally used, such as the Banbury mixer, extruders, and various kneaders. With respect to the order of blending, all the components may be blended at the same time, or the ion-conducting polymer, ion source, and plasticizer may be fed from side feeders.
- the mixing devices generally used such as the Banbury mixer, extruders, and various kneaders.
- all the components may be blended at the same time, or the ion-conducting polymer, ion source, and plasticizer may be fed from side feeders.
- composition of this invention can be used to manufacture moldings that are used in devices for which static electricity is a problem, such as the transfer medium-separating guide parts placed at specific locations in electrophotographic devices by a well-known method such as injection molding.
- the antistatic polymer composition of this invention which has surface resistivity in the range of 10 7 to 10 13 ⁇ , as measured according to test method of ASTM D 257 and is capable of being applied an electrostatic painting directly onto surface of the molded article without any primer. Since the molded articles made from the antistatic polymer composition of this invention don't require to be applied any surface treatment agent such as a solution in alcohol containing 0.5 to 1% by weight of surfactant on the surface of the molded article to reduce its surface specific resistance by moisture absorption by the surfactant, the electrostatic painting may be used for the molded artiles made from the antistatis polymer composition of this invention.
- any surface treatment agent such as a solution in alcohol containing 0.5 to 1% by weight of surfactant on the surface of the molded article to reduce its surface specific resistance by moisture absorption by the surfactant
- the components shown in Table 1 were melt blended with a twin-screw extruder (ZSK-40 manufactured by W&P). After water cooling, pellets were manufactured. The pellets obtained were used to mold test pieces (7.5 mm ⁇ 12.5 mm ⁇ 3 mm). The mold temperature and resin temperature when molding were 110° C. and 290° C., respectively.
- test pieces obtained were used to determine surface resistivity and volume resistivity. The results are shown in Table 1. The methods of determination were as follow:
- Polymer Polyethylene terephthalate with an intrinsic viscosity of 0.65 (trade name Rynite manufactured by DuPont).
- Ion-conducting polymer Polyetherester amide copolymer (trade name) Perestat 6321 manufactured by Sanyo Chemical Industries)
- Ion source Sodium-neutralized ethylene-methacrylic acid copolymer with 60% of the carboxylic acid of a copolymer composed of ethylene-methacrylic resin (weight ratio 85/15) neutralized with sodium (trade name Surlyn 8920 manufactured by DuPont)
- Plasticizer Polyethylene glycol 400 bis( 2 -ethylhexanoate) (trade name Rionon DEH-40 manufactured by Lion K.K.)
- Test pieces were molded using a composition comprising 41.0 wt % of polyethylene terephthalate having an intrinsic viscosity of 0.65 (trade name Rynite manufactured by DuPont), 5.5 wt % of polyetherester amide copolymer (trade name Perestat 6321 manufactured by Sanyo Chemical Industry), 3.5 wt % of ethylene-methacrylic acid copolymer neutralized with sodium (trade name Surlyn 8920 manufactured by DuPont), 1.5 wt % of polyethylene glycol 400 bis(2-ethyl-hexanoate) (trade name Rionon DEH-40 manufactured by Lion K.K.), 13,0 wt % of polytribromostyrene (Pyro-chek 68 manufactured by Nissan Ferro), 0.5 wt % of antimony trioxide, and 35.0 wt % of glass fibers (PPG3540 chopped strand) for the practical examples.
- Test pieces were molded using a composition comprising 99.0 wt % of polyethylene terephthalate having an intrinsic viscosity of 0.65 (trade name Rynite manufactured by DuPont) and 1.0 wt % of sodium alkylsulfonate as the comparative examples.
- Example 1 In addition to the matrix polymer, ion-conducting polymer, plasticizer and glass fibers used in Example 1 and Comparative examples 1-5 summarized in Table 1, and additional various ion sources in amount, all as specified in Table 7. The results of surface and volumn restivities measured according to ASTM D257 are also given in Table 7.
- Ion source C Lithium Montanate, commercially available under the tradename Hostmont LiV 103 from Clariant Japan, Inc.
- Ion source D Polystyrenesulfonic acid sodium salt
- Ion source E Lithium Iodide
- Water-repellent B PTFE powder, commercially available under the tradename MP 1500 from DuPont
- Water-repellent C Perfluoroalkyl acrylate-alkylacrylate block copolymer, commercially available under the tradename Megafac 178RM from DaiNippon Ink Co., Ltd.
- Surfactant Alkyl-benzene sulfonic acid sodium salt compound, commercially available under the tradename Chemistat 3033 from Sanyo Kasei Kogyo Inc.
- an antistatic polymer composition that is able to manifest a uniform antistatic effect permanently with little change in the surface resistance of moldings owing to humidity.
- the moldings molded from the polymer composition of this invention are ideally used in devices where static electricity is a problem.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
To provide an antistatic polymer composition that can manifest a uniform antistatic effect permanently with little change in the surface resistance of moldings owing to humidity. Along with a polyether-system ion-conducting polymer, an ion source comprising a source of carboxyl groups and a source of at least one metal ion that can react with these carboxyl groups and a plasticizer of the ion-conducting polymer are compounded in one or more polymers selected from the group consisting of polyester, polycarbonate, polyamide, polyoxymethylene, polyphenylene sulfide, and compounds of polyphenylene oxide and polystyrene.
Description
- The present invention relates to an antistatic polymer composition used to mold parts for which an antistatic effect is demanded, such as the transfer medium-separating guide parts of electrophotographic devices such as copiers and laser printers, which are placed at specific locations to guide the transfer medium, e.g., paper or polyester film, to which the electrostatic latent image is transferred, from the light-sensitive drum to the transfer zone and also to the fixing roller and to convey it from the device. More specifically, it relates to an antistatic polymer composition that can maintain its antistatic effect permanently due to the combination of an ion-conducting polymer, an ion source, and a plasticizer of the ion-conducting polymer, and also to moldings thereof.
- Polymers such as polyesters and polyamides are widely used in various fields such as packaging materials, electrical/electronic parts, and automotive parts. However, the moldings are likely to become charged electrostatically, so they cause static electricity problems. For example, the transfer medium-separating guide parts placed at specific locations in electrophotographic devices such as copiers and laser printers cause paper jams when the paper becomes difficult to separate because of static electricity.
- In the past, a low-molecular-weight antistatic agent composed mainly of surfactant was incorporated into the polymer at the molding process or applied to the molding's surface in a finishing process in order to control the surface specific resistance of the molding to 1013-108Ω. However, the antistatic effect of surfactants is brought about by the equilibrium moisture adsorbed on the surfactant, so a sufficient antistatic effect was not manifested under low humidity. Also, the surfactant is removed by rubbing back and forth or washing, and the antistatic effect disappears.
- Hence, polymers in which conductive materials such as conductive carbon fibers or metal fibers are incorporated as filler, polymers in which hydrophilic or conductive monomers are incorporated by copolymerization to lower the electrical resistance of the polymer itself, and polymers rendered antistatic by alloying a hydrophilic polymer in the polymer have been developed. Also, various antistatic agents such as polyether systems, quaternary ammonium salt systems, sulfonic acid systems, and betaine systems have been introduced as permanent antistatic agents for addition to polymers (Plastics Age, November 1993, published by Plastics Age Co.).
- Specific examples of antistatic polyester compositions include an antistatic polymer composition obtained by compounding a thermoplastic resin with at least one polyoxyalkylene glycol or derivative thereof, a monomer unit comprising a vinyl-system unsaturated sulfonic acid or salt thereof, and a vinyl-system polymer to which an unsaturated aliphatic carboxylic acid alkyl ester with an alkyl group having 1-15 carbon atoms is bonded (Japanese Patent Application Kokai Publication Sho 60-202150); a polyester film with an antistatic effect obtained by compounding polyethylene terephthalate with a polyethylene glycol having a weight-average molecular weight of 4,000 to 50,000, an alkali metal salt of an alkylsulfonic acid, and an alkali metal salt of alkylbenzenesulforic acid (Japanese Patent Application Publication Hei 2-232257); a polymer mixture containing polyester and a copolyetherester block copolymer with a polyether block derived from poly(propylene oxide) glycol having an ethylene oxide content of 15-35 wt % and a number-average molecular weight of 1,500 to 3,000 and capped with ethylene oxide (Japanese Patent Application Kokoku Publication Hei 7-110918); a composition with a permanent antistatic effect comprising polyetherester obtained by polycondensation of an aromatic dicarboxylic acid with 6-20 carbon atoms and/or ester thereof, poly(alkylene oxide) glycol having a number-average molecular weight of 200-50,000, and a glycol with 2-8 carbon atoms and a polycarbonate resin (Japanese Patent Application Kokai Publication Hei 8-245869); a thermoplastic resin composition obtained by compounding an aromatic polycarbonate resin, a block copolyamide resin, an impact modifier, phosphorus-containing compound with a spiro ring structure, and a metal deactivator (Japanese Patent Application Kokai Publication Hei 9-12854); and a permanent antistatic resin composition comprising a polyetherester composed of apara-oriented aromatic dicarboxylic acid component with 4-20 carbon atoms, a specific aromatic diol component ring-substituted with a sulfonate salt group, a glycol component of 2-10 carbon atoms, and a poly(alkylene oxide) component with a number average molecular weight of 200-50,000 and having two ester-forming functional groups in its molecules, and a thermoplastic resin such as ABS (Japanese Patent Application Kokai Publication Hei 9-176497). However, the development of polymer compositions that can manifest a more uniform antistatic effect in the molding's surface is desired.
- The problem addressed by this invention is to provide an antistatic polymer composition that makes it possible for moldings to manifest a uniform antistatic effect permanently with little change in surface resistance owing to humidity. More specifically, the problem addressed by this invention is to provide an antistatic polymer composition that is ideally used for polymer moldings where static electricity is a problem, such as the transfer medium-separating guide parts placed at specific locations in electrophotographic devices.
- Another object is to provide a polymer composition giving further water-repellency with maintaining excellent antistatic effect by reducing changes in surface resistivity of molded article therefrom, which is useful in moldings requiring both antistatic effect and water-repellency.
- As a result of studies to solve such problems, the present inventors discovered that an outstanding antistatic effect can be provided by compounding an ion-conducting polymer, an ion source or electrolyte, and a plasticizer of the ion-conducting polymer in the matrix polymer. That is, the antistatic polymer composition according to the first of these inventions is characterized in that it contains
- (A) one or more polymers selected from the group consisting of polyester, polycarbonate, polyamide, polyoxymethylene, polyphenylene sulfide, and compounds of polyphenylene oxide and polystyrene;
- (B) a polyether-system ion-conducting polymer;
- (C) an ion source comprising (i) a source of at least one carboxyl group or sulfo group selected from the group consisting of hydrocarbon acids containing 6-54 carbon atoms, sulfonic acids and organic polymers with at least one bonded carboxyl group or sulfo group and (ii) a source of at least one metal ion that is selected from the group consisting of sodium ion, potassium ion, lithium ion, magnesium ion, and zinc ion and that can react with the carboxyl group or sulfo group of (i), solid electrolytes or polymer electrolytes; and
- (D) a plasticizer of the aforementioned polyether-system ion-conducting polymer (B).
- The antistatic polymer composition that is the second invention is characterized in that the above-indicated polyether-system ion-conducting polymer is polyetherester amide.
- The third invention is the antistatic polymer composition of the aforementioned item (1) or (2) characterized in that the aforementioned plasticizer (D) is a plasticizer represented by formula (1):
(wherein m is an integer of 1-3, n is an integer of 4-25, A is a C1-C10 alkyl, acyl, or aroyl, B is a C1-C10 alkyl, acyl, or aroyl, and X is H, CH3, or C2H5). - The fourth invention is the antistatic polymer composition of any one of the aforementioned item (1) to (3) characterized in that it contains 40.0-98.4 wt % of polymer (A), 1.0-35.0 wt % of polyether-system ion-conducting polymer (B), 0.1-15.0 wt % of ion source (C), and 0.5-10.0 wt % of plasticizer (D) with respect to the weight of the composition as a whole.
- The fifth invention is the antistatic polymer composition characterized in comprising:
- (A) one or more polymers selected from the group consisting of ABS (acrylonitrile butadiene styrene), polyethylene, polypropylene, polypropylene copolymer and EPDM (ethylene/propylene/diene) elastomer;
- (B) a polyether-system ion-conducting polymer;
- (C) an ion source comprising (i) a source of at least one carboxyl group or sulfo group being selected from the group consisting of hydrocarbon acids containing 6-54 carbon atoms, sulfonic acids and organic polymers with at least one bonded carboxyl group or sulfo group and (ii) a source of at least one metal ion that is selected from the group consisting of sodium ion, potassium ion, lithium ion, magnesium ion, and zinc ion and that can react with the carboxyl groups or sulfo group of (i), solid electrolytes or polymer electrolytes; and (D) a plasticizer of the aforementioned polyether-system ion-conducting polymer (B).
- The sixth invention is the antistatic polymer composition of any one of the aforementioned item (1) to (5) characterized in further comprising a water-repellent comprising fluorinated compounds, silicone compounds or a mixture thereof.
- Still another invention is moldings such as the transfer medium-separating guide parts for electrophotographic devices and any molded items requiring antistatic effect and water-repellency characterized in that they are molded from the above antistatic polymer composition.
- The antistatic polymer composition of this invention has antistatic properties of at least a degree that can control the surface specific resistance of moldings to 1013-108Ω.
- Polymer (A) of this invention is one or more polymers selected from the group consisting of polyester, polycarbonate, polyamide, polyoxymethylene, polyphenylene sulfide, and compounds of polyphenylene oxide and polystyrene.
- The polyester is polyethylene terephthalate obtained by polycondensation of ethylene glycol and terephthalic acid, polybutylene terephthalate obtained by polycondensation of butanediol and terephthalic acid, or a copolymer of ethylene terephthalate or polybutylene terephthalate that contains another comonomer component in a range that provides physical or chemical properties. As comonomer components used in manufacturing the copolymer, ethylene glycol, 1,2-propylene glycol, pentanediol, hexanediol, 1,4-cyclohexanedimethanol, and the like can be mentioned as the glycol component and isophthalic acid and naphthalenedicarboxylic acid can be mentioned as the dicarboxylic acid component.
- The intrinsic viscosity of the polyester is 0.3-1.3, preferably 0.5-1.0, more preferably 0.6-0.9.
- The polyesters ideally used in this invention are polyethylene terephthalate, polybutylene terephthalate, and compounds of these.
- In addition, the polyesters of this invention also include melt-processible polyesters or polyester amides that can form an anisotropic molten phase, generally called thermotropic liquid crystal polymers. The constituents of such polymers are aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, aromatic diols, aliphatic diols, aromatic hydroxylamines, and aromatic diamines. The melt-processible polyesters or polyester amides that can form an anisotropic molten phase are obtained by polymerizing one of these constituents or by copolymerizing two or more of these constituents.
- The following specific examples can be mentioned: aromatic polyesters obtained by polymerizing one or more aromatic hydroxycarboxylic acids; aromatic polyesters obtained by polymerizing an aromatic dicarboxylic acid, one or more aliphatic dicarboxylic acid, an aromatic diol, and one or more aliphatic diols; aromatic polyesters obtained by polymerizing an aromatic hydroxycarboxylic acid as the main component and one or more components selected from the group consisting of aromatic dicarboxylic acids, aliphatic dicarboxylic acids, aromatic diols, and aliphatic diols; aromatic polyester amides obtained by polymerizing an aromatic hydroxylamine, one or more aromatic diamines, and one or more aromatic hydroxycarboxylic acids; aromatic polyester amides obtained by polymerizing an aromatic hydroxylamine, one or more aromatic diamines, one or more aromatic hydroxycarboxylic acids, an aromatic dicarboxylic acid, and one or more aliphatic carboxylic acid; and aromatic polyester amides obtained by polymerizing an aromatic hydroxylamine, one or more aromatic diamines, one or more aromatic hydroxycarboxylic acids, an aromatic dicarboxylic acid, one or more aliphatic carboxylic acids, an aromatic diol, and one or more aliphatic diols.
- As examples of aromatic hydroxycarboxylic acids, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and 5-hydroxy-2-naphthoic acid, and hydroxybenzoic acids substituted with halogens, alkyls, and aryls can be mentioned.
- As aromatic dicarboxylic acids, terephthalic acid, isophthalic acid, 3,3N-diphenyldicarboxylic acid, 4,4 N-diphenyldicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and alkyl- and halogen-substituted aromatic dicarboxylic acids such as tert-butylterephthalic acid and chloroterephthalic acid can be mentioned.
- As aliphatic dicarboxylic acids, cyclic aliphatic dicarboxylic acids such as trans-1,4-cyclohexanedicarboxylic acid, cis-1,4-cyclohexanedicarboxylic acid, and 1,3-cyclohexanedicarboxylic acid and substituted derivatives of these can be mentioned.
- As aromatic diols, the following can be mentioned: hydroquinone, diphenol, 4,4 N-dihydroxydiphenyl ether, 3,4 N-dihydroxydiphenyl ether, bisphenol A, 3,4 N-dihydroxydiphenylmethane, 3,3 N-dihydroxydiphenylmethane, 4,4 N-dihydroxydiphenylsulfone, 3,4 N-dihydroxy-diphenylsulfone, 4,4 N-dihydroxydiphenyl sulfide, 3,4 N-dihydroxydiphenyl sulfide, 2,6 N-naphthalenediol, 1,6 N-naphthalenediol, 4,4 N-dihydroxybenzophenone, 3,4 N-dihydroxybenzophenone, 3,3 N-dihydroxybenzophenone, 4,4 N-dihydroxydiphenyldimethylsilane, and alkyl- and halogen-substituted derivatives of these.
- As examples of aliphatic diols, cyclic, linear, and branched aliphatic diols such as trans-1,4-hexanediol, cis-1,4-hexanediol, trans-1,3-cyclohexanediol, cis-1,2-cyclohexanediol, ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, trans-1,4-cyclohexanedimethanol, cis-1,4-cyclohexanedimethanol, and cis-1,4-cyclohexanedimethanol and substituted derivatives of these can be mentioned.
- As examples of aromatic hydroxylamines and aromatic diamines, 4-aminophenol, 3-aminophenol, p-phenylenediamine, and m-phenylenediamine, and substituted derivatives of these can be mentioned.
- The liquid crystal polymers used in this invention generally have a number-average molecular weight of approximately 2,000-200,000, preferably 5,000-50,000, and more preferably 10,000-20,000.
- The liquid crystal polymers ideally used in this invention are copolymers of 4-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and copolymers of hydroquinone, diphenol, terephthalic acid, 2,6-naphthalenedicarboxylic acid, 4-hydroxybenzoic acid, and 6-hydroxy-2-naphthoic acid.
- The polyamide that is another matrix polymer of this invention is obtained by polycondensation of a diamine component and a dicarboxylic acid component. As examples, polyamides obtained by polymerizing one or more diamines selected from the group consisting of aliphatic alkylenediamines, aromatic diamines, and alicyclic diamines and one or more dicarboxylic acid selected from the group consisting of aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and aliphatic aminocarboxylic acids, and compounds of these can be mentioned.
- The aliphatic alkylenediamine may be linear or branched. As specific examples, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 2-methylpentamethylenediamine, and 2-ethyltetramethylenediamine can be mentioned. These aliphatic alkylenediamines can be used alone, or two or more can be used combined.
- The aromatic diamines may be used alone, or two or more may be used combined. As an example, p-phenylenediamine, o-phenylenediamine, m-phenylenediamine, p-xylenediamine, and m-xylenediamine can be mentioned.
- As specific examples of alicyclic alkylenediamines, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,3-bis(aminomethyl)cyclohexane, bis(aminomethyl)cyclohexane, bis(4-aminocyclohexyl)methane, 4,4N-diamino-3,3N-dimethyldicyclohexylmethane, isophoronediamine, and piperazine can be mentioned. These can be used alone, or two or more can be used combined.
- As aliphatic dicarboxylic acids, adipic acid, sebacic acid, azelaic acid, and dodecanedioic acid can be mentioned. These can be used alone, or two or more can be used combined.
- As examples of aromatic dicarboxylic acids, terephthalic acid, isophthalic acid, phthalic acid, 2-methylterephthalic acid, and naphthalenedicarboxylic acid can be mentioned, and as an example of aromatic aminocarboxylic acids, p-aminobenzoic acid can be mentioned. These aromatic monomers can be used alone, or two or more can be used combined.
- As specific examples of aminocarboxylic acids, ,-aminocaproic acid and T-aminoundecanoic acid can be mentioned. These can be used alone, or two or more can be used combined.
- Also, the number-average molecular weight of the polyamide is 2,000-50,000, preferably 5,000-40,000, and still more preferably 7,000-30,000.
- The polyamides ideally used in this invention are nylon 66, nylon 6, copolymer of nylon 66 and nylon 6, and compounds of these.
- Polycarbonates are obtained by the ester-exchange method, which reacts bisphenol A with diphenyl carbonate in a molten state, and by the solution polycondensation method, which reacts bisphenol A with phosgene in pyridine as solvent and acid-acceptor.
- The number-average molecular weight of the polycarbonate is 6,000-100,000, preferably 10,000-80,000, and still more preferably 15,000-50,000.
- Polyoxymethylene homopolymer is obtained by polymerization of formaldehyde, and copolymer is obtained by polymerization of trioxane with a cyclic ether or cyclic formal.
- The number-average molecular weight of polyoxymethylene is 8,000-150,000, preferably 12,000-100,000, and still more preferably 20,000-80,000 for both homopolymer and copolymer.
- Polyphenylene sulfide is obtained by reacting p-dichlorobenzene and sodium sulfide in a polar solvent such as N-methylpyrrolidone at a high temperature of 200° C. or above.
- The weight-average molecular weight of polyphenylene sulfide is 5,000-90,000, preferably 8,000-70,000, and still more preferably 10,000-60,000.
- With respect to compounds of polyphenylene oxide and polystyrene, polyphenylene oxide and polystyrene have the property of mutually dissolving completely in all ratios, so they may be mixed in any ratio.
- The compound of polyphenylene oxide and polystyrene ideally used in this invention is a compound for which the weight ratio of polyphenylene oxide to polystyrene is 70:30 to 50:50.
- Other suitable matrix polymers of the present invention may be, for example, ABS (acrylonitrile butadiene styrene), polyethylene, polypropylene, polypropylene copolymer and EPDM(ethylene/propylene/diene) elastomer.
- Ion-conducting polymer (B) used in this invention is a polyether-system ion-conducting polymer. Polyethers have good compatibility with the matrix polymers, polyester and polyamide, so a uniform antistatic effect can be provided to the surface of moldings.
- As specific examples, polyethylene oxide, polyetherester amide, polyetheramideimide, ethylene oxide-epihalohydrin copolymer, and methoxypolyethylene glycol (meth)acrylate copolymer can be mentioned. Polyethers of low degree of crystallization are preferred, and polyetherester amides are especially preferred.
- The content of the polyether-system ion-conducting polymer is 1.0-35.0 wt %, preferably 3.0-20.0 wt %, and still more preferably 4.5-12.5 wt %, with respect to the weight of the composition. If less than 1.0 wt %, the antistatic effect will be insufficient, and if more than 35.0 wt %, this will lead to a decline in mechanical properties.
- Ion source (C) used in this invention comprises
- (i) a source of at least one carboxyl group or sulfo group selected from the group composed of hydrocarbon acids with 6-54 carbon atoms, sulfonic acids and organic polymers with at least one bonded carboxyl group or sulfo group and
- (ii) a source of at least one metal ion that is selected from the group composed of sodium ion, potassium ion, lithium ion, magnesium ion, and zinc ion and that can react with the carboxyl groups or sulfo group of (i), solid electrolytes or polymer electrolytes.
- Solid electrolytes or polymer electrolytes are used instead of the ion source comprising the source of carboxyl group or sulfo group defined (i) and metal ion source defined (ii) in the antistatic polymer composition of this invention according to the intended application of use. Examples of the solid electrolytes include chemical composition which is expressed by XY or XW2 wherein X is Li, Na, K, or NH4, Y is ClO4, I, BF4, or CF3SO3 and W is Mg, Ca, Zn, or Cu.
- In addition, polymer electrolytes capable of being used in this invention represent a wide range of compositions that can, for example, be polystyrenesulfonic acid sodium salt and acrylate copolymer ammonium salt.
- By including the ion source, ions can be sufficiently supplied to the aforementioned ion-conducting polymer, so the ion-conducting polymer can sufficiently manifest an antistatic effect.
- Preferably, carboxyl-group or sulfo group source (i) is a source of at least one carboxyl group or sulfo group [selected from the group] consisting of hydrocarbon acids containing 7 6-25 carbon atoms, sulfonic acids and organic polymers that contain pendant carboxyl groups or sulfo groups.
- More preferably, ionomers composed of organic ionic hydrocarbon copolymers of α-olefins with 2-5 carbon atoms and α,β-ethylenically unsaturated carboxylic acids with 3-5 carbon atoms whose carboxyl groups are at least partially neutralized with sodium or potassium cations are ideally used.
- Other suitable ionomers contain (i) polyethylene terephthalate and/or polybutylene terephthalate oligomer and (ii) a substance derived from a sodium and/or potassium ion source that can react with the oligomer-like carboxyl end groups of (i).
- The content of the ion source is 0.1-15.0 wt %, preferably 0.3-12.0 wt %, more preferably 1.0-8.0 wt %, with respect to the weight of the composition. If less than 0.1 wt %, the antistatic effect will be insufficient, and if more than 15.0 wt %, this will lead to a decline in mechanical properties. The ion source contains a sufficient amount of the metal ion source that the concentration of metal in the composition will be greater than 1.0 wt %.
- Plasticizer (D) used in this invention has a plasticizing effect on the polyether-system ion-conducting polymer used. As specific examples, phthalate ester plasticizers such as dimethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, and di-2-ethylhexyl phthalate, phosphate ester plasticizers such as tricresyl phosphate and triphenyl phosphate, sulfonamide plasticizers such as o,p-toluenesulfonamide, N-ethyl-o,p-toluenesulfonamide, N-methylbenzenesulfonamide, N-ethylbenzenesulfonamide, and N-butylbenzenesulfonamide, and polyether system plasticizers can be mentioned. The preferred plasticizer is represented by formula (1):
wherein m is an integer of 1-3, n is an integer of 4-25, A is a C1-C10 alkyl, acyl, or aroyl, B is a C1-C10 alkyl, acyl, or aroyl, and X is H, CH3, or C2H5. - Because the composition of this invention contains a plasticizer, the ions can easily move under high-temperature conditions, so the higher the temperature at which the molding is used, the more outstanding the antistatic effect that can be manifested.
- The preferred plasticizer is obtained when m is 1, or n is 4-14, or X is H, and especially when m is 1, n is 4-14, and also X is H. The more preferred plasticizer is obtained when m is 1, or n is 7-13, or X is H, or A is an acyl with 8 carbon atoms or methyl, or B is an acyl with 8 carbon atoms, and especially when m is 1, n is 7-13, X is H, A is an acyl with 8 carbon atoms or methyl, and B is an acyl with 8 carbon atoms.
- The preferred specific examples are polyethylene glycol 400 bis(2-ethylhexanoate), methoxypolyethylene glycol 550 2-ethyhexanoate, and tetraethylene glycol bis(2-ethylhexanoate). Of these, polyethylene glycol 400 bis(2-ethylhexanoate) is most ideally used.
- The amount of plasticizer contained is 0.5-10.0 wt %, preferably 1.0-8.0 wt %, and still more preferably 2.0-6.0 wt % with respect to the weight of the composition. If less than 0.5 wt %, the antistatic effect will not be sufficient, and if more than 10.0 wt %, this will lead to a decline in mechanical properties.
- Well-known flame retardants can be mixed in the composition of this invention. Specifically, brominated flame retardants such as polydibromostyrene, polytribromostyrene, polypentabromostyrene, decabromodiphenyl, tetrabromodiphenyl, hexabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromodiphenyl sulfide, polypentabromobenzyl acrylate, brominated phenoxy resin, and epoxy-terminated phenoxy resin [sic] can be mentioned. Epoxy-terminated phenoxy resin [sic] and brominated polystyrene are preferred. The loading of flame retardant is usually 7-20 wt % based on the weight of the composition.
- Along with the flame retardant, antimony compounds well known as flame-retarding assistants, such as antimony oxides and sodium antimonate, may be compounded.
- Inorganic fillers commonly used to reinforce engineering plastics can also be compounded. As specific examples of inorganic fillers, glass fibers, carbon fibers, potassium titanate, whiskers, kaolin, clay, talc, wollastonite, calcium carbonate, silica, and mica can be mentioned. Glass fibers are ideally used. The loading of inorganic filler is usually 5-60 wt % based on the weight of the composition.
- In addition to the above components, the composition of this invention may be compounded with commonly used additives such as impact modifiers, heat stabilizers, antioxidants, dyes, pigments, and release agents in ranges that do not impair its properties.
- Also, it is possible to obtain a polymer giving significant improvements in both antistatic effect and water-repellency by adding any water-repellents, such as fluorinated compounds, silicone compounds or chemical compositions thereof that have low surface free energy and well know in the art, in appropriate amounts in addition to the aforementioned antistatic polymer composition of this invention. When the water-repellent is used in combination with a low-molecular-weight antistatic agent composed mainly of surfactant incorporated into the polymer at the molding process or applied to the molding's surface in a finishing process, it may be able to improve sliding characteristics by reducing coefficient of kinetic friction, but can easily cause static electricity resulting into static electricity problem. Examples of the water-repellents are PTFE,PFA,FEP,ETFE, modified silicone such as silicone oil, silicone gum, amino-modified silicone and epoxy-modified silicone, fluorosilicone and perfluoroalkyl group containing oligomer.
- The polymer composition of this invention can be manufactured by any well-known method used in the past. For example, it can be melt blended using the mixing devices generally used, such as the Banbury mixer, extruders, and various kneaders. With respect to the order of blending, all the components may be blended at the same time, or the ion-conducting polymer, ion source, and plasticizer may be fed from side feeders.
- The composition of this invention can be used to manufacture moldings that are used in devices for which static electricity is a problem, such as the transfer medium-separating guide parts placed at specific locations in electrophotographic devices by a well-known method such as injection molding.
- Also, it is possible to obtain products formed by molding the antistatic polymer composition of this invention, which has surface resistivity in the range of 107 to 1013Ω, as measured according to test method of ASTM D 257 and is capable of being applied an electrostatic painting directly onto surface of the molded article without any primer. Since the molded articles made from the antistatic polymer composition of this invention don't require to be applied any surface treatment agent such as a solution in alcohol containing 0.5 to 1% by weight of surfactant on the surface of the molded article to reduce its surface specific resistance by moisture absorption by the surfactant, the electrostatic painting may be used for the molded artiles made from the antistatis polymer composition of this invention.
- This invention will now be explained with practical examples, but it is not limited to only these examples.
- The components shown in Table 1 were melt blended with a twin-screw extruder (ZSK-40 manufactured by W&P). After water cooling, pellets were manufactured. The pellets obtained were used to mold test pieces (7.5 mm×12.5 mm×3 mm). The mold temperature and resin temperature when molding were 110° C. and 290° C., respectively.
- The test pieces obtained were used to determine surface resistivity and volume resistivity. The results are shown in Table 1. The methods of determination were as follow:
- Method for determining surface resistivity: Based on ASTM D257
- Method for determining volume resistivity: Based on ASTM D257
- The components referred to in the tables are as follows:
- Polymer: Polyethylene terephthalate with an intrinsic viscosity of 0.65 (trade name Rynite manufactured by DuPont).
- Ion-conducting polymer: Polyetherester amide copolymer (trade name) Perestat 6321 manufactured by Sanyo Chemical Industries)
- Ion source: Sodium-neutralized ethylene-methacrylic acid copolymer with 60% of the carboxylic acid of a copolymer composed of ethylene-methacrylic resin (weight ratio 85/15) neutralized with sodium (trade name Surlyn 8920 manufactured by DuPont)
- Plasticizer: Polyethylene glycol 400 bis(2-ethylhexanoate) (trade name Rionon DEH-40 manufactured by Lion K.K.)
- Glass fibers: PPG3540 chopped strand
TABLE 1 PE 1* CE 1* CE 2 CE 3 CE 4 CE 5 polymer 58.5 70.0 65.0 64.0 61.5 60.0 (wt %) Ion- 6.0 0 0 6.0 6.0 6.0 conducting polymer (wt %) Ion source 4.0 0 3.5 0 0 4.0 (wt %) Plasticizer 2.5 0 1.5 0 2.5 0 (wt %) Glass fibers 30.0 30.0 30.0 30.0 30.0 30.0 (wt %) Surface 8.91 H 1.94 H 2.00 H 2.24 H 1.92 H 5.40 H resistivity Ω 1012 1016 1017 1016 1014 1013 Volume 1.45 H 8.00 H 1.30 H 2.75 H 2.95 H 1.4 H 1014 resistivity 1013 1015 1016 1015 1014 (Ω-cm)
*PE = Practical Example CE = Comparative Example
- When Practical Example 1 and Comparative Examples 1-5 were compared, the molding made from the composition of this invention had high surface specific resistance and volume specific resistance and was superior in antistatic effect.
- When Comparative Example 3 and Comparative Example 4 were compared, it was found that the antistatic effect is improved by using a plasticizer along with the ion-conducting polymer, and when Comparative Example 3 and Comparative Example 5 were compared, it was found that the antistatic effect is also improved by using an ion source along with the ion-conducting polymer. However, neither case showed improvement in antistatic effect to the extent of Practical Example 1, in which both a plasticizer and an ion source were used along with the ion-conducting polymer.
- Test pieces were molded using a composition comprising 41.0 wt % of polyethylene terephthalate having an intrinsic viscosity of 0.65 (trade name Rynite manufactured by DuPont), 5.5 wt % of polyetherester amide copolymer (trade name Perestat 6321 manufactured by Sanyo Chemical Industry), 3.5 wt % of ethylene-methacrylic acid copolymer neutralized with sodium (trade name Surlyn 8920 manufactured by DuPont), 1.5 wt % of polyethylene glycol 400 bis(2-ethyl-hexanoate) (trade name Rionon DEH-40 manufactured by Lion K.K.), 13,0 wt % of polytribromostyrene (Pyro-chek 68 manufactured by Nissan Ferro), 0.5 wt % of antimony trioxide, and 35.0 wt % of glass fibers (PPG3540 chopped strand) for the practical examples.
- Test pieces were molded using a composition comprising 99.0 wt % of polyethylene terephthalate having an intrinsic viscosity of 0.65 (trade name Rynite manufactured by DuPont) and 1.0 wt % of sodium alkylsulfonate as the comparative examples.
- The test pieces obtained were used to test the effects of temperature and humidity on surface specific resistance. The results of measurement at 25° C., 50° C., 80° C., and 120° C. are shown in Tables 2, 3, 4, and 5, respectively.
TABLE 2 Temperature: 25° C. Surface resistivity (Σ) Humidity (%) Practical Example 2 Comparative Example 6 10 3.66 H 1011 1.19 H 1016 30 1.59 H 1010 — 50 1.17 H 1010 7.56 H 1010 70 2.77 H 1010 — 95 1.43 H 1010 1.35 H 1010 -
TABLE 3 Temperature: 50° C. Surface resistivity (Σ) Humidity (%) Practical Example 3 Comparative Example 7 10 7.75 H 109 4.86 H 1014 30 3.58 H 109 — 50 1.71 H 109 3.65 H 109 70 7.83 H 108 — 95 5.81 H 107 3.92 H 108 -
TABLE 4 Temperature: 80° C. Surface resistivity (Σ) Humidity (%) Practical Example 4 Comparative Example 8 10 1.12 H 109 2.97 H 1014 30 4.98 H 108 — 50 5.40 H 108 7.57 H 1010 70 1.44 H 108 — 95 2.73 H 107 1.30 H 108 -
TABLE 5 Temperature: 120° C. Surface resistivity (Ω) Humidity (%) Practical Example 5 Comparative Example 9 10 1.46 H 109 5.67 H 1012 - Under any of the temperature conditions, the difference between the surface specific resistance of the practical examples and comparative examples became greater as the humidity became lower, and a difference arose in their antistatic effects. And even at the same humidity, the antistatic effect of the comparative examples declined as the temperature increased, but the antistatic effect of the practical examples increased as the temperature increased.
- The same test pieces as in Practical Example 2 and Comparative Example 6, respectively, were used. To investigate durability of rubbing resistance, the surface was wiped with a cloth moistened with water or with a dry cloth, and surface specific resistivity was determined.
TABLE 6 Temperature: 25° C., humidity: 50% Surface resistivity (Σ) Practical Example 6 Comparative Example 10 Number of times wiped with damp cloth 0 1.17 H 1010 7.56 H 1010 1 1.99 H 1010 1.59 H 1015 5 2.00 H 1010 3.24 H 1014 Number of times wiped with dry cloth 5 1.15 H 1010 5.67 H 1014 - Whether wiped with a damp cloth or dry cloth, there was no change in the antistatic effect of moldings made from the composition of this invention, but when a surfactant was used as in the comparative example, rubbing caused the antistatic effect to decline.
- In addition to the matrix polymer, ion-conducting polymer, plasticizer and glass fibers used in Example 1 and Comparative examples 1-5 summarized in Table 1, and additional various ion sources in amount, all as specified in Table 7. The results of surface and volumn restivities measured according to ASTM D257 are also given in Table 7.
TABLE 7 PE 7* PA 8* PA 9 PA 10 PA 11 CE 11 CE 12 polymer (wt %) 62 62 59.5 62.4 51.5 62.45 62.42 Ion-conducting 6.0 6.0 6.0 6.0 13 6.0 6.0 polymer (wt %) Ion source A (wt %) 4 0.08 Ion source B (wt %) 0.5 0.05 Ion source C (wt %) 0.5 Ion source D (wt %) 3 Ion source E (wt %) 0.1 Plasticizer (wt %) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Glass fibers (wt %) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 Surface resistivity 9.67 × 1012 1.26 × 1013 1.67 × 1011 8.62 × 1011 1.89 × 109 5.51 × 1014 3.26 × 1014 (Ω) Volume resistivity 7.21 × 1012 8.26 × 1012 4.83 × 1012 2.28 × 1011 2.28 × 108 1.89 × 1014 2.41 × 1014 (Ω-cm)
*PE = Pratical Example
CE = Comparative Example
Ion source A: Sodium-neutralized ethylene-methacrylic acid copolymer with 60% of the carboxylic acid of a copolymer composed of ethylene-methacrylic resin (weight ratio 85/15) neutralized with sodium (trade name Surlyn 8920 manufactured by DuPont),
Ion source B: Sodium Montanate, commercially available under the tradename Hostamont NaV 101 from Clariant Japan, Inc.
Ion source C: Lithium Montanate, commercially available under the tradename Hostmont LiV 103 from Clariant Japan, Inc.
Ion source D: Polystyrenesulfonic acid sodium salt,
Ion source E: Lithium Iodide
- To see the effect of adding water-repellents in addition to the antistatic polymer composition of this invention, additional formulations of examples 11-13 and comparative examples 13-18 were prepared, as summarized in the following Table 8. Using water-repellent of fluorinated compounds or silicone compounds instead of the surfactant, Examples 11-13, is seen to provide both water-repellency maintaining and antistatic effect.
- The results, as to whether or not water-repellency is improved, and the values of water-repellent angle measured by the commonly known test method, are also given in Table 8.
TABLE 8 PE 11 PA 12* PA 13 CE 13 CE 14 CE 15 CE 16 CE 17 CE 18 polymer (wt %) 54.5 42.5 56 66 54 67.5 57.5 69 70 Ion-conducting 6.0 6.0 6.0 6.0 polymer (wt %) Ion source (wt %) 4 4 4 4 4 Water-repellent A 3 3 (wt %) Water-repellent 15 15 B (wt %) Water-repellent 1.5 1.5 C (Wt %) surfactant 1 1 1 1 (wt %) Plasticizer 2.5 2.5 2.5 2.5 (wt %) Glass fibers (wt %) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 Surface 5.22 × 1012 6.95 × 1012 4.88 × 1012 8.62 × 1011 2.76 × 1012 5.51 × 1014 8.91 × 1012 4.88 × 1012 4.88 × 1016 resistivity (Ω) Water repellent 107 103 109 49 38 46 58 32 68 angle (°)
*PE = Pratical Example
CE = Comparative Example
Water-repelent A: Silicone oil master batch, commercially available under the tradename BY27-009 from Toray Dow Silicone, Inc.
Water-repellent B: PTFE powder, commercially available under the tradename MP 1500 from DuPont,
Water-repellent C: Perfluoroalkyl acrylate-alkylacrylate block copolymer, commercially available under the tradename Megafac 178RM from DaiNippon Ink Co., Ltd.
Surfactant: Alkyl-benzene sulfonic acid sodium salt compound, commercially available under the tradename Chemistat 3033 from Sanyo Kasei Kogyo Inc.
- According to this invention, it was possible to provide an antistatic polymer composition that is able to manifest a uniform antistatic effect permanently with little change in the surface resistance of moldings owing to humidity. The moldings molded from the polymer composition of this invention are ideally used in devices where static electricity is a problem.
Claims (10)
1. An antistatic polymer composition characterized in that it comprises:
(A) one or more polymers selected from the group consisting of polyester, polycarbonate, polyamide, polyoxymethylene, polyphenylene sulfide, and compounds of polyphenylene oxide and polystyrene;
(B) a ion-conductive polyether-based polymer;
(C) an ion source comprising: (i) a source of at least one carboxyl group or sulfo group being selected from the group consisting of hydrocarbon acids containing 6-54 carbon atoms, sulfonic acids and organic polymers with at least one carboxyl group or sulfo group; and (ii) a source of at least one metal ion that is selected from the group consisting of sodium ion, potassium ion, ammonium ion, lithium ion, magnesium ion, calcium ion, copper ion, and zinc ion and that can react with the carboxyl groups or sulfo group of (i), solid electrolytes or polymer electrolytes; and
(D) a plasticizer of the aforementioned ion-conductive polyether-based polymer (B).
2. The antistatic polymer composition of claim 1 characterized in that the ion-conductive polyether-based polymer (B) is a polyetherester amide.
3. The antistatic polymer composition of claim 1 characterized in that plasticizer (D) of the polyester-system ion-conducting polymer (B) is a plasticizer represented by formula (1)
4. The antistatic polymer composition of claim 1 characterized in that it contains 40.0-98.4 wt % of polymer (A), 1.0-35.0 wt % of ion-conductive polyether-based polymer (B), 0.1-15.0 wt % of ion source (C), and 0.5-10.0 wt % of plasticizer (D) with respect to the weight of the composition as a whole.
5. Moldings characterized in that they are molded from the antistatic polymer composition of claim 1 .
6. Transfer medium-separating guide parts for electrophotographic devices characterized in that they are molded from the antistatic polymer composition of claim 1 .
7. A molded article made from the composition of claim 4 having surface resistivity in the range of 107 to 1013 ohms, as measured under ASTM D 257 and being applied an electrostatic painting directly on surface thereof.
8. An antistatic polymer composition characterized in that it comprises
(A) one or more polymers selected from the group consisting of ABS (acrylonitrile butadiene styrene), polyethylene, polypropylene, polypropylene copolymer and EPDM(ethylene/propylene/diene) elastomer;
(B) a polyether-system ion-conducting polymer;
(C) an ion source comprising: (i) a source of at least one carboxyl group or sulfo group being selected from the group consisting of hydrocarbon acids containing 6-54 carbon atoms, sulfonic acids and organic polymers with at least one carboxyl group or sulfo group and (ii) a source of at least one metal ion that is selected from the group consisting of sodium ion, potassium ion, ammonium ion, lithium ion, magnesium ion, calcium ion, copper ion, and zinc ion and that can react with the carboxyl groups or sulfo group of (i), solid electrolytes or polymer electrolytes; and
(D) a plasticizer of the aforementioned ion-conductive polyether-based polymer (B).
9. The composition of claim 1 further comprising water-repellent comprising fluorinated compounds, silicon compound or a mixture thereof.
10. A molded article made from the composition of claim 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/386,144 US20070072974A1 (en) | 1997-12-24 | 2006-03-21 | Antistatic polymer composition and moldings thereof |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-366003 | 1997-12-24 | ||
JP36600397A JPH11199773A (en) | 1997-12-24 | 1997-12-24 | Antistatic polymer composition and molded article thereof |
PCT/US1998/027428 WO1999033918A1 (en) | 1997-12-24 | 1998-12-23 | Antistatic polymer composition and moldings thereof |
US58248300A | 2000-06-21 | 2000-06-21 | |
US10/721,026 US20040132919A1 (en) | 1997-12-24 | 2003-11-24 | Antistatic polymer composition and moldings thereof |
US11/386,144 US20070072974A1 (en) | 1997-12-24 | 2006-03-21 | Antistatic polymer composition and moldings thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/721,026 Continuation US20040132919A1 (en) | 1997-12-24 | 2003-11-24 | Antistatic polymer composition and moldings thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070072974A1 true US20070072974A1 (en) | 2007-03-29 |
Family
ID=32684089
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/721,026 Abandoned US20040132919A1 (en) | 1997-12-24 | 2003-11-24 | Antistatic polymer composition and moldings thereof |
US11/386,144 Abandoned US20070072974A1 (en) | 1997-12-24 | 2006-03-21 | Antistatic polymer composition and moldings thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/721,026 Abandoned US20040132919A1 (en) | 1997-12-24 | 2003-11-24 | Antistatic polymer composition and moldings thereof |
Country Status (1)
Country | Link |
---|---|
US (2) | US20040132919A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080076864A1 (en) * | 2006-09-22 | 2008-03-27 | Shin-Etsu Chemical Co., Ltd. | Silicone rubber composition which cures by condensation |
US20080260981A1 (en) * | 2007-04-18 | 2008-10-23 | Hiroshi Mogi | Antistatic silicone rubber mold-making material |
US20090062499A1 (en) * | 2007-09-03 | 2009-03-05 | Hiroshi Mogi | Microcontact printing stamp |
US11825682B2 (en) * | 2017-06-26 | 2023-11-21 | Boe Technology Group Co., Ltd. | Organic light-emitting diode display panel, manufacturing method thereof and display device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7913774B2 (en) | 2005-06-15 | 2011-03-29 | Schlumberger Technology Corporation | Modular connector and method |
KR20080043424A (en) * | 2006-11-14 | 2008-05-19 | 삼성전자주식회사 | Antistatic composition and apparatus for manufacturing transfering roller using thereof |
US11692076B2 (en) * | 2017-06-16 | 2023-07-04 | Sabic Global Technologies B.V. | Interfacial polymerization process for polycarbonate in injection molding manufacturing with use of sulfonic acid as a stabilizer |
EP4095197A1 (en) * | 2021-05-28 | 2022-11-30 | SHPP Global Technologies B.V. | Articles and structures with colorable electro-static dissipative (esd) polycarbonate blends |
CN116144171B (en) * | 2022-12-22 | 2024-08-23 | 深圳市鸿合创新信息技术有限责任公司 | Composite material, preparation method thereof and display device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5700857A (en) * | 1993-12-28 | 1997-12-23 | E. I. Du Pont De Nemours And Company | Flame resistant polyester resin composition |
US5886098A (en) * | 1993-03-03 | 1999-03-23 | Sanyo Chemical Industries, Ltd. | Polyetheresteramide and antistatic resin composition |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3839245A (en) * | 1972-03-30 | 1974-10-01 | Emery Industries Inc | Poly(ether-ester-amide) antistatic compositions derived from dimr acids |
US5338795A (en) * | 1986-04-14 | 1994-08-16 | Toray Industries, Inc. | Housing and thermoplastic resin compositions including polyether ester amide, styrene based resin and vinyl copolymer |
US4891399A (en) * | 1986-10-28 | 1990-01-02 | Calp Corporation | Thermoplastic resin-based molding composition |
DE3871428D1 (en) * | 1987-04-17 | 1992-07-02 | Bayer Ag | FLAME-RESISTANT, ANTISTATIC POLYCARBONATE MOLDINGS. |
US5624987A (en) * | 1995-09-15 | 1997-04-29 | Brink; Andrew E. | Polyalkylene ethers as plasticizers and flow aids in poly(1,4-cyclohexanedimethylene terephthalate) resins |
EP0780594A1 (en) * | 1995-12-21 | 1997-06-25 | Elf Atochem S.A. | Antistatic belts |
-
2003
- 2003-11-24 US US10/721,026 patent/US20040132919A1/en not_active Abandoned
-
2006
- 2006-03-21 US US11/386,144 patent/US20070072974A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5886098A (en) * | 1993-03-03 | 1999-03-23 | Sanyo Chemical Industries, Ltd. | Polyetheresteramide and antistatic resin composition |
US5700857A (en) * | 1993-12-28 | 1997-12-23 | E. I. Du Pont De Nemours And Company | Flame resistant polyester resin composition |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080076864A1 (en) * | 2006-09-22 | 2008-03-27 | Shin-Etsu Chemical Co., Ltd. | Silicone rubber composition which cures by condensation |
US20080260981A1 (en) * | 2007-04-18 | 2008-10-23 | Hiroshi Mogi | Antistatic silicone rubber mold-making material |
US20090062499A1 (en) * | 2007-09-03 | 2009-03-05 | Hiroshi Mogi | Microcontact printing stamp |
US7781555B2 (en) | 2007-09-03 | 2010-08-24 | Shin-Etsu Chemical Co., Ltd. | Microcontact printing stamp |
US11825682B2 (en) * | 2017-06-26 | 2023-11-21 | Boe Technology Group Co., Ltd. | Organic light-emitting diode display panel, manufacturing method thereof and display device |
Also Published As
Publication number | Publication date |
---|---|
US20040132919A1 (en) | 2004-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2309285C (en) | Antistatic polymer composition and moldings thereof | |
US20070072974A1 (en) | Antistatic polymer composition and moldings thereof | |
JP2002500237A6 (en) | Antistatic polymer composition and molded article thereof | |
EP1985661B1 (en) | Antistatic thermoplastic resin composition and molded article made from same | |
JP2006233204A (en) | Antistatic agent and antistatic resin composition | |
JPH01163234A (en) | Thermoplastic resin composition | |
JP5564772B2 (en) | Antistatic thermoplastic resin composition and molded article | |
JP2010007060A (en) | Conductive or antistatic resin composition | |
KR20020089387A (en) | Thermoplastic resin composition | |
JP5364977B2 (en) | Antistatic thermoplastic resin composition and molded article | |
KR930003801B1 (en) | Thermoplastic resin composition | |
JP4917719B2 (en) | Antistatic agent and resin composition using the same | |
JP2004211087A (en) | Antistatic resin composition | |
JP2010077422A (en) | Antistatic agent | |
MX2007009359A (en) | Thermoplastic blends and articles made therefrom. | |
KR19980071357A (en) | Conductive Resin Composition | |
JP3057363B2 (en) | Conductive elastomer composition and antistatic resin composition | |
JP2969266B2 (en) | Antistatic resin composition with excellent release properties | |
JP4074093B2 (en) | Antistatic resin composition | |
JPH0415255A (en) | Thermoplastic resin composition | |
JP3595002B2 (en) | Antistatic styrenic resin composition | |
JP2010196007A (en) | Antistatic thermoplastic resin composition and molded article | |
KR930003802B1 (en) | Thermoplastic resin composition | |
JP4974420B2 (en) | Thermoplastic resin composition | |
EP0451769B1 (en) | Thermoplastic resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |