US20050087134A1 - Methods, systems, and apparatus for uniform chemical-vapor depositions - Google Patents
Methods, systems, and apparatus for uniform chemical-vapor depositions Download PDFInfo
- Publication number
- US20050087134A1 US20050087134A1 US10/931,845 US93184504A US2005087134A1 US 20050087134 A1 US20050087134 A1 US 20050087134A1 US 93184504 A US93184504 A US 93184504A US 2005087134 A1 US2005087134 A1 US 2005087134A1
- Authority
- US
- United States
- Prior art keywords
- plate
- forming
- channels
- gas
- fixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45587—Mechanical means for changing the gas flow
- C23C16/45589—Movable means, e.g. fans
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45587—Mechanical means for changing the gas flow
- C23C16/45591—Fixed means, e.g. wings, baffles
Definitions
- This invention concerns methods of making integrated circuits, particularly layer-formation, such as chemical-vapor deposition.
- Integrated circuits the key components in thousands of electronic and computer products, are interconnected networks of electrical components fabricated on a common foundation, or substrate. Fabricators generally build these circuits layer by layer, using techniques, such as deposition, doping, masking, and etching, to form thousands and even millions of microscopic resistors, transistors, and other electrical components on a silicon substrate, known as a wafer. The components are then wired, or interconnected, together to define a specific electric circuit, such as a computer memory.
- Chemical vapor deposition generally entails placing a substrate in a reaction chamber, heating the substrate to prescribed temperatures, and introducing one or more gases, known as precursor gases, into the chamber to begin a deposition cycle.
- the precursor gases enter the chamber through a gas-distribution fixture, such as a gas ring or a showerhead, one or more centimeters above the substrate, and descend toward the heated substrate.
- the gases react with each other and/or the heated substrate, blanketing its surface with a layer of material.
- An exhaust system then pumps gaseous by-products or leftovers from the reaction out of the chamber through a separate outlet to complete the deposition cycle.
- CVD chemical-vapor-deposition
- Conventional chemical-vapor-deposition (CVD) systems suffer from at least two problems.
- First, conventional CVD systems generally form layers that include microscopic hills and valleys and thus have non-uniform thickness.
- fabricators have been able to overcome these hills and valleys through use of post-deposition planarization or other compensation techniques.
- escalating demands for greater circuit density, for thinner layers, and for larger substrates make it increasingly difficult, if not completely impractical, to overcome the non-uniform thickness of conventional CVD layers.
- One exemplary chemical-vapor deposition system includes an outer chamber, a substrate holder, and a unique gas-distribution fixture.
- the fixture includes a gas-distribution surface having holes for dispensing a gas and a gas-confinement member that forms a wall around the holes.
- the gas-confinement member engages, or otherwise cooperates with the substrate holder to form an inner chamber within the outer chamber.
- the inner chamber has a smaller volume than the outer chamber and thus consumes less gas during the deposition process than would the outer chamber used alone. Also, the smaller chamber volume allows the exhaust system to pump the chamber more quickly, thus increasing the rate of the CVD process.
- the exemplary showerhead is made of a material, like silicon, which can be easily passivated to reduce reaction with reactive gases, thus reducing chemical-vapor buildup in the showerhead. Also, the exemplary showerhead includes a configuration of holes that permits uniform gas flow.
- FIG. 1 is a side view of an exemplary deposition reactor according to the invention
- FIG. 2 is a top view of an exemplary gas-distribution fixture according to the invention.
- FIG. 3 is a flowchart showing an exemplary method according to the invention.
- FIG. 4 is a diagram of an exemplary deposition system 400 incorporating a set of four deposition stations similar in structure and function to system 100 of FIG. 1 .
- FIGS. 1-4 describes and illustrates specific embodiments of the invention. These embodiments, offered not to limit but only to exemplify and teach the invention, are shown and described in sufficient detail to enable those skilled in the art to make and use the invention. Thus, where appropriate to avoid obscuring the invention, the description may omit certain information known to those of skill in the art.
- FIG. 1 shows an exemplary chemical-vapor-deposition system 100 which incorporates teachings of the present invention.
- system 100 includes a chamber 110 , a wafer holder 120 , a gas-distribution fixture 130 , a gas supply system 140 , and exhaust pump 150 , and a exhaust pump 160 .
- chamber 110 includes respective top and bottom plates 112 and 114 and a sidewall 116 .
- chamber 110 is a cylindrical structure formed of stainless steel or glass.
- Bottom plate 114 includes an opening 114 . 1 . Extending through opening 114 . 1 is a stem portion 122 of wafer holder 120 .
- Wafer holder 120 also includes a support platform 124 , one or more heating elements 126 , and one or more temperature sensors 128 .
- Support platform 124 supports one or more substrates, wafers, or integrated-circuit assemblies 200 .
- Substrate 200 has an exemplary width or diameter of about 30 centimeters and an exemplary thickness in the range of 850-1000 microns.
- Heating elements 126 and temperature sensors 128 are used for heating substrates 200 to a desired temperature.
- Holder 120 is coupled to a power supply and temperature control circuitry (both of which are not shown.)
- wafer holder 120 is rotatable either manually or automatically and raises via manual or automatic lever mechanism (not shown).
- Above wafer holder 120 and substrate 200 is gas-distribution fixture 130 .
- Fixture 130 includes a gas-distribution member 132 , a surface-projection (or gas-confinement) member 134 , and a gas inlet 136 .
- Gas inlet 132 couples to gas-supply, gas-distribution channels 134 , and a gas inlet 136 .
- fixture 130 has two operating positions 138 . 1 and 138 . 2 relative support platform 124 .
- Fixture 130 takes operating position 138 . 1 , before and after depositions and operating position 138 . 2 during depositions.
- Gas-distribution member 132 includes gas-distribution holes, or orifices, 132 . 1 and gas-distribution channels 132 . 2 .
- Holes 132 . 1 define a gas-distribution surface 132 . 3 .
- holes 132 . 1 are substantially circular with a common diameter in the range of 15-20 microns; gas-distribution channels 132 . 2 have a common width in the range of 20-45 microns; and surface 132 . 3 is substantially planar and parallel to support platform 124 of wafer holder 120 .
- other embodiments use other surface forms as well as shapes and sizes of holes and channels. The distribution and size of holes may also affect deposition thickness and thus might be used to assist thickness control.
- Holes 132 . 1 are coupled through gas-distribution channels 132 . 2 to gas inlet 136 .
- Surface-projection member 134 projects or extends from surface 132 . 3 toward support platform 124 , defining a fixture cavity 134 . 1 .
- the exemplary embodiment forms surface-projection member 134 from stainless steel as a uniform annular or circular wall or collar that projects perpendicularly from surface 132 to define a right-cylindrical cavity.
- other embodiments form member 134 to project at other angles relative surface 132 . 3 .
- some form the projection at an acute or obtuse angle, such as 45 or 135 degrees, and others form the projection to peripherally define an oval, ellipse, triangle, square, or any desirable regular or irregular polygon.
- the present invention encompasses a wide variety of projection shapes and configurations, indeed any projection shape that facilitates definition of an effective cavity or gas-confinement volume in cooperation with wafer holder 120 and/or substrate 200 .
- FIG. 2 a plan view, shows further details of the exemplary embodiment of gas-distribution fixture 130 .
- the plan view shows not only exemplary circular peripheries of gas-distribution member 132 and surface-projection member 134 , but also an exemplary distribution pattern for holes 132 . 1 and an exemplary orthogonal arrangement of gas-distribution channels 132 . 2 .
- Other embodiments use other hole distribution patterns and channel arrangements.
- some embodiments include random or concentric hole patterns and various channel geometries, including concentric circles, rectangles, or other regular or irregular concentric polygons.
- Some embodiments may also dedicate various subsets of channels and corresponding holes to different gases.
- Gas-distribution member 132 can be made in a number of ways.
- One exemplary method entails providing two wafers of materials, such as silicon or other passivatable, inert, or non-reactive material.
- One wafer is patterned and etched, for example, using conventional photolithographic or micro-electro-mechanical systems (MEMS) technology, to form a pattern holes, and the other wafer is patterned and etched to include a complementary or corresponding pattern of gas-distribution channels.
- MEMS refers to the technologies of making structures and devices with micrometer dimensions.
- Dry-etching techniques produce small openings and channels, while wet etching produces larger openings and channels.
- M. Engelhardt “Modern Application of Plasma Etching and Patterning in Silicon Process Technology,” Contrib. Plasma Physics, vol. 39, no. 5, pp. 473-478 (1999).
- the two wafers are then bonded together with the holes and channels in appropriate alignment using known wafer-bonding techniques. See, for example, G. Krauter et al., “Room Temperature Silicon Wafer Bonding with Ultra-Thin Polymer Films,” Advanced Materials, vol. 9, no. 5, pp. 417-420 (1997); C. E. Hunt et al., “Direct Bonding of Micromachined Silicon Wafers for Laser Diode Heat Exchanger Applications,” J. Micromech. Microeng, vol. 1, pp. 152-156 (1991); Zucker, O. et al., “Applications of oxygen plasma processing to silicon direct bonding,” Sensors and Actuators, A. Physical, vol. 36, no. 3, pp.
- FIG. 1 also shows that gas inlet 136 couples gas-distribution fixture 130 to gas-supply system 140 .
- Gas-supply system 140 includes a gas line 142 , gas sources 144 and 145 , and mass-flow controllers 146 and 147 .
- Gas line or conduit 142 which includes a flexible portion 142 . 1 , passes through an opening 116 . 1 in chamber sidewall 116 to connect with gas inlet 136 .
- Gas source 144 is coupled via mass-flow controller 146 to gas line 142
- gas source 147 is coupled via mass-flow controller 147 to gas line 142 .
- the exemplary embodiment provides computer-controlled thermal or pressure-based mass-flow controllers; however, the invention is not limited to any particular number or type of mass-flow controller, nor to any particular number or set of gas sources.
- System 100 also includes vacuum pumps 150 and 160 .
- Vacuum pump 150 is coupled to gas-distribution fixture 130 via a mass-flow controller 152 and gas line 142 .
- vacuum pump 160 is coupled to the interior of chamber 110 via a line 162 and an opening 114 . 2 in chamber bottom plate 114 .
- vacuum pump 160 has a greater capacity than vacuum pump 150 .
- system 100 functions, via manual or automatic control, to move gas-distribution fixture 130 from operating position 138 . 1 to position 138 . 2 , to introduce reactant gases through fixture 130 onto substrate 200 , and to deposit desired matter through chemical-vapor deposition onto the substrate. After the desired matter is deposited, pump 150 evacuates gases through fixture 130 .
- FIG. 3 shows a flowchart 300 which illustrates an exemplary method of operating system 100 .
- Flowchart 300 includes process blocks 202 - 216 .
- the exemplary method begins at block 302 with insertion of substrate 300 onto wafer holder 120 . Execution then proceeds to block 304 .
- Block 304 establishes desired temperature and pressure conditions within chamber 110 .
- this entails operating heating element 126 to heat substrate 200 to a desired temperature, and operating vacuum pump 160 to establish a desired pressure. Temperature and pressure are selected based on a number of factors, including composition of the substrate and reactant gases, as well as the desired reaction. After establishing these deposition conditions, execution continues at block 306 .
- the system forms or closes an inner chamber around substrate 200 , or more precisely a portion of substrate 200 targeted for deposition.
- this entails using a lever or other actuation mechanism (not shown) to move gas-distribution fixture 130 from position 138 . 1 to position 138 . 2 or to move wafer holder 120 from position 138 . 2 to 138 . 1 . In either case, this movement places gas-distribution surface 132 . 3 one-to-five millimeters from an upper most surface of substrate 200 .
- a lower-most surface of surface-projection member 134 contacts the upper surface of support platform 124 , with the inner chamber bounded by gas-distribution surface 132 . 3 , surface-projection member 134 , and the upper surface of support platform 124 .
- some embodiments include a surface-projection member on support platform 124 of wafer holder 120 to define a cavity analogous in structure and/or function to cavity 134 . 1 .
- the surface-projection member takes the form of a vertical or slanted or curved wall, that extends from support platform 124 and completely around substrate 200 , and the gas-distribution fixture omits a surface-projection member.
- some embodiments include one or more surface-projection members on the gas-distribution fixture and the on the support platform, with the projection members on the fixture mating, engaging, or otherwise cooperating with those on the support platform to define a substantially or effectively closed chamber. In other words, the inner chamber need not be completely closed, but only sufficiently closed to facilitate a desired deposition.
- Block 308 entails introducing one or more reactant or precursor gases into the separate chamber.
- the exemplary embodiment operates one or more mass-flow controllers, such as controllers 146 and 147 , to transfer gases in controlled quantities and temporal sequences from gas sources, such as sources 144 and 147 , through gas line 142 and fixture 130 into the separate chamber.
- the inner chamber is smaller in volume than chamber 100 and thus requires less gas and less fill time to achieve desired chemical concentrations (assuming all other factors equal.) More precisely, the exemplary embodiment provides an inner chamber with an empty volume in the range of 70 to 350 cubic centimeters, based on a 1-to-5 millimeter inner-chamber height and a fixture with a 30-centimeter diameter. Additionally, the number and arrangement of holes in the fixture as well as the placement of the holes close to the substrate, for example within five millimeters of the substrate, promote normal gas incidence and uniform distribution of gases over the targeted portion of substrate 200 .
- Block 310 entails allowing the gases to react with each other and/or the heated substrate to deposit a layer of material on targeted portions of the substrate. It is expected that the resulting layer will exhibit a highly uniform thickness across the entire substrate because of the more uniform gas distribution.
- the exemplary method entails evacuating gaseous waste or by-products produced during the deposition.
- the exemplary embodiment activates vacuum pump 160 to pump gaseous waste from the inner chamber through gas-distribution fixture 130 .
- pumps 150 and 160 are operated concurrently to establish initial pressure conditions and to evacuate the inner and outer chambers after deposition.
- the system opens the separate chamber.
- this entails automatically or manually moving gas-distribution fixture 130 to position 138 . 1 .
- Other embodiments move the wafer holder or both the fixture and the wafer holder.
- Still other embodiments may use multipart collar or gas-confinement members which are moved laterally relative the wafer holder or gas-distribution fixture to open and close an inner chamber.
- substrate 200 is unloaded from chamber 110 .
- Some embodiments remove the substrate manually, and others remove it using an automated wafer transport system.
- FIG. 4 shows a conceptual representation of another exemplary chemical-vapor-deposition system 400 incorporating teachings of the present invention.
- System 400 includes a rectangular outer chamber 410 which encloses four deposition stations 420 , 422 , 424 , and 426 , loaded with respective substrates 200 , 202 , 204 , and 206 .
- each deposition station is structurally and operationally analogous to system 100 in FIG. 1 .
- two or more of the stations are operated in parallel.
- other embodiments of this multi-station system arrange the stations in a cross formation, with each station confronting a respective lateral face of the chamber.
- Still other embodiments use different outer chamber geometries, for example cylindrical or spherical.
- One exemplary system includes an outer chamber, a substrate holder, and a unique gas-distribution fixture.
- the fixture includes a gas-distribution surface having holes for dispensing a gas and a gas-confinement member that engages, or otherwise cooperates with the substrate holder to form an inner chamber within the outer chamber.
- the inner chamber not only consumes less gas during deposition to reduce deposition waste and cost, but also facilitates rapid filling and evacuation to reduce deposition cycle times (with all other factors being equal.)
- the inner chamber also places the gas-distribution fixture within several millimeters of a substrate on the substrate holder, promoting normal gas incidence across the chamber and thus uniform deposition thickness.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Integrated circuits, the key components in thousands of electronic and computer products, are generally built layer by layer on a silicon substrate. One common technique for forming layers is called chemical-vapor deposition (CVD.) Conventional CVD systems not only form layers that have non-uniform thickness, but also have large chambers that make the CVD process wasteful and slow. Accordingly, the inventor devised new CVD systems, methods, and apparatuses. One exemplary CVD system includes an outer chamber, a substrate holder, and a unique gas-distribution fixture. The fixture includes a gas-distribution surface having holes for dispensing a gas and a gas-confinement member that engages or cooperates with the substrate holder to form an inner chamber within the outer chamber. The inner chamber has a smaller volume than the outer chamber, which not only facilitates depositions of more uniform thickness, but also saves gas and speeds up the deposition process.
Description
- This application is a Divisional of U.S. application Ser. No. 09/797,324, filed Mar. 1, 2001 which is incorporated herein by reference.
- This invention concerns methods of making integrated circuits, particularly layer-formation, such as chemical-vapor deposition.
