JP2002321084A - Soldering alloy for joining electronic parts - Google Patents
Soldering alloy for joining electronic partsInfo
- Publication number
- JP2002321084A JP2002321084A JP2001129194A JP2001129194A JP2002321084A JP 2002321084 A JP2002321084 A JP 2002321084A JP 2001129194 A JP2001129194 A JP 2001129194A JP 2001129194 A JP2001129194 A JP 2001129194A JP 2002321084 A JP2002321084 A JP 2002321084A
- Authority
- JP
- Japan
- Prior art keywords
- solder alloy
- mass
- melting point
- joining
- electronic parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電子部品接合用は
んだ合金に関し、さらに詳しくは鉛を実質的に含まない
電子部品接合用Sn−Sb系はんだ合金に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder alloy for joining electronic components, and more particularly to a Sn--Sb-based solder alloy for joining electronic components which is substantially free of lead.
【0002】[0002]
【従来の技術】従来、電子部品接合用材料としてPbお
よびSnを主成分としたはんだ合金が用いられてきた。
電子部品としてパワートランジスタを例に挙げると、パ
ワートランジスタには大きな電流の負荷が加わるため、
パワートランジスタの接続に使用されるはんだ合金に
は、応力緩和性、耐熱疲労特性、電気伝導性が要求され
る。2. Description of the Related Art Conventionally, solder alloys containing Pb and Sn as main components have been used as materials for joining electronic parts.
Taking a power transistor as an example of an electronic component, a large current load is applied to the power transistor.
Solder alloys used for connecting power transistors are required to have stress relaxation properties, heat-resistant fatigue properties, and electrical conductivity.
【0003】パワートランジスタの接合の際、まず、パ
ワートランジスタ内部においてリードフレームと半導体
チップを接合し(内部接合)、次に、パワートランジス
タを基板に接合する(実装)。なお、パワートランジス
タを基板に実装する際には、Snを63質量%含み、残
部がPbからなる共晶はんだ合金(融点183℃)を多
く用い、220〜230℃でリフローを行う。When joining a power transistor, first, a lead frame and a semiconductor chip are joined inside the power transistor (internal joining), and then the power transistor is joined to a substrate (mounting). When the power transistor is mounted on the substrate, reflow is performed at 220 to 230 ° C. by using a eutectic solder alloy (melting point: 183 ° C.) containing 63% by mass of Sn and the balance being Pb.
【0004】上記内部接合の工程で用いるはんだ合金の
固相融点が上記実装の工程で行うリフローの温度以下で
あると、該リフローを行うときにパワートランジスタ内
部の該はんだ合金が再溶融するために、リードフレーム
と半導体チップとの接合の信頼性が低下する。この再溶
融を防止するには、上記内部接合の工程において上記実
装時のリフロー温度以上の固相融点を有するはんだ合金
を使用する必要がある。そのため、Snを5質量%含
み、残部がPbからなるはんだ合金(固相融点305
℃)や、Snを3質量%含み、残部がPbからなるはん
だ合金(固相融点315℃)が多く用いられてきた。If the solid phase melting point of the solder alloy used in the internal bonding step is lower than the temperature of the reflow performed in the mounting step, the solder alloy in the power transistor is re-melted when the reflow is performed. As a result, the reliability of bonding between the lead frame and the semiconductor chip is reduced. In order to prevent this re-melting, it is necessary to use a solder alloy having a solid phase melting point equal to or higher than the reflow temperature at the time of mounting in the internal bonding step. Therefore, a solder alloy containing 5% by mass of Sn and the balance of Pb (solid-state melting point 305
C.) and a solder alloy (solid phase melting point: 315 ° C.) containing 3% by mass of Sn and the balance of Pb.
【0005】以上のように、Pbを含むはんだ合金は電
子部品の接合用プロセスにおいて有効な材料として用い
られており、その信頼性も確立されてきた。As described above, a solder alloy containing Pb is used as an effective material in a process for joining electronic components, and its reliability has been established.
【0006】しかしその一方で、このようなPbを含む
はんだ合金の有害性が指摘されだしている。すなわち、
廃棄処分された電子機器に上記Pbを含むはんだ合金が
使用されていると、該はんだ合金に含まれるPb成分が
酸性雨によって徐々に溶解流出し、土壌中に浸透し、農
作物などに蓄積し、ひいては人間に害を及ぼすというも
のである。However, on the other hand, the harmfulness of such a solder alloy containing Pb has been pointed out. That is,
If the solder alloy containing Pb is used in the electronic equipment that has been disposed of, the Pb component contained in the solder alloy gradually dissolves and flows out due to acid rain, penetrates into the soil, and accumulates in crops and the like, It is harmful to humans.
【0007】そこで、電子部品を基板に接合する工程で
用いられる上記共晶はんだ合金の代替品として、Snを
主成分としたはんだ合金が検討されている。このはんだ
合金は固相融点が上記共晶はんだ合金より上昇し、実装
時のリフロー温度も250〜260℃付近に上昇すると
みられている。そのため、電子部品の内部に使用するは
んだ合金は、このリフロー温度よりもさらに高い固相融
点を有することが要求される。Therefore, as an alternative to the above-mentioned eutectic solder alloy used in the step of joining an electronic component to a substrate, a solder alloy containing Sn as a main component has been studied. It is considered that this solder alloy has a solid-state melting point higher than that of the above-mentioned eutectic solder alloy, and a reflow temperature at the time of mounting also increases to around 250 to 260 ° C. Therefore, a solder alloy used inside an electronic component is required to have a solid phase melting point higher than this reflow temperature.
【0008】従来、Pbを実質的に含まない(Pbフリ
ー)はんだ合金としてSn−Sb系はんだ合金が検討さ
れている(以下、「Sn−Sb系」といえばPbを実質
的に含まない(Pbフリー)ことを意味する)。Sn−
Sb系はんだ合金は、Sbが11質量%以上で固相融点
が246℃であって、Snを主成分としたはんだ合金で
は実用可能な最高の固相融点を持つ。Conventionally, Sn—Sb-based solder alloys have been studied as Pb-free (Pb-free) solder alloys (hereinafter, “Sn—Sb-based” is substantially free of Pb (Pb-free). Free)). Sn-
The Sb-based solder alloy has a solid phase melting point of 246 ° C. when Sb is 11% by mass or more, and has the highest practical solid phase melting point with a solder alloy containing Sn as a main component.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、上記S
n−Sb系はんだ合金は、Sbの組成比率が11質量%
を超えると、凝固する際に晶出する粗大な結晶粒を有す
る組織となる。この結晶粒はSnとSbからなる金属間
化合物(Sn−Sb化合物)であり、硬くて脆い性質を
有するため、外部から負荷を与えると結晶粒の外郭(粒
界)に沿ってクラックが発生しやすくなる(耐熱性・熱
疲労特性の低下)という問題がある。このような問題に
よる電子部品の信頼性の低下を避けるため、Sbの組成
比率が11質量%以下のはんだ合金が用いられてきた。
一方、Sbの組成比率が11質量%以下の上記Sn−S
b系はんだ合金は、(1)固相融点が246℃以下とな
るため、そして(2)基板実装用に前記共晶はんだ合金
(Pb−Sn系合金)の代替品であるSn−Sb系はん
だ合金を用いた場合にリフロー温度を上げる必要がある
ため、電子部品内部の接合性が損なわれる危険がある。However, the above S
The n-Sb-based solder alloy has a Sb composition ratio of 11% by mass.
When it exceeds, a structure having coarse crystal grains that is crystallized during solidification is obtained. These crystal grains are an intermetallic compound (Sn-Sb compound) composed of Sn and Sb, and have a hard and brittle property. Therefore, when an external load is applied, cracks are generated along the outline (grain boundaries) of the crystal grains. This is problematic in that the heat resistance and heat fatigue properties decrease. In order to avoid a decrease in the reliability of electronic components due to such a problem, a solder alloy having a composition ratio of Sb of 11% by mass or less has been used.
On the other hand, the above Sn-S in which the composition ratio of Sb is 11% by mass or less.
The b-based solder alloy is (1) a solid-state melting point of 246 ° C. or less, and (2) a Sn—Sb-based solder which is a substitute for the eutectic solder alloy (Pb—Sn-based alloy) for mounting on a substrate. When an alloy is used, it is necessary to raise the reflow temperature, so that there is a risk that the bondability inside the electronic component is impaired.
【0010】また、Sn−Sb系はんだ合金は、接合時
の濡れ性が乏しく、熱疲労特性も十分ではないという問
題があった。[0010] Further, the Sn-Sb-based solder alloy has a problem that the wettability at the time of joining is poor and the thermal fatigue properties are not sufficient.
【0011】本発明の目的は、上記問題を解消し、固相
融点が高く、濡れ性・耐熱性・熱疲労特性の改善された
電子部品接合用Sn−Sb系はんだ合金を提供すること
にある。An object of the present invention is to provide an Sn-Sb based solder alloy for joining electronic components, which solves the above problems, has a high solid-state melting point, and has improved wettability, heat resistance and thermal fatigue characteristics. .
