[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20060263235A1 - Solder alloy and a semiconductor device using the solder alloy - Google Patents

Solder alloy and a semiconductor device using the solder alloy Download PDF

Info

Publication number
US20060263235A1
US20060263235A1 US11/345,516 US34551606A US2006263235A1 US 20060263235 A1 US20060263235 A1 US 20060263235A1 US 34551606 A US34551606 A US 34551606A US 2006263235 A1 US2006263235 A1 US 2006263235A1
Authority
US
United States
Prior art keywords
solder alloy
germanium
antimony
tin
insulative substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/345,516
Inventor
Akira Morozumi
Shin Soyano
Yoshikazu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Assigned to FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD. reassignment FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAKAHASHI, YOSHIKAZU, MOROZUMI, AKIRA, SOYANO, SHIN
Publication of US20060263235A1 publication Critical patent/US20060263235A1/en
Priority to US12/213,923 priority Critical patent/US7816249B2/en
Assigned to FUJI ELECTRIC SYSTEMS CO., LTD. reassignment FUJI ELECTRIC SYSTEMS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to a solder alloy free of lead and a semiconductor device using the solder alloy, and in particular, to a solder alloy of a tin (Sn)-antimony (Sb) system.
  • a solder alloy generally requires sufficient bonding performance and corrosion resistance.
  • a solder alloy is used to join the back surface of a semiconductor chip to a conductor pattern disposed on a principal surface (front surface) of an insulative substrate that is a ceramic substrate having conductor patterns on the surfaces thereof.
  • Such a solder alloy needs high strength against thermal fatigue, because large thermal strain develops in the soldering area.
  • the back surface of the semiconductor chip joins to the conductor pattern on the surface of the insulative substrate in a face-bonding way, and thermal expansion coefficients are different in a semiconductor chip and in a conductor pattern.
  • the semiconductor chip generates heat in a conducting period. Therefore, the soldering portion suffers from large thermal strain.
  • the conductor pattern disposed on the other principal surface (a back surface) of an insulative substrate is joined to a heat sink plate made of a metal. Since the soldering area is very wide, the solder alloy used for this joint must exhibit excellent wettability. Further, in the joining area between the heat sink plate and the conductor pattern on the back surface of the insulative substrate, large thermal strain develops caused by the difference in thermal expansion coefficients of the insulative substrate (a ceramic substrate) and the heat sink plate.
  • the generated strain in the soldering area is larger than the strain that develops in the joint between the semiconductor chip and the conductor pattern on the front surface of the insulative substrate as mentioned earlier.
  • solder alloy that does not contain lead (Pb) is in demand in view of environmental considerations.
  • One of such known solder alloys is a tin (Sn)-antimony (Sb) alloy.
  • a known solder alloy (see Japanese Unexamined Patent Application Publication No. H11-58066, for example) contains tin (Sn) as a principal component, and antimony (Sb) not more than 3.0 wt %, silver (Ag) not more than 3.5 wt %, germanium (Ge) not more than 0.1 wt %, and further, copper not more than 1.0 wt % or nickel not more than 1.0 wt % or the both elements.
  • Another known solder alloy contains germanium (Ge) in the range of 0.01 to 10 wt %, antimony in the range of 5 to 30 wt %, and tin (Sn) in the range of 65 to 90 wt %.
  • a tin (Sn)-antimony (Sb) alloy having a peritectic point at 8.5 wt % of antimony (Sb) and a temperature of 245° C., is generally used with a composition containing antimony (Sb) within 8 wt %. Melting of the tin (Sn)-antimony (Sb) alloy occurs at temperatures between 232° C., the melting point of tin (Sn), and 245° C., the peritectic point. The liquid-solid coexistence region is narrow, the heat resistance is favorable, and mechanically superior performances can be obtained by increasing the antimony (Sb) content. A large content of antimony (Sb), however, results in a problem of low wettability upon soldering the alloy. Oxidation of a solder component such as tin (Sn) involves another problem of deteriorated bonding performance.
  • a solder alloy according to one embodiment of the invention contains antimony in a range of 3 wt % to 5 wt %, a trace amount of germanium, and a balance of tin.
  • a solder alloy according to another aspect of the invention is the solder alloy according to the first embodiment of the invention, wherein the content of the germanium is not more than 0.2 wt %.
  • a semiconductor device using a solder alloy comprises an insulative substrate having conductor patterns on both surfaces thereof, a semiconductor chip joined to a conductor pattern on a front surface of the insulative substrate, and a heat sink plate joined to a conductor pattern on a back surface of the insulative substrate.
  • the conductor pattern on the back surface of the insulative substrate and the heat sink plate are soldered with a solder alloy that contains antimony in a range of 3 wt % to 5 wt %, a trace amount of germanium, and the balance of tin.
  • a back surface of the semiconductor chip and the conductor pattern on the front surface of the insulative substrate are soldered with a solder alloy that contains antimony in a range of 3 wt % to 5 wt %, a trace amount of germanium, and the balance of tin.
  • electrodes disposed on the surfaces of the semiconductor chip and conductors for wiring are soldered with a solder alloy that contains antimony in, a range of 3 wt % to 5 wt %, a trace amount of germanium, and the balance of tin.
  • the content of the germanium in the solder alloy is not more than 0.2 wt %.
  • the insulative substrate is a ceramic substrate substantially composed of alumina, aluminum nitride, or silicon nitride and having copper patterns on both surfaces of the substrate, and the heat sink plate is made of copper.
  • the thermal fatigue life is very short if the content of antimony (Sb) is less than 3 wt %, the amount of additive antimony (Sb) is preferably at least 3 wt %. If the content of antimony (Sb) is more than 5 wt %, wettability of the solder deteriorates. Accordingly, the amount of additive antimony (Sb) is preferably not more than 5 wt %.