- Integrated circuits, the key components in thousands of electronic and computer products, are interconnected networks of electrical components fabricated on a common foundation, or substrate. Fabricators generally build these circuits layer by layer, using techniques, such as deposition, doping, masking, and etching, to form thousands and even millions of microscopic resistors, transistors, and other electrical components on a silicon substrate, known as a wafer. The components are then wired, or interconnected, together to define a specific electric circuit, such as a computer memory.
- One common technique for forming layers in an integrated circuit is called chemical vapor deposition. Chemical vapor deposition generally entails placing a substrate in a reaction chamber, heating the substrate to prescribed temperatures, and introducing one or more gases, known as precursor gases, into the chamber to begin a deposition cycle. The precursor gases enter the chamber through a gas-distribution fixture, such as a gas ring or a showerhead, one or more centimeters above the substrate, and descend toward the heated substrate. The gases react with each other and/or the heated substrate, blanketing its surface with a layer of material. An exhaust system then pumps gaseous by-products or leftovers from the reaction out of the chamber through a separate outlet to complete the deposition cycle.
- Conventional chemical-vapor-deposition (CVD) systems suffer from at least two problems. First, conventional CVD systems generally form layers that include microscopic hills and valleys and thus have non-uniform thickness. In the past, fabricators have been able to overcome these hills and valleys through use of post-deposition planarization or other compensation techniques. However, escalating demands for greater circuit density, for thinner layers, and for larger substrates make it increasingly difficult, if not completely impractical, to overcome the non-uniform thickness of conventional CVD layers.
- Second, some conventional CVD systems are also inefficient and time consuming. One significant factor affecting both CVD efficiency and duration is the size of conventional reaction chambers, which are generally made large to allow a loading mechanism to insert and extract the substrate. Large chambers generally require more gases to be introduced to achieve desired gas concentrations. However, much of this gas is not only unnecessary based on the amount of material deposited, but is typically treated as waste. Moreover, large chambers also take longer to fill up or pump out, prolonging deposition cycles and thus slowing fabrication of integrated circuits.
- Accordingly, there is a need for better systems and methods of chemical-vapor deposition.
- To address these and other problems, the present inventor devised new systems, methods, and apparatuses for chemical-vapor deposition. One exemplary chemical-vapor deposition system includes an outer chamber, a substrate holder, and a unique gas-distribution fixture. The fixture includes a gas-distribution surface having holes for dispensing a gas and a gas-confinement member that forms a wall around the holes. In operation, the gas-confinement member engages, or otherwise cooperates with the substrate holder to form an inner chamber within the outer chamber.
- The inner chamber has a smaller volume than the outer chamber and thus consumes less gas during the deposition process than would the outer chamber used alone. Also, the smaller chamber volume allows the exhaust system to pump the chamber more quickly, thus increasing the rate of the CVD process. In addition, the exemplary showerhead is made of a material, like silicon, which can be easily passivated to reduce reaction with reactive gases, thus reducing chemical-vapor buildup in the showerhead. Also, the exemplary showerhead includes a configuration of holes that permits uniform gas flow.
-
FIG. 1 is a side view of an exemplary deposition reactor according to the invention; -
FIG. 2 is a top view of an exemplary gas-distribution fixture according to the invention; -
FIG. 3 is a flowchart showing an exemplary method according to the invention; and -
FIG. 4 is a diagram of anexemplary deposition system 400 incorporating a set of four deposition stations similar in structure and function tosystem 100 ofFIG. 1 . - The following detailed description, which references and incorporates
FIGS. 1-4 , describes and illustrates specific embodiments of the invention. These embodiments, offered not to limit but only to exemplify and teach the invention, are shown and described in sufficient detail to enable those skilled in the art to make and use the invention. Thus, where appropriate to avoid obscuring the invention, the description may omit certain information known to those of skill in the art. -
FIG. 1 shows an exemplary chemical-vapor-deposition system 100 which incorporates teachings of the present invention. In particular,system 100 includes achamber 110, awafer holder 120, a gas-distribution fixture 130, agas supply system 140, andexhaust pump 150, and aexhaust pump 160. - More particularly,
chamber 110 includes respective top andbottom plates sidewall 116. In the exemplary embodiment,chamber 110 is a cylindrical structure formed of stainless steel or glass. However, other embodiments use different structures and materials.Bottom plate 114 includes an opening 114.1. Extending through opening 114.1 is astem portion 122 ofwafer holder 120. -
Wafer holder 120 also includes asupport platform 124, one ormore heating elements 126, and one ormore temperature sensors 128.Support platform 124 supports one or more substrates, wafers, or integrated-circuit assemblies 200.Substrate 200 has an exemplary width or diameter of about 30 centimeters and an exemplary thickness in the range of 850-1000 microns. (The term “substrate,” as used herein, encompasses a semiconductor wafer as well as structures having one or more insulative, conductive, or semiconductive layers and materials. Thus, for example, the term embraces silicon-on-insulator, silicon-on-sapphire, and other advanced structures.)Heating elements 126 andtemperature sensors 128 are used forheating substrates 200 to a desired temperature.Holder 120 is coupled to a power supply and temperature control circuitry (both of which are not shown.) In the exemplary embodiment,wafer holder 120 is rotatable either manually or automatically and raises via manual or automatic lever mechanism (not shown). Abovewafer holder 120 andsubstrate 200 is gas-distribution fixture 130. - Fixture 130 includes a gas-
distribution member 132, a surface-projection (or gas-confinement)member 134, and agas inlet 136. Gas inlet 132 couples to gas-supply, gas-distribution channels 134, and agas inlet 136. In the exemplary embodiment,fixture 130 has two operating positions 138.1 and 138.2relative support platform 124. Fixture 130 takes operating position 138.1, before and after depositions and operating position 138.2 during depositions. - Gas-
distribution member 132 includes gas-distribution holes, or orifices, 132.1 and gas-distribution channels 132.2. Holes 132.1 define a gas-distribution surface 132.3. In the exemplary embodiment, holes 132.1 are substantially circular with a common diameter in the range of 15-20 microns; gas-distribution channels 132.2 have a common width in the range of 20-45 microns; and surface 132.3 is substantially planar and parallel to supportplatform 124 ofwafer holder 120. However, other embodiments use other surface forms as well as shapes and sizes of holes and channels. The distribution and size of holes may also affect deposition thickness and thus might be used to assist thickness control. Holes 132.1 are coupled through gas-distribution channels 132.2 togas inlet 136. - Surface-
projection member 134 projects or extends from surface 132.3 towardsupport platform 124, defining a fixture cavity 134.1. The exemplary embodiment forms surface-projection member 134 from stainless steel as a uniform annular or circular wall or collar that projects perpendicularly fromsurface 132 to define a right-cylindrical cavity. However, other embodiments formmember 134 to project at other angles relative surface 132.3. For example, some form the projection at an acute or obtuse angle, such as 45 or 135 degrees, and others form the projection to peripherally define an oval, ellipse, triangle, square, or any desirable regular or irregular polygon. Thus, the present invention encompasses a wide variety of projection shapes and configurations, indeed any projection shape that facilitates definition of an effective cavity or gas-confinement volume in cooperation withwafer holder 120 and/orsubstrate 200. -
FIG. 2 , a plan view, shows further details of the exemplary embodiment of gas-distribution fixture 130. In particular, the plan view shows not only exemplary circular peripheries of gas-distribution member 132 and surface-projection member 134, but also an exemplary distribution pattern for holes 132.1 and an exemplary orthogonal arrangement of gas-distribution channels 132.2. Other embodiments, however, use other hole distribution patterns and channel arrangements. For example, some embodiments include random or concentric hole patterns and various channel geometries, including concentric circles, rectangles, or other regular or irregular concentric polygons. Some embodiments may also dedicate various subsets of channels and corresponding holes to different gases. - Gas-
distribution member 132 can be made in a number of ways. One exemplary method entails providing two wafers of materials, such as silicon or other passivatable, inert, or non-reactive material. One wafer is patterned and etched, for example, using conventional photolithographic or micro-electro-mechanical systems (MEMS) technology, to form a pattern holes, and the other wafer is patterned and etched to include a complementary or corresponding pattern of gas-distribution channels. (MEMS refers to the technologies of making structures and devices with micrometer dimensions.) Dry-etching techniques produce small openings and channels, while wet etching produces larger openings and channels. For further details, see, for example, M. Engelhardt, “Modern Application of Plasma Etching and Patterning in Silicon Process Technology,” Contrib. Plasma Physics, vol. 39, no. 5, pp. 473-478 (1999). - The two wafers are then bonded together with the holes and channels in appropriate alignment using known wafer-bonding techniques. See, for example, G. Krauter et al., “Room Temperature Silicon Wafer Bonding with Ultra-Thin Polymer Films,” Advanced Materials, vol. 9, no. 5, pp. 417-420 (1997); C. E. Hunt et al., “Direct Bonding of Micromachined Silicon Wafers for Laser Diode Heat Exchanger Applications,” J. Micromech. Microeng, vol. 1, pp. 152-156 (1991); Zucker, O. et al., “Applications of oxygen plasma processing to silicon direct bonding,” Sensors and Actuators, A. Physical, vol. 36, no. 3, pp. 227-231 (1993), which are all incorporated herein by reference. See also, copending and co-assigned U.S. patent application Ser. No. 09/189,276 (dockets 303.534US1 and 97-1468) entitled “Low Temperature Silicon Wafer Bond Process with Bulk Material Bond Strength,” which was filed Nov. 10, 1998 and which is also incorporated herein by reference. The resulting bonded structure is then passivated using thermal oxidation for example.
- For an alternative fixture structure and manufacturing method that can be combined with those of the exemplary embodiment, see U.S. Pat. No. 5,595,606, entitled “Shower Head and Film Forming Apparatus Using Same, which is incorporated herein by reference. In particular, one embodiment based on this patent adds a projection or gas-confinement member to the reported showerhead structure.
-
FIG. 1 also shows thatgas inlet 136 couples gas-distribution fixture 130 to gas-supply system 140. Gas-supply system 140 includes agas line 142,gas sources flow controllers conduit 142, which includes a flexible portion 142.1, passes through an opening 116.1 inchamber sidewall 116 to connect withgas inlet 136.Gas source 144 is coupled via mass-flow controller 146 togas line 142, andgas source 147 is coupled via mass-flow controller 147 togas line 142. The exemplary embodiment provides computer-controlled thermal or pressure-based mass-flow controllers; however, the invention is not limited to any particular number or type of mass-flow controller, nor to any particular number or set of gas sources. -
System 100 also includesvacuum pumps Vacuum pump 150 is coupled to gas-distribution fixture 130 via a mass-flow controller 152 andgas line 142. And,vacuum pump 160 is coupled to the interior ofchamber 110 via aline 162 and an opening 114.2 inchamber bottom plate 114. In the exemplary embodiment,vacuum pump 160 has a greater capacity thanvacuum pump 150. - In general operation,
system 100 functions, via manual or automatic control, to move gas-distribution fixture 130 from operating position 138.1 to position 138.2, to introduce reactant gases throughfixture 130 ontosubstrate 200, and to deposit desired matter through chemical-vapor deposition onto the substrate. After the desired matter is deposited, pump 150 evacuates gases throughfixture 130. - More particularly,
FIG. 3 shows aflowchart 300 which illustrates an exemplary method ofoperating system 100.Flowchart 300 includes process blocks 202-216. - The exemplary method begins at
block 302 with insertion ofsubstrate 300 ontowafer holder 120. Execution then proceeds to block 304. -
Block 304 establishes desired temperature and pressure conditions withinchamber 110. In the exemplary embodiment, this entails operatingheating element 126 to heatsubstrate 200 to a desired temperature, and operatingvacuum pump 160 to establish a desired pressure. Temperature and pressure are selected based on a number of factors, including composition of the substrate and reactant gases, as well as the desired reaction. After establishing these deposition conditions, execution continues atblock 306. - In
block 306, the system forms or closes an inner chamber aroundsubstrate 200, or more precisely a portion ofsubstrate 200 targeted for deposition. In the exemplary embodiment, this entails using a lever or other actuation mechanism (not shown) to move gas-distribution fixture 130 from position 138.1 to position 138.2 or to movewafer holder 120 from position 138.2 to 138.1. In either case, this movement places gas-distribution surface 132.3 one-to-five millimeters from an upper most surface ofsubstrate 200. In this exemplary position, a lower-most surface of surface-projection member 134 contacts the upper surface ofsupport platform 124, with the inner chamber bounded by gas-distribution surface 132.3, surface-projection member 134, and the upper surface ofsupport platform 124. - Other embodiments define in the inner chamber in other ways. For example, some embodiments include a surface-projection member on
support platform 124 ofwafer holder 120 to define a cavity analogous in structure and/or function to cavity 134.1. In these embodiments, the surface-projection member takes the form of a vertical or slanted or curved wall, that extends fromsupport platform 124 and completely aroundsubstrate 200, and the gas-distribution fixture omits a surface-projection member. However, some embodiments include one or more surface-projection members on the gas-distribution fixture and the on the support platform, with the projection members on the fixture mating, engaging, or otherwise cooperating with those on the support platform to define a substantially or effectively closed chamber. In other words, the inner chamber need not be completely closed, but only sufficiently closed to facilitate a desired deposition. - After forming the inner chamber, the exemplary method continues at
block 308.Block 308 entails introducing one or more reactant or precursor gases into the separate chamber. To this end, the exemplary embodiment operates one or more mass-flow controllers, such ascontrollers sources gas line 142 andfixture 130 into the separate chamber. - Notably, the inner chamber is smaller in volume than
chamber 100 and thus requires less gas and less fill time to achieve desired chemical concentrations (assuming all other factors equal.) More precisely, the exemplary embodiment provides an inner chamber with an empty volume in the range of 70 to 350 cubic centimeters, based on a 1-to-5 millimeter inner-chamber height and a fixture with a 30-centimeter diameter. Additionally, the number and arrangement of holes in the fixture as well as the placement of the holes close to the substrate, for example within five millimeters of the substrate, promote normal gas incidence and uniform distribution of gases over the targeted portion ofsubstrate 200. -
Block 310 entails allowing the gases to react with each other and/or the heated substrate to deposit a layer of material on targeted portions of the substrate. It is expected that the resulting layer will exhibit a highly uniform thickness across the entire substrate because of the more uniform gas distribution. - Next, as
block 312 shows, the exemplary method entails evacuating gaseous waste or by-products produced during the deposition. To this end, the exemplary embodiment, activatesvacuum pump 160 to pump gaseous waste from the inner chamber through gas-distribution fixture 130. In some embodiments, pumps 150 and 160 are operated concurrently to establish initial pressure conditions and to evacuate the inner and outer chambers after deposition. - In
block 314, the system opens the separate chamber. In the exemplary embodiment, this entails automatically or manually moving gas-distribution fixture 130 to position 138.1. Other embodiments, however, move the wafer holder or both the fixture and the wafer holder. Still other embodiments may use multipart collar or gas-confinement members which are moved laterally relative the wafer holder or gas-distribution fixture to open and close an inner chamber. - In
block 316,substrate 200 is unloaded fromchamber 110. Some embodiments remove the substrate manually, and others remove it using an automated wafer transport system. -
FIG. 4 shows a conceptual representation of another exemplary chemical-vapor-deposition system 400 incorporating teachings of the present invention.System 400 includes a rectangularouter chamber 410 which encloses fourdeposition stations respective substrates system 100 inFIG. 1 . In the exemplary embodiment, two or more of the stations are operated in parallel. Additionally, other embodiments of this multi-station system arrange the stations in a cross formation, with each station confronting a respective lateral face of the chamber. Still other embodiments use different outer chamber geometries, for example cylindrical or spherical. - In furtherance of the art, the inventor has presented new systems, methods, and apparatuses for chemical-vapor deposition. One exemplary system includes an outer chamber, a substrate holder, and a unique gas-distribution fixture. The fixture includes a gas-distribution surface having holes for dispensing a gas and a gas-confinement member that engages, or otherwise cooperates with the substrate holder to form an inner chamber within the outer chamber.
- Notably, the inner chamber not only consumes less gas during deposition to reduce deposition waste and cost, but also facilitates rapid filling and evacuation to reduce deposition cycle times (with all other factors being equal.) The inner chamber also places the gas-distribution fixture within several millimeters of a substrate on the substrate holder, promoting normal gas incidence across the chamber and thus uniform deposition thickness.