【0012】[0012]
【課題を解決するための手段】本発明は、上記課題を解
決するため、Sbを11〜15質量%、並びにNiおよ
びGeのうちの少なくとも1種を0.01〜1質量%含
み、残部が実質的にSnからなる電子部品接合用はんだ
合金である。In order to solve the above-mentioned problems, the present invention comprises 11 to 15% by mass of Sb and 0.01 to 1% by mass of at least one of Ni and Ge, with the balance being the balance. It is a solder alloy for joining electronic components substantially made of Sn.
【0013】[0013]
【発明の実施の形態】本発明者は、Sbを11質量%以
上含むSn−Sb系はんだ合金(固相融点:246℃)
にNi、Geを添加することにより、Sn−Sb系はん
だ合金の濡れ性、耐熱性および熱疲労特性を向上させて
接合信頼性を確保できることを見いだした。BEST MODE FOR CARRYING OUT THE INVENTION The present inventor has developed a Sn-Sb based solder alloy containing 11% by mass or more of Sb (solid-state melting point: 246 ° C.)
It has been found that by adding Ni and Ge to the alloy, the wettability, heat resistance, and thermal fatigue characteristics of the Sn—Sb-based solder alloy can be improved and the bonding reliability can be ensured.
【0014】本発明の電子部品接合用はんだ合金におい
て、Sb含有量は11〜15質量%である。Sb含有量
が11質量%未満では、前述したように、固相融点が2
46℃未満となり、電子部品内部の接合性が損なわれる
危険がある。一方、Sb含有量が15質量%を超える
と、液相線温度と固相線温度の差が50℃以上となるた
め、溶融状態のはんだ合金の温度が液相線温度から固相
線温度になるまでに晶出するSn−Sb化合物結晶粒が
粗大化する。そのため、前述したように、はんだ合金に
クラックが発生しやすくなる。In the solder alloy for joining electronic parts of the present invention, the Sb content is 11 to 15% by mass. When the Sb content is less than 11% by mass, the solid-state melting point is 2 as described above.
When the temperature is lower than 46 ° C., there is a danger that the bondability inside the electronic component is impaired. On the other hand, when the Sb content exceeds 15% by mass, the difference between the liquidus temperature and the solidus temperature becomes 50 ° C. or more, so that the temperature of the molten solder alloy changes from the liquidus temperature to the solidus temperature. By then, the crystal grains of the Sn—Sb compound crystallized become coarse. Therefore, as described above, cracks easily occur in the solder alloy.
【0015】Sn−Sb系はんだ合金にNiを添加する
ことによりSn−Ni化合物結晶粒が微細に析出するた
め、Sn−Sb化合物結晶粒の粗大化を抑制することが
できる。その結果、はんだ合金の組織はNiを添加しな
い場合に比べて微細となり、クラックが発生しにくくな
る効果がある。また、Sn−Ni化合物は熱疲労特性の
向上に寄与する上、Niの融点が1450℃であるた
め、はんだ合金は熱的に安定となる。さらに、チップ接
合面にNiメタライズしたリードフレームをパワートラ
ンジスタなどの電子部品に用いた場合は、はんだ合金の
濡れ性がより向上する。By adding Ni to the Sn—Sb-based solder alloy, Sn—Ni compound crystal grains are finely precipitated, so that coarsening of the Sn—Sb compound crystal grains can be suppressed. As a result, the structure of the solder alloy becomes finer than when no Ni is added, and there is an effect that cracks are less likely to occur. In addition, the Sn-Ni compound contributes to improvement of thermal fatigue characteristics, and the melting point of Ni is 1450 ° C, so that the solder alloy is thermally stable. Furthermore, when a lead frame having a Ni metallized chip bonding surface is used for an electronic component such as a power transistor, the wettability of a solder alloy is further improved.
【0016】また、Geを添加することによりGe結晶
粒が微細に析出するため、Sn−Sb化合物結晶粒の粗
大化を抑制することができる。その他に、GeはSnよ
り酸化されやすいため、はんだ合金にGeを添加するこ
とにより、Snの酸化による濡れ性の低下も抑制でき
る。Further, since Ge crystal grains are finely precipitated by adding Ge, coarsening of the Sn—Sb compound crystal grains can be suppressed. In addition, since Ge is more easily oxidized than Sn, addition of Ge to the solder alloy can also suppress a decrease in wettability due to oxidation of Sn.
【0017】NiおよびGeのうちの少なくとも1種の
含有量は、0.01〜1質量%である。上記少なくとも
1種が0.01質量%未満では、該少なくとも1種の添
加効果がない。一方、上記少なくとも1種が1質量%よ
り多くなると、Sn−Ni化合物やGe結晶粒の偏析が
多くなる。The content of at least one of Ni and Ge is 0.01 to 1% by mass. When the content of at least one of the above is less than 0.01% by mass, there is no effect of the addition of the at least one. On the other hand, when the amount of at least one of the above is more than 1% by mass, segregation of the Sn—Ni compound and Ge crystal grains increases.
【0018】[0018]
【実施例】[実施例1〜18、比較例1〜5]表1に示
すSn、Sb、Ni、Geの組成を有するSn−Sb系
はんだ合金を用い(表1中「−」は無添加を示す)、S
iチップをCuリードフレームに接合した後に、耐熱性
試験を実施した。なお、耐熱性試験は、接合部に電圧5
0V、電流1Aを印加しながら、230〜270℃で1
0秒間保持するもので、各温度あたり5個の接合部につ
いて行った。[Examples 1 to 18 and Comparative Examples 1 to 5] A Sn—Sb-based solder alloy having the composition of Sn, Sb, Ni, and Ge shown in Table 1 was used. ), S
After joining the i-chip to the Cu lead frame, a heat resistance test was performed. Note that the heat resistance test was performed by applying a voltage of 5 to the joint.
0 V, current 1A, 230-270 ° C
It was held for 0 seconds, and was performed for 5 joints at each temperature.
【0019】[従来例1]表1に示すPb、Snの組成
を有するPb−Sn系はんだ合金を用いた以外は実施例
1と同様にして、耐熱性試験を実施した。[Conventional Example 1] A heat resistance test was conducted in the same manner as in Example 1 except that a Pb-Sn-based solder alloy having the composition of Pb and Sn shown in Table 1 was used.
【0020】以上の結果を表1に示す。表中、例えば0
/5は、5個の接合部のうちクラックの発生したものが
零であることを示す。Table 1 shows the above results. In the table, for example, 0
/ 5 indicates that the number of cracks out of the five joints is zero.
【0021】表1から次のことが分かる。The following can be seen from Table 1.
【0022】(1)実施例1〜18(Sn−Sb系)お
よび従来例1(Pb−Sn系)では、230〜270℃
のいずれの温度でも、5個中いずれの接合部にも、クラ
ックは入らなかった。(1) In Examples 1 to 18 (Sn-Sb type) and Conventional Example 1 (Pb-Sn type), 230 to 270 ° C.
No crack was found in any of the five joints at any of the above temperatures.
【0023】(2)比較例1〜5では、250℃以上ま
たは260℃以上の温度で、5個中1〜3個の接合部に
クラックが入った。因みに、比較例3の接合部の組織は
Sn−Sb化合物結晶粒が粗大化していた。また、比較
例5の接合部の組織はSn−Ni化合物やGe結晶粒の
偏析が発生していた。(2) In Comparative Examples 1 to 5, cracks occurred in 1 to 3 joints out of 5 at a temperature of 250 ° C. or higher or 260 ° C. or higher. Incidentally, in the structure of the joint in Comparative Example 3, the Sn—Sb compound crystal grains were coarse. In the structure of the joint in Comparative Example 5, segregation of Sn—Ni compounds and Ge crystal grains occurred.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【発明の効果】本発明によれば、固相融点が高く、濡れ
性・耐熱性・熱疲労特性の改善されたSn−Sb系はん
だ合金を提供することができ、従って環境汚染がなく、
しかも高い信頼性で、電子部品の内部接合を行うことが
できる。According to the present invention, it is possible to provide a Sn-Sb-based solder alloy having a high solid-state melting point and improved wettability, heat resistance, and thermal fatigue properties, and therefore has no environmental pollution.
Moreover, the internal joining of the electronic components can be performed with high reliability.
Claims (1)
よびGeのうちの少なくとも1種を0.01〜1質量%
含み、残部が実質的にSnからなる電子部品接合用はん
だ合金。1. Sb is 11 to 15% by mass, and at least one of Ni and Ge is 0.01 to 1% by mass.
A solder alloy for joining electronic components, the balance including substantially the Sn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001129194A JP2002321084A (en) | 2001-04-26 | 2001-04-26 | Soldering alloy for joining electronic parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001129194A JP2002321084A (en) | 2001-04-26 | 2001-04-26 | Soldering alloy for joining electronic parts |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002321084A true JP2002321084A (en) | 2002-11-05 |
Family
ID=18977757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001129194A Pending JP2002321084A (en) | 2001-04-26 | 2001-04-26 | Soldering alloy for joining electronic parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002321084A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005038847A1 (en) * | 2003-10-15 | 2005-04-28 | Matsushita Electric Industrial Co., Ltd. | Lamp |
JP2005252030A (en) * | 2004-03-04 | 2005-09-15 | Hitachi Metals Ltd | Lead free solder material and manufacturing method of solder material |
GB2426251A (en) * | 2005-05-20 | 2006-11-22 | Fuji Elec Device Tech Co Ltd | Sn-Sb-Ge solder alloy |
CN101587870A (en) * | 2008-05-23 | 2009-11-25 | 富士电机电子技术株式会社 | Semiconductor device |
JP2014004590A (en) * | 2012-06-21 | 2014-01-16 | Tamura Seisakusho Co Ltd | Solder composition |
WO2015041018A1 (en) | 2013-09-20 | 2015-03-26 | 住友金属鉱山株式会社 | Bi GROUP SOLDER ALLOY, METHOD FOR BONDING ELECTRONIC PART USING SAME, AND ELECTRONIC PART MOUNTING SUBSTRATE |
-
2001
- 2001-04-26 JP JP2001129194A patent/JP2002321084A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005038847A1 (en) * | 2003-10-15 | 2005-04-28 | Matsushita Electric Industrial Co., Ltd. | Lamp |
US7211955B2 (en) | 2003-10-15 | 2007-05-01 | Matsushita Electric Industrial Co., Ltd. | Lamp |
JP2005252030A (en) * | 2004-03-04 | 2005-09-15 | Hitachi Metals Ltd | Lead free solder material and manufacturing method of solder material |
JP4639607B2 (en) * | 2004-03-04 | 2011-02-23 | 日立金属株式会社 | Method for producing lead-free solder material and Pb-free solder material |
GB2426251A (en) * | 2005-05-20 | 2006-11-22 | Fuji Elec Device Tech Co Ltd | Sn-Sb-Ge solder alloy |
GB2426251B (en) * | 2005-05-20 | 2007-10-10 | Fuji Elec Device Tech Co Ltd | Solder alloy and a semiconductor device using the solder alloy |
CN101905388B (en) * | 2005-05-20 | 2012-05-30 | 富士电机株式会社 | Method for manufacturing semiconductor device |
CN102637662A (en) * | 2005-05-20 | 2012-08-15 | 富士电机株式会社 | Sn-sb-ge solder alloy |
CN101587870A (en) * | 2008-05-23 | 2009-11-25 | 富士电机电子技术株式会社 | Semiconductor device |
JP2014004590A (en) * | 2012-06-21 | 2014-01-16 | Tamura Seisakusho Co Ltd | Solder composition |
WO2015041018A1 (en) | 2013-09-20 | 2015-03-26 | 住友金属鉱山株式会社 | Bi GROUP SOLDER ALLOY, METHOD FOR BONDING ELECTRONIC PART USING SAME, AND ELECTRONIC PART MOUNTING SUBSTRATE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3296289B2 (en) | Solder alloy | |
TWI655296B (en) | Highly reliable lead-free solder alloy, its use and method of forming solder joints | |
JP3761678B2 (en) | Tin-containing lead-free solder alloy, cream solder thereof, and manufacturing method thereof | |
WO1997028923A1 (en) | Solder, solder paste and soldering method | |
JP2019520985A6 (en) | Highly reliable lead-free solder alloy | |
JPH071178A (en) | Three component solder | |
JP4722751B2 (en) | Powder solder material and bonding material | |
JP3353662B2 (en) | Solder alloy | |
JPH10286689A (en) | Solder | |
WO2015083661A1 (en) | Solder material and joining structure | |
JP4453612B2 (en) | Lead-free solder alloy | |
JPWO2020122253A1 (en) | Solder alloys, solder pastes, solder preforms and solder fittings | |
JP6810915B2 (en) | Solder material | |
JP5187465B1 (en) | High temperature lead-free solder alloy | |
JPH10193169A (en) | Lead-free solder alloy | |
JP3878305B2 (en) | Zn alloy for high temperature soldering | |
JP2004358540A (en) | High-temperature brazing filler metal | |
JP3673021B2 (en) | Lead-free solder for electronic component mounting | |
JP2002321084A (en) | Soldering alloy for joining electronic parts | |
JP4147875B2 (en) | Brazing material, method of assembling semiconductor device using the same, and semiconductor device | |
JPH11172353A (en) | Zn alloy for high temperature soldering | |
JPH09174278A (en) | Lead-free solder alloy and electronic circuit device using it | |
JP2004358539A (en) | High-temperature brazing filler metal | |
JP2008221330A (en) | Solder alloy | |
JP3835582B2 (en) | Zn alloy for high temperature soldering |