  • an amount of additive germanium (Ge) is preferably at least 0.01 wt % in order to achieve sufficient effect to suppress oxidation.
  • the germanium content of more than 0.2 wt % on the other hand, the oxide film with the germanium (Ge) grows too thick, which adversely affects the bonding performance. Accordingly, the amount of additive germanium is appropriately not more than 0.2 wt %. Therefore, the germanium added in an amount in the range of 0.01 to 0.2 wt % provides satisfactory bonding performance as well as excellent thermal fatigue characteristic.
  • a tin (Sn)-antimony (Sb) solder alloy is obtained that exhibits excellent wettability and satisfactory bonding performance.
  • a semiconductor device is obtained using a solder alloy of tin (Sn)-antimony (Sb) system that exhibits excellent wettability and satisfactory bonding performance.
  • the FIGURE is a sectional view of an example of a semiconductor device using a solder alloy according to an embodiment of the present invention.
  • a solder alloy is prepared by melting the raw materials of tin (Sn), antimony (Sb), and germanium (Ge) in an electric furnace. Purity of each raw material is 99.99% or more. Compositions of the materials are antimony 3 to 5 wt %, germanium 0.01 to 0.2 wt %, and the balance of tin (Sn), a main component.
  • an insulative substrate 10 comprises a ceramic substrate 1 and conductor patterns 2 and 3 joined on both surfaces of the, ceramic substrate.
  • the ceramic substrate 1 is substantially composed of alumina, aluminum nitride, or silicon nitride.
  • the conductor pattern 2 formed on the front surface of the ceramic substrate 1 is a metallic conductor pattern composing an electric circuit.
  • On the back surface of the ceramic substrate 1 is provided a metallic conductor pattern 3 .
  • the conductor patterns 2 and 3 are preferably formed of copper, which is inexpensive and exhibits high thermal conductivity.
  • back surface electrodes of metallic films are provided on the back surface of the semiconductor chip 4 .
  • the back surface electrodes are joined to the conductor pattern 2 on the front surface of the insulative substrate 10 with a solder alloy 5 having a composition as described previously.
  • front surface electrodes of metallic films are provided on the front surface of the semiconductor chip 4 .
  • the front surface electrodes are joined to the wiring conductor 6 with a solder alloy 7 having a composition as described previously.
  • the conductor pattern 3 on the back surface of the insulative substrate 10 is joined to the metallic heat sink plate 8 with a solder alloy 9 having a composition as described previously.
  • the heat sink plate 8 is a heat conductor to external cooling fins of the semiconductor package not shown in the FIGURE.
  • the heat sink plate 8 is preferably made of copper, which is inexpensive and exhibits high thermal conductivity.
  • solder alloy with the above-described composition for joining the conductor pattern 3 and the heat sink plate 8 , excellent cooling characteristics and satisfactory bonding performance can be achieved employing copper with low cost and high thermal conductivity.
  • a solder material with a different composition from that of the solder alloy 5 , 7 , 9 may be used for joining the front surface electrodes of the semiconductor chip 4 and the wiring conductor 6 , and for joining the back surface electrodes of the semiconductor chip 4 and the conductor pattern 2 on the insulative substrate 10 .
  • Solder alloys of a tin (Sn)-antimony (Sb) system were prepared in the compositions of antimony (Sb): 5.0 wt %, germanium (Ge): four steps of contents in the range of 0.01 to 0.2 wt %, and the balance of tin (Sn).
  • Germanium content was 0.01 wt % in Example 1, 0.05 wt % in Example 2, 0.1 wt % in Example 3, and 0.2 wt % in Example 4.
  • Solder alloys of tin (Sn)-antimony (Sb) system were prepared in the compositions of antimony (Sb): 3.0 wt %, germanium (Ge): four steps of contents in the range of 0.01 to 0.2 wt %, and the balance of tin (Sn).
  • Germanium content was 0.01 wt % in Example 5, 0.05 wt % in Example 6, 0.1 wt % in Example 7, and 0.2 wt % in Example 8.
  • Solder alloys not containing germanium (Ge) were prepared for comparison.
  • the content of antimony (Sb) was 6.0 wt % in Comparative Example 1, 5.0 wt % in Comparative Example 2, 3.0 wt % in Comparative Example 3, 2.0 wt % in Comparative Example 4; the remainder was tin (Sn) in every Comparative Example.
  • soldering flux RMA type
  • the rate of wetted area and the wetting angle were measured and the generation of an oxide film on the melt was observed.
  • the thermal fatigue life was also evaluated on each solder alloy.
  • a conjugated body a combination of the heat sink plate 8 and the insulative substrate 10 having the conductor pattern 3 joined together with the solder alloy 9 as illustrated in the FIGURE
  • Table 1 shows the following. With the increase of the added antimony (Sb), the thermal fatigue performance improves, but the increase beyond 5.0 wt % does not provide further improvement of the thermal fatigue performance. On the other hand, antimony (Sb) content less than 3.0 wt % significantly worsens the thermal fatigue performance. Addition of 0.01 to 0.2 wt % of germanium remarkably suppresses generation of an oxide film on the molten solder and at the same time improves wettability.
  • germanium (Ge) is effective for both flow soldering and reflow soldering. Further, the effect of germanium is valid in both cream solder and sheet solder.
  • the addition of germanium (Ge) in the amount more than 0.01 wt % made no significant difference in the wettability and the oxide film formation as increased from the germanium content of 0.01 wt %.
  • the added germanium (Ge), suppressing oxidation of tin (Sn), is effective not only in the process of soldering but also in the process of preparing a solder alloy, to provide a solder alloy with essentially no oxidation film, and of high quality.
  • each particle of the powder is desired to have a spherical shape.
  • the powder is necessarily manufactured under a condition in which only the surface tension works, which requires suppressing the surface oxidation to the minimum possible degree. Therefore, germanium (Ge) is beneficially added to suppress the surface oxidation.
  • the rate of oxidation of germanium (Ge) is stable and only a small amount of the additive holds the effect.
  • germanium (Ge) in a tin (Sn)-antimony (Sb) alloy provides a solder alloy exhibiting excellent thermal fatigue performance, a solder alloy exhibiting heat resistance, a solder alloy exhibiting high wettability, and a solder alloy exhibiting satisfactory bonding performance. Because the alloy is free of lead (Pb), a solder alloy that does not cause environmental pollution is provided.
  • solder alloy and a semiconductor device using the solder alloy according to the invention are beneficially applied to a variety of apparatuses having soldered parts, and are particularly suited to semiconductor devices for power conversion used in a power conversion apparatus installed in electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A solder alloy contains from 3 to 5 wt % of antimony (Sb), not more than 0.2 wt % of germanium (Ge), and the balance of tin (Sn). In a semiconductor device, the solder alloy can be used to join a semiconductor chip and a conductor pattern on the front surface of an insulative substrate, a conductor pattern on the back surface of the insulative substrate and a heat sink plate, and the semiconductor chip and a wiring conductor. The solder alloy exhibits excellent wettability and satisfactory bonding performance.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is based on, and claims priority from, Japanese Application No. 2005-148730, filed on May 20, 2005, the contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION AND RELATED ART STATEMENT
  • The present invention relates to a solder alloy free of lead and a semiconductor device using the solder alloy, and in particular, to a solder alloy of a tin (Sn)-antimony (Sb) system.
  • A solder alloy generally requires sufficient bonding performance and corrosion resistance. In power semiconductor devices for power converter application, a solder alloy is used to join the back surface of a semiconductor chip to a conductor pattern disposed on a principal surface (front surface) of an insulative substrate that is a ceramic substrate having conductor patterns on the surfaces thereof. Such a solder alloy needs high strength against thermal fatigue, because large thermal strain develops in the soldering area. The back surface of the semiconductor chip joins to the conductor pattern on the surface of the insulative substrate in a face-bonding way, and thermal expansion coefficients are different in a semiconductor chip and in a conductor pattern. In addition, the semiconductor chip generates heat in a conducting period. Therefore, the soldering portion suffers from large thermal strain.
  • In power semiconductor devices installed in a power converter for power conversion in electric vehicles, the conductor pattern disposed on the other principal surface (a back surface) of an insulative substrate is joined to a heat sink plate made of a metal. Since the soldering area is very wide, the solder alloy used for this joint must exhibit excellent wettability. Further, in the joining area between the heat sink plate and the conductor pattern on the back surface of the insulative substrate, large thermal strain develops caused by the difference in thermal expansion coefficients of the insulative substrate (a ceramic substrate) and the heat sink plate. Since the soldering area in the joint between the heat sink plate and the conductor pattern on the back surface of the insulative substrate is large, the generated strain in the soldering area is larger than the strain that develops in the joint between the semiconductor chip and the conductor pattern on the front surface of the insulative substrate as mentioned earlier.
  • Recently, a solder alloy that does not contain lead (Pb) is in demand in view of environmental considerations. One of such known solder alloys is a tin (Sn)-antimony (Sb) alloy. A known solder alloy (see Japanese Unexamined Patent Application Publication No. H11-58066, for example) contains tin (Sn) as a principal component, and antimony (Sb) not more than 3.0 wt %, silver (Ag) not more than 3.5 wt %, germanium (Ge) not more than 0.1 wt %, and further, copper not more than 1.0 wt % or nickel not more than 1.0 wt % or the both elements. Another known solder alloy (see Japanese Unexamined Patent Application Publication No. 2003-94194, for example) contains germanium (Ge) in the range of 0.01 to 10 wt %, antimony in the range of 5 to 30 wt %, and tin (Sn) in the range of 65 to 90 wt %.
  • A tin (Sn)-antimony (Sb) alloy, having a peritectic point at 8.5 wt % of antimony (Sb) and a temperature of 245° C., is generally used with a composition containing antimony (Sb) within 8 wt %. Melting of the tin (Sn)-antimony (Sb) alloy occurs at temperatures between 232° C., the melting point of tin (Sn), and 245° C., the peritectic point. The liquid-solid coexistence region is narrow, the heat resistance is favorable, and mechanically superior performances can be obtained by increasing the antimony (Sb) content. A large content of antimony (Sb), however, results in a problem of low wettability upon soldering the alloy. Oxidation of a solder component such as tin (Sn) involves another problem of deteriorated bonding performance.
  • SUMMARY OF THE INVENTION
  • The present invention has been made in view of the above problems, and an object of the invention is to provide a solder alloy of a tin (Sn)-antimony (Sb) system exhibiting excellent wettability and satisfactory bonding performance. Another object of the invention is to provide a semiconductor device employing a solder alloy of a tin (Sn)-antimony (Sb) system exhibiting excellent wettability and satisfactory bonding performance.
  • To solve the problems and accomplish the objects, a solder alloy according to one embodiment of the invention contains antimony in a range of 3 wt % to 5 wt %, a trace amount of germanium, and a balance of tin.
  • A solder alloy according to another aspect of the invention is the solder alloy according to the first embodiment of the invention, wherein the content of the germanium is not more than 0.2 wt %.
  • According to another embodiment of the invention, a semiconductor device using a solder alloy comprises an insulative substrate having conductor patterns on both surfaces thereof, a semiconductor chip joined to a conductor pattern on a front surface of the insulative substrate, and a heat sink plate joined to a conductor pattern on a back surface of the insulative substrate. The conductor pattern on the back surface of the insulative substrate and the heat sink plate are soldered with a solder alloy that contains antimony in a range of 3 wt % to 5 wt %, a trace amount of germanium, and the balance of tin.
  • According to another embodiment of the invention, a back surface of the semiconductor chip and the conductor pattern on the front surface of the insulative substrate are soldered with a solder alloy that contains antimony in a range of 3 wt % to 5 wt %, a trace amount of germanium, and the balance of tin.
  • According to another embodiment of the invention, electrodes disposed on the surfaces of the semiconductor chip and conductors for wiring are soldered with a solder alloy that contains antimony in, a range of 3 wt % to 5 wt %, a trace amount of germanium, and the balance of tin.
  • According to another aspect of the semiconductor device embodiment of the invention, the content of the germanium in the solder alloy is not more than 0.2 wt %.
  • According to another aspect of the semiconductor device embodiment of the invention, the insulative substrate is a ceramic substrate substantially composed of alumina, aluminum nitride, or silicon nitride and having copper patterns on both surfaces of the substrate, and the heat sink plate is made of copper.
  • By adding antimony (Sb) to tin (Sn) according to the various embodiments of the invention described above, heat resistance and strength against thermal fatigue of the alloy are improved. The melting temperature rises and heat resistance of the alloy increases. Coarsening of crystal grains of tin (Sn) due to thermal stress is suppressed, thereby improving the thermal fatigue characteristics. Here, because the thermal fatigue life is very short if the content of antimony (Sb) is less than 3 wt %, the amount of additive antimony (Sb) is preferably at least 3 wt %. If the content of antimony (Sb) is more than 5 wt %, wettability of the solder deteriorates. Accordingly, the amount of additive antimony (Sb) is preferably not more than 5 wt %.
  • By adding a trace amount of germanium (Ge) to the tin (Sn)-antimony (Sb) solder alloy, a thin oxide film is formed when the solder melts, thereby suppressing oxidation of a solder component such as tin (Sn) and improving bonding performance. Here, an amount of additive germanium (Ge) is preferably at least 0.01 wt % in order to achieve sufficient effect to suppress oxidation. With a germanium content of more than 0.2 wt % on the other hand, the oxide film with the germanium (Ge) grows too thick, which adversely affects the bonding performance. Accordingly, the amount of additive germanium is appropriately not more than 0.2 wt %. Therefore, the germanium added in an amount in the range of 0.01 to 0.2 wt % provides satisfactory bonding performance as well as excellent thermal fatigue characteristic.
  • According to the invention, a tin (Sn)-antimony (Sb) solder alloy is obtained that exhibits excellent wettability and satisfactory bonding performance. According to the invention, a semiconductor device is obtained using a solder alloy of tin (Sn)-antimony (Sb) system that exhibits excellent wettability and satisfactory bonding performance.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The FIGURE is a sectional view of an example of a semiconductor device using a solder alloy according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Some preferred embodiments of a solder alloy and a semiconductor device using the solder alloy according to the invention will be described in detail in the following with reference to the accompanying drawing FIGURE.
  • A solder alloy is prepared by melting the raw materials of tin (Sn), antimony (Sb), and germanium (Ge) in an electric furnace. Purity of each raw material is 99.99% or more. Compositions of the materials are antimony 3 to 5 wt %, germanium 0.01 to 0.2 wt %, and the balance of tin (Sn), a main component.
  • Next, an example of a semiconductor device using the above-described solder alloy is described below. The FIGURE is a sectional view illustrating a structure of the semiconductor device. Referring to the FIGURE, an insulative substrate 10 comprises a ceramic substrate 1 and conductor patterns 2 and 3 joined on both surfaces of the, ceramic substrate. The ceramic substrate 1 is substantially composed of alumina, aluminum nitride, or silicon nitride. The conductor pattern 2 formed on the front surface of the ceramic substrate 1 is a metallic conductor pattern composing an electric circuit. On the back surface of the ceramic substrate 1 is provided a metallic conductor pattern 3. The conductor patterns 2 and 3 are preferably formed of copper, which is inexpensive and exhibits high thermal conductivity.
  • On the back surface of the semiconductor chip 4 are provided back surface electrodes of metallic films (not shown in the FIGURE). The back surface electrodes are joined to the conductor pattern 2 on the front surface of the insulative substrate 10 with a solder alloy 5 having a composition as described previously.
  • On the front surface of the semiconductor chip 4 are provided front surface electrodes of metallic films (not shown in the FIGURE). The front surface electrodes are joined to the wiring conductor 6 with a solder alloy 7 having a composition as described previously.
  • The conductor pattern 3 on the back surface of the insulative substrate 10 is joined to the metallic heat sink plate 8 with a solder alloy 9 having a composition as described previously. The heat sink plate 8 is a heat conductor to external cooling fins of the semiconductor package not shown in the FIGURE. The heat sink plate 8 is preferably made of copper, which is inexpensive and exhibits high thermal conductivity.
  • In the joining area between the conductor pattern 3 on the back surface of the insulative substrate 10 and the heat sink plate 8, large thermal strain develops due to the difference in thermal expansion coefficient between the ceramic substrate 1 of the insulative substrate 10 and the heat sink plate 8. Copper in particular, having a large thermal expansion coefficient, exhibits a thermal expansion coefficient considerably different from the ceramic substrate 1. So, large strain is generated in the joining area between the conductor pattern 3 on the back surface of the insulative substrate 10 and the heat sink plate 8. If a heat sink plate 8 is made of a material (for example aluminum or an alloy of copper and molybdenum) having a thermal expansion coefficient smaller than copper, the generation of strain due to the difference in thermal expansion coefficient would be reduced. These materials, however, are expensive and exhibit low thermal conductivity, which deteriorates the cooling characteristic of the semiconductor device.
  • By using a solder alloy with the above-described composition for joining the conductor pattern 3 and the heat sink plate 8, excellent cooling characteristics and satisfactory bonding performance can be achieved employing copper with low cost and high thermal conductivity. A solder material with a different composition from that of the solder alloy 5, 7, 9 may be used for joining the front surface electrodes of the semiconductor chip 4 and the wiring conductor 6, and for joining the back surface electrodes of the semiconductor chip 4 and the conductor pattern 2 on the insulative substrate 10.
  • Examples 1 through 4
  • Solder alloys of a tin (Sn)-antimony (Sb) system were prepared in the compositions of antimony (Sb): 5.0 wt %, germanium (Ge): four steps of contents in the range of 0.01 to 0.2 wt %, and the balance of tin (Sn). Germanium content was 0.01 wt % in Example 1, 0.05 wt % in Example 2, 0.1 wt % in Example 3, and 0.2 wt % in Example 4.
  • Examples 5 through 8
  • Solder alloys of tin (Sn)-antimony (Sb) system were prepared in the compositions of antimony (Sb): 3.0 wt %, germanium (Ge): four steps of contents in the range of 0.01 to 0.2 wt %, and the balance of tin (Sn). Germanium content was 0.01 wt % in Example 5, 0.05 wt % in Example 6, 0.1 wt % in Example 7, and 0.2 wt % in Example 8.
  • Comparative Examples 1 through 4
  • Solder alloys not containing germanium (Ge) were prepared for comparison. The content of antimony (Sb) was 6.0 wt % in Comparative Example 1, 5.0 wt % in Comparative Example 2, 3.0 wt % in Comparative Example 3, 2.0 wt % in Comparative Example 4; the remainder was tin (Sn) in every Comparative Example.
  • On each of the thus obtained solder alloys, the wettability (wet strength) was measured using soldering flux (RMA type) by means of a meniscograph method. On each solder alloy, the rate of wetted area and the wetting angle were measured and the generation of an oxide film on the melt was observed. The thermal fatigue life was also evaluated on each solder alloy. In the evaluation of thermal fatigue life, a conjugated body (a combination of the heat sink plate 8 and the insulative substrate 10 having the conductor pattern 3 joined together with the solder alloy 9 as illustrated in the FIGURE) was manufactured by joining a metallic conductor pattern on an insulative substrate to a metallic heat sink plate using each solder alloy.
  • To each of these conjugated bodies, loading of temperature cycles was subjected, repeating the temperatures of −40 and 125° C. The length of the crack was measured after 1,000 cycles. Table 1 gives the results. In the column entitled “oxide film” in Table 1, the marks x and o represent the generation of oxide film being significant and very scarce, respectively.
    TABLE 1
    crack
    length
    wet wetting rate of after
    Sb Ge strength angle wetted oxide 1,000 cycles
    (wt %) (wt %) Sn (mN) (°) area(%) film (mm)
    Comp Ex 1 6.0 balance 3.0
    Comp Ex 2 5.0 balance 14.4 9.7 83.6 x 3.0
    Example 1 5.0 0.01 balance 15.2 3.3 100.0
    Example 2 5.0 0.05 balance 15.1 3.8 100.0
    Example 3 5.0 0.1 balance 15.1 4.2 100.0
    Example 4 5.0 0.2 balance 15.3 4.3 100.0
    Comp Ex 3 3.0 balance 14.5 9.5 84.0 x 3.4
    Example 5 3.0 0.01 balance 15.2 3.1 100.0
    Example 6 3.0 0.05 balance 15.2 3.4 100.0
    Example 7 3.0 0.1 balance 15.3 3.5 100.0
    Example 8 3.0 0.2 balance 15.3 3.8 100.0
    Comp Ex 4 2.0 balance 9.1
  • Table 1 shows the following. With the increase of the added antimony (Sb), the thermal fatigue performance improves, but the increase beyond 5.0 wt % does not provide further improvement of the thermal fatigue performance. On the other hand, antimony (Sb) content less than 3.0 wt % significantly worsens the thermal fatigue performance. Addition of 0.01 to 0.2 wt % of germanium remarkably suppresses generation of an oxide film on the molten solder and at the same time improves wettability.
  • The addition of germanium (Ge) is effective for both flow soldering and reflow soldering. Further, the effect of germanium is valid in both cream solder and sheet solder. The addition of germanium (Ge) in the amount more than 0.01 wt % made no significant difference in the wettability and the oxide film formation as increased from the germanium content of 0.01 wt %. The added germanium (Ge), suppressing oxidation of tin (Sn), is effective not only in the process of soldering but also in the process of preparing a solder alloy, to provide a solder alloy with essentially no oxidation film, and of high quality.
  • In a process of manufacturing powder of solder alloy for cream solder, for example, each particle of the powder is desired to have a spherical shape. To obtain the powder of spherical particles, the powder is necessarily manufactured under a condition in which only the surface tension works, which requires suppressing the surface oxidation to the minimum possible degree. Therefore, germanium (Ge) is beneficially added to suppress the surface oxidation. The rate of oxidation of germanium (Ge) is stable and only a small amount of the additive holds the effect.
  • As described above, the addition of germanium (Ge) in a tin (Sn)-antimony (Sb) alloy provides a solder alloy exhibiting excellent thermal fatigue performance, a solder alloy exhibiting heat resistance, a solder alloy exhibiting high wettability, and a solder alloy exhibiting satisfactory bonding performance. Because the alloy is free of lead (Pb), a solder alloy that does not cause environmental pollution is provided.
  • As described above, a solder alloy and a semiconductor device using the solder alloy according to the invention are beneficially applied to a variety of apparatuses having soldered parts, and are particularly suited to semiconductor devices for power conversion used in a power conversion apparatus installed in electric vehicles.
  • While the invention has been explained with reference to the specific embodiments of the invention, the explanation is illustrative, and the invention is limited only by the appended claims.

Claims (8)

1. A solder alloy comprising:
antimony in a range of from 3 to 5 wt %;
a trace amount of germanium; and
a balance of tin.
2. The solder alloy according to claim 1, wherein the amount of germanium is from 0.01 to 0.2 wt %.
3. The solder alloy according to claim 1, wherein the amount of germanium is not more than 0.2 wt %.
4. A semiconductor device with a solder alloy, comprising:
an insulative substrate having conductor patterns on two surfaces thereof;
a semiconductor chip joined to the conductor pattern on a front surface of the insulative substrate; and
a heat sink plate joined to the conductor pattern on a back surface of the insulative substrate, wherein
the conductor pattern on the back surface of the insulative substrate and the heat sink plate are soldered with a solder alloy comprising antimony in a range of from 3 to 5 wt %, a trace amount of germanium, and a balance of tin.
5. The semiconductor device with the solder alloy according to claim 4, wherein a back surface of the semiconductor chip and the conductor pattern on the front surface of the insulative substrate are soldered with a solder alloy comprising antimony in a range of from 3 to 5 wt %, a trace amount of germanium, and a balance of tin.
6. The semiconductor device with the solder alloy according to claim 4, further comprising electrodes disposed on a front surface of the semiconductor chip, and conductors for wiring,
wherein the electrodes and the conductors for wiring are soldered with a solder alloy comprising antimony in a range of from 3 to 5 wt %, a trace amount of germanium, and a balance of tin.
7. The semiconductor device with the solder alloy according to claim 4, wherein the amount of germanium is not more than 0.2 wt %.
8. The semiconductor device with the solder alloy according to claim 4, wherein the insulative substrate is a ceramic substrate substantially composed of alumina, aluminum nitride, or silicon nitride, and has copper patterns on both surfaces of the substrate, and the heat sink plate is made of copper.
US11/345,516 2005-05-20 2006-02-02 Solder alloy and a semiconductor device using the solder alloy Abandoned US20060263235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/213,923 US7816249B2 (en) 2005-05-20 2008-06-26 Method for producing a semiconductor device using a solder alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-148730 2005-05-20
JP2005148730A JP4635715B2 (en) 2005-05-20 2005-05-20 Solder alloy and semiconductor device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/213,923 Continuation-In-Part US7816249B2 (en) 2005-05-20 2008-06-26 Method for producing a semiconductor device using a solder alloy

Publications (1)

Publication Number Publication Date
US20060263235A1 true US20060263235A1 (en) 2006-11-23

Family

ID=36061073

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/345,516 Abandoned US20060263235A1 (en) 2005-05-20 2006-02-02 Solder alloy and a semiconductor device using the solder alloy

Country Status (5)

Country Link
US (1) US20060263235A1 (en)
JP (1) JP4635715B2 (en)
CN (3) CN102637662B (en)
DE (1) DE102006005271B4 (en)
GB (1) GB2426251B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289344A1 (en) * 2008-05-23 2009-11-26 Fuji Electric Device Technology Co., Ltd. Semiconductor device
US20100328247A1 (en) * 2008-02-22 2010-12-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Touch panel sensor
US20140144019A1 (en) * 2011-08-29 2014-05-29 Asia Vital Components Co., Ltd. Heat Dissipation Device and Method of Manufacturing Same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221330A (en) * 2007-03-16 2008-09-25 Fuji Electric Holdings Co Ltd Solder alloy
CN102717201B (en) * 2012-07-04 2015-04-22 深圳市斯特纳新材料有限公司 High-strength high-temperature soldering flux with corrosion resistance
JP6713106B2 (en) * 2014-02-24 2020-06-24 株式会社弘輝 Lead-free solder alloy, solder material and joint structure
CN108428682B (en) * 2018-04-13 2020-08-18 江西江铃集团新能源汽车有限公司 Power module and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179935B1 (en) * 1997-04-16 2001-01-30 Fuji Electric Co., Ltd. Solder alloys
US6187114B1 (en) * 1996-10-17 2001-02-13 Matsushita Electric Industrial Co. Ltd. Solder material and electronic part using the same
US6319461B1 (en) * 1999-06-11 2001-11-20 Nippon Sheet Glass Co., Ltd. Lead-free solder alloy
US20030230361A1 (en) * 2002-06-17 2003-12-18 Kabushiki Kaisha Toshiba Lead-free solder alloy and lead-free solder paste using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230493A (en) * 1986-03-31 1987-10-09 Taruchin Kk Solder alloy
JP3269745B2 (en) * 1995-01-17 2002-04-02 株式会社日立製作所 Modular semiconductor device
JPH09330941A (en) * 1996-06-13 1997-12-22 Toshiba Corp High heat-conduction paste solder and semiconductor device
US6033488A (en) * 1996-11-05 2000-03-07 Samsung Electronics Co., Ltd. Solder alloy
KR19980068127A (en) * 1997-02-15 1998-10-15 김광호 Lead-Free Alloys for Soldering
JP3353662B2 (en) * 1997-08-07 2002-12-03 富士電機株式会社 Solder alloy
JP2002232022A (en) * 2001-01-31 2002-08-16 Aisin Seiki Co Ltd Thermoelectric module and its manufacturing method
JP2002321084A (en) * 2001-04-26 2002-11-05 Sumitomo Metal Mining Co Ltd Soldering alloy for joining electronic parts
TW592872B (en) * 2001-06-28 2004-06-21 Senju Metal Industry Co Lead-free solder alloy
JP2003094194A (en) * 2001-07-16 2003-04-02 Uchihashi Estec Co Ltd Fixing method for soldering material and member of electronic part
US20030178719A1 (en) * 2002-03-22 2003-09-25 Combs Edward G. Enhanced thermal dissipation integrated circuit package and method of manufacturing enhanced thermal dissipation integrated circuit package
CN1230567C (en) * 2003-07-02 2005-12-07 中国科学院金属研究所 Industrial pure tin with resistance to liquid surface oxidizing and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187114B1 (en) * 1996-10-17 2001-02-13 Matsushita Electric Industrial Co. Ltd. Solder material and electronic part using the same
US6179935B1 (en) * 1997-04-16 2001-01-30 Fuji Electric Co., Ltd. Solder alloys
US6319461B1 (en) * 1999-06-11 2001-11-20 Nippon Sheet Glass Co., Ltd. Lead-free solder alloy
US20030230361A1 (en) * 2002-06-17 2003-12-18 Kabushiki Kaisha Toshiba Lead-free solder alloy and lead-free solder paste using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328247A1 (en) * 2008-02-22 2010-12-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Touch panel sensor
US20090289344A1 (en) * 2008-05-23 2009-11-26 Fuji Electric Device Technology Co., Ltd. Semiconductor device
US20140144019A1 (en) * 2011-08-29 2014-05-29 Asia Vital Components Co., Ltd. Heat Dissipation Device and Method of Manufacturing Same

Also Published As

Publication number Publication date
CN1864909B (en) 2012-05-30
DE102006005271B4 (en) 2012-12-06
CN102637662B (en) 2014-09-24
JP4635715B2 (en) 2011-02-23
CN1864909A (en) 2006-11-22
CN101905388B (en) 2012-05-30
GB2426251B (en) 2007-10-10
GB0601776D0 (en) 2006-03-08
JP2006320955A (en) 2006-11-30
DE102006005271A1 (en) 2006-11-23
CN102637662A (en) 2012-08-15
GB2426251A (en) 2006-11-22
CN101905388A (en) 2010-12-08

Similar Documents

Publication Publication Date Title
US6179935B1 (en) Solder alloys
US11145615B2 (en) Solder material for semiconductor device
JP3226213B2 (en) Solder material and electronic component using the same
US20060263235A1 (en) Solder alloy and a semiconductor device using the solder alloy
JP5707886B2 (en) Power module substrate, power module substrate with cooler, power module, and power module substrate manufacturing method
JPH1177366A (en) Solder
US20070013054A1 (en) Thermally conductive materials, solder preform constructions, assemblies and semiconductor packages
US9773721B2 (en) Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part
US20020155024A1 (en) Lead-free solder compositions
JP4401754B2 (en) Method for manufacturing thermoelectric conversion module
JP3353662B2 (en) Solder alloy
EP2265099B1 (en) Semiconductor device and method of manufacturing the same
JP5187465B1 (en) High temperature lead-free solder alloy
JP2005503926A (en) Improved composition, method and device suitable for high temperature lead-free solders
US20040241039A1 (en) High temperature lead-free solder compositions
US7816249B2 (en) Method for producing a semiconductor device using a solder alloy
CN100404193C (en) Soldering filler metal, assembly method for semiconductor device using same, and semiconductor device
WO2023054630A1 (en) Solder alloy, solder ball, solder preform, solder paste, and solder joint
JPH0133278B2 (en)
JP2005177842A (en) Brazing material, manufacturing method of semiconductor device using the same and semiconductor device
JP7161133B1 (en) Solder alloys, solder balls, solder preforms, solder pastes and solder joints
JP2005161397A (en) Solder and its manufacturing method
KR100230269B1 (en) Solder alloy
JPS6117355A (en) Joining of different members by soldering
JP2005138174A (en) Brazing filler metal, semiconductor equipment manufacturing method using the same, and semiconductor equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOROZUMI, AKIRA;SOYANO, SHIN;TAKAHASHI, YOSHIKAZU;REEL/FRAME:017750/0404;SIGNING DATES FROM 20060302 TO 20060309

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: FUJI ELECTRIC SYSTEMS CO., LTD.,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.;REEL/FRAME:024252/0438

Effective date: 20090930

Owner name: FUJI ELECTRIC SYSTEMS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.;REEL/FRAME:024252/0438

Effective date: 20090930