- The embodiments described above are intended only to illustrate and teach one or more ways of practicing or implementing the present invention, not to restrict its breadth or scope. The actual scope of the invention, which embraces all ways of practicing or implementing the invention, is defined only by the following claims and their equivalents.
Claims (24)
1. A chemical-vapor-deposition system comprising:
a first chamber for confining gases; and
a second chamber within the first chamber for at least partially containing a substrate during deposition.
2. The system of claim 1 , wherein the first chamber is a right cylindrical chamber.
3. The system of claim 1 , wherein the second chamber comprises a surface of a substrate-support structure.
4. The system of claim 3 , wherein the second chamber further comprises a gas-distribution fixture for atomic-layer deposition, the fixture confronting the surface of the substrate-support structure and comprising:
a non-reactive plate including a plurality of holes; and
a wall surrounding at least a portion of the plate.
5. A chemical-vapor deposition system comprising:
first means for confining one or more gases;
second means for confining one or more gases, the first means at least partly contained within the first means; and
third means for confining one or more gases, the third means at least partly contained within the first means.
6. A gas-distribution fixture for atomic-layer deposition, the fixture comprising:
a non-reactive plate including a plurality of holes; and
a wall surrounding at least a portion of the plate;
7. The fixture of claim 6 , wherein the wall consists essentially of a material that is different from that of the non-reactive plate.
8. The fixture of claim 6 , wherein the non-reactive plate consists essentially of silicon and a silicon oxide.
9. The fixture of claim 6 , wherein the wall has a uniform height measured from a surface of the non-reactive plate.
10. The fixture of claim 6 , wherein the wall consists essentially of a material that is different from that of the second non-metallic plate.
11. The fixture of claim 6 , wherein the wall consists essentially of a stainless steel.
12. The fixture of claim 6 , wherein the non-reactive plate is formed in a method comprising:
forming one or more channels in a first plate;
forming two or more holes in a second plate;
forming a bond between the first and second plates.
13. A method of making at least a portion of a gas-distribution fixture for a chemical-vapor-deposition system, the method comprising:
forming one or more channels in a first plate;
forming two or more holes in a second plate;
forming a bond between the first and second plates.
14. The method of claim 13 , wherein forming one or more channels in the first plate comprises:
masking the first plate to define a respective position of each of the channels; and
etching the masked first plate to form the channels.
15. The method of claim 13 , wherein etching the masked first plate comprises wet etching the masked first plate.
16. The method of claim 13 , wherein forming the one or more channels comprises forming two or more perpendicular channels.
17. The method of claim 13 , wherein forming the one or more channels comprises forming two or more channels having a common width and depth.
18. The method of claim 13 , wherein forming holes in the second plate comprises:
masking the second plate to define a respective size, shape, and position of each of the holes; and
etching the masked second plate to form the channels.
19. The method of claim 13 wherein etching the masked second plate comprises wet etching the masked first plate.
20. The method of claim 13 , wherein forming the holes comprises forming two or more holes of approximately the same shape and size.
21. The method of claim 13 , wherein forming the one or more channels comprises forming two or more channels having a common width and depth.
22. The method of claim 13:
wherein the first and second plates consist essentially of silicon; and
wherein forming the bond between the first and second plates comprises:
aligning the first and second plates such that the one or more channels are in fluid communication with the two or more holes; and
using a silicon-wafer bonding technique to effect the bond.
23. The method of claim 13 , wherein forming the one or more channels in the first plate occurs after forming the two or more holes in the second plate;
24. A method of making at least a portion of a gas-distribution fixture for a chemical-vapor-deposition system, the method comprising:
forming one or more channels in a first plate;
forming two or more holes in a second plate;
aligning the first and second plates, with at least one of the holes aligned with one of the channels; and
bonding the first and second plates to each other.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/931,845 US20050087134A1 (en) | 2001-03-01 | 2004-08-31 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US11/651,295 US20070131169A1 (en) | 2001-03-01 | 2007-01-09 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US11/651,136 US20070107661A1 (en) | 2001-03-01 | 2007-01-09 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/797,324 US6852167B2 (en) | 2001-03-01 | 2001-03-01 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US10/931,845 US20050087134A1 (en) | 2001-03-01 | 2004-08-31 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/797,324 Division US6852167B2 (en) | 2001-03-01 | 2001-03-01 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/651,136 Division US20070107661A1 (en) | 2001-03-01 | 2007-01-09 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US11/651,295 Division US20070131169A1 (en) | 2001-03-01 | 2007-01-09 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050087134A1 true US20050087134A1 (en) | 2005-04-28 |
Family
ID=25170514
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/797,324 Expired - Fee Related US6852167B2 (en) | 2001-03-01 | 2001-03-01 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US10/931,845 Abandoned US20050087134A1 (en) | 2001-03-01 | 2004-08-31 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US10/931,595 Expired - Fee Related US7410668B2 (en) | 2001-03-01 | 2004-08-31 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US11/651,295 Abandoned US20070131169A1 (en) | 2001-03-01 | 2007-01-09 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US11/651,136 Abandoned US20070107661A1 (en) | 2001-03-01 | 2007-01-09 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/797,324 Expired - Fee Related US6852167B2 (en) | 2001-03-01 | 2001-03-01 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/931,595 Expired - Fee Related US7410668B2 (en) | 2001-03-01 | 2004-08-31 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US11/651,295 Abandoned US20070131169A1 (en) | 2001-03-01 | 2007-01-09 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US11/651,136 Abandoned US20070107661A1 (en) | 2001-03-01 | 2007-01-09 | Methods, systems, and apparatus for uniform chemical-vapor depositions |
Country Status (1)
Country | Link |
---|---|
US (5) | US6852167B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040043569A1 (en) * | 2002-08-28 | 2004-03-04 | Ahn Kie Y. | Atomic layer deposited HfSiON dielectric films |
US20040043541A1 (en) * | 2002-08-29 | 2004-03-04 | Ahn Kie Y. | Atomic layer deposited lanthanide doped TiOx dielectric films |
US20060001151A1 (en) * | 2003-03-04 | 2006-01-05 | Micron Technology, Inc. | Atomic layer deposited dielectric layers |
US20060246741A1 (en) * | 2002-07-30 | 2006-11-02 | Micron Technology, Inc. | ATOMIC LAYER DEPOSITED NANOLAMINATES OF HfO2/ZrO2 FILMS AS GATE DIELECTRICS |
WO2006121264A1 (en) * | 2005-05-09 | 2006-11-16 | Asm Genitech Korea Ltd. | Multiple inlet tomic layer deposition reactor |
US7160577B2 (en) * | 2002-05-02 | 2007-01-09 | Micron Technology, Inc. | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
US20070037415A1 (en) * | 2004-12-13 | 2007-02-15 | Micron Technology, Inc. | Lanthanum hafnium oxide dielectrics |
US20070049054A1 (en) * | 2005-08-31 | 2007-03-01 | Micron Technology, Inc. | Cobalt titanium oxide dielectric films |
US7662729B2 (en) | 2005-04-28 | 2010-02-16 | Micron Technology, Inc. | Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer |
US7709402B2 (en) | 2006-02-16 | 2010-05-04 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride films |
US7719065B2 (en) | 2004-08-26 | 2010-05-18 | Micron Technology, Inc. | Ruthenium layer for a dielectric layer containing a lanthanide oxide |
US7728626B2 (en) | 2002-07-08 | 2010-06-01 | Micron Technology, Inc. | Memory utilizing oxide nanolaminates |
US7867919B2 (en) | 2004-08-31 | 2011-01-11 | Micron Technology, Inc. | Method of fabricating an apparatus having a lanthanum-metal oxide dielectric layer |
US8084370B2 (en) | 2006-08-31 | 2011-12-27 | Micron Technology, Inc. | Hafnium tantalum oxynitride dielectric |
US8154066B2 (en) | 2004-08-31 | 2012-04-10 | Micron Technology, Inc. | Titanium aluminum oxide films |
US8278225B2 (en) | 2005-01-05 | 2012-10-02 | Micron Technology, Inc. | Hafnium tantalum oxide dielectrics |
US8445952B2 (en) | 2002-12-04 | 2013-05-21 | Micron Technology, Inc. | Zr-Sn-Ti-O films |
US8501563B2 (en) | 2005-07-20 | 2013-08-06 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
US9175393B1 (en) * | 2011-08-31 | 2015-11-03 | Alta Devices, Inc. | Tiled showerhead for a semiconductor chemical vapor deposition reactor |
US10066297B2 (en) * | 2011-08-31 | 2018-09-04 | Alta Devices, Inc. | Tiled showerhead for a semiconductor chemical vapor deposition reactor |
US10808310B2 (en) * | 2016-06-03 | 2020-10-20 | Applied Mateirals, Inc. | Effective and novel design for lower particle count and better wafer quality by diffusing the flow inside the chamber |
Families Citing this family (391)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6828292B2 (en) * | 2000-06-05 | 2004-12-07 | Procter & Gamble Company | Domestic fabric article refreshment in integrated cleaning and treatment processes |
JP3667202B2 (en) * | 2000-07-13 | 2005-07-06 | 株式会社荏原製作所 | Substrate processing equipment |
US6852167B2 (en) * | 2001-03-01 | 2005-02-08 | Micron Technology, Inc. | Methods, systems, and apparatus for uniform chemical-vapor depositions |
JP3886424B2 (en) * | 2001-08-28 | 2007-02-28 | 鹿児島日本電気株式会社 | Substrate processing apparatus and method |
US7476925B2 (en) * | 2001-08-30 | 2009-01-13 | Micron Technology, Inc. | Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interploy insulators |
KR100782529B1 (en) * | 2001-11-08 | 2007-12-06 | 에이에스엠지니텍코리아 주식회사 | Apparatus for depositing |
US6893506B2 (en) | 2002-03-11 | 2005-05-17 | Micron Technology, Inc. | Atomic layer deposition apparatus and method |
US7045430B2 (en) * | 2002-05-02 | 2006-05-16 | Micron Technology Inc. | Atomic layer-deposited LaAlO3 films for gate dielectrics |
US7135421B2 (en) * | 2002-06-05 | 2006-11-14 | Micron Technology, Inc. | Atomic layer-deposited hafnium aluminum oxide |
US7205218B2 (en) | 2002-06-05 | 2007-04-17 | Micron Technology, Inc. | Method including forming gate dielectrics having multiple lanthanide oxide layers |
US7217336B2 (en) * | 2002-06-20 | 2007-05-15 | Tokyo Electron Limited | Directed gas injection apparatus for semiconductor processing |
GB2406583B (en) * | 2002-08-08 | 2005-12-21 | Trikon Technologies Ltd | Improvements to showerheads |
US6884739B2 (en) * | 2002-08-15 | 2005-04-26 | Micron Technology Inc. | Lanthanide doped TiOx dielectric films by plasma oxidation |
US7037863B2 (en) * | 2002-09-10 | 2006-05-02 | Samsung Electronics Co., Ltd. | Post thermal treatment methods of forming high dielectric layers over interfacial layers in integrated circuit devices |
US6784096B2 (en) * | 2002-09-11 | 2004-08-31 | Applied Materials, Inc. | Methods and apparatus for forming barrier layers in high aspect ratio vias |
DE10243022A1 (en) * | 2002-09-17 | 2004-03-25 | Degussa Ag | Separation of a solid by thermal decomposition of a gaseous substance in a cup reactor |
JP4113755B2 (en) * | 2002-10-03 | 2008-07-09 | 東京エレクトロン株式会社 | Processing equipment |
US6958302B2 (en) | 2002-12-04 | 2005-10-25 | Micron Technology, Inc. | Atomic layer deposited Zr-Sn-Ti-O films using TiI4 |
KR20110118735A (en) * | 2003-03-17 | 2011-10-31 | 시그마-알드리치컴퍼니 | Precursors for deposition of metal oxide layers or films |
US7135369B2 (en) * | 2003-03-31 | 2006-11-14 | Micron Technology, Inc. | Atomic layer deposited ZrAlxOy dielectric layers including Zr4AlO9 |
US7183186B2 (en) * | 2003-04-22 | 2007-02-27 | Micro Technology, Inc. | Atomic layer deposited ZrTiO4 films |
US7049192B2 (en) | 2003-06-24 | 2006-05-23 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectrics |
US7192824B2 (en) * | 2003-06-24 | 2007-03-20 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectric layers |
US20050103265A1 (en) * | 2003-11-19 | 2005-05-19 | Applied Materials, Inc., A Delaware Corporation | Gas distribution showerhead featuring exhaust apertures |
JP4399517B2 (en) * | 2004-01-05 | 2010-01-20 | 株式会社堀場製作所 | Film forming apparatus and film forming method |
US7326293B2 (en) * | 2004-03-26 | 2008-02-05 | Zyvex Labs, Llc | Patterned atomic layer epitaxy |
US20050221618A1 (en) * | 2004-03-31 | 2005-10-06 | Amrhein Frederick J | System for controlling a plenum output flow geometry |
US20050223983A1 (en) * | 2004-04-08 | 2005-10-13 | Venkat Selvamanickam | Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors |
US20050268848A1 (en) * | 2004-04-28 | 2005-12-08 | Nanodynamics, Inc | Atomic layer deposition apparatus and process |
JP4879509B2 (en) * | 2004-05-21 | 2012-02-22 | 株式会社アルバック | Vacuum deposition system |
US7601649B2 (en) | 2004-08-02 | 2009-10-13 | Micron Technology, Inc. | Zirconium-doped tantalum oxide films |
US20060073276A1 (en) * | 2004-10-04 | 2006-04-06 | Eric Antonissen | Multi-zone atomic layer deposition apparatus and method |
US7238623B2 (en) * | 2004-10-06 | 2007-07-03 | Texas Instruments Incorporated | Versatile system for self-aligning deposition equipment |
US20060125030A1 (en) * | 2004-12-13 | 2006-06-15 | Micron Technology, Inc. | Hybrid ALD-CVD of PrxOy/ZrO2 films as gate dielectrics |
US7374964B2 (en) | 2005-02-10 | 2008-05-20 | Micron Technology, Inc. | Atomic layer deposition of CeO2/Al2O3 films as gate dielectrics |
US7480974B2 (en) * | 2005-02-15 | 2009-01-27 | Lam Research Corporation | Methods of making gas distribution members for plasma processing apparatuses |
CN101128622B (en) * | 2005-02-22 | 2010-08-25 | 埃克提斯公司 | Etching chamber with subchamber |
US7365027B2 (en) * | 2005-03-29 | 2008-04-29 | Micron Technology, Inc. | ALD of amorphous lanthanide doped TiOx films |
US7687409B2 (en) | 2005-03-29 | 2010-03-30 | Micron Technology, Inc. | Atomic layer deposited titanium silicon oxide films |
US7390756B2 (en) | 2005-04-28 | 2008-06-24 | Micron Technology, Inc. | Atomic layer deposited zirconium silicon oxide films |
GB0510051D0 (en) * | 2005-05-17 | 2005-06-22 | Forticrete Ltd | Interlocking roof tiles |
US7572695B2 (en) | 2005-05-27 | 2009-08-11 | Micron Technology, Inc. | Hafnium titanium oxide films |
US20070049023A1 (en) * | 2005-08-29 | 2007-03-01 | Micron Technology, Inc. | Zirconium-doped gadolinium oxide films |
US8110469B2 (en) | 2005-08-30 | 2012-02-07 | Micron Technology, Inc. | Graded dielectric layers |
US7410910B2 (en) * | 2005-08-31 | 2008-08-12 | Micron Technology, Inc. | Lanthanum aluminum oxynitride dielectric films |
US8471254B2 (en) * | 2005-12-27 | 2013-06-25 | Hana Microdisplay Technologies, Inc. | Liquid crystal cells with uniform cell gap and methods of manufacture |
US20070169687A1 (en) * | 2006-01-26 | 2007-07-26 | Caracal, Inc. | Silicon carbide formation by alternating pulses |
US7794546B2 (en) * | 2006-03-08 | 2010-09-14 | Tokyo Electron Limited | Sealing device and method for a processing system |
US7670432B2 (en) * | 2006-03-08 | 2010-03-02 | Tokyo Electron Limited | Exhaust system for a vacuum processing system |
US20070218702A1 (en) * | 2006-03-15 | 2007-09-20 | Asm Japan K.K. | Semiconductor-processing apparatus with rotating susceptor |
US7737500B2 (en) * | 2006-04-26 | 2010-06-15 | International Business Machines Corporation | CMOS diodes with dual gate conductors, and methods for forming the same |
KR20080027009A (en) * | 2006-09-22 | 2008-03-26 | 에이에스엠지니텍코리아 주식회사 | Atomic layer deposition apparatus and method for depositing laminated films using the same |
CN101517475B (en) * | 2006-09-26 | 2012-09-05 | 南京长青激光科技有限责任公司 | Method and apparatus of forming domain inversion structures in a nonlinear ferroelectric substrate |
US8715455B2 (en) * | 2007-02-06 | 2014-05-06 | Tokyo Electron Limited | Multi-zone gas distribution system for a treatment system |
US7435636B1 (en) * | 2007-03-29 | 2008-10-14 | Micron Technology, Inc. | Fabrication of self-aligned gallium arsenide MOSFETs using damascene gate methods |
US20080241384A1 (en) * | 2007-04-02 | 2008-10-02 | Asm Genitech Korea Ltd. | Lateral flow deposition apparatus and method of depositing film by using the apparatus |
US7671394B2 (en) * | 2007-10-17 | 2010-03-02 | International Business Machines Corporation | Embedded trench capacitor having a high-k node dielectric and a metallic inner electrode |
KR101376336B1 (en) | 2007-11-27 | 2014-03-18 | 한국에이에스엠지니텍 주식회사 | Atomic layer deposition apparatus |
US7728392B2 (en) * | 2008-01-03 | 2010-06-01 | International Business Machines Corporation | SRAM device structure including same band gap transistors having gate stacks with high-K dielectrics and same work function |
US7879183B2 (en) * | 2008-02-27 | 2011-02-01 | Applied Materials, Inc. | Apparatus and method for front side protection during backside cleaning |
US8273178B2 (en) | 2008-02-28 | 2012-09-25 | Asm Genitech Korea Ltd. | Thin film deposition apparatus and method of maintaining the same |
US8159040B2 (en) | 2008-05-13 | 2012-04-17 | International Business Machines Corporation | Metal gate integration structure and method including metal fuse, anti-fuse and/or resistor |
TWI467045B (en) * | 2008-05-23 | 2015-01-01 | Sigma Aldrich Co | High-k dielectric films and methods of producing high-k dielectric films using cerium-based precursors |
TW200949939A (en) * | 2008-05-23 | 2009-12-01 | Sigma Aldrich Co | High-k dielectric films and methods of producing using titanium-based β -diketonate precursors |
US8089135B2 (en) * | 2008-07-30 | 2012-01-03 | International Business Machine Corporation | Back-end-of-line wiring structures with integrated passive elements and design structures for a radiofrequency integrated circuit |
US8216376B1 (en) * | 2009-01-15 | 2012-07-10 | Intermolecular, Inc. | Method and apparatus for variable conductance |
JP4523661B1 (en) * | 2009-03-10 | 2010-08-11 | 三井造船株式会社 | Atomic layer deposition apparatus and thin film forming method |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8222104B2 (en) | 2009-07-27 | 2012-07-17 | International Business Machines Corporation | Three dimensional integrated deep trench decoupling capacitors |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US9920418B1 (en) | 2010-09-27 | 2018-03-20 | James Stabile | Physical vapor deposition apparatus having a tapered chamber |
US20120180725A1 (en) * | 2011-01-17 | 2012-07-19 | Furukawa Electric Co., Ltd. | Cvd apparatus |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US8525339B2 (en) | 2011-07-27 | 2013-09-03 | International Business Machines Corporation | Hybrid copper interconnect structure and method of fabricating same |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
JP5541274B2 (en) * | 2011-12-28 | 2014-07-09 | 東京エレクトロン株式会社 | Substrate processing apparatus, substrate processing method, and storage medium |
US9679751B2 (en) | 2012-03-15 | 2017-06-13 | Lam Research Corporation | Chamber filler kit for plasma etch chamber useful for fast gas switching |
KR101881894B1 (en) * | 2012-04-06 | 2018-07-26 | 삼성디스플레이 주식회사 | Thin film depositing apparatus and the thin film depositing method using the same |
US20130333616A1 (en) * | 2012-06-18 | 2013-12-19 | Tel Solar Ag | Plasma processing system with movable chamber housing parts |
US9726139B2 (en) | 2012-09-10 | 2017-08-08 | GM Global Technology Operations LLC | System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated |
US10227939B2 (en) | 2012-08-24 | 2019-03-12 | GM Global Technology Operations LLC | Cylinder deactivation pattern matching |
US9382853B2 (en) | 2013-01-22 | 2016-07-05 | GM Global Technology Operations LLC | Cylinder control systems and methods for discouraging resonant frequency operation |
US9719439B2 (en) | 2012-08-24 | 2017-08-01 | GM Global Technology Operations LLC | System and method for controlling spark timing when cylinders of an engine are deactivated to reduce noise and vibration |
US9650978B2 (en) | 2013-01-07 | 2017-05-16 | GM Global Technology Operations LLC | System and method for randomly adjusting a firing frequency of an engine to reduce vibration when cylinders of the engine are deactivated |
US9376973B2 (en) | 2012-09-10 | 2016-06-28 | GM Global Technology Operations LLC | Volumetric efficiency determination systems and methods |
US9416743B2 (en) | 2012-10-03 | 2016-08-16 | GM Global Technology Operations LLC | Cylinder activation/deactivation sequence control systems and methods |
US9638121B2 (en) * | 2012-08-24 | 2017-05-02 | GM Global Technology Operations LLC | System and method for deactivating a cylinder of an engine and reactivating the cylinder based on an estimated trapped air mass |
US9458778B2 (en) | 2012-08-24 | 2016-10-04 | GM Global Technology Operations LLC | Cylinder activation and deactivation control systems and methods |
US9458780B2 (en) | 2012-09-10 | 2016-10-04 | GM Global Technology Operations LLC | Systems and methods for controlling cylinder deactivation periods and patterns |
US9458779B2 (en) | 2013-01-07 | 2016-10-04 | GM Global Technology Operations LLC | Intake runner temperature determination systems and methods |
US9534550B2 (en) | 2012-09-10 | 2017-01-03 | GM Global Technology Operations LLC | Air per cylinder determination systems and methods |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US9175389B2 (en) * | 2012-12-21 | 2015-11-03 | Intermolecular, Inc. | ALD process window combinatorial screening tool |
US9312203B2 (en) | 2013-01-02 | 2016-04-12 | Globalfoundries Inc. | Dual damascene structure with liner |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9494092B2 (en) | 2013-03-13 | 2016-11-15 | GM Global Technology Operations LLC | System and method for predicting parameters associated with airflow through an engine |
US9741918B2 (en) | 2013-10-07 | 2017-08-22 | Hypres, Inc. | Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10077497B2 (en) * | 2014-05-30 | 2018-09-18 | Lam Research Corporation | Hollow cathode discharge (HCD) suppressing capacitively coupled plasma electrode and gas distribution faceplate |
US9441550B2 (en) | 2014-06-10 | 2016-09-13 | GM Global Technology Operations LLC | Cylinder firing fraction determination and control systems and methods |
US9341128B2 (en) | 2014-06-12 | 2016-05-17 | GM Global Technology Operations LLC | Fuel consumption based cylinder activation and deactivation control systems and methods |
US9556811B2 (en) | 2014-06-20 | 2017-01-31 | GM Global Technology Operations LLC | Firing pattern management for improved transient vibration in variable cylinder deactivation mode |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US9599047B2 (en) | 2014-11-20 | 2017-03-21 | GM Global Technology Operations LLC | Combination cylinder state and transmission gear control systems and methods |
JP6354539B2 (en) * | 2014-11-25 | 2018-07-11 | 東京エレクトロン株式会社 | Substrate processing apparatus, substrate processing method, and storage medium |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
JP6054471B2 (en) | 2015-05-26 | 2016-12-27 | 株式会社日本製鋼所 | Atomic layer growth apparatus and exhaust layer of atomic layer growth apparatus |
JP6054470B2 (en) | 2015-05-26 | 2016-12-27 | 株式会社日本製鋼所 | Atomic layer growth equipment |
JP6050860B1 (en) * | 2015-05-26 | 2016-12-21 | 株式会社日本製鋼所 | Plasma atomic layer growth equipment |
US10337441B2 (en) | 2015-06-09 | 2019-07-02 | GM Global Technology Operations LLC | Air per cylinder determination systems and methods |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10403515B2 (en) * | 2015-09-24 | 2019-09-03 | Applied Materials, Inc. | Loadlock integrated bevel etcher system |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10358721B2 (en) * | 2015-10-22 | 2019-07-23 | Asm Ip Holding B.V. | Semiconductor manufacturing system including deposition apparatus |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
AT517608B1 (en) * | 2016-01-21 | 2017-03-15 | Avl List Gmbh | Electronic unit for a flowmeter |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (en) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method of operating the same |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
KR20180068582A (en) | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
KR102700194B1 (en) * | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10224224B2 (en) * | 2017-03-10 | 2019-03-05 | Micromaterials, LLC | High pressure wafer processing systems and related methods |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
KR102457289B1 (en) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10622214B2 (en) | 2017-05-25 | 2020-04-14 | Applied Materials, Inc. | Tungsten defluorination by high pressure treatment |
JP7190450B2 (en) | 2017-06-02 | 2022-12-15 | アプライド マテリアルズ インコーポレイテッド | Dry stripping of boron carbide hardmask |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11851763B2 (en) * | 2017-06-23 | 2023-12-26 | General Electric Company | Chemical vapor deposition during additive manufacturing |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10269571B2 (en) | 2017-07-12 | 2019-04-23 | Applied Materials, Inc. | Methods for fabricating nanowire for semiconductor applications |
US10234630B2 (en) | 2017-07-12 | 2019-03-19 | Applied Materials, Inc. | Method for creating a high refractive index wave guide |
KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US20200230643A1 (en) * | 2017-07-27 | 2020-07-23 | Evatec Ag | Permeation-barrier |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10276411B2 (en) | 2017-08-18 | 2019-04-30 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
JP6947914B2 (en) | 2017-08-18 | 2021-10-13 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Annealing chamber under high pressure and high temperature |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
KR102491945B1 (en) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102401446B1 (en) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
WO2019055415A1 (en) | 2017-09-12 | 2019-03-21 | Applied Materials, Inc. | Apparatus and methods for manufacturing semiconductor structures using protective barrier layer |
KR102630301B1 (en) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10643867B2 (en) | 2017-11-03 | 2020-05-05 | Applied Materials, Inc. | Annealing system and method |
KR102396319B1 (en) | 2017-11-11 | 2022-05-09 | 마이크로머티어리얼즈 엘엘씨 | Gas Delivery Systems for High Pressure Processing Chambers |
CN111373519B (en) | 2017-11-16 | 2021-11-23 | 应用材料公司 | High-pressure steam annealing treatment equipment |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
CN111432920A (en) | 2017-11-17 | 2020-07-17 | 应用材料公司 | Condenser system for high pressure processing system |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
TWI791689B (en) | 2017-11-27 | 2023-02-11 | 荷蘭商Asm智慧財產控股私人有限公司 | Apparatus including a clean mini environment |
TWI779134B (en) | 2017-11-27 | 2022-10-01 | 荷蘭商Asm智慧財產控股私人有限公司 | A storage device for storing wafer cassettes and a batch furnace assembly |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
TWI799494B (en) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | Deposition method |
CN111630203A (en) | 2018-01-19 | 2020-09-04 | Asm Ip私人控股有限公司 | Method for depositing gap filling layer by plasma auxiliary deposition |
KR102649241B1 (en) | 2018-01-24 | 2024-03-18 | 어플라이드 머티어리얼스, 인코포레이티드 | Seam healing using high pressure annealing |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
WO2019158960A1 (en) | 2018-02-14 | 2019-08-22 | Asm Ip Holding B.V. | A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
WO2019173006A1 (en) | 2018-03-09 | 2019-09-12 | Applied Materials, Inc. | High pressure annealing process for metal containing materials |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
KR102501472B1 (en) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method |
US10714331B2 (en) | 2018-04-04 | 2020-07-14 | Applied Materials, Inc. | Method to fabricate thermally stable low K-FinFET spacer |
US10950429B2 (en) | 2018-05-08 | 2021-03-16 | Applied Materials, Inc. | Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom |
TWI843623B (en) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
TW202349473A (en) | 2018-05-11 | 2023-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures |
US10566188B2 (en) | 2018-05-17 | 2020-02-18 | Applied Materials, Inc. | Method to improve film stability |
KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
US10704141B2 (en) | 2018-06-01 | 2020-07-07 | Applied Materials, Inc. | In-situ CVD and ALD coating of chamber to control metal contamination |
TWI840362B (en) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Wafer handling chamber with moisture reduction |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
TW202409324A (en) | 2018-06-27 | 2024-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Cyclic deposition processes for forming metal-containing material |
US11499222B2 (en) | 2018-06-27 | 2022-11-15 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (en) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10748783B2 (en) | 2018-07-25 | 2020-08-18 | Applied Materials, Inc. | Gas delivery module |
US10675581B2 (en) | 2018-08-06 | 2020-06-09 | Applied Materials, Inc. | Gas abatement apparatus |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
CN110970344B (en) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | Substrate holding apparatus, system comprising the same and method of using the same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
KR102605121B1 (en) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
KR102528076B1 (en) | 2018-10-30 | 2023-05-03 | 어플라이드 머티어리얼스, 인코포레이티드 | Methods for Etching Structures for Semiconductor Applications |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (en) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
KR20210077779A (en) | 2018-11-16 | 2021-06-25 | 어플라이드 머티어리얼스, 인코포레이티드 | Film Deposition Using Enhanced Diffusion Process |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
WO2020117462A1 (en) | 2018-12-07 | 2020-06-11 | Applied Materials, Inc. | Semiconductor processing system |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
TW202037745A (en) | 2018-12-14 | 2020-10-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming device structure, structure formed by the method and system for performing the method |
TW202405220A (en) | 2019-01-17 | 2024-02-01 | 荷蘭商Asm Ip 私人控股有限公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
TWI756590B (en) | 2019-01-22 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
CN111524788B (en) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | Method for topologically selective film formation of silicon oxide |
TWI845607B (en) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
JP2020136678A (en) | 2019-02-20 | 2020-08-31 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method for filing concave part formed inside front surface of base material, and device |
KR102626263B1 (en) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | Cyclical deposition method including treatment step and apparatus for same |
TWI838458B (en) | 2019-02-20 | 2024-04-11 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for plug fill deposition in 3-d nand applications |
TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
KR20200108248A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | STRUCTURE INCLUDING SiOCN LAYER AND METHOD OF FORMING SAME |
KR20200108242A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
KR20200108243A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Structure Including SiOC Layer and Method of Forming Same |
KR20200116033A (en) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | Door opener and substrate processing apparatus provided therewith |
KR20200116855A (en) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
KR20200123380A (en) | 2019-04-19 | 2020-10-29 | 에이에스엠 아이피 홀딩 비.브이. | Layer forming method and apparatus |
KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
KR20200130118A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for Reforming Amorphous Carbon Polymer Film |
KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
JP2020188255A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
JP2020188254A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system including a gas detector |
KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210010820A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
TWI839544B (en) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming topology-controlled amorphous carbon polymer film |
TWI851767B (en) | 2019-07-29 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
KR20210018759A (en) | 2019-08-05 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | Liquid level sensor for a chemical source vessel |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
KR20210029090A (en) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
KR20210029663A (en) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
KR20210043460A (en) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (en) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (en) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
US11450529B2 (en) | 2019-11-26 | 2022-09-20 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112951697A (en) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885693A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885692A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
JP2021097227A (en) | 2019-12-17 | 2021-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method of forming vanadium nitride layer and structure including vanadium nitride layer |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
JP2021109175A (en) | 2020-01-06 | 2021-08-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | Gas supply assembly, components thereof, and reactor system including the same |
JP2021111783A (en) | 2020-01-06 | 2021-08-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | Channeled lift pin |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (en) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming high aspect ratio features |
KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
TW202130846A (en) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures including a vanadium or indium layer |
KR20210100010A (en) | 2020-02-04 | 2021-08-13 | 에이에스엠 아이피 홀딩 비.브이. | Method and apparatus for transmittance measurements of large articles |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11901222B2 (en) | 2020-02-17 | 2024-02-13 | Applied Materials, Inc. | Multi-step process for flowable gap-fill film |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (en) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | System dedicated for parts cleaning |
KR20210116249A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | lockout tagout assembly and system and method of using same |
KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
KR20210117157A (en) | 2020-03-12 | 2021-09-28 | 에이에스엠 아이피 홀딩 비.브이. | Method for Fabricating Layer Structure Having Target Topological Profile |
KR20210124042A (en) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
TW202146689A (en) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | Method for forming barrier layer and method for manufacturing semiconductor device |
TW202145344A (en) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210132605A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Vertical batch furnace assembly comprising a cooling gas supply |
KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
US11898243B2 (en) | 2020-04-24 | 2024-02-13 | Asm Ip Holding B.V. | Method of forming vanadium nitride-containing layer |
KR20210134226A (en) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
JP2021177545A (en) | 2020-05-04 | 2021-11-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing system for processing substrates |
KR20210141379A (en) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
KR20210143653A (en) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210145078A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Structures including multiple carbon layers and methods of forming and using same |
KR102702526B1 (en) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus for depositing thin films using hydrogen peroxide |
TW202201602A (en) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
TW202217953A (en) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
KR102707957B1 (en) | 2020-07-08 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
KR20220010438A (en) | 2020-07-17 | 2022-01-25 | 에이에스엠 아이피 홀딩 비.브이. | Structures and methods for use in photolithography |
TW202204662A (en) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | Method and system for depositing molybdenum layers |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
KR20220027026A (en) | 2020-08-26 | 2022-03-07 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for forming metal silicon oxide and metal silicon oxynitride |
TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
TW202217037A (en) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing vanadium metal, structure, device and a deposition assembly |
TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
KR20220076343A (en) | 2020-11-30 | 2022-06-08 | 에이에스엠 아이피 홀딩 비.브이. | an injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
CN114639631A (en) | 2020-12-16 | 2022-06-17 | Asm Ip私人控股有限公司 | Fixing device for measuring jumping and swinging |
TW202226899A (en) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Plasma treatment device having matching box |
TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
TW202242184A (en) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Precursor capsule, precursor vessel, vapor deposition assembly, and method of loading solid precursor into precursor vessel |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
Citations (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894801A (en) * | 1986-08-01 | 1990-01-16 | Hitachi, Ltd. | Stacked MOS transistor flip-flop memory cell |
US4902533A (en) * | 1987-06-19 | 1990-02-20 | Motorola, Inc. | Method for selectively depositing tungsten on a substrate by using a spin-on metal oxide |
US4987089A (en) * | 1990-07-23 | 1991-01-22 | Micron Technology, Inc. | BiCMOS process and process for forming bipolar transistors on wafers also containing FETs |
US4993358A (en) * | 1989-07-28 | 1991-02-19 | Watkins-Johnson Company | Chemical vapor deposition reactor and method of operation |
US5080928A (en) * | 1990-10-05 | 1992-01-14 | Gte Laboratories Incorporated | Method for making moisture insensitive zinc sulfide based luminescent materials |
US5084606A (en) * | 1990-05-17 | 1992-01-28 | Caterpillar Inc. | Encapsulated heating filament for glow plug |
US5089084A (en) * | 1990-12-03 | 1992-02-18 | Micron Technology, Inc. | Hydrofluoric acid etcher and cascade rinser |
US5177028A (en) * | 1991-10-22 | 1993-01-05 | Micron Technology, Inc. | Trench isolation method having a double polysilicon gate formed on mesas |
US5392245A (en) * | 1993-08-13 | 1995-02-21 | Micron Technology, Inc. | Redundancy elements using thin film transistors (TFTs) |
US5391911A (en) * | 1993-03-29 | 1995-02-21 | International Business Machines Corporation | Reach-through isolation silicon-on-insulator device |
US5393704A (en) * | 1993-12-13 | 1995-02-28 | United Microelectronics Corporation | Self-aligned trenched contact (satc) process |
US5483487A (en) * | 1994-07-05 | 1996-01-09 | Taiwan Semiconductor Manufacturing Comp. Ltd. | Electrically programmable memory device with improved dual floating gates |
US5483094A (en) * | 1993-09-20 | 1996-01-09 | Motorola, Inc. | Electrically programmable read-only memory cell |
US5492853A (en) * | 1994-03-11 | 1996-02-20 | Micron Semiconductor, Inc. | Method of forming a contact using a trench and an insulation layer during the formation of a semiconductor device |
US5495441A (en) * | 1994-05-18 | 1996-02-27 | United Microelectronics Corporation | Split-gate flash memory cell |
US5593912A (en) * | 1994-10-06 | 1997-01-14 | International Business Machines Corporation | SOI trench DRAM cell for 256 MB DRAM and beyond |
US5595606A (en) * | 1995-04-20 | 1997-01-21 | Tokyo Electron Limited | Shower head and film forming apparatus using the same |
US5710057A (en) * | 1996-07-12 | 1998-01-20 | Kenney; Donald M. | SOI fabrication method |
US6013553A (en) * | 1997-07-24 | 2000-01-11 | Texas Instruments Incorporated | Zirconium and/or hafnium oxynitride gate dielectric |
US6020024A (en) * | 1997-08-04 | 2000-02-01 | Motorola, Inc. | Method for forming high dielectric constant metal oxides |
US6025627A (en) * | 1998-05-29 | 2000-02-15 | Micron Technology, Inc. | Alternate method and structure for improved floating gate tunneling devices |
US6027960A (en) * | 1995-10-25 | 2000-02-22 | Semiconductor Energy Laboratory Co., Ltd. | Laser annealing method and laser annealing device |
US6027961A (en) * | 1998-06-30 | 2000-02-22 | Motorola, Inc. | CMOS semiconductor devices and method of formation |
US6171900B1 (en) * | 1999-04-15 | 2001-01-09 | Taiwan Semiconductor Manufacturing Company | CVD Ta2O5/oxynitride stacked gate insulator with TiN gate electrode for sub-quarter micron MOSFET |
US6174809B1 (en) * | 1997-12-31 | 2001-01-16 | Samsung Electronics, Co., Ltd. | Method for forming metal layer using atomic layer deposition |
US6184146B1 (en) * | 1998-08-28 | 2001-02-06 | Micron Technology, Inc. | Plasma producing tools, dual-source plasma etchers, dual-source plasma etching methods, and method of forming planar coil dual-source plasma etchers |
US6187484B1 (en) * | 1999-08-31 | 2001-02-13 | Micron Technology, Inc. | Irradiation mask |
US6194262B1 (en) * | 1997-04-25 | 2001-02-27 | Micron Technology, Inc. | Method for coupling to semiconductor device in an integrated circuit having edge-defined, sub-lithographic conductors |
US20020001971A1 (en) * | 2000-06-27 | 2002-01-03 | Hag-Ju Cho | Methods of manufacturing integrated circuit devices that include a metal oxide layer disposed on another layer to protect the other layer from diffusion of impurities and integrated circuit devices manufactured using same |
US6342445B1 (en) * | 2000-05-15 | 2002-01-29 | Micron Technology, Inc. | Method for fabricating an SrRuO3 film |
US20020019116A1 (en) * | 1996-05-31 | 2002-02-14 | Sandhu Gurtej S. | Chemical vapor deposition using organometallic precursors |
US20020019125A1 (en) * | 1997-10-09 | 2002-02-14 | Werner Juengling | Methods of forming materials between conductive electrical components, and insulating materials |
US6348386B1 (en) * | 2001-04-16 | 2002-02-19 | Motorola, Inc. | Method for making a hafnium-based insulating film |
US20020024080A1 (en) * | 2000-08-31 | 2002-02-28 | Derderian Garo J. | Capacitor fabrication methods and capacitor constructions |
US20020025628A1 (en) * | 2000-08-31 | 2002-02-28 | Derderian Garo J. | Capacitor fabrication methods and capacitor constructions |
US20030003702A1 (en) * | 2001-02-09 | 2003-01-02 | Micron Technology, Inc. | Formation of metal oxide gate dielectric |
US20030003722A1 (en) * | 1998-09-01 | 2003-01-02 | Micron Technology, Inc. | Chemical vapor deposition systems including metal complexes with chelating O- and/or N-donor ligands |
US20030003635A1 (en) * | 2001-05-23 | 2003-01-02 | Paranjpe Ajit P. | Atomic layer deposition for fabricating thin films |
US20030001212A1 (en) * | 1997-02-19 | 2003-01-02 | Micron Technology, Inc. | Conductor layer nitridation |
US20030003730A1 (en) * | 2001-02-13 | 2003-01-02 | Micron Technology, Inc. | Sequential pulse deposition |
US20030004051A1 (en) * | 2001-05-18 | 2003-01-02 | Kim Dong-Wan | Dielectric ceramic composition and method for manufacturing multilayered components using the same |
US20030001241A1 (en) * | 2000-01-18 | 2003-01-02 | Agere Systems Guardian Corp. | Semiconductor device and method of fabrication |
US20030008243A1 (en) * | 2001-07-09 | 2003-01-09 | Micron Technology, Inc. | Copper electroless deposition technology for ULSI metalization |
US6509280B2 (en) * | 2001-02-22 | 2003-01-21 | Samsung Electronics Co., Ltd. | Method for forming a dielectric layer of a semiconductor device |
US20030017717A1 (en) * | 2001-07-18 | 2003-01-23 | Ahn Kie Y. | Methods for forming dielectric materials and methods for forming semiconductor devices |
US20030020180A1 (en) * | 2001-07-24 | 2003-01-30 | Ahn Kie Y. | Copper technology for ULSI metallization |
US6514828B2 (en) * | 2001-04-20 | 2003-02-04 | Micron Technology, Inc. | Method of fabricating a highly reliable gate oxide |
US6514348B2 (en) * | 2000-07-13 | 2003-02-04 | Ebara Corporation | Substrate processing apparatus |
US20030027360A1 (en) * | 2001-03-28 | 2003-02-06 | Hsu Sheng Teng | Single transistor ferroelectric transistor structure with high-K insulator and method of fabricating same |
US6518634B1 (en) * | 2000-09-01 | 2003-02-11 | Motorola, Inc. | Strontium nitride or strontium oxynitride gate dielectric |
US6518610B2 (en) * | 2001-02-20 | 2003-02-11 | Micron Technology, Inc. | Rhodium-rich oxygen barriers |
US6521911B2 (en) * | 2000-07-20 | 2003-02-18 | North Carolina State University | High dielectric constant metal silicates formed by controlled metal-surface reactions |
US6524867B2 (en) * | 2000-12-28 | 2003-02-25 | Micron Technology, Inc. | Method for forming platinum-rhodium stack as an oxygen barrier |
US6524901B1 (en) * | 2002-06-20 | 2003-02-25 | Micron Technology, Inc. | Method for forming a notched damascene planar poly/metal gate |
US6674138B1 (en) * | 2001-12-31 | 2004-01-06 | Advanced Micro Devices, Inc. | Use of high-k dielectric materials in modified ONO structure for semiconductor devices |
US6673701B1 (en) * | 2002-08-27 | 2004-01-06 | Micron Technology, Inc. | Atomic layer deposition methods |
US20040004859A1 (en) * | 2002-07-08 | 2004-01-08 | Micron Technology, Inc. | Memory utilizing oxide nanolaminates |
US20040004247A1 (en) * | 2002-07-08 | 2004-01-08 | Micron Technology, Inc. | Memory utilizing oxide-nitride nanolaminates |
US20040004244A1 (en) * | 2001-03-15 | 2004-01-08 | Micron Technology, Inc. | Structures, methods, and systems for ferroelectric memory transistors |
US20040004245A1 (en) * | 2002-07-08 | 2004-01-08 | Micron Technology, Inc. | Memory utilizing oxide-conductor nanolaminates |
US20040005982A1 (en) * | 2002-07-05 | 2004-01-08 | Samsung Electro-Mechanics Co., Ltd. | Non-reducible, low temperature sinterable dielectric ceramic composition, multilayer ceramic chip capacitor using the composition and method for preparing the multilayer ceramic chip capacitor |
US6677250B2 (en) * | 2001-08-17 | 2004-01-13 | Micron Technology, Inc. | CVD apparatuses and methods of forming a layer over a semiconductor substrate |
US20040007171A1 (en) * | 1999-10-14 | 2004-01-15 | Mikko Ritala | Method for growing thin oxide films |
US20040009679A1 (en) * | 2001-01-19 | 2004-01-15 | Yeo Jae-Hyun | Method of forming material using atomic layer deposition and method of forming capacitor of semiconductor device using the same |
US6683005B2 (en) * | 2001-08-30 | 2004-01-27 | Micron Technology, Inc. | Method of forming capacitor constructions |
US6686212B1 (en) * | 2002-10-31 | 2004-02-03 | Sharp Laboratories Of America, Inc. | Method to deposit a stacked high-κ gate dielectric for CMOS applications |
US20040023516A1 (en) * | 2001-10-02 | 2004-02-05 | Londergan Ana R. | Passivation method for improved uniformity and repeatability for atomic layer deposition and chemical vapor deposition |
US20040023461A1 (en) * | 2002-07-30 | 2004-02-05 | Micron Technology, Inc. | Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics |
US20040028811A1 (en) * | 2002-08-06 | 2004-02-12 | Young-Jin Cho | Bismuth titanium silicon oxide, bismuth titanium silicon oxide thin film, and method for forming the thin film |
US20040033661A1 (en) * | 2002-08-16 | 2004-02-19 | Yeo Jae-Hyun | Semiconductor device and method for manufacturing the same |
US20040033701A1 (en) * | 2002-08-15 | 2004-02-19 | Micron Technology, Inc. | Lanthanide doped tiox dielectric films |
US20040038554A1 (en) * | 2002-08-21 | 2004-02-26 | Ahn Kie Y. | Composite dielectric forming methods and composite dielectrics |
US6844203B2 (en) * | 2001-08-30 | 2005-01-18 | Micron Technology, Inc. | Gate oxides, and methods of forming |
US6844260B2 (en) * | 2003-01-30 | 2005-01-18 | Micron Technology, Inc. | Insitu post atomic layer deposition destruction of active species |
US20050020017A1 (en) * | 2003-06-24 | 2005-01-27 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectric layers |
US20050023626A1 (en) * | 2003-06-24 | 2005-02-03 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectrics |
US20050023625A1 (en) * | 2002-08-28 | 2005-02-03 | Micron Technology, Inc. | Atomic layer deposited HfSiON dielectric films |
US20050026349A1 (en) * | 2001-08-30 | 2005-02-03 | Micron Technology, Inc. | Flash memory with low tunnel barrier interpoly insulators |
US20050023613A1 (en) * | 2002-07-18 | 2005-02-03 | Micron Technology, Inc. | Stable PD-SOI devices and methods |
US20050026458A1 (en) * | 2003-07-03 | 2005-02-03 | Cem Basceri | Methods of forming hafnium-containing materials, methods of forming hafnium oxide, and constructions comprising hafnium oxide |
US20050023624A1 (en) * | 2002-06-05 | 2005-02-03 | Micron Technology, Inc. | Atomic layer-deposited HfAlO3 films for gate dielectrics |
US20050023594A1 (en) * | 2002-06-05 | 2005-02-03 | Micron Technology, Inc. | Pr2O3-based la-oxide gate dielectrics |
US20050023603A1 (en) * | 2001-08-30 | 2005-02-03 | Micron Technology, Inc. | Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interpoly insulators |
US20050023627A1 (en) * | 2002-08-15 | 2005-02-03 | Micron Technology, Inc. | Lanthanide doped TiOx dielectric films by plasma oxidation |
US20050029605A1 (en) * | 2001-08-30 | 2005-02-10 | Micron Technology, Inc. | Highly reliable amorphous high-k gate oxide ZrO2 |
US20050029604A1 (en) * | 2002-12-04 | 2005-02-10 | Micron Technology, Inc. | Atomic layer deposited Zr-Sn-Ti-O films using TiI4 |
US20050034662A1 (en) * | 2001-03-01 | 2005-02-17 | Micro Technology, Inc. | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US20060001151A1 (en) * | 2003-03-04 | 2006-01-05 | Micron Technology, Inc. | Atomic layer deposited dielectric layers |
US20060019033A1 (en) * | 2004-05-21 | 2006-01-26 | Applied Materials, Inc. | Plasma treatment of hafnium-containing materials |
US7160817B2 (en) * | 2001-08-30 | 2007-01-09 | Micron Technology, Inc. | Dielectric material forming methods |
US7160577B2 (en) * | 2002-05-02 | 2007-01-09 | Micron Technology, Inc. | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
US20070018214A1 (en) * | 2005-07-25 | 2007-01-25 | Micron Technology, Inc. | Magnesium titanium oxide films |
Family Cites Families (171)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US146916A (en) * | 1874-01-27 | Improvement in wrought-iron bridges | ||
US134376A (en) | 1872-12-31 | Improvement in machines for bending sheet metals | ||
US9695A (en) * | 1853-05-03 | Richard l | ||
US1124262A (en) * | 1911-10-30 | 1915-01-12 | John B Morris Machine Tool Company | Lathe. |
US2501563A (en) * | 1946-02-20 | 1950-03-21 | Libbey Owens Ford Glass Co | Method of forming strongly adherent metallic compound films by glow discharge |
US3381114A (en) * | 1963-12-28 | 1968-04-30 | Nippon Electric Co | Device for manufacturing epitaxial crystals |
US3357961A (en) | 1965-05-24 | 1967-12-12 | Exxon Research Engineering Co | Copolymers of ethylene and hexadiene 1, 5 |
US3407479A (en) | 1965-06-28 | 1968-10-29 | Motorola Inc | Isolation of semiconductor devices |
US3471754A (en) | 1966-03-26 | 1969-10-07 | Sony Corp | Isolation structure for integrated circuits |
US3689357A (en) | 1970-12-10 | 1972-09-05 | Gen Motors Corp | Glass-polysilicon dielectric isolation |
US3869357A (en) * | 1971-12-30 | 1975-03-04 | Sun Ventures Inc | Purification of alkyl naphthalenes by distillation and furfural extraction |
SE393967B (en) | 1974-11-29 | 1977-05-31 | Sateko Oy | PROCEDURE AND PERFORMANCE OF LAYING BETWEEN THE STORAGE IN A LABOR PACKAGE |
US4051354A (en) | 1975-07-03 | 1977-09-27 | Texas Instruments Incorporated | Fault-tolerant cell addressable array |
US4215156A (en) | 1977-08-26 | 1980-07-29 | International Business Machines Corporation | Method for fabricating tantalum semiconductor contacts |
US4305640A (en) | 1978-11-24 | 1981-12-15 | National Research Development Corporation | Laser beam annealing diffuser |
FI57975C (en) | 1979-02-28 | 1980-11-10 | Lohja Ab Oy | OVER ANCHORING VIDEO UPDATE FOR AVAILABILITY |
US4209357A (en) * | 1979-05-18 | 1980-06-24 | Tegal Corporation | Plasma reactor apparatus |
US4333808A (en) | 1979-10-30 | 1982-06-08 | International Business Machines Corporation | Method for manufacture of ultra-thin film capacitor |
US4292093A (en) | 1979-12-28 | 1981-09-29 | The United States Of America As Represented By The United States Department Of Energy | Method using laser irradiation for the production of atomically clean crystalline silicon and germanium surfaces |
GB2085166A (en) | 1980-10-07 | 1982-04-21 | Itt Ind Ltd | Semiconductor gas sensor |
DE3364607D1 (en) | 1982-03-15 | 1986-08-28 | Toshiba Kk | Optical type information recording medium |
US4604162A (en) | 1983-06-13 | 1986-08-05 | Ncr Corporation | Formation and planarization of silicon-on-insulator structures |
US5208657A (en) * | 1984-08-31 | 1993-05-04 | Texas Instruments Incorporated | DRAM Cell with trench capacitor and vertical channel in substrate |
US4590042A (en) * | 1984-12-24 | 1986-05-20 | Tegal Corporation | Plasma reactor having slotted manifold |
US4766569A (en) | 1985-03-04 | 1988-08-23 | Lattice Semiconductor Corporation | Programmable logic array |
US4761768A (en) | 1985-03-04 | 1988-08-02 | Lattice Semiconductor Corporation | Programmable logic device |
US4920071A (en) | 1985-03-15 | 1990-04-24 | Fairchild Camera And Instrument Corporation | High temperature interconnect system for an integrated circuit |
US5102817A (en) * | 1985-03-21 | 1992-04-07 | Texas Instruments Incorporated | Vertical DRAM cell and method |
US4673962A (en) * | 1985-03-21 | 1987-06-16 | Texas Instruments Incorporated | Vertical DRAM cell and method |
US4663831A (en) * | 1985-10-08 | 1987-05-12 | Motorola, Inc. | Method of forming transistors with poly-sidewall contacts utilizing deposition of polycrystalline and insulating layers combined with selective etching and oxidation of said layers |
JPS62199019A (en) * | 1986-02-27 | 1987-09-02 | Oki Electric Ind Co Ltd | Wafer treatment device |
DE3606959A1 (en) * | 1986-03-04 | 1987-09-10 | Leybold Heraeus Gmbh & Co Kg | DEVICE FOR PLASMA TREATMENT OF SUBSTRATES IN A PLASMA DISCHARGE EXCITED BY HIGH FREQUENCY |
US5017504A (en) * | 1986-12-01 | 1991-05-21 | Mitsubishi Denki Kabushiki Kaisha | Vertical type MOS transistor and method of formation thereof |
JPS63254762A (en) * | 1987-04-13 | 1988-10-21 | Nissan Motor Co Ltd | Cmos semiconductor device |
JPH01125858A (en) * | 1987-11-10 | 1989-05-18 | Fujitsu Ltd | Semiconductor device and manufacture thereof |
EP0316799B1 (en) * | 1987-11-13 | 1994-07-27 | Nissan Motor Co., Ltd. | Semiconductor device |
JPH07120719B2 (en) | 1987-12-02 | 1995-12-20 | 三菱電機株式会社 | Semiconductor memory device |
JPH029115A (en) * | 1988-06-28 | 1990-01-12 | Mitsubishi Electric Corp | Semiconductor manufacturing equipment |
US5327380B1 (en) | 1988-10-31 | 1999-09-07 | Texas Instruments Inc | Method and apparatus for inhibiting a predecoder when selecting a redundant row line |
US4962879A (en) | 1988-12-19 | 1990-10-16 | Duke University | Method for bubble-free bonding of silicon wafers |
US4948937A (en) | 1988-12-23 | 1990-08-14 | Itt Corporation | Apparatus and method for heat cleaning semiconductor material |
US5021355A (en) * | 1989-05-22 | 1991-06-04 | International Business Machines Corporation | Method of fabricating cross-point lightly-doped drain-source trench transistor |
US5028977A (en) | 1989-06-16 | 1991-07-02 | Massachusetts Institute Of Technology | Merged bipolar and insulated gate transistors |
KR0170391B1 (en) * | 1989-06-16 | 1999-03-30 | 다카시마 히로시 | Processing apparatus with a gas distributor having back and forth parallel movement relative to a workpiece support |
US5198029A (en) * | 1989-08-01 | 1993-03-30 | Gte Products Corporation | Apparatus for coating small solids |
JP2617798B2 (en) * | 1989-09-22 | 1997-06-04 | 三菱電機株式会社 | Stacked semiconductor device and method of manufacturing the same |
JPH0821689B2 (en) * | 1990-02-26 | 1996-03-04 | 株式会社東芝 | Semiconductor memory device and manufacturing method thereof |
US5840897A (en) | 1990-07-06 | 1998-11-24 | Advanced Technology Materials, Inc. | Metal complex source reagents for chemical vapor deposition |
US5032545A (en) | 1990-10-30 | 1991-07-16 | Micron Technology, Inc. | Process for preventing a native oxide from forming on the surface of a semiconductor material and integrated circuit capacitors produced thereby |
US5097291A (en) * | 1991-04-22 | 1992-03-17 | Nikon Corporation | Energy amount control device |
US5223081A (en) * | 1991-07-03 | 1993-06-29 | Doan Trung T | Method for roughening a silicon or polysilicon surface for a semiconductor substrate |
US5110752A (en) * | 1991-07-10 | 1992-05-05 | Industrial Technology Research Institute | Roughened polysilicon surface capacitor electrode plate for high denity dram |
US5202278A (en) * | 1991-09-10 | 1993-04-13 | Micron Technology, Inc. | Method of forming a capacitor in semiconductor wafer processing |
JPH05198739A (en) * | 1991-09-10 | 1993-08-06 | Mitsubishi Electric Corp | Laminated semiconductor device and its manufacture |
JPH0590169A (en) * | 1991-09-25 | 1993-04-09 | Hitachi Ltd | Gas feeder, and microwave plasma film forming device equipped with same |
KR940006679B1 (en) * | 1991-09-26 | 1994-07-25 | 현대전자산업 주식회사 | Dram cell having a vertical transistor and fabricating method thereof |
US5156987A (en) | 1991-12-18 | 1992-10-20 | Micron Technology, Inc. | High performance thin film transistor (TFT) by solid phase epitaxial regrowth |
US5274249A (en) | 1991-12-20 | 1993-12-28 | University Of Maryland | Superconducting field effect devices with thin channel layer |
US5528062A (en) | 1992-06-17 | 1996-06-18 | International Business Machines Corporation | High-density DRAM structure on soi |
US5572052A (en) | 1992-07-24 | 1996-11-05 | Mitsubishi Denki Kabushiki Kaisha | Electronic device using zirconate titanate and barium titanate ferroelectrics in insulating layer |
US5320880A (en) * | 1992-10-20 | 1994-06-14 | Micron Technology, Inc. | Method of providing a silicon film having a roughened outer surface |
US5324673A (en) * | 1992-11-19 | 1994-06-28 | Motorola, Inc. | Method of formation of vertical transistor |
US5234535A (en) | 1992-12-10 | 1993-08-10 | International Business Machines Corporation | Method of producing a thin silicon-on-insulator layer |
US5266514A (en) | 1992-12-21 | 1993-11-30 | Industrial Technology Research Institute | Method for producing a roughened surface capacitor |
TW235363B (en) | 1993-01-25 | 1994-12-01 | Hitachi Seisakusyo Kk | |
JP2701709B2 (en) | 1993-02-16 | 1998-01-21 | 株式会社デンソー | Method and apparatus for directly joining two materials |
US5422499A (en) * | 1993-02-22 | 1995-06-06 | Micron Semiconductor, Inc. | Sixteen megabit static random access memory (SRAM) cell |
US5438009A (en) | 1993-04-02 | 1995-08-01 | United Microelectronics Corporation | Method of fabrication of MOSFET device with buried bit line |
US5616934A (en) * | 1993-05-12 | 1997-04-01 | Micron Technology, Inc. | Fully planarized thin film transistor (TFT) and process to fabricate same |
US5522932A (en) * | 1993-05-14 | 1996-06-04 | Applied Materials, Inc. | Corrosion-resistant apparatus |
US5441591A (en) | 1993-06-07 | 1995-08-15 | The United States Of America As Represented By The Secretary Of The Navy | Silicon to sapphire bond |
JP2605594B2 (en) | 1993-09-03 | 1997-04-30 | 日本電気株式会社 | Method for manufacturing semiconductor device |
JP3328389B2 (en) | 1993-09-14 | 2002-09-24 | 康夫 垂井 | Manufacturing method of ferroelectric thin film |
GB9319070D0 (en) | 1993-09-15 | 1993-11-03 | Ncr Int Inc | Stencil having improved wear-resistance and quality consistency and method of manufacturing the same |
US5416041A (en) * | 1993-09-27 | 1995-05-16 | Siemens Aktiengesellschaft | Method for producing an insulating trench in an SOI substrate |
DE69408405T2 (en) | 1993-11-11 | 1998-08-20 | Nissin Electric Co Ltd | Plasma CVD method and device |
US5455445A (en) | 1994-01-21 | 1995-10-03 | Kulite Semiconductor Products, Inc. | Multi-level semiconductor structures having environmentally isolated elements |
US5362665A (en) * | 1994-02-14 | 1994-11-08 | Industrial Technology Research Institute | Method of making vertical DRAM cross point memory cell |
JPH07263751A (en) | 1994-03-24 | 1995-10-13 | Sharp Corp | Ii-vi compound semiconductor device and manufacture of it |
US5414287A (en) * | 1994-04-25 | 1995-05-09 | United Microelectronics Corporation | Process for high density split-gate memory cell for flash or EPROM |
US5460988A (en) | 1994-04-25 | 1995-10-24 | United Microelectronics Corporation | Process for high density flash EPROM cell |
US5828080A (en) | 1994-08-17 | 1998-10-27 | Tdk Corporation | Oxide thin film, electronic device substrate and electronic device |
US5822256A (en) | 1994-09-06 | 1998-10-13 | Intel Corporation | Method and circuitry for usage of partially functional nonvolatile memory |
US5508542A (en) * | 1994-10-28 | 1996-04-16 | International Business Machines Corporation | Porous silicon trench and capacitor structures |
JP3549602B2 (en) | 1995-01-12 | 2004-08-04 | 株式会社ルネサステクノロジ | Semiconductor storage device |
US5497017A (en) * | 1995-01-26 | 1996-03-05 | Micron Technology, Inc. | Dynamic random access memory array having a cross-point layout, tungsten digit lines buried in the substrate, and vertical access transistors |
US5508219A (en) * | 1995-06-05 | 1996-04-16 | International Business Machines Corporation | SOI DRAM with field-shield isolation and body contact |
US5753934A (en) | 1995-08-04 | 1998-05-19 | Tok Corporation | Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film |
US5649402A (en) * | 1995-09-01 | 1997-07-22 | Fwt, Inc. | Antenna support for power transmission tower |
US5792269A (en) * | 1995-10-31 | 1998-08-11 | Applied Materials, Inc. | Gas distribution for CVD systems |
KR0164072B1 (en) | 1995-11-13 | 1999-02-01 | 김주용 | Method of forming shallow junction in a semiconductor device |
US5765404A (en) * | 1995-11-17 | 1998-06-16 | Whirlpool Corporation | Balance ring attachment in an automatic washer |
US5640342A (en) * | 1995-11-20 | 1997-06-17 | Micron Technology, Inc. | Structure for cross coupled thin film transistors and static random access memory cell |
US5756404A (en) | 1995-12-07 | 1998-05-26 | Micron Technologies, Inc. | Two-step nitride deposition |
US5892249A (en) * | 1996-02-23 | 1999-04-06 | National Semiconductor Corporation | Integrated circuit having reprogramming cell |
US5789030A (en) | 1996-03-18 | 1998-08-04 | Micron Technology, Inc. | Method for depositing doped amorphous or polycrystalline silicon on a substrate |
US5614026A (en) * | 1996-03-29 | 1997-03-25 | Lam Research Corporation | Showerhead for uniform distribution of process gas |
US5735960A (en) * | 1996-04-02 | 1998-04-07 | Micron Technology, Inc. | Apparatus and method to increase gas residence time in a reactor |
US5674574A (en) | 1996-05-20 | 1997-10-07 | Micron Technology, Inc. | Vapor delivery system for solid precursors and method regarding same |
US5963833A (en) | 1996-07-03 | 1999-10-05 | Micron Technology, Inc. | Method for cleaning semiconductor wafers and |
US5698022A (en) | 1996-08-14 | 1997-12-16 | Advanced Technology Materials, Inc. | Lanthanide/phosphorus precursor compositions for MOCVD of lanthanide/phosphorus oxide films |
US5916365A (en) | 1996-08-16 | 1999-06-29 | Sherman; Arthur | Sequential chemical vapor deposition |
US5691230A (en) | 1996-09-04 | 1997-11-25 | Micron Technology, Inc. | Technique for producing small islands of silicon on insulator |
US5950925A (en) * | 1996-10-11 | 1999-09-14 | Ebara Corporation | Reactant gas ejector head |
US6211039B1 (en) * | 1996-11-12 | 2001-04-03 | Micron Technology, Inc. | Silicon-on-insulator islands and method for their formation |
US6019848A (en) * | 1996-11-13 | 2000-02-01 | Applied Materials, Inc. | Lid assembly for high temperature processing chamber |
US6114216A (en) * | 1996-11-13 | 2000-09-05 | Applied Materials, Inc. | Methods for shallow trench isolation |
EP0854210B1 (en) * | 1996-12-19 | 2002-03-27 | Toshiba Ceramics Co., Ltd. | Vapor deposition apparatus for forming thin film |
US5879459A (en) * | 1997-08-29 | 1999-03-09 | Genus, Inc. | Vertically-stacked process reactor and cluster tool system for atomic layer deposition |
US6034015A (en) * | 1997-05-14 | 2000-03-07 | Georgia Tech Research Corporation | Ceramic compositions for microwave wireless communication |
US6089184A (en) * | 1997-06-11 | 2000-07-18 | Tokyo Electron Limited | CVD apparatus and CVD method |
US6063202A (en) * | 1997-09-26 | 2000-05-16 | Novellus Systems, Inc. | Apparatus for backside and edge exclusion of polymer film during chemical vapor deposition |
US6161500A (en) * | 1997-09-30 | 2000-12-19 | Tokyo Electron Limited | Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions |
US6350704B1 (en) * | 1997-10-14 | 2002-02-26 | Micron Technology Inc. | Porous silicon oxycarbide integrated circuit insulator |
JPH11335849A (en) * | 1998-05-27 | 1999-12-07 | Ebara Corp | Film forming device |
US6302964B1 (en) * | 1998-06-16 | 2001-10-16 | Applied Materials, Inc. | One-piece dual gas faceplate for a showerhead in a semiconductor wafer processing system |
US6017820A (en) * | 1998-07-17 | 2000-01-25 | Cutek Research, Inc. | Integrated vacuum and plating cluster system |
US6710538B1 (en) * | 1998-08-26 | 2004-03-23 | Micron Technology, Inc. | Field emission display having reduced power requirements and method |
US6141260A (en) * | 1998-08-27 | 2000-10-31 | Micron Technology, Inc. | Single electron resistor memory device and method for use thereof |
US6218293B1 (en) * | 1998-11-13 | 2001-04-17 | Micron Technology, Inc. | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
US6207522B1 (en) * | 1998-11-23 | 2001-03-27 | Microcoating Technologies | Formation of thin film capacitors |
JP2000192241A (en) * | 1998-12-24 | 2000-07-11 | Nissin Electric Co Ltd | Thin film deposition device, and its operating method |
US6230651B1 (en) * | 1998-12-30 | 2001-05-15 | Lam Research Corporation | Gas injection system for plasma processing |
JP2000208508A (en) * | 1999-01-13 | 2000-07-28 | Texas Instr Inc <Ti> | Vacuum deposition of high-dielectric material made of silicate |
US6300255B1 (en) * | 1999-02-24 | 2001-10-09 | Applied Materials, Inc. | Method and apparatus for processing semiconductive wafers |
KR100328820B1 (en) * | 1999-02-25 | 2002-03-14 | 박종섭 | Gas injection apparatus of chemical vapor deposition device |
JP3595853B2 (en) * | 1999-03-18 | 2004-12-02 | 日本エー・エス・エム株式会社 | Plasma CVD film forming equipment |
US6206972B1 (en) * | 1999-07-08 | 2001-03-27 | Genus, Inc. | Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes |
US6709968B1 (en) * | 2000-08-16 | 2004-03-23 | Micron Technology, Inc. | Microelectronic device with package with conductive elements and associated method of manufacture |
JP4397491B2 (en) * | 1999-11-30 | 2010-01-13 | 財団法人国際科学振興財団 | Semiconductor device using silicon having 111 plane orientation on surface and method of forming the same |
US20030032270A1 (en) * | 2001-08-10 | 2003-02-13 | John Snyder | Fabrication method for a device for regulating flow of electric current with high dielectric constant gate insulating layer and source/drain forming schottky contact or schottky-like region with substrate |
US6347749B1 (en) * | 2000-02-09 | 2002-02-19 | Moore Epitaxial, Inc. | Semiconductor processing reactor controllable gas jet assembly |
US6297103B1 (en) * | 2000-02-28 | 2001-10-02 | Micron Technology, Inc. | Structure and method for dual gate oxide thicknesses |
DE10010821A1 (en) * | 2000-02-29 | 2001-09-13 | Infineon Technologies Ag | Increasing capacity in a storage trench comprises depositing a first silicon oxide layer in the trench, depositing a silicon layer over the first layer to sufficiently |
US6444039B1 (en) * | 2000-03-07 | 2002-09-03 | Simplus Systems Corporation | Three-dimensional showerhead apparatus |
US6537613B1 (en) * | 2000-04-10 | 2003-03-25 | Air Products And Chemicals, Inc. | Process for metal metalloid oxides and nitrides with compositional gradients |
KR100463237B1 (en) * | 2000-06-28 | 2004-12-23 | 주식회사 하이닉스반도체 | Method for forming photoresist pattern |
US6290491B1 (en) * | 2000-06-29 | 2001-09-18 | Motorola, Inc. | Method for heating a semiconductor wafer in a process chamber by a shower head, and process chamber |
US6541353B1 (en) * | 2000-08-31 | 2003-04-01 | Micron Technology, Inc. | Atomic layer doping apparatus and method |
WO2002033729A2 (en) * | 2000-10-16 | 2002-04-25 | Tokyo Electron Limited | Plasma reactor with reduced reaction chamber |
US6534357B1 (en) * | 2000-11-09 | 2003-03-18 | Micron Technology, Inc. | Methods for forming conductive structures and structures regarding same |
AU2002241496A1 (en) * | 2000-11-20 | 2002-06-18 | Applied Epi, Inc. | Surface sealing showerhead for vapor deposition reactor having integrated flow diverters |
US6355561B1 (en) * | 2000-11-21 | 2002-03-12 | Micron Technology, Inc. | ALD method to improve surface coverage |
US6713846B1 (en) * | 2001-01-26 | 2004-03-30 | Aviza Technology, Inc. | Multilayer high κ dielectric films |
US6858865B2 (en) * | 2001-02-23 | 2005-02-22 | Micron Technology, Inc. | Doped aluminum oxide dielectrics |
US6454912B1 (en) * | 2001-03-15 | 2002-09-24 | Micron Technology, Inc. | Method and apparatus for the fabrication of ferroelectric films |
US6552383B2 (en) * | 2001-05-11 | 2003-04-22 | Micron Technology, Inc. | Integrated decoupling capacitors |
US7037862B2 (en) * | 2001-06-13 | 2006-05-02 | Micron Technology, Inc. | Dielectric layer forming method and devices formed therewith |
US6709989B2 (en) * | 2001-06-21 | 2004-03-23 | Motorola, Inc. | Method for fabricating a semiconductor structure including a metal oxide interface with silicon |
US7129128B2 (en) * | 2001-08-29 | 2006-10-31 | Micron Technology, Inc. | Method of improved high K dielectric-polysilicon interface for CMOS devices |
US7135734B2 (en) * | 2001-08-30 | 2006-11-14 | Micron Technology, Inc. | Graded composition metal oxide tunnel barrier interpoly insulators |
US6806145B2 (en) * | 2001-08-31 | 2004-10-19 | Asm International, N.V. | Low temperature method of forming a gate stack with a high k layer deposited over an interfacial oxide layer |
US20030059535A1 (en) * | 2001-09-25 | 2003-03-27 | Lee Luo | Cycling deposition of low temperature films in a cold wall single wafer process chamber |
US6551893B1 (en) * | 2001-11-27 | 2003-04-22 | Micron Technology, Inc. | Atomic layer deposition of capacitor dielectric |
US7253122B2 (en) * | 2002-08-28 | 2007-08-07 | Micron Technology, Inc. | Systems and methods for forming metal oxides using metal diketonates and/or ketoimines |
US7084078B2 (en) * | 2002-08-29 | 2006-08-01 | Micron Technology, Inc. | Atomic layer deposited lanthanide doped TiOx dielectric films |
US20040065255A1 (en) * | 2002-10-02 | 2004-04-08 | Applied Materials, Inc. | Cyclical layer deposition system |
US7135369B2 (en) * | 2003-03-31 | 2006-11-14 | Micron Technology, Inc. | Atomic layer deposited ZrAlxOy dielectric layers including Zr4AlO9 |
KR100546324B1 (en) * | 2003-04-22 | 2006-01-26 | 삼성전자주식회사 | Methods of forming metal oxide thin film and lanthanum oxide layer by ALD and method of forming high dielectric constant layer for semiconductor device |
US7183186B2 (en) * | 2003-04-22 | 2007-02-27 | Micro Technology, Inc. | Atomic layer deposited ZrTiO4 films |
US6989573B2 (en) * | 2003-10-10 | 2006-01-24 | Micron Technology, Inc. | Lanthanide oxide/zirconium oxide atomic layer deposited nanolaminate gate dielectrics |
US7138681B2 (en) * | 2004-07-27 | 2006-11-21 | Micron Technology, Inc. | High density stepped, non-planar nitride read only memory |
US7601649B2 (en) * | 2004-08-02 | 2009-10-13 | Micron Technology, Inc. | Zirconium-doped tantalum oxide films |
US7164168B2 (en) * | 2004-08-03 | 2007-01-16 | Micron Technology, Inc. | Non-planar flash memory having shielding between floating gates |
US7151294B2 (en) * | 2004-08-03 | 2006-12-19 | Micron Technology, Inc. | High density stepped, non-planar flash memory |
US7081421B2 (en) * | 2004-08-26 | 2006-07-25 | Micron Technology, Inc. | Lanthanide oxide dielectric layer |
US7588988B2 (en) * | 2004-08-31 | 2009-09-15 | Micron Technology, Inc. | Method of forming apparatus having oxide films formed using atomic layer deposition |
US7494939B2 (en) * | 2004-08-31 | 2009-02-24 | Micron Technology, Inc. | Methods for forming a lanthanum-metal oxide dielectric layer |
US7235501B2 (en) * | 2004-12-13 | 2007-06-26 | Micron Technology, Inc. | Lanthanum hafnium oxide dielectrics |
US7195999B2 (en) * | 2005-07-07 | 2007-03-27 | Micron Technology, Inc. | Metal-substituted transistor gates |
US7214994B2 (en) * | 2005-08-31 | 2007-05-08 | Micron Technology, Inc. | Self aligned metal gates on high-k dielectrics |
-
2001
- 2001-03-01 US US09/797,324 patent/US6852167B2/en not_active Expired - Fee Related
-
2004
- 2004-08-31 US US10/931,845 patent/US20050087134A1/en not_active Abandoned
- 2004-08-31 US US10/931,595 patent/US7410668B2/en not_active Expired - Fee Related
-
2007
- 2007-01-09 US US11/651,295 patent/US20070131169A1/en not_active Abandoned
- 2007-01-09 US US11/651,136 patent/US20070107661A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894801A (en) * | 1986-08-01 | 1990-01-16 | Hitachi, Ltd. | Stacked MOS transistor flip-flop memory cell |
US4902533A (en) * | 1987-06-19 | 1990-02-20 | Motorola, Inc. | Method for selectively depositing tungsten on a substrate by using a spin-on metal oxide |
US4993358A (en) * | 1989-07-28 | 1991-02-19 | Watkins-Johnson Company | Chemical vapor deposition reactor and method of operation |
US5084606A (en) * | 1990-05-17 | 1992-01-28 | Caterpillar Inc. | Encapsulated heating filament for glow plug |
US4987089A (en) * | 1990-07-23 | 1991-01-22 | Micron Technology, Inc. | BiCMOS process and process for forming bipolar transistors on wafers also containing FETs |
US5080928A (en) * | 1990-10-05 | 1992-01-14 | Gte Laboratories Incorporated | Method for making moisture insensitive zinc sulfide based luminescent materials |
US5089084A (en) * | 1990-12-03 | 1992-02-18 | Micron Technology, Inc. | Hydrofluoric acid etcher and cascade rinser |
US5177028A (en) * | 1991-10-22 | 1993-01-05 | Micron Technology, Inc. | Trench isolation method having a double polysilicon gate formed on mesas |
US5391911A (en) * | 1993-03-29 | 1995-02-21 | International Business Machines Corporation | Reach-through isolation silicon-on-insulator device |
US5392245A (en) * | 1993-08-13 | 1995-02-21 | Micron Technology, Inc. | Redundancy elements using thin film transistors (TFTs) |
US5483094A (en) * | 1993-09-20 | 1996-01-09 | Motorola, Inc. | Electrically programmable read-only memory cell |
US5393704A (en) * | 1993-12-13 | 1995-02-28 | United Microelectronics Corporation | Self-aligned trenched contact (satc) process |
US5492853A (en) * | 1994-03-11 | 1996-02-20 | Micron Semiconductor, Inc. | Method of forming a contact using a trench and an insulation layer during the formation of a semiconductor device |
US5495441A (en) * | 1994-05-18 | 1996-02-27 | United Microelectronics Corporation | Split-gate flash memory cell |
US5483487A (en) * | 1994-07-05 | 1996-01-09 | Taiwan Semiconductor Manufacturing Comp. Ltd. | Electrically programmable memory device with improved dual floating gates |
US5593912A (en) * | 1994-10-06 | 1997-01-14 | International Business Machines Corporation | SOI trench DRAM cell for 256 MB DRAM and beyond |
US5595606A (en) * | 1995-04-20 | 1997-01-21 | Tokyo Electron Limited | Shower head and film forming apparatus using the same |
US6027960A (en) * | 1995-10-25 | 2000-02-22 | Semiconductor Energy Laboratory Co., Ltd. | Laser annealing method and laser annealing device |
US20020019116A1 (en) * | 1996-05-31 | 2002-02-14 | Sandhu Gurtej S. | Chemical vapor deposition using organometallic precursors |
US5710057A (en) * | 1996-07-12 | 1998-01-20 | Kenney; Donald M. | SOI fabrication method |
US20030001212A1 (en) * | 1997-02-19 | 2003-01-02 | Micron Technology, Inc. | Conductor layer nitridation |
US6194262B1 (en) * | 1997-04-25 | 2001-02-27 | Micron Technology, Inc. | Method for coupling to semiconductor device in an integrated circuit having edge-defined, sub-lithographic conductors |
US6013553A (en) * | 1997-07-24 | 2000-01-11 | Texas Instruments Incorporated | Zirconium and/or hafnium oxynitride gate dielectric |
US6020024A (en) * | 1997-08-04 | 2000-02-01 | Motorola, Inc. | Method for forming high dielectric constant metal oxides |
US20020019125A1 (en) * | 1997-10-09 | 2002-02-14 | Werner Juengling | Methods of forming materials between conductive electrical components, and insulating materials |
US6174809B1 (en) * | 1997-12-31 | 2001-01-16 | Samsung Electronics, Co., Ltd. | Method for forming metal layer using atomic layer deposition |
US6025627A (en) * | 1998-05-29 | 2000-02-15 | Micron Technology, Inc. | Alternate method and structure for improved floating gate tunneling devices |
US6027961A (en) * | 1998-06-30 | 2000-02-22 | Motorola, Inc. | CMOS semiconductor devices and method of formation |
US6184146B1 (en) * | 1998-08-28 | 2001-02-06 | Micron Technology, Inc. | Plasma producing tools, dual-source plasma etchers, dual-source plasma etching methods, and method of forming planar coil dual-source plasma etchers |
US20030003722A1 (en) * | 1998-09-01 | 2003-01-02 | Micron Technology, Inc. | Chemical vapor deposition systems including metal complexes with chelating O- and/or N-donor ligands |
US6171900B1 (en) * | 1999-04-15 | 2001-01-09 | Taiwan Semiconductor Manufacturing Company | CVD Ta2O5/oxynitride stacked gate insulator with TiN gate electrode for sub-quarter micron MOSFET |
US6187484B1 (en) * | 1999-08-31 | 2001-02-13 | Micron Technology, Inc. | Irradiation mask |
US20040007171A1 (en) * | 1999-10-14 | 2004-01-15 | Mikko Ritala | Method for growing thin oxide films |
US20030001241A1 (en) * | 2000-01-18 | 2003-01-02 | Agere Systems Guardian Corp. | Semiconductor device and method of fabrication |
US6506666B2 (en) * | 2000-05-15 | 2003-01-14 | Micron Technology, Inc. | Method of fabricating an SrRuO3 film |
US6342445B1 (en) * | 2000-05-15 | 2002-01-29 | Micron Technology, Inc. | Method for fabricating an SrRuO3 film |
US20020001971A1 (en) * | 2000-06-27 | 2002-01-03 | Hag-Ju Cho | Methods of manufacturing integrated circuit devices that include a metal oxide layer disposed on another layer to protect the other layer from diffusion of impurities and integrated circuit devices manufactured using same |
US6514348B2 (en) * | 2000-07-13 | 2003-02-04 | Ebara Corporation | Substrate processing apparatus |
US6521911B2 (en) * | 2000-07-20 | 2003-02-18 | North Carolina State University | High dielectric constant metal silicates formed by controlled metal-surface reactions |
US20020025628A1 (en) * | 2000-08-31 | 2002-02-28 | Derderian Garo J. | Capacitor fabrication methods and capacitor constructions |
US20020024080A1 (en) * | 2000-08-31 | 2002-02-28 | Derderian Garo J. | Capacitor fabrication methods and capacitor constructions |
US6518634B1 (en) * | 2000-09-01 | 2003-02-11 | Motorola, Inc. | Strontium nitride or strontium oxynitride gate dielectric |
US6524867B2 (en) * | 2000-12-28 | 2003-02-25 | Micron Technology, Inc. | Method for forming platinum-rhodium stack as an oxygen barrier |
US20040009679A1 (en) * | 2001-01-19 | 2004-01-15 | Yeo Jae-Hyun | Method of forming material using atomic layer deposition and method of forming capacitor of semiconductor device using the same |
US20030003702A1 (en) * | 2001-02-09 | 2003-01-02 | Micron Technology, Inc. | Formation of metal oxide gate dielectric |
US20030003730A1 (en) * | 2001-02-13 | 2003-01-02 | Micron Technology, Inc. | Sequential pulse deposition |
US6518610B2 (en) * | 2001-02-20 | 2003-02-11 | Micron Technology, Inc. | Rhodium-rich oxygen barriers |
US6509280B2 (en) * | 2001-02-22 | 2003-01-21 | Samsung Electronics Co., Ltd. | Method for forming a dielectric layer of a semiconductor device |
US20050034662A1 (en) * | 2001-03-01 | 2005-02-17 | Micro Technology, Inc. | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US20040004244A1 (en) * | 2001-03-15 | 2004-01-08 | Micron Technology, Inc. | Structures, methods, and systems for ferroelectric memory transistors |
US20030027360A1 (en) * | 2001-03-28 | 2003-02-06 | Hsu Sheng Teng | Single transistor ferroelectric transistor structure with high-K insulator and method of fabricating same |
US6348386B1 (en) * | 2001-04-16 | 2002-02-19 | Motorola, Inc. | Method for making a hafnium-based insulating film |
US6514828B2 (en) * | 2001-04-20 | 2003-02-04 | Micron Technology, Inc. | Method of fabricating a highly reliable gate oxide |
US20030004051A1 (en) * | 2001-05-18 | 2003-01-02 | Kim Dong-Wan | Dielectric ceramic composition and method for manufacturing multilayered components using the same |
US20030003635A1 (en) * | 2001-05-23 | 2003-01-02 | Paranjpe Ajit P. | Atomic layer deposition for fabricating thin films |
US20030008243A1 (en) * | 2001-07-09 | 2003-01-09 | Micron Technology, Inc. | Copper electroless deposition technology for ULSI metalization |
US20030017717A1 (en) * | 2001-07-18 | 2003-01-23 | Ahn Kie Y. | Methods for forming dielectric materials and methods for forming semiconductor devices |
US20030020180A1 (en) * | 2001-07-24 | 2003-01-30 | Ahn Kie Y. | Copper technology for ULSI metallization |
US20030020169A1 (en) * | 2001-07-24 | 2003-01-30 | Ahn Kie Y. | Copper technology for ULSI metallization |
US6677250B2 (en) * | 2001-08-17 | 2004-01-13 | Micron Technology, Inc. | CVD apparatuses and methods of forming a layer over a semiconductor substrate |
US6844203B2 (en) * | 2001-08-30 | 2005-01-18 | Micron Technology, Inc. | Gate oxides, and methods of forming |
US20050032292A1 (en) * | 2001-08-30 | 2005-02-10 | Micron Technology, Inc. | Crystalline or amorphous medium-K gate oxides, Y2O3 and Gd2O3 |
US20050023603A1 (en) * | 2001-08-30 | 2005-02-03 | Micron Technology, Inc. | Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interpoly insulators |
US20050029605A1 (en) * | 2001-08-30 | 2005-02-10 | Micron Technology, Inc. | Highly reliable amorphous high-k gate oxide ZrO2 |
US20050026349A1 (en) * | 2001-08-30 | 2005-02-03 | Micron Technology, Inc. | Flash memory with low tunnel barrier interpoly insulators |
US6683005B2 (en) * | 2001-08-30 | 2004-01-27 | Micron Technology, Inc. | Method of forming capacitor constructions |
US7160817B2 (en) * | 2001-08-30 | 2007-01-09 | Micron Technology, Inc. | Dielectric material forming methods |
US20040023516A1 (en) * | 2001-10-02 | 2004-02-05 | Londergan Ana R. | Passivation method for improved uniformity and repeatability for atomic layer deposition and chemical vapor deposition |
US6674138B1 (en) * | 2001-12-31 | 2004-01-06 | Advanced Micro Devices, Inc. | Use of high-k dielectric materials in modified ONO structure for semiconductor devices |
US7160577B2 (en) * | 2002-05-02 | 2007-01-09 | Micron Technology, Inc. | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
US20050023594A1 (en) * | 2002-06-05 | 2005-02-03 | Micron Technology, Inc. | Pr2O3-based la-oxide gate dielectrics |
US20050023624A1 (en) * | 2002-06-05 | 2005-02-03 | Micron Technology, Inc. | Atomic layer-deposited HfAlO3 films for gate dielectrics |
US6524901B1 (en) * | 2002-06-20 | 2003-02-25 | Micron Technology, Inc. | Method for forming a notched damascene planar poly/metal gate |
US20040005982A1 (en) * | 2002-07-05 | 2004-01-08 | Samsung Electro-Mechanics Co., Ltd. | Non-reducible, low temperature sinterable dielectric ceramic composition, multilayer ceramic chip capacitor using the composition and method for preparing the multilayer ceramic chip capacitor |
US20040004245A1 (en) * | 2002-07-08 | 2004-01-08 | Micron Technology, Inc. | Memory utilizing oxide-conductor nanolaminates |
US20040004859A1 (en) * | 2002-07-08 | 2004-01-08 | Micron Technology, Inc. | Memory utilizing oxide nanolaminates |
US20040004247A1 (en) * | 2002-07-08 | 2004-01-08 | Micron Technology, Inc. | Memory utilizing oxide-nitride nanolaminates |
US20050023578A1 (en) * | 2002-07-18 | 2005-02-03 | Micron Technology, Inc. | Stable PD-SOI devices and methods |
US20050023613A1 (en) * | 2002-07-18 | 2005-02-03 | Micron Technology, Inc. | Stable PD-SOI devices and methods |
US20040023461A1 (en) * | 2002-07-30 | 2004-02-05 | Micron Technology, Inc. | Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics |
US20040028811A1 (en) * | 2002-08-06 | 2004-02-12 | Young-Jin Cho | Bismuth titanium silicon oxide, bismuth titanium silicon oxide thin film, and method for forming the thin film |
US20050023627A1 (en) * | 2002-08-15 | 2005-02-03 | Micron Technology, Inc. | Lanthanide doped TiOx dielectric films by plasma oxidation |
US20040033701A1 (en) * | 2002-08-15 | 2004-02-19 | Micron Technology, Inc. | Lanthanide doped tiox dielectric films |
US20040033661A1 (en) * | 2002-08-16 | 2004-02-19 | Yeo Jae-Hyun | Semiconductor device and method for manufacturing the same |
US20050009370A1 (en) * | 2002-08-21 | 2005-01-13 | Ahn Kie Y. | Composite dielectric forming methods and composite dielectrics |
US20040038554A1 (en) * | 2002-08-21 | 2004-02-26 | Ahn Kie Y. | Composite dielectric forming methods and composite dielectrics |
US6673701B1 (en) * | 2002-08-27 | 2004-01-06 | Micron Technology, Inc. | Atomic layer deposition methods |
US20050023625A1 (en) * | 2002-08-28 | 2005-02-03 | Micron Technology, Inc. | Atomic layer deposited HfSiON dielectric films |
US6686212B1 (en) * | 2002-10-31 | 2004-02-03 | Sharp Laboratories Of America, Inc. | Method to deposit a stacked high-κ gate dielectric for CMOS applications |
US20060003517A1 (en) * | 2002-12-04 | 2006-01-05 | Micron Technology, Inc. | Atomic layer deposited Zr-Sn-Ti-O films using TiI4 |
US20050029604A1 (en) * | 2002-12-04 | 2005-02-10 | Micron Technology, Inc. | Atomic layer deposited Zr-Sn-Ti-O films using TiI4 |
US6844260B2 (en) * | 2003-01-30 | 2005-01-18 | Micron Technology, Inc. | Insitu post atomic layer deposition destruction of active species |
US20060001151A1 (en) * | 2003-03-04 | 2006-01-05 | Micron Technology, Inc. | Atomic layer deposited dielectric layers |
US20050029547A1 (en) * | 2003-06-24 | 2005-02-10 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectric layers |
US20050020017A1 (en) * | 2003-06-24 | 2005-01-27 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectric layers |
US20050023626A1 (en) * | 2003-06-24 | 2005-02-03 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectrics |
US20050026458A1 (en) * | 2003-07-03 | 2005-02-03 | Cem Basceri | Methods of forming hafnium-containing materials, methods of forming hafnium oxide, and constructions comprising hafnium oxide |
US20060019033A1 (en) * | 2004-05-21 | 2006-01-26 | Applied Materials, Inc. | Plasma treatment of hafnium-containing materials |
US20070018214A1 (en) * | 2005-07-25 | 2007-01-25 | Micron Technology, Inc. | Magnesium titanium oxide films |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7160577B2 (en) * | 2002-05-02 | 2007-01-09 | Micron Technology, Inc. | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
US7670646B2 (en) | 2002-05-02 | 2010-03-02 | Micron Technology, Inc. | Methods for atomic-layer deposition |
US7728626B2 (en) | 2002-07-08 | 2010-06-01 | Micron Technology, Inc. | Memory utilizing oxide nanolaminates |
US8228725B2 (en) | 2002-07-08 | 2012-07-24 | Micron Technology, Inc. | Memory utilizing oxide nanolaminates |
US20060246741A1 (en) * | 2002-07-30 | 2006-11-02 | Micron Technology, Inc. | ATOMIC LAYER DEPOSITED NANOLAMINATES OF HfO2/ZrO2 FILMS AS GATE DIELECTRICS |
US8125038B2 (en) | 2002-07-30 | 2012-02-28 | Micron Technology, Inc. | Nanolaminates of hafnium oxide and zirconium oxide |
US20040043569A1 (en) * | 2002-08-28 | 2004-03-04 | Ahn Kie Y. | Atomic layer deposited HfSiON dielectric films |
US20040043541A1 (en) * | 2002-08-29 | 2004-03-04 | Ahn Kie Y. | Atomic layer deposited lanthanide doped TiOx dielectric films |
US8445952B2 (en) | 2002-12-04 | 2013-05-21 | Micron Technology, Inc. | Zr-Sn-Ti-O films |
US20060001151A1 (en) * | 2003-03-04 | 2006-01-05 | Micron Technology, Inc. | Atomic layer deposited dielectric layers |
US8907486B2 (en) | 2004-08-26 | 2014-12-09 | Micron Technology, Inc. | Ruthenium for a dielectric containing a lanthanide |
US8558325B2 (en) | 2004-08-26 | 2013-10-15 | Micron Technology, Inc. | Ruthenium for a dielectric containing a lanthanide |
US7719065B2 (en) | 2004-08-26 | 2010-05-18 | Micron Technology, Inc. | Ruthenium layer for a dielectric layer containing a lanthanide oxide |
US8154066B2 (en) | 2004-08-31 | 2012-04-10 | Micron Technology, Inc. | Titanium aluminum oxide films |
US7867919B2 (en) | 2004-08-31 | 2011-01-11 | Micron Technology, Inc. | Method of fabricating an apparatus having a lanthanum-metal oxide dielectric layer |
US8237216B2 (en) | 2004-08-31 | 2012-08-07 | Micron Technology, Inc. | Apparatus having a lanthanum-metal oxide semiconductor device |
US8541276B2 (en) | 2004-08-31 | 2013-09-24 | Micron Technology, Inc. | Methods of forming an insulating metal oxide |
US20070037415A1 (en) * | 2004-12-13 | 2007-02-15 | Micron Technology, Inc. | Lanthanum hafnium oxide dielectrics |
US7915174B2 (en) | 2004-12-13 | 2011-03-29 | Micron Technology, Inc. | Dielectric stack containing lanthanum and hafnium |
US8278225B2 (en) | 2005-01-05 | 2012-10-02 | Micron Technology, Inc. | Hafnium tantalum oxide dielectrics |
US8524618B2 (en) | 2005-01-05 | 2013-09-03 | Micron Technology, Inc. | Hafnium tantalum oxide dielectrics |
US7662729B2 (en) | 2005-04-28 | 2010-02-16 | Micron Technology, Inc. | Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer |
WO2006121264A1 (en) * | 2005-05-09 | 2006-11-16 | Asm Genitech Korea Ltd. | Multiple inlet tomic layer deposition reactor |
US8501563B2 (en) | 2005-07-20 | 2013-08-06 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
US8921914B2 (en) | 2005-07-20 | 2014-12-30 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
US20070049054A1 (en) * | 2005-08-31 | 2007-03-01 | Micron Technology, Inc. | Cobalt titanium oxide dielectric films |
US8455959B2 (en) | 2005-08-31 | 2013-06-04 | Micron Technology, Inc. | Apparatus containing cobalt titanium oxide |
US8895442B2 (en) | 2005-08-31 | 2014-11-25 | Micron Technology, Inc. | Cobalt titanium oxide dielectric films |
US8071476B2 (en) | 2005-08-31 | 2011-12-06 | Micron Technology, Inc. | Cobalt titanium oxide dielectric films |
US7709402B2 (en) | 2006-02-16 | 2010-05-04 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride films |
US8785312B2 (en) | 2006-02-16 | 2014-07-22 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride |
US8466016B2 (en) | 2006-08-31 | 2013-06-18 | Micron Technolgy, Inc. | Hafnium tantalum oxynitride dielectric |
US8759170B2 (en) | 2006-08-31 | 2014-06-24 | Micron Technology, Inc. | Hafnium tantalum oxynitride dielectric |
US8084370B2 (en) | 2006-08-31 | 2011-12-27 | Micron Technology, Inc. | Hafnium tantalum oxynitride dielectric |
US9175393B1 (en) * | 2011-08-31 | 2015-11-03 | Alta Devices, Inc. | Tiled showerhead for a semiconductor chemical vapor deposition reactor |
US10066297B2 (en) * | 2011-08-31 | 2018-09-04 | Alta Devices, Inc. | Tiled showerhead for a semiconductor chemical vapor deposition reactor |
US10808310B2 (en) * | 2016-06-03 | 2020-10-20 | Applied Mateirals, Inc. | Effective and novel design for lower particle count and better wafer quality by diffusing the flow inside the chamber |
Also Published As
Publication number | Publication date |
---|---|
US20070107661A1 (en) | 2007-05-17 |
US7410668B2 (en) | 2008-08-12 |
US20050034662A1 (en) | 2005-02-17 |
US6852167B2 (en) | 2005-02-08 |
US20020122885A1 (en) | 2002-09-05 |
US20070131169A1 (en) | 2007-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6852167B2 (en) | Methods, systems, and apparatus for uniform chemical-vapor depositions | |
US7160577B2 (en) | Methods for atomic-layer deposition of aluminum oxides in integrated circuits | |
KR101081628B1 (en) | Gas distribution showerhead featuring exhaust apertures | |
KR100614648B1 (en) | Apparatus for treating substrates used in manufacturing semiconductor devices | |
KR20150004771A (en) | Chemical deposition apparatus having conductance control | |
TW201833992A (en) | Self-aligned multi-patterning process flow with ald gapfill spacer mask | |
CN115584489A (en) | Showerhead curtain gas method and system for film profile adjustment | |
US6818249B2 (en) | Reactors, systems with reaction chambers, and methods for depositing materials onto micro-device workpieces | |
JPH09181065A (en) | Deposition chamber | |
KR102430432B1 (en) | Planar substrate edge contact with open volume equalization pathways and side containment | |
KR20070096875A (en) | Vertical plasma processing apparatus for semiconductor process | |
KR20050009808A (en) | Etching Apparatus | |
KR100630647B1 (en) | Thin film forming apparatus and tungsten nitride thin film forming method | |
KR20080098992A (en) | Apparatus for high density plasma chemical vapor deposition with separating nozzle | |
WO1994006571A1 (en) | Film uniformity by selective pressure gradient control | |
KR20080035735A (en) | Equipment for plasma enhanced chemical vapor deposition | |
TW202111763A (en) | Methods and apparatus for dual channel showerheads | |
KR20100071604A (en) | Apparatus for high density plasma chemical vapor deposition with nozzle capable of controlling spray angle | |
KR101255763B1 (en) | Substrate processing method | |
CN109964331A (en) | Thin-film package processing system and process kit | |
KR20100004304A (en) | Apparatus for high density plasma chemical vapor deposition | |
CN110016656B (en) | Chemical vapor deposition chamber | |
US11749554B2 (en) | Multi-wafer deposition tool for reducing residual deposition on transfer blades and methods of operating the same | |
KR20010113363A (en) | Equipment for forming semiconductor film | |
KR20230080481A (en) | Showerhead with integrated divert flow path |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |