[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20030036110A1 - Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use - Google Patents

Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use Download PDF

Info

Publication number
US20030036110A1
US20030036110A1 US09/899,303 US89930301A US2003036110A1 US 20030036110 A1 US20030036110 A1 US 20030036110A1 US 89930301 A US89930301 A US 89930301A US 2003036110 A1 US2003036110 A1 US 2003036110A1
Authority
US
United States
Prior art keywords
val
ala
leu
gly
hcv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/899,303
Inventor
Geert Maertens
Fons Bosman
Guy De Martynoff
Marie-Ange Buyse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujirebio Europe NV SA
Original Assignee
Innogenetics NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8218662&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030036110(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Innogenetics NV SA filed Critical Innogenetics NV SA
Priority to US09/899,303 priority Critical patent/US20030036110A1/en
Publication of US20030036110A1 publication Critical patent/US20030036110A1/en
Priority to US11/654,514 priority patent/US20070128721A1/en
Priority to US11/678,513 priority patent/US20080138894A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1081Togaviridae, e.g. flavivirus, rubella virus, hog cholera virus
    • C07K16/109Hepatitis C virus; Hepatitis G virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24141Use of virus, viral particle or viral elements as a vector
    • C12N2710/24143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24241Use of virus, viral particle or viral elements as a vector
    • C12N2770/24243Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/803Physical recovery methods, e.g. chromatography, grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/81Packaged device or kit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi
    • Y10S435/913Aspergillus
    • Y10S435/915Aspergillus flavus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/975Kit

Definitions

  • the present invention relates to the general fields of recombinant protein expression, purification of recombinant proteins, synthetic peptides, diagnosis of HCV infection, prophylactic treatment against HCV infection and to the prognosis/monitoring of the clinical efficiency of treatment of an individual with chronic hepatitis, or the prognosis/monitoring of natural disease.
  • the present invention relates to purification methods for hepatitis C virus envelope proteins, the use in diagnosis, prophylaxis or therapy of HCV envelope proteins purified according to the methods described in the present invention, the use of single or specific oligomeric E1 and/or E2 and/or E1/E2 envelope proteins in assays for monitoring disease, and/or diagnosis of disease, and/or treatment of disease.
  • the invention also relates to epitopes of the E1 and/or E2 envelope proteins and monoclonal antibodies thereto, as well their use in diagnosis, prophylaxis or treatment.
  • E2 protein purified from cell lysates according to the methods described in the present invention reacts with approximately 95% of patient sera. This reactivity is similar to the reactivity obtained with E2 secreted from CHO cells (Spaete et al., 1992). However, the intracallularly expressed form of E2 may more closely resemble the native viral envelope protein because it contains high mannose carbohydrate motifs, whereas the E2 protein secreted from CHO cells is further modified with galactose and sialic acid sugar moieties. When the aminoterminal half of E2 is expressed in the baculovirus system, only about 13 to 21% of sera from several patient groups can be detected (Inoue et al., 1992). After expression of E2 from E. coli , the reactivity of HCV sera was even lower and ranged from 14 (Yokosuka et al., 1992) to 17% (Mita et al., 1992).
  • the vaccinia virus system may be used for selecting the best expression constructs and for limited upscaling, and large-scale expression and purification of single or specific oligomeric envelope proteins containing high-mannose carbohydrates may be achieved when expressed from several yeast strains.
  • hepatitis B for example, manufacturing of HBsAg from mammalian cells was much more costly compared with yeast-derived hepatitis B vaccines.
  • compositions comprising purified (single or specific oligomeric) recombinant E1 and/or E2 and/or E1/E2 glycoproteins comprising conformational epitopes from the E1 and/or E2 domains of HCV.
  • E1 and/or E2 peptides which can be used for diagnosis of HCV infection and for raising antibodies. Such peptides may also be used to isolate human monoclonal antibodies.
  • monoclonal antibodies more particularly human monoclonal antibodies or mouse monoclonal antibodies which are humanized, which react specifically with E1 and/or E2 epitopes, either comprised in peptides or conformational epitopes comprised in recombinant proteins.
  • kits for monitoring/prognosing the response to treatment e.g. with interferon
  • monitoring/prognosing the outcome of the disease e.g. with interferon
  • hepatitis C virus single envelope protein refers to a polypeptide or an analogue thereof (e.g. mimotopes) comprising an amino acid sequence (and/or amino acid analogues) defining at least one HCV epitope of either the E1 or the E2 region.
  • These single envelope proteins in the broad sense of the word may be both monomeric or homo-oligomeric forms of recombinantly expressed envelope proteins.
  • the sequences defining the epitope correspond to the amino acid sequence of either the E1 or the E2 region of HCV (either identically or via substitution of analogues of the native amino acid residue that do not destroy the epitope).
  • the epitope-defining sequence will be 3 or more amino acids in length, more typically, 5 or more amino acids in length, more typically 8 or more amino acids in length, and even more typically 10 or more amino acids in length.
  • the length of the epitope-defining sequence can be subject to wide variations, since it is believed that these epitopes are formed by the three-dimensional shape of the antigen (e.g. folding).
  • the amino acids defining the epitope can be relatively few in number, but widely dispersed along the length of the molecule being brought into the correct epitope conformation via folding.
  • the portions of the antigen between the residues defining the epitope may not be critical to the conformational structure of the epitope.
  • a conformational epitope may also be formed by 2 or more essential regions of subunits of a homooligomer or heterooligomer.
  • the HCV antigens of the present invention comprise conformational epitopes from the E1 and/or E2 (envelope) domains of HCV.
  • the E1 domain which is believed to correspond to the viral envelope protein, is currently estimated to span amino acids 192-383 of the HCV polyprotein (Hijikata et al., 1991).
  • the E2 protein previously called NS1, is believed to span amino acids 384-809 or 384-746 (Grakoui et al., 1993) of the HCV polyprotein and to also be an envelope protein.
  • the E2 protein may also be expressed together with the E1, P7 (aa 747-809), NS2 (aa 810-1026), NS4A (aa 1658-1711) or NS4B (aa 1712-1972). Expression together with these other HCV proteins may be important far obtaining the correct protein folding.
  • the E1 and E2 antigens used in the present invention may be full-length viral proteins, substantially full-length versions thereof, or functional fragments thereof (e.g. fragments which are not missing sequence essential to the formation or retention of an epitope).
  • the HCV antigens of the present invention can also include other sequences that do not block or prevent the formation of the conformational epitope of interest.
  • the presence or absence of a conformational epitope can be readily determined though screening the antigen of interest with an antibody (polyclonal serum or monoclonal to the conformational epitope) and comparing its reactivity to that of a denatured version of the antigen which retains only linear epitopes (if any). In such screening using polyclonal antibodies, it may be advantageous to adsorb the polyclonal serum first with the denatured antigen and see if it retains antibodies to the antigen of interest.
  • the HCV antigens of the present invention can be made by any recombinant method that provides the epitope of interest.
  • recombinant intercellular expression in mammalian or insect cells is a preferred method to provide glycosylated E1 and/or E2 antigens in ‘native’ conformation as is the case for the natural HCV antigens.
  • Yeast cells and mutant yeast strains e.g.
  • mnn 9 mutant (Kniskern et al., 1994) or glycosylation mutants derived by means of vanadate resistence selection (Ballou et al., 1991)) may be ideally suited for production of secreted high-mannose-type sugars; whereas proteins secreted from mammalian cells may contain modifications including galactose or sialic acids which may be undesirable for certain diagnostic or vaccine applications. However, it may also be possible and sufficient for certain applications, as it is known for proteins, to express the antigen in other recombinant hosts (such as E. coli ) and renature the protein after recovery.
  • other recombinant hosts such as E. coli
  • fusion polypeptide intends a polypeptide in which the HCV antigen(s) are part of a single continuous chain of amino acids, which chain does not occur in nature.
  • the HCV antigens may be connected directly to each other by peptide bonds or be separated by intervening amino acid sequences.
  • the fusion polypeptides may also contain amino acid sequences exogenous to HCV.
  • solid phase intends a solid body to which the individual HCV antigens or the fusion polypeptide comprised of HCV antigens are bound covalently or by noncovalent means such as hydrophobic adsorption.
  • biological sample intends a fluid or tissue of a mammalian individual (e.g. an anthropoid, a human) that commonly contains antibodies produced by the individual, more particularly antibodies against HCV.
  • the fluid or tissue may also contain HCV antigen.
  • HCV antigen include, without limitation, blood, plasma, serum, urine, spinal fluid, lymph fluid, secretions of the respiratory, intestinal or genitourinary tracts, tears, saliva, milk, white blood cells and myelomas.
  • Body components include biological liquids.
  • biological liquid refers to a fluid obtained from an organism. Some biological fluids are used as a source of other products, such as clotting factors (e.g. Factor VIII;C), serum albumin, growth hormone and the like, in such cases, it is important that the source of biological fluid be free of contamination by virus such as HCV.
  • immunologically reactive means that the antigen in question will react specifically with anti-HCV antibodies present in a body component from an HCV infected individual.
  • immune complex intends the combination formed when an antibody binds to an epitope on an antigen.
  • E1 refers to a protein or polypeptide expressed within the first 400 amino acids of an HCV polyprotein, sometimes referred to as the E, ENV or S protein. In its natural form it is a 35 kDa glycoprotein which is found in strong association with membranes. In most natural HCV strains, the E1 protein is encoded in the viral polyprotein following the C (core) protein. The E1 protein extends from approximately amino acid (aa) 192 to about aa 383 of the full-length polyprotein.
  • E1 as used herein also includes analogs and truncated forms that are immunologically cross-reactive with natural E1, and includes E1 proteins of genotypes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or any other newly identified HCV type or subtype.
  • ‘E2’ as used herein refers to a protein or polypeptide expressed within the first 900 amino acids of an HCV polyprotein, sometimes referred to as the NS1 protein. In its natural form it is a 72 kDa glycoprotein that is found in strong association with membranes. In most natural HCV strains, the E2 protein is encoded in the viral polyprotein following the E1 protein. The E2 protein extends from approximately amino acid position 384 to amino acid position 746, another form of E2 extends to amino acid position 809.
  • the term ‘E2’ as used herein also includes analogs and truncated forms that are immunologically cross-reactive with natural E2. For example, insertions of multiple codons between codon 383 and 384, as well as deletions of amino acids 384-387 have been reported by Kato et al. (1992).
  • E1/E2 refers to an oligomeric form of envelope proteins containing at least one E1 component and at least one E2 component.
  • E1 and/or E2 and/or E1/E2 envelope proteins refers to all possible oligomeric forms of recombinantly expressed E1 and/or E2 envelope proteins which are not aggregates.
  • E1 and/or E2 specific oligomeric envelope proteins are also referred to as homo-oligomeric E1 or E2 envelope proteins (see below).
  • E1 and/or E2 and/or E2 envelope proteins refers to single monomeric E1 or E2 proteins (single in the strict sense of the word) as well as specific oligomeric E1 and/or E2 and/or E1/E2 recombinantly expressed proteins.
  • homo-oligomer refers to a complex of E1 and/or E2 containing more than one E1 or E2 monomer, e.g. E1/E1 dimers, E1/E1/E1 trimers or E1/E1/E1/E1 tetramers and E2/E2 dimers, E2/E2/E2 trimers or E2/E2/E2/E2 tetramers, E1 pentamers and hexamers, E2 pentamers and hexamers or any higher-order homo-oligomers of E1 or E2 are all ‘homo-oligomers’ within the scope of this definition.
  • the oligomers may contain one, two, or several different monomers of E1 or E2 obtained from different types or subtypes of hepatitis C virus including for example those described in an international application published under WO 94/25601 and European application No. 94870166.9 both by the present applicants.
  • Such mixed oligomers are still homo-oligomers within the scope of this invention, and may allow more universal diagnosis, prophylaxis or treatment of HCV.
  • the term ‘purified’ as applied to proteins herein refers to a composition wherein the desired protein comprises at least 35% of the total protein component in the composition.
  • the desired protein preferably comprises at least 40%, more preferably at least about 50%, more preferably at least about 60%, still more preferably at least about 70%, even more preferably at least about 80%, even more preferably at least about 90% and most preferably at least about 95% of the total protein component.
  • the composition may contain other compounds such as carbohydrates, salts, lipids, solvents, and the like, without affecting the determination of the percentage purity as used herein.
  • An ‘isolated’ HCV protein intends an HCV protein composition that is at least 35% pure.
  • the term ‘essentially purified proteins’ refers to proteins purified such that they can be used for in vitro diagnostic methods and as a therapeutic compound. These proteins are substantially free from cellular proteins, vector-derived proteins or other HCV viral components. Usually these proteins are purified to homogeneity (at least 80% pure, preferably, 90%, more preferably 95%, more preferably 97%, more preferably 98%, more preferably 99%, even more preferably 99.5% and most preferably the contaminating proteins should be undetectable by conventional methods like SDS-PAGE and silver staining.
  • recombinantly expressed used within the context of the present invention refers to the fact that the proteins of the present invention are produced by recombinant expression methods be it in prokaryotes, or lower or higher eukaryotes as discussed in detail below.
  • lower eukaryote refers to host cells such as yeast, fungi and the like.
  • Lower eukaryotes are generally (but no, necessarily) unicellular.
  • Preferred lower eukaryotes are yeasts, particularly species within Saccharomvces, Schizosaccharomyces, Kluveromvces, Pichia (e.g. Pichia pastoris ), Hansenula (e.g. Hansenula polymorpha ), Yarowia, Schwaniomyces, Schizosaccharomyces, Zygosaccharomyces and the like.
  • Saccharomyces cerevisiae, S. carlsbergensis and K. lactis are the most commonly used yeast hosts, and are convenient fungal hosts.
  • prokaryotes refers to hosts such as E.coli , Lactobacillus, Lactococcus, Salmonella, Streptococcus, Bacillus subtilis or Streptomyces. Also these hosts are contemplated within the present invention.
  • higher eukaryote refers to host cells derived from higher animals, such as mammals, reptiles, insects, and the like.
  • Presently preferred higher eukaryote host cells are derived from Chinese hamster (e.g. CHO), monkey (e.g. COS and Vero cells), baby hamster kidney (BHK), pig kidney (PK15), rabbit kidney 13 cells (RK13), the human osteosarcoma cell line 143 B, the human cell line HeLa and human hepatoma cell lines like Hep G2, and insect cell lines (e.g. Soodoptera frugiperda ).
  • the host cells may be provided in suspension or flask cultures, tissue cultures, organ cultures and the like. Alternatively the host cells may also be transgenic animals.
  • polypeptide refers to a polymer of amino acids and does not refer to a specific length of the product; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not refer to or exclude post-expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like. Included within the definition are, for example, polypeptides containing one or more analogues of an amino acid (including, for example, unnatural amino acids, PNA, etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring.
  • the term ‘recombinant polynucleotide or nucleic acid’ intends a polynucleotide or nucleic acid of genomic, cDNA, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation: (1) is not associated with all or a portion of a polynucleotide with which it is associated in nature, (2) is linked to a polynucleotide other than that to which it is linked in nature, or (3) does not occur in nature.
  • recombinant host cells refer to cells which can be or have been, used as recipients for a recombinant vector or other transfer polynucleotide, and include the progeny of the original cell which has been transfected. It is understood that the progeny of a single parental cell may not necessarily be completely identical in morphology or in genomic or total DNA complement as the original parent, due to natural, accidental, or deliberate mutation.
  • replicon is any genetic element, e.g., a plasmid, a chromosome, a virus, a cosmid, etc., that behaves as an autonomous unit of polynucleotide replication within a cell; i.e., capable of replication under its own control.
  • vector is a replicon further comprising sequences providing replication and/or expression of a desired open reading frame.
  • control sequence refers to polynucleotide sequences which are necessary to effect the expression of coding sequences to which they are ligated. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and terminators; in eukaryotes, generally, such control sequences include promoters, terminators and, in some instances, enhancers.
  • control sequences is intended to include, at a minimum, all components whose presence is necessary for expression, and may also include additional components whose presence is advantageous, for example, leader sequences which govern secretion.
  • promoter is a nucleotide sequence which is comprised of consensus sequences which allow the binding of RNA polymerase to the DNA template in a manner such that mRNA production initiates at the normal transcription initiation site for the adjacent structural gene.
  • control sequence ‘operably linked’ to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences.
  • An ‘open reading frame’ is region of a polynucleotide sequence which encodes a polypeptide and does not contain stop codons: this region may represent a portion of a coding sequence or a total coding sequence.
  • a ‘coding sequence’ is a polynucleotide sequence which is transcribed into mRNA and/or translated into a polypeptide when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a translation start codon at the 5′-terminus and a translation stop codon at the 3′-terminus.
  • a coding sequence can include but is not limited to mRNA, DNA (including cDNA), and recombinant polynucleotide sequences.
  • epitope or ‘antigenic determinant’ means an amino acid sequence that is immunoreactive. Generally an epitope consists of at least 3 to 4 amino acids, and more usually, consists of at least 5 or 6 amino acids, sometimes the epitope consists of about 7 to 8, or even about 10 amino acids.
  • immunogenic refers to the ability of a substance to cause a humoral and/or cellular response, whether alone or when linked to a carrier, in the presence or absence of an adjuvant.
  • Negtralization refers to an immune response that blocks the infectivity, either partially or fully, of an infectious agent.
  • a ‘vaccine’ is an immunogenic composition capable of eliciting protection against HCV, whether partial or complete.
  • a vaccine may also be useful for treatment of an individual, in which case it is called a therapeutic vaccine.
  • terapéutica refers to a composition capable of treating HCV infection.
  • the term ‘effective amount’ refers to an amount of epitope-bearing polypeptide sufficient to induce an immunogenic response in the individual to which it is administered, or to otherwise detectably immunoreact in its intended system (e.g., immunoassay).
  • the effective amount is sufficient to effect treatment as defined above.
  • the exact amount necessary will vary according to the application.
  • the effective amount may vary depending on the species, age, and general condition of the individual, the severity of the condition being treated, the particular polypeptide selected and its mode of administration, etc. It is also believed that effective amounts will be found within a relatively large, non-critical range. An appropriate effective amount can be readily determined using only routine experimentation.
  • E1 and/or E2 and/or E1/E2 single or specific oligomeric envelope proteins for prophylaxis of HCV disease are 0.01 to 100 ⁇ g/dose, preferably 0.1 to 60 ⁇ g/dose. Several doses may be needed per individual in order to achieve a sufficient immune response and subsequent protection against HCV disease.
  • the present invention contemplates a method for isolating or purifying recombinant HCV single or specific oligomeric envelope protein selected from the group consisting of E1 and/or E2 and/or E1/E2, characterized in that upon lysing the transformed host cells to isolate the recombinantly expressed protein a disulphide bond cleavage or reduction step is carried out with a disculphide bond cleaving agent.
  • the proteins according to the present invention are recombinantly expressed in lower or higher eukaryotic cells or in prokaryotes.
  • the recombinant proteins of the present invention are preferably glycosylated and may contain high-mannose-type, hybrid, or complex glycosylations.
  • Preferentially said proteins are expressed from mammalian cell lines as discussed in detail in the Examples section, or in yeast such as in mutant yeast strains also as detailed in the Examples section.
  • the proteins according to the present invention may be secreted or expressed within components of the cell, such as the ER or the Golgi Apparatus.
  • the proteins of the present invention bear high-mannose-type glycosylations and are retained in the ER or Golgi Apparatus of mammalian cells or are retained in or secreted from yeast cells, preferably secreted from yeast mutant strains such as the mnn9 mutant (Kniskern et al., 1994), or from mutants that have been selected by means of vanadate resistence (Ballou et al., 1991).
  • HCV envelope proteins Upon expression of HCV envelope proteins, the present inventors could show that some of the free thiol groups of cysteines not involved in intra- or inter-molecular disulphide bridges, react with cysteines of host or expression-system-derived (e.g. vaccinia) proteins or of other HCV envelope proteins (single or oligomeric), and form aspecific intermolecular bridges. This results in the formation of ‘aggregates’ of HCV envelope proteins together with containing proteins. It was also shown in WO 92/08734 that ‘aggregates’ were obtained after purification, but it was not described which protein interactions were involved. In patent application WO 92/08734, recombinant E1/E2 protein expressed with the vaccinia virus system were partially purified as aggregates and only found to be 70% pure, rendering the purified aggregates not useful for diagnostic, prophylactic or therapeutic purposes.
  • host or expression-system-derived proteins e.g. vaccinia
  • other HCV envelope proteins single or oli
  • a major aim of the present invention resides in the separation of single or specific-oligomeric HCV envelope proteins from contaminating proteins, and to use the purified proteins (>95% pure) for diagnostic, prophylactic and therapeutic purposes.
  • the present inventors have been able to provide evidence that aggregated protein complexes (‘aggregates’) are formed on the basis of disulphide bridges and non-covalent protein-protein interactions.
  • the present invention thus provides a means for selectively cleaving the disulphide bonds under specific conditions and for separating the cleaved proteins from contaminating proteins which greatly interfere with diagnostic, prophylactic and therapeutic applications.
  • the free thiol groups may be blocked (reversibly or irreversibly) in order to prevent the reformation of disulphide bridges, or may be left to oxidize and oligomerize with other envelope proteins (see definition homo-oligomer). It is to be understood that such protein oligomers are essentially different from the ‘aggregates’ described in WO 92/08734 and WO 94/01778, since the level of contaminating proteins is undetectable.
  • Said disuphide bond cleavage may also be achieved by:
  • Said disulphide bond cleavage (or reducing) step of the present invention is preferably a partial disulphide bond cleavage (reducing) step (carried out under partial cleavage or reducing conditions).
  • a preferred disulphide bond cleavage or reducing agent according to the present invention is dithiotreitol (DTT). Partial reduction is obtained by using a low concentration of said reducing agent, i.e. for DTT for example in the concentration range of about 0.1 to about 50 mM, preferably about 0.1 to about 20 mM, preferably about 0.5 to about 10 mM, preferably more than 1 mM, more than 2 mM or more than 5 mM, more preferably about 1.5 mM, about 2.0 mM, about 2.5 mM, about 5 mM or about 7.5 mM.
  • DTT dithiotreitol
  • Said disulphide bond cleavage step may also be carried out in the presence of a suitable detergent (as an example of a means for cleaving disulphide bonds or in combination with a cleaving agent) able to dissociate the expressed proteins, such as DecylPEG, EMPIGEN-BB, NP-40, sodium cholate, Triton X-100.
  • a suitable detergent as an example of a means for cleaving disulphide bonds or in combination with a cleaving agent
  • able to dissociate the expressed proteins such as DecylPEG, EMPIGEN-BB, NP-40, sodium cholate, Triton X-100.
  • Said reduction or cleavage step (preferably a partial reduction or cleavage step) is carried out preferably in in the presence of (with) a detergent.
  • a preferred detergent according to the present invention is Empigen-BB.
  • the amount of detergent used is preferably in the range of 1 to 10%, preferably more than 3%, more preferably about 3.5% of a detergent such as Empigen-BB.
  • a particularly preferred method for obtaining disulphide bond cleavage employs a combination of a classical disulphide bond cleavage agent as detailed above and a detergent (also as detailed above).
  • a detergent also as detailed above.
  • the particular combination of a low concentration of DTT (1.5 to 7.5 mM) and about 3.5% of Empigen-BB is proven to be a particularly preferred combination of reducing agent and detergent for the purification of recombinantly expressed E1 and E2 proteins.
  • said partial reduction is shown to result in the production of possibly dimeric E1 protein and separation of this E1 protein from contaminating proteins that cause false reactivity upon use in immunoassays.
  • a disulphide bond cleaving means may also include any disulphide bridge exchanging agents (competitive agent being either organic or proteinaeous, see for instance Creighton, 1988) known in the art which allows the following type of reaction to occur:
  • R1, R2 compounds of protein aggregates
  • R3 SH competitive agent (organic, proteinaeous)
  • disulphide bridge exchanging agent is to be interpretated as including disulphide bond reforming as well as disulphide bond blocking agents.
  • the present invention also relates to methods for purifying or isolating HCV single or specific oligomeric envelelope proteins as set out above further including the use of any SH group blocking or binding reagent known in the art such as chosen from the following list:
  • N-ethylmaleimide (NEM; Benesch et. al., 1956)
  • N-(4-dimethylamino-3,5-dinitrophenyl) maleimide or Tuppy's maleimide which provides a color to the protein
  • acrylonitrile can be liberated after reaction by acid hydrolysis (Weil and Seibles, 1961)
  • NEM-biotin e.g. obtained from Sigma B1267
  • conditions such as low pH (preferably lower than pH 6) for preventing free SH groups from oxidizing and thus preventing the formation of large intermolecular aggregates upon recombinant expression and purification of E1 and E2 (envelope) proteins are also within the scope of the present invention.
  • a preferred SH group blocking reagent according to the present invention is N-ethylmaleimide (NEM).
  • NEM N-ethylmaleimide
  • Said SH group blocking reagent may be administrated during lysis of the recombinant host cells and after the above-mentioned partial reduction process or after any other process for cleaving disulphide bridges.
  • Said SH group blocking reagent may also be modified with any group capable of providing a detectable label and/or any group aiding in the immobilization of said recombinant protein to a solid substrate, e.g. biotinylated NEM.
  • a method to purify single or specific oligomeric recombinant E1 and/or E2 and/or E1/E2 proteins according to the present invention as defined above is further characterized as comprising the following steps:
  • E1 and/or E2 and, or E1/E2 expressing host cells preferably in the presence of an SH group blocking agent, such as N-ethylmaleimide (NEM), and possibly a suitable detergent, preferably Empigen-BB.
  • an SH group blocking agent such as N-ethylmaleimide (NEM)
  • NEM N-ethylmaleimide
  • a suitable detergent preferably Empigen-BB.
  • HCV envelope protein by affinity purification for instance by means lectin-chromatography, such as lentil-lectin chromatography, or immunoaffinity chromatography using anti-E1 and/or anti-E2 specific monoclonal antibodies, followed by,
  • Preferred lectin-chromatography systems include Galanthus nivalis agglutinin (GNA)-chromatography, or Lens culinaris agglutinin (LCA) (lentil) lectin chromatography as illustrated in the Examples section.
  • Other useful lectins include those recognizing high-mannose type sugars, such as Narcissus pseudonarcissus agglutinin (NPA), Pisum sativum agglutinin (PSA), or Allium ursinum agglutinin (AUA).
  • Preferably said method is usable to purify single or specific oligomeric HCV envelope protein produced intracellularly as detailed above.
  • lectins binding complex sugars such as Ricinus communis agglutinin I (RCA I) are preferred lectins.
  • the present invention more particularly contemplates essentially purified recombinant HCV single or specific oligomeric envelope proteins, selected from the group consisting of E1 and/or E2 and/or E1/E2. characterized as being isolated or purified by a method as defined above.
  • the present invention more particularly relates to the purification or isolation of recombinant envelope proteins which are expressed from recombinant mammalian cells such as vaccinia.
  • the present invention also relates to the purification or isolation of recombinant envelope proteins which are expressed from recombinant yeast cells.
  • the present invention equally relates to the purification or isolation of recombinant envelope proteins which are expressed from recombinant bacterial (prokaryotic) cells.
  • the present invention also contemplates a recombinant vector comprising a vector sequence, an appropriate prokaryotic, eukaryotic or viral or synthetic promoter sequence followed by a nucleotide sequence allowing the expression of the single or specific oligomeric E1 and/or E2 and/or E1/E2 of the invention.
  • the present invention contemplates a recombinant vector comprising a vector sequence, an appropriate prokaryotic, eukaryotic or viral or synthetic promoter sequence followed by a nucleotide sequence allowing the expression of the single E1 or E1 of the invention.
  • the present invention contemplates a recombinant vector comprising a vector sequence, an appropriate prokaryotic, eukaryotic or viral or synthetic promoter sequence followed by a nucleotide sequence allowing the expression of the single E1 or E2 of the invention.
  • the segment of the HCV cDNA encoding the desired E1 and/or E2 sequence inserted into the vector sequence may be attached to a signal sequence.
  • Said signal sequence may be that from a non-HCV source, e.g. the IgG or tissue plasminogen activator (tpa) leader sequence for expression in mammalian cells, or the ⁇ -mating factor sequence for expression into yeast cells, but particularly preferred constructs according to the present invention contain signal sequences appearing in the HCV genome before the respective start points of the E1 and E2 proteins.
  • the segment of the HCV cDNA encoding the desired E1 and/or E2 sequence inserted into the vector may also include deletions e.g. of the hydrophobic domain(s) as illustrated in the examples section, or of the E2 hypervariable region I.
  • the recombinant vectors according to the present invention encompass a nucleic acid having an HCV cDNA segment encoding the polyprotein starting in the region between amino acid positions 1 and 192 and ending in the region between positions 250 and 400 of the HCV polyprotein, more preferably ending in the region between positions 250 and 341, even more preferably ending in the region between positions 290 and 341 for expression of the HCV single E1 protein.
  • the present recombinant vector encompasses a recombinant nucleic acid having a HCV cDNA segment encoding part of the HCV polyprotein starting in the region between positions 117 and 192, and ending at any position in the region between positions 263 and 326, for expression of HCV single E1 protein.
  • forms that have the first hydrophobic domain deleted positions 264 to 293 plus or minus 8 amino acids
  • forms to which a 5′-terminal ATG codon and a 3′-terminal stop codon has been added or forms which have a factor Xa cleavage site and/or 3 to 10, preferably 6 Histidine codons have been added.
  • the recombinant vectors according to the present invention encompass a nucleic acid having an HCV cDNA segment encoding the polyprotein starting in the region between amino acid positions 290 and 406 and ending in the region between positions 600 and 820 of the HCV polyprotein, more preferably starting in the region between positions 322 and 406, even more preferably starting in the region between positions 347 and 406, even still more preferably starting in the region between positions 364 and 406 for expression of the HCV single E2 protein.
  • the present recombinant vector encompasses a recombinant nucleic acid having a HCV cDNA segment encoding the polyprotein staring in the region between positions 290 and 406, and ending at any position of positions 623, 650, 661, 673, 710, 715, 720, 746 or 809, for expression of HCV single E2 protein.
  • forms to which a 5′-terminai ATG codon and a 3′-terminal stop codon has been added, or forms which have a factor Xa cleavage site and/or 3 to 10, preferably 6 Histidine codons have been added.
  • a variety of vectors may be used to obtain recombinant expression of HCV single or specific oligomeric envelope proteins of the present invention.
  • Lower eukaryotes such as yeasts and glycosylation mutant strains are typically transformed with plasmids, or are transformed with a recombinant virus.
  • the vectors may replicate within the host independently, or may integrate into the host cell genome.
  • Higher eukaryotes maybe transformed with vectors, or may be infected with a recombinant virus, for example a recombinant vaccinia virus.
  • a recombinant virus for example a recombinant vaccinia virus.
  • Techniques and vectors for the insertion of foreign DNA into vaccinia virus are well known in the art, and utilize. for example homologous recombination.
  • a wide variety of viral promoter sequences, possibly terminator sequences and poly(A)-addition sequences, possibly enhancer sequences and possibly amplification sequences, all required for the mammalian expression, are available in the art.
  • Vaccinia is particularly preferred since vaccinia halts the expression of host cell proteins.
  • Vaccinia is also very much preferred since it allows the expression of E1 and E2 proteins of HCV in cells or individuals which are immunized with the live recombinant vaccinia virus.
  • AMV Ankara Modified Virus
  • insect expression transfer vectors derived from baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV), which is a helper-independent viral expression vector.
  • AcNPV Autographa californica nuclear polyhedrosis virus
  • Expression vectors derived from this system usually use the strong viral polyhedrin gene promoter to drive the expression of heterologous genes.
  • Different vectors as well as methods for the introduction of heterologous DNA into the desired site of baculovirus are available to the man skilled in the art for baculovirus expression.
  • signals for posttranslational modification recognized by insect cells are known in the art.
  • Also included within the scope of the present invention is a method for producing purified recombinant single or specific oligomeric HCV E1 or E2 or E1/E2 proteins, wherein the cysteine residues involved in aggregates formation are replaced at the level of the nucleic acid sequence by other residues such that aggregate formation is prevented.
  • the recombinant proteins expressed by recombinant vectors carrying such a mutated E1 and/or E2 protein encoding nucleic acid are also within the scope of the present invention.
  • the present invention also relates to recombinant E1 and/or E2 and/or E1/E2 proteins characterized in that at least one of their glycosylation sites has been removed and are consequently termed glycosylation mutants.
  • different glycosylation mutants may be desired to diagnose (screening, confirmation, prognosis, etc.) and prevent HCV disease according to the patient in question.
  • An E2 protein glycosylation mutant lacking the GLY4 has for instance been found to improve the reactivity of certain sera in diagnosis.
  • These glycosylation mutants are preferably purified according to the method disclosed in the present invention.
  • Also contemplated within the present invention are recombinant vectors carrying the nucleic acid insert encoding such E1 and/or E2 and/or E1/E2 glycosylation mutant as well as host cells transformed with such a recombinant vector.
  • the present invention also relates to recombinant vectors including a polynucleotide which also forms part of the present invention.
  • the present invention relates more particularly to the recombinant nucleic acids as represented in SEQ ID NO 3, 5, 7, 9, 11, 13, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 47 and 49, or parts thereof.
  • the present invention also contemplates host cells transformed with a recombinant vector as defined above, wherein said vector comprises a nucleotide sequence encoding HCV E1 and/or E2 and/or E1,E2 protein as defined above in addition to a regulatory sequence operably linked to said HCV E1 and/or E2 and/or E1/E2 sequence and capable of regulating the expression of said HCV E1 and/or E2 and/or E1/E2 protein.
  • Eukaryotic hosts include lower and higher eukaryotic hosts as described in the definitions section.
  • Lower eukaryotic hosts include yeast cells well known in the art.
  • Higher eukaryotic hosts mainly include mammalian cell lines known in the art and include many immortalized cell lines available from the ATCC, including HeLa cells, Chinese hamster ovary (CHO) cells, Baby hamster kidney (BHK) cells, PK15, RK13 and a number of other cell lines.
  • the present invention relates particularly to a recombinant E1 and/or E2 and/or E1/E2 protein expressed by a host cell as defined above containing a recombinany vector as defined above. These recombinant proteins are particularly purified according to the method of the present invention.
  • a preferred method for isolating or purifying HCV envelope proteins as defined above is further characterized as comprising at least the following steps:
  • lysing said transformed host cells preferably in the presence of a SH group blocking agent, such as N-ethylmalemide (NEM), and possibly a suitable detergent, preferably Empigen-BB,
  • a SH group blocking agent such as N-ethylmalemide (NEM)
  • NEM N-ethylmalemide
  • a suitable detergent preferably Empigen-BB
  • HCV envelope protein by affinity purification such as by means of lectin-chromatography or immunoaffinity chromatography using anti-E1 and/or anti-E2 specific monoclonal antibodies, with said lectin being preferably lentil-lectin or GNA, followed by,
  • E1 and/or E-2 and/or E1 E2 proteins may be produced in a form which elute differently from the large aggregates containing vector-derived components and, or cell components in the void volume of the gelfiltration column or the IMAC collumn as illustrated in the Examples section.
  • the disulphide bridge cleavage step advantageously also eliminates the false reactivity due to the presence of host and/or expression-system-derived proteins.
  • the presence of NEM and a suitable detergent during lysis of the cells may already partly or even completely prevent the aggregation between the HCV envelope proteins and contaminants.
  • Ni 2 ⁇ -IMAC chromatography followed by a desalting step is preferably used for contructs bearing a (His) 5 as described by Janknecht et al., 1991, and Hochuli et al., 1988.
  • the present invention also relates to a method for producing monoclonal antibodies in small animals such as mice or rats, as well as a method for screening and isolating human B-cells that recognize anti-HCV antibodies, using the HCV single or specific oligomeric envelope proteins of the present invention.
  • the present invention further relates to a composition comprising at least one of the following E1 peptides as listed in Table 3:
  • E1-31 (SEQ ID NO 56) spanning amino acids 181 to 200 of the Core/E1 V1 region
  • E1-33 (SEQ ID NO 57) spanning amino acids 193 to 212 of the E1 region.
  • E1-35 (SEQ ID NO 58) spanning amino acids 205 to 224 of the E1 V2 region (epitope B),
  • E1-35A (SEQ ID NO 59) spanning amino acids 208 to 227 of the E1 V2 region (epitope B).
  • E1-51 (SEQ ID NO 66) spanning amino acids 301 to 320 of the E1 region
  • E1-53 SEQ ID NO 67
  • E1 C4 region epidermal C4 region
  • E1-55 (SEQ ID NO 68) spanning amino acids 325 to 344 of the E1 region.
  • the present invention also relates to a composition comprising at least one of the following E2 peptides as listed in Table 3:
  • Env 67 or E2-67 (SEQ ID NO 72) spanning amino acid positions 397 to 416 of the E2 region (epitope A, recognized by monoclonal antibody 2F1OH10, see FIG. 19),
  • Env 69 or E2-69 (SEQ ID NO 73) spanning amino acid positions 409 to 428 of the E2 region (epitope A),
  • Env 23 or E2-23 (SEQ ID NO 86) spanning positions 583 to 602 of the E2 region (epitope E),
  • Env 25 or E2-25 (SEQ ID NO 87) spanning positions 595 to 614 of the region (epitope E),
  • Env 27 or E2-27 (SEQ ID NO 88) spanning positions 607 to 626 of the E2 region (epitope E),
  • Env 17B or E2-17B (SEQ ID NO 83) spanning positions 547 to 566 of the E2 region (epitope D),
  • Env 13B or E2-13B (SEQ ID NO 82) spanning positions 523 to 542 of the E2 region (epitope C; recognized by monoclonal antibody 16A6E7, see FIG. 19).
  • the present invention also relates to a composition comprising at least one of the following E2 conformational epitopes:
  • epitope F recognized by monoclonal antibodies 15C8C1, 12D11F1 and 8G10D1H9,
  • epitope G recognized by monoclonal antibody 9G3E6.
  • epitope H (or C) recognized by monoclonal antibody 10DC3C4 and 4H6B2, or, epitope I recognized by monoclonal antibody 17F2C2.
  • the present invention also relates to an E1 or E2 specific antibody raised upon immunization with a peptide or protein composition, with said antibody being specifically reactive with any of the polypeptides or peptides as defined above, and with said antibody being preferably a monoclonal antibody.
  • the present invention also relates to an E1 or E2 specific antibody screened from a variable chain library in plasmids or phages or from a population of human B-cells by means of a process known in the art, with said antibody being reactive with any of the polypeptides or peptides as defined above, and with said antibody being preferably a monoclonal antibody.
  • the E1 or E2 specific monoclonal antibodies of the invention can be produced by any hybridoma liable to be formed according to classical methods from splenic cells of an animal, particularly from a mouse or rat, immunized against the HCV polypeptides or peptides according to the invention, as defined above on the one hand, and of cells of a myeloma cell line on the other hard, and to be selected by the ability of the hybridoma to produce the monoclonal antibodies recognizing the polypeptides which has been initially used for the immunization of the animals.
  • the antibodies involved in the invention can be labelled by an appropriate label of the enzymatic, fluorescent, or radioactive type.
  • the monoclonal antibodies according to this preferred embodiment of the invention may be humanized versions of mouse monoclonal antibodies made by means of recombinant DNA technology, departing from parts of mouse and/or human genomic DNA sequences coding for H and L chains from cDNA or genomic clones coding for H and L chains.
  • the monoclonal antibodies according to this preferred embodiment of the invention may be human monoclonal antibodies.
  • These antibodies according to the present embodiment of the invention can also be derived from human peripheral blood lymphocytes of patients infected with HCV, or vaccinated against HCV.
  • Such human monoclonal antibodies are prepared, for instance, by means of human peripheral blood lymphocytes (PBL) repopulation of severe combined immune deficiency (SCID) mice (for recent review, see Duchosal et al., 1992).
  • PBL peripheral blood lymphocytes
  • SCID severe combined immune deficiency
  • the invention also relates to the use of the proteins or peptides of the invention, for the selection of recombinant antibodies by the process of repertoire cloning (Persson et al., 1991).
  • Antibodies directed to peptides or single or specific oligomeric envelope proteins derived from a certain genotype may be used as a medicament, more particularly for incorporation into an immunoassay for the detection of HCV genotypes (for detecting the presence of HCV E1 or E2 antigen), for prognosing/monitoring of HCV disease, or as therapeutic agents.
  • the present invention also relates to the use of any of the above-specified E1 or E2 specific monoclonal antibodies for the preparation of an immunoassay kit for detecting the presence of E1 or E2 antigen in a biological sample, for the preparation of a kit for prognosing/monitoring of HCV disease or for the preparation of a HCV medicament.
  • the present invention also relates to the a method for in vitro diagnosis or detection of HCV antigen present in a biological sample, comprising at least the following steps:
  • the present invention also relates to a kit for in vitro diagnosis of HCV antigen present in a biological sample, comprising:
  • the present invention also relates to a composition comprising E1 and/or E2 and/or E1, E2 recombinant HCV proteins purified according to the method of the present invention or a composition comprising at least one peptides as specified above for use as a medicament.
  • the present invention more particularly relates to a composition comprising at least one of the above-specified envelope peptides or a recombinant envelope protein composition as defined above, for use as a vaccine for immunizing a mammal, preferably humans, against HCV, comprising administering a sufficient amount of the composition possibly accompanied by pharmaceutically acceptable adjuvant(s), to produce an immune response.
  • the present invention relates to the use of any of the compositions as described here above for the preparation or a vaccine as described above.
  • the present invention relates to a vaccine composition for immunizing a mammal, preferably humans, against HCV, comprising HCV single or specific oligomeric proteins or peptides derived from the E1 and/or the E2 region as described above.
  • Immunogenic compositions can be prepared according to methods known in the art.
  • the present compositions comprise an immunogenic amount of a recombinant E1 and/or E2 and/or E1/E2 single or specific oligomeric proteins as defined above or E1 or E2 peptides as defined above, usually combined with a pharmaceutically acceptable carrier, preferably further comprising an adjuvant.
  • the single or specific oligomeric envelope proteins of the present invention are expected to provide a particularly useful vaccine antigen, since the formation of antibodies to either E1 or E2 may be more desirable than to the other envelope protein, and since the E2 protein is cross-reactive between HCV types and the E1 protein is type-specific.
  • Cocktails including type 1 E2 protein and E1 proteins derived from several genotypes may be particularly advantageous.
  • Cocktails containing a molar excess of E1 versus E2 or E2 versus E1 may also be particularly useful.
  • Immunogenic compositions may be administered to animals to induce production of antibodies, either to provide a source of antibodies or to induce protective immunity in the animal.
  • Pharmaceutically acceptable carriers include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers; and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.
  • Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: aluminim hydroxide (alum), N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP) as found in U.S. Pat. No.
  • any of the 3 components MPL, TOM or CWS may also be used alone or combined 2 by 2. Additionally, adjuvants such as Stimulon (Cambridge Bioscience, Worcester, Mass.) or SAF-1 (Syntex) may he used. Further, Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA) may be used for non-human applications and research purposes.
  • adjuvants such as Stimulon (Cambridge Bioscience, Worcester, Mass.) or SAF-1 (Syntex) may he used. Further, Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA) may be used for non-human applications and research purposes.
  • CFA Complete Freund's Adjuvant
  • IFA Incomplete Freund's Adjuvant
  • the immunogenic compositions typically will contain pharmaceutically acceptable vehicles, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, preservatives, and the like, may be included in such vehicles.
  • pharmaceutically acceptable vehicles such as water, saline, glycerol, ethanol, etc.
  • auxiliary substances such as wetting or emulsifying agents, pH buffering substances, preservatives, and the like, may be included in such vehicles.
  • the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in liquid vehicles prior to injection may also be prepared.
  • the preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect.
  • the E1 and -E2 proteins may also be incorporated into Immune Stimulating Complexes together with saponins, for example Quil A (ISCOMS).
  • Immunogenic compositions used as vaccines comprise a ‘sufficient amount’ or ‘an immunologically effective amount’ of the envelope proteins of the present invention, as well as any other of the above mentioned components, as needed.
  • ‘Immunologically effective amount’ means that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment, as defined above. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (e.g. nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, the strain of infecting HCV, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials. Usually, the amount will vary from 0.01 to 1000 ⁇ g/dose, more particularly from 0.1 to 100 ⁇ g/dose.
  • the single or specific oligomeric envelope proteins may also serve as vaccine carriers to present homologous (e.g. T cell epitopes or a cell epitopes from the core, NS2, NS3, NS4 or NS5 regions) or heterologous (non-HCV) haptens, in the same manner as Hepatitis B surface antigen (see European Patent Application 174,444).
  • envelope proteins provide an immunogenic carrier capable of stimulating an immune response to haptens or antigens conjugated to he aggregate.
  • the antigen may be conjugated either by conventional chemical methods, or may be cloned into the gene encoding E1 and/or E2 at a location corresponding to a hydrophilic region of the protein.
  • Such hydrophylic regions include the V1 region (encompassing amino acid positions 191 to 202), the V2 region (encompassing amino acid positions 213 to 223), the V3 region (encompassing amino acid positions 230 to 242), the V4 region encompassing amino acid positions 230 to 242), the V5 region (encompassing amino acid positions 294 to 303) and the V6 region (encompassing amino acid positions 329 to 336).
  • Another useful location for insertion of haptens is the hydrophobic region (encompassing approximately amino acid positions 264 to 293). It is shown in the present invention that this region can be deleted without affecting the reactivity of the deleted E1 protein with antisera. Therefore, haptens may be inserted at the site of the deletion.
  • the immunogenic compositions are conventionally administered parenterally, typically by injection, for example, subcutaneously or intramuscularly. Additional formulations suitable for other methods of administration include oral formulations and suppositories. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.
  • the present invention also relates to a composition comprising peptides or polypeptides as described above, for in vitro detection of HCV antibodies present in a biological sample.
  • the present invention also relates to the use of a composition as described above for the preparation of an immunoassay kit for detecting HCV antibodies present in a biological sample.
  • the present invention also relates to a method for in vitro diagnosis of HCV antibodies present in a biological sample, comprising at least the following steps:
  • the present invention also relates to competition immunoassay formats in which recombinantly reduced purified single or specific oligomeric protein E1 and/or E2 and/or E1/E2 proteins as disclosed above are used in combination with E1 and/or E2 peptides in order to compete for HCV antibodies present in a biological sample.
  • the present invention also relates to a kit for determining the presence of HCV antibodies, in a biological sample, comprising:
  • At least one peptide or protein composition as defined above possibly in combination with other polypeptides or peptides from HCV or other types of HCV, with said peptides or proteins being preferentially immobilized on a solid substrate, more preferably on different microwells of the same ELISA plate, and even more preferentially on one and the same membrane strip,
  • the immunoassay methods according to the present invention utilize single or specific oligomeric antigens from the E1 and/or E2 domains that maintain linear (in case of peptides) and conformational epitopes (single or specific oligomeric proteins) recognized by antibodies in the sera from individuals infected with HCV. It is within the scope of the invention to use for instance single or specific oligomeric antigens, dimeric antigens, as well as combinations of single or specific oligomeric antigens.
  • the HCV E1 and E2 antigens of the present invention may be employed in virtually any assay format that employs a known antigen to detect antibodies. Of course, a format that denatures the HCV conformational epitope should be avoided or adapted.
  • a common feature of all of these assays is that the antigen is contacted with the body component suspected of containing HCV antibodies under conditions that permit the antigen to bind to any such antibody present in the component. Such conditions will typically be physiologic temperature, pH and ionic strenght using an excess of antigen. The incubation of the antigen with the specimen is followed by detection of immune complexes comprised of the antigen.
  • Protocols may, for example, use solid supports, or immunoprecipitation.
  • Most assays involve the use of labeled antibody or polypepide; the labels may be, for example, enzymatic, fluorescent, chemiluminescent, radioactive, or dye molecules.
  • Assays which amplify the signals from the immune complex are also known; examples of which are assays which utilize biotin and avidin or streptavidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.
  • the immunoassay may be, without limitation, in a heterogeneous or in a homogeneous format, and of a standard or competitive type.
  • the polypeptide is typically bound to a solid matrix or support to facilitate separation of the sample from the polypeptide after incubation.
  • solid supports that can be used are nitrocellulose (e.g., in membrane or microtiter well form), polyvinyl chloride (e.g., in sheets or microtiter wells), polystyrene latex (e.g., in beads or microtiter plates, polyvinylidine fluoride (known as ImmunolonTM), diazotized paper, nylon membranes, activated beads, and Protein A beads.
  • Dynatech ImmunolonTM 1 or ImmunlonTM 2 microtiter plates or 0.25 inch polystyrene beads can be used in the heterogeneous format.
  • the solid support containing the antigenic polypeptides is typically washed after separating it from the test sample, and prior to detection of bound antibodies. Both standard and competitive formats are know in the art.
  • the rest sample is incubated with the combination of antigens in solution.
  • the combination of antigens in solution.
  • it may be under conditions that will precipitate any antigen-antibody complexes which are formed.
  • Both standard and competitive formats for these assays are known in the art.
  • the amount of HCV antibodies in the antibody-antigen complexes is directly monitored. This may be accomplished by determining whether labeled anti-xenogeneic (e.g. anti-human) antibodies which recognize an epitope on anti-HCV antibodies will bind due to complex formation.
  • labeled anti-xenogeneic e.g. anti-human
  • the amount of HCV antibodies in the sample is deduced by monitoring the competitive effect on the binding of a known amount of labeled antibody (or other competing ligand) in the complex.
  • HCV antibodies in the complex may be detected using a conjugate of anti-xenogeneic Ig complexed with a label (e.g. an enzyme label).
  • a label e.g. an enzyme label
  • the reaction between the HCV antigens and the antibody forms a network that precipitates from the solution or suspension and forms a visible layer or film of precipitate. If no anti-HCV antibody is present in the test specimen, no visible precipitate is formed.
  • PA particle agglutination
  • two artificial carriers may be used instead of RBC in the PA.
  • the most common of these are latex particles.
  • gelatin particles may also be used.
  • the assays utilizing either of these carriers are based on passive agglutination of the particles coated with purified antigens.
  • the HCV single or specific oligomeric E1 and/or E2 and/or E1 /E2 antigens of the present invention comprised of conformational epitopes will typically be packaged in the form of a kit for use in these immunoassays.
  • the kit will normally contain in separate containers the native HCV antigen, control antibody formulations (positive and/or negative), labeled antibody when the assay format requires the same and signal generating reagents (e.g. enzyme substrate) if the label does not generate a signal directly.
  • the native HCV antigen may be already bound to a solid matrix or separate with reagents for binding it to the matrix. Instructions (e.g. written, tape. CD-ROM, etc.) for carrying out the assay usually will be included in the kit.
  • Immunoassays that utilize the native HCV antigen are useful in screening blood for the preparation of a supply from which potentially infective HCV is lacking.
  • the method for the preparation of the blood supply comprises the following steps. Reacting a body component, preferably blood or a blood component, from the individual donating blood with HCV E1 and/or E2 proteins of the present invention to allow an immunological reaction between HCV antibodies, if any, and the HCV antigen. Detecting whether anti-HCV antibody—HCV antigen complexes are formed as a result of the reacting. Blood contributed to the blood supply is from donors that do not exhibit antibodies to the native HCV antigens. E1 or E2.
  • the ‘confirmation’ tests are typically formatted to increase specificity (to insure that no false-positive samples are confirmed) at the expense of sensitivity. Therefore the purification method described in the present invention for E1 and E2 will be very advantageous for including single or specific oligomeric envelope proteins into HCV diagnostic assays.
  • the solid phase selected can include polymeric or glass beads, nitrocellulose, microparticles, microwells of a reaction tray, test tubes and magnetic beads.
  • the signal generating compound can include an enzyme, a luminescent compound, a chromogen, a radioactive element and a chemiluminescent compound.
  • enzymes include alkaline phosphatase, horseradish peroxidase and beta-galactosidase.
  • enhancer compounds include biotin, anti-biotin and avidin.
  • enhancer compounds binding members include biotin, anti-biotin and avidin.
  • the test sample is subjected to conditions sufficient to block the effect of rheumatoid factor-like substances.
  • conditions comprise contacting the test sample with a quantity of anti-human IgG to form a mixture, and incubating the mixture for a time and under conditions sufficient to form a reaction mixture product substantially free of rheumatoid factor-like substance.
  • the present invention further contemplates the use of E1 proteins, or parts thereof, more particularly HCV single or specific oligomeric E1 proteins as defined above, for in vitro monitoring HCV disease or prognosing the response to treatment (for instance with Interferon) of patients suffering from HCV infection comprising:
  • E1 peptides as listed in Table 3 were found to be useful for in vitro monitoring HCV disease or prognosing the response to interferon treatment of patients suffering from HCV infection:
  • E1-31 (SEQ ID NO 56) spanning amino acids 181 to 200 of the Core/E1 V1 region
  • E1-33 (SEQ ID NO 57) spanning amino acids 193 to 212 of the E1 region
  • E1-35 (SEQ ID NO 58) spanning amino acids 205 to 224 of the E1 V2 region (epitope B),
  • E1-35A (SEQ ID NO 59) spanning amino acids 208 to 227 of the E1 V2 region (epitope 3).
  • E1-51 (SEQ ID NO 66) spanning amino acids 301 to 320 of the E1 region
  • E1-53 (SEQ ID NO 67) spanning amino acids 313 to 332 of the E1 C4 region (epitope A),
  • E1-55 (SEQ ID NO 68) spanning amino acids 325 to 344 of the E1 region.
  • the present invention also relates to a kit for monitoring HCV disease or prognosing the response to treatment (for instance to interferon) of patients suffering from HCV infection comprising:
  • At least one E1 protein or E1 peptide more particularly an E1 protein or E1 peptide as defined above,
  • [0230] means for detecting the immune complexes formed in the preceding binding reaction
  • E2 protein and peptides according to the present invention can be used to a certain degree to monitor/prognose HCV treatment as indicated above for the 1 proteins or peptides because also the anti-E2 levels decrease in comparison to antibodies to the other HCV antigens. It is to be understood, however, that it might be possible to determine certain epitopes in the E2 region which would also be suited for use in an test for monitoring/prognosing HCV disease.
  • the present invention also relates to a serotyping assay for detecting one or more serological types of HCV present in a biological sample, more particularly for detecting antibodies of the different types of HCV to be detected combined in one assay format, comprising at least the following steps:
  • compositions of proteins or peptides used in this method are recombinantly expressed type-specific envelope proteins or type-specific peptides.
  • the present invention further relates to a kit for serotyping one or more serological types of HCV present in a biological sample, more particularly for detecting the antibodies to these serological types of HCV comprising:
  • the present invention also relates to the use of a peptide or protein composition as defined above, for immobilization on a solid substrate and incorporation into a reversed phase hybridization assay, preferably for immobilization as parallel lines onto a solid support such as a membrane strip, for determining the presence or the genotype of HCV according to a method as defined above. Combination with other type-specific antigens from other HCV polyprotein regions also lies within the scope of the present invention.
  • FIG. 1 Restriction map of plasmid pgpt ATA 18
  • FIG. 2 Restriction map of plasmid pgs ATA 18
  • FIG. 3 Restriction map of plasmid pMS 66
  • FIG. 4 Restriction map of plasmid pv HCV-11A
  • FIG. 5 Anti-E 1 levels in non-responders to IFN treatment
  • FIG. 6 Anti-E1 levels in responders to IFN treatment
  • FIG. 7 Anti-E1 levels in patients with complete response to IFN treatment
  • FIG. 8 Anti-E1 levels in incomplete responders to IFN treatment
  • FIG. 9 Anti-E2 levels in non-responders to IFN treatment
  • FIG. 10 Anti-E2 levels in responders to IFN treatment
  • FIG. 11 Anti-E2 levels in incomplete respodners to IFN treatment
  • FIG. 12 Anti-E2 levels in complete responders to IFN treatment
  • FIG. 13 Human anti-E1 reactivity competed with peptides
  • FIG. 14 Competition of reactivity of anti-E1 monoclonal antibodies with peptides
  • FIG. 15 Anti-E1 (epitope 1) levels in non-responders to IFN treatment
  • FIG. 16 Anti-E1 (epitope 1) levels in responders to IFN treatment
  • FIG. 17 Anti-E1 (epitope 2) levels in non-responders to IFN treatment
  • FIG. 18 Anti-E1 (epitope 2) levels in responders to IFN treatment
  • FIG. 19 Competition of reactivity of anti-E2 monoclonal antibodies with peptides
  • FIG. 20 Human anti-E2 reactivity competed with peptides
  • FIG. 21 Nucleic acid sequences of the present invention.
  • the nucleic acid sequences encoding an E1 or E2 protein according to the present invention may be translated (SEQ ID NO 3 to 13, 21-31, 35 and 41-49 are translated in a reading frame staring from residue number 1, SEQ ID NO 37-39 are translated in a reading frame starting from residue number 2), into the amino acid sequences of the respective E1 or E2 proteins as shown in the sequence listing.
  • FIG. 22 ELISA results obtained from lentil lectin chromatography eluate fractions of 4 different E1 purifications of cell lysates infected with vvHCV39 (type 1b), vvHCV-40 (type 1b), vvHCV62 type 3a), and vvHCV63 (type 5a)
  • FIG. 23 Elution profiles obtained from the lentil lectin chromatography of the 4 different E1 constructs on the basis of the values as shown in FIG. 22.
  • FIG. 24 ELISA results obtained from fractions obtained after gelfiltration chromatography of 4 different E1 purifications of cell lysates infected with vvHCV39 (type 1b), vvHCV40 (type 1b), vvHCV62 (type 3a), and vvHCV63 (type 5a).
  • FIG. 25 Profiles obtained from purifications of E1 proteins of type 1b (1), type 3a (2), and type 5a (3) (from RK13 cells infected with vvHCV39, vvHCV62, and vvHCV63, respectively; purified on lentil lectin and reduced as in example 5.2-5.3) and a standard (4).
  • FIG. 26 Silver staining of an SDS-PAGE as described in example 4 of a raw lysate of E1 vvHCV40 (type 1b) (lane 1), pool 1 of the gelfiltration of vvHCV40 representing fractions 10 to 17 as shown in FIG. 25 (lane 2), pool 2 of the gelfiltration of vvHCV40 representing fractions 18 to 25 as shown in FIG. 25 (lane 3), and E1 pool (fractions 26 to 30) (lane 4).
  • FIG. 27 Streptavidine-alkaline phosphatase blot of the fractions of the gelfiltration of E1 constructs 39 (type 1b) and 62 (type 3a). The proteins were labelled with NEM-biotin.
  • Lane 1 start gelfiltration construct 39
  • lane 2 fraction 26 construct 39
  • lane 3 fraction 27 construct 39
  • lane 4 fraction 28 construct 39
  • lane 5 fraction 29 construct 39
  • lane 6 fraction 30 construct 39
  • lane 7 fraction 31 construct 39
  • lane 8 molecular weight marker
  • lane 9 start gelfiltration construct 62
  • lane 10 fraction 26 construct 62
  • lane 11 fraction 27 construct 62
  • lane 1 2 fraction 28 construct 62
  • lane 13 fraction 29 construct 62
  • lane 14 fraction 30 construct 62
  • lane 15 fraction 31 construct 62.
  • FIG. 28 Siver staining of an SOS-PAGE gel of the gelfiltration fractions of vvHCV-39 (E1s, type 1b) and vvHCV-62 (E1s, type 3a) run under identical conditions as FIG. 26.
  • Lane 1 start gelfiltration construct 39
  • lane 2 fraction 26 construct 39
  • lane 3 fraction 27 construct 39
  • lane 4 fraction 28 construct 39
  • lane 5 fraction 29 construct 39
  • lane 6 fraction 30 construct 39
  • lane 8 molecular weight marker
  • lane 9 start gelfiltration construct 62.
  • lane 10 fraction 26 construct 62
  • lane 11 fraction 27 construct 62
  • lane 12 fraction 28 construct 62
  • lane 13 fraction 29 construct 62.
  • lane 14 fraction 30 construct 62.
  • lane 15 fraction 31 construct 62.
  • FIG. 29 Western Blot analysis with anti-E1 mouse monoclonal antibody 5E1A10 giving a complete overview, of the purification procedure.
  • Lane 1 crude lysate.
  • Lane 2 flow through of lentil chromagtography
  • Lane 3 wash with Empigen BB after lentil chromatography
  • Lane 4 Eluate of lentil chromatography.
  • Lane 5 Flow through during concentration of the lentil eluate
  • Lane 6 Pool of E1 after Size Exclusion Chromatography (gelfiltration).
  • FIG. 30 OD 280 profile (continuous line) of the lentil lectin chromatography of E2 protein from RK13 cells infected with vvHCV44.
  • the dotted line represents the E2 reactivity as detected by ELISA (as in example 6).
  • FIG. 31A OD 280 profile (continuous line) of the lentil-lectin gelfiltration chromatography E-2 protein pool from RK13 cells infected with vvHCV44 in which the E2 pool is applied immediately on the gelfiltration column (non-reduced conditions).
  • the dotted line represents the E-2 reactivity as detected by ELISA (as in example 6).
  • FIG. 31B OD 280 profile (continuous line) of the lentil-lectin gelfiltration chromatography E2 protein pool from RK13 cells infected with vvHCV44 in which the E2 pool was ,educed and blocked according to Example 5.3 (reduced conditions).
  • the dotted line represents the E2 reactivity as detected by ELISA (as in example 6).
  • FIG. 32 Ni 2 ⁇ -IMAC chromatography and ELISA reactivity of the E2 protein as expressed from vvHCV44 after gelfiltration under reducing conditions as shown in FIG. 31B.
  • FIG. 33 Silver staining of an SDS-PAGE of 0.5 ⁇ g of purified E2 protein recovered by a 200 mM imidazole elution step (lane 2) and a 30 mM imidazole wash (lane 1 ) of the Ni 2 ⁇ -IMAC chromatography as shown in FIG. 32.
  • FIG. 34 OD profiles of a desalting step of the purified E2 protein recovered by 200 mM immidazole as shown in FIG. 33, intended to remove imidazole.
  • FIG. 35A Antibody levels to the different HCV antigens (Core 1, Core 2, E2HCVR, NS3) for NR and LTR followed during treatment and over a period of 6 to 12 months after treatment determined by means of the LIAscan method. The average values are indicated by the curves with the open squares.
  • FIG. 35B Antibody levels to :he different HCV antigens (NS4, NS5, E1 and E2) for NR and LTR followed during treatment and over a period of 6 to 12 months after treatment determined by means of the LIAscan method.
  • the avergae values are indicated by the curve with the open squares.
  • FIG. 36 Average E1 antibody (E1Ab) and E2 antibody (E2Ab) levels in the LTR and NR groups.
  • FIG. 37 Averages E1 antibody (E1Ab) levels for non-responders (NR) and long term responders (LTR) for type 1b and type 3a.
  • FIG. 38 Relative map positions of the anti-E2 monoclonal antibodies.
  • FIG. 39 Partial deglycosylation of HCV E1 envelope protein.
  • the lysate of vvHCV10A-infected RK13 cells were incubated with different concentrations of glycosidases according to the manufacturer's instructions.
  • Right panel Glycopeptidase F (PNGase F).
  • Left panel Endoclycosidase H (Endo H).
  • FIG. 40 Partial deglycosylation of HCV E2 envelope proteins.
  • the lysate of vvHCV64-infected (E2) and vvHCV41-infected (E2s)RK13 cells were incubated with different concentrations of Glycopeptidase F (PNGase F) according to the manufacturer's instructions.
  • PNGase F Glycopeptidase F
  • FIG. 41 in vitro mutagenesis of HCV E1 glycoproteins. Map of the mutated sequences and the creation of new restriction sites.
  • FIG. 42A In vitro mutagenesis of HCV E1 glycoprotein (part 1). First step of PCR amplification.
  • FIG. 42B In vitro mutagensis of HCV E1 glycoprotein (part 2). Overlap extension and nested PCR.
  • FIG. 43 In vitro mutagesesis of HCV E1 glycoproteins. Map of the PCR mutated fragments (GLY-# and OVR-#) synthesized during the first step of amplification.
  • FIG. 44A Analysis of E1 glycoprotein mutants by Western blot expressed in HeLa (left) and RK13 (right) cells.
  • Lane 1 wild type VV (vaccinia virus)
  • Lane 2 original E1 protein (vvHCV-10A)
  • Lane 3 E1 mutant Gly-1 (vvHCV-81).
  • Lane 4 E1 mutant Gly-2 (vvHCV-82)
  • Lane 5 E1 mutant Gly-3 (vvHCV-83)
  • Lane 6 E1 mutant Gly-4 (vvHCV-84)
  • Lane 7 E1 mutant Gly-5 (vvHCV-85)
  • Lane 8 E1 mutant Gly-6 (vvHCV-86).
  • FIG. 44B Analysis of E1 glycosylation mutant vaccinia viruses by PCR amplification/restriction. Lane 1: E1 (vvHCV-10A), BspE 1. Lane 2: E1,GLY-1 (vvHCV-81).
  • FIG. 45 SDS polyacrylamide gel electrophoresis of recombinant E2 expressed in S. cerevisiae . Innoculates were grown in leucine selective medium for 72 hrs. and diluted 1/15 in complete medium. After 10 days of culture at 28° C., medium samples were taken. The equivalent of 200 ⁇ l of culture supernatant concentrated by speedvac was loaded on the gel. Two independent transformants were analysed.
  • FIG. 46 SDS polyacrylamide gel electrophoresis of recombinant E2 expressed in a glycosylation deficient S. cerevisiae mutant. Innoculae were grown in leucine selective medium for 72 hrs. and diluted 1/15 in complete medium. After 1 0 days of culture at 28° C. medium samples were taken. The equivalent of 350 ⁇ l of culture supernatant, concentrated by ion exchange chromatography, was loaded on the gel.
  • Table 1 Features of the respective clones and primers used for amplification for constructing the different forms of the E1 protein as despected in Example 1.
  • the pgptATA18 vaccinia recombination plasmid is a modified version of pATA18 (Stunnenberg et al, 1988) with an additional insertion containing the E. coli xanthine guanine phosphoribosyl transferase gene under the control of the vaccinia virus 13 intermediate promoter (FIG. 1).
  • the plasmid pgsATA 18 was constructed by inserting an oligonucleotide linker with SEQ ID NO 1/94, containing stop codons in the three reading frames, into the Pst I and HindIII-cut pATA 18 vector. This created an extra Pac I restriction site (FIG. 21. The original HindIII site was not restored.
  • Oligonucleotide linker with SEQ ID NO 1/94 5′ G GCATGC AAGCTT AATTAATT 3′ 3′ ACGTC CGTACG TTCGAA TTAATTAA TCGA 5′ ⁇ overscore (PstI ) ⁇ ⁇ overscore (SphI ) ⁇ H ⁇ overscore (indIII) ⁇ ⁇ overscore ( Pac I () ⁇ H ⁇ overscore (indI) ⁇ II)
  • the vaccinia recombination vector pMS66 was designed to express secreted proteins with an additional carboxy-terminal histidine tag.
  • An oligonuclectide linker with SEQ ID NO 2/95, containing unique sites for 3 restriction enzymes generating blunt ends (Sma I, Stu I and Pml I/Bbr PI) was synthesized in such a way that the carboxy-terminal end of any cDNA could be inserted in frame with a sequence encoding the protease factor Xa cleavage site followed by a nucleotide sequence encoding 6 histidines and 2 stop codons (a new Pac I restriction site was also created downstream the 3′ end).
  • This oligonucleotide with SEQ ID NO 2/95 was introduced between the Xma I and Pst I sites of pgptA18 (FIG. 3).
  • Oligonucleotide linker with SEQ ID NO 2/95 ′5′ CCGGG GAGGCCTGCACGTGATCGAGGGCAGACACCATCACCACCATCACTAATAGTTAATTAA CTGCA3 3′ C CTCCGGACGTGCACTAGCTCCCGTCTGTGGTAGTGGTGGTAGTGATTATCAATTAATT G ⁇ overscore (XmaI ) ⁇ ⁇ overscore ( PstI) ⁇
  • PCR products were derived from the serum samples by RNA preparation and subsequent reverse-transcription and PCR as described previously (Stuyver et al., 1993b). Table 1 shows the features of the respective clones and the primers used for amplification. The PCR fragments were cloned into the Sma I-cut pSP72 (Promega) plasmids.
  • HCCl9A SEQ ID NO 3
  • HCCl10A SEQ ID NO 5
  • HCCl11A SEQ ID NO 7
  • HCCl12A SE: ID NO 9
  • HCCl13A SEQ ID NO 11
  • HCCl17A SEQ ID NO 13
  • cDNA fragments containing the E1-coding regions were cleaved by EcoRI and HindIII restriction from the respective pSP72 plasmids and inserted into the EcoRI/HindIII-cut pgptA-18 vaccinia recombination vector (described in example 1), downstream of the 11K vaccinia virus late promoter.
  • the respective plasmids were designated pv-HCV-9A, pvHCV-10A, pvHCV-11A, pvHCV-12A, pvHCV-13A and pvHCV-17A, of which pvHCV-11A is shown in FIG. 4.
  • Clone HCCl37 containing a deletion of codons Asp264 to Val237 (nucleotides 790 to 861, region encoding hydrophobic domain 1) was generated as follows: 2 PCR fragments were generated from clone HCCl10A with primer sets HCPr52 (SEQ ID NO 16)/HCPr107 (SEQ ID NO 19) and HCPr108 (SEQ ID NO 20)/HCPR54 (SEQ ID NO 18). These primers are shown in FIG. 21.
  • the two PCR fragments were purified from agarose gel after electrophoresis and 1 ng of each fragment was used together as template for PCR by means of primers HCPr52 (SEQ ID NO 16) and HCPr54 (SEQ ID NO 18).
  • the resulting fragment was cloned into the Sma I-cut pSP72 vector and clones containing the deletion were readily identified because of the deletion of 24 codons (72 base pairs). Plasmid pSP72HCCl37 containing clone HCCl37 (SEQ ID 15) was selected.
  • a recombinant vaccinia plasmid containing the full-length E1 cDNA lacking hydrophobic domain I was constructed by inserting the HCV sequence surrounding the deletion (fragment cleaved by Xma I and BamH I from the vector pSP72-HCCl37) into the Xma I-Bam H I sites of the vaccinia plasmid pvHCV-10A.
  • the resulting plasmid was named pvHCV-37.
  • Clone HCCl62 (SEQ ID NO 29) was derived from a type 3a-infected patient with chronic hepatitis C (serum BR36, clone BR36-9-13, SEQ ID NO 19 in WO 94/25601, and see also Stuyver et al. 1993a) and HCCl63 (SEQ ID NO 31) was derived from a type 5a-infected child with post-transfusion hepatitis (serum BE95, clone PC-4-1, SEQ ID NO 45 in WO 94/25601).
  • the HCV E2 PCR fragment 22 was obtained from serum BE11 (genotype 1b) by means of primers HCPr109 (SEQ ID NO 33) and HCPr72 (SEQ ID NO 34) using techniques of RNA preparation, reverse-transcription and PCR, as described in Stuyver et al., 1993b, and the fragment was cloned into the Sma I-cut pSP72 vector.
  • the resulting plasmid was named pvHCV-41 and encoded the E2 region from amino acids Met347 to Gln673, including 37 amino acids (from Met347 to Gly383) of the E1 protein that can serve as signal sequence.
  • the same HCV cDNA was inserted into the EcoR I and Bbr PI-cut vector pMS66, that had subsequently been blunt ended with Klenow DNA Polymerase.
  • the resulting plasmid was named pvHCV-42 and also encoded amino acids 347 to 683.
  • the Ncol/AlwNl fragment was inserted in a similar way into the same sites of PGsATA-18 (pvHCV-43) or pMS-66 vaccinia vectors (pvHCV-44).
  • pvHCV-43 and pvHCV-44 encoded amino acids 364 to 673 of the HCV polyprotein, of which amino acids 361 to 383 were derived from the natural carboxyterminal region of the E1 protein encoding the signal sequence for E2, and amino acids 384 to 673 of the mature E2 protein.
  • Rabbit kidney RK13 cells (ATCC CCL 37), human osteosarcoma 143B thymidine kinase deficient (TK) (ATCC CRL 8303), HeLa (ATCC CCL 2), and Hep G2 (ATCC HB 8065) cell lines were obtained from the American Type Culture Collection (ATCC, Rockville, Md., USA). The cells were grown in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% foetal calf serum, and with Earle's salts (DMEM) for RK13 and 143B (TK ⁇ ), and with glucose (4 g/l) for Hep G2.
  • DMEM Dulbecco's modified Eagle medium
  • DMEM Earle's salts
  • the vaccinia virus WR strain (Western Reserve, ATTC VR119) was routinely propagated in either 143B or RK13 cells, as described previously (Panicali & Pacletti, 1982; Piccini et al., 1987; Macket, et al., 1982, 1984, and 1986).
  • the vaccinia recombination plasmid was transfected into the infected cells in the form of a calcium phosphate coprecipitate containing 500 ng of the plasmid DNA to allow homologous recombination (Graham & van der Eb, 1973; Mackett et al., 1985).
  • Recombinant viruses expressing the Escherichia coli xanthine-guanine phosphoribosyl transferase (gpt) protein were selected on rabbit kidney RK1 3 cells incubated in selection medium (EMEM containing 25 ⁇ g/ml mycophenolic acid (MPA), 250 ⁇ g/ml xanthine, and 15 ⁇ g/ml hypoxanthine; Falkner and Moss, 1988; Janknecht et al, 1991). Single recombinant viruses were purified on fresh monolayers of RK13 cells under a 0.9% agarose overlay in selection medium.
  • selection medium EMEM containing 25 ⁇ g/ml mycophenolic acid (MPA), 250 ⁇ g/ml xanthine, and 15 ⁇ g/ml hypoxanthine; Falkner and Moss, 1988; Janknecht et al, 1991.
  • Thymidine kinase deficient (TK) recombinant viruses were selected and then plaque purified on fresh monolayers of human 143B cells (TK ⁇ ) in the presence of 25 ⁇ g/ml 5-bromo-2′-deoxyuridine.
  • Stocks of purified recombinant HCV-vaccinia viruses were prepared by infecting either human 143B or rabbit RK13 cells at an m.o.i. of 0.05 (Mackett et al, 1988).
  • the insertion of the HCV cDNA fragment in the recombinant vaccinia viruses was confirmed on an aliquot (50 ⁇ l) of the cell lysate after the MPA selection by means of PCR with the primers used to clone the respective HCV fragments (see Table 1).
  • the recombinant vaccinia-HCV viruses were named according to the vaccinia recombination plasmid number, e.g. the recombinant vaccinia virus vvHCV-10A was derived from recombining the wild type WR strain with the pvHCV-10A plasmid.
  • a confluent monolayer of RK13 calls was infected at a m.o.i. of 3 with the recombinant HCV-vaccinia viruses as described in example 2.
  • the cell monolayer was washed twice with phosphate-buffered saline pH 7.4 (PBS) and the recombinant vaccinia virus stock was diluted in MEM medium.
  • Two hundred ⁇ l of the virus solution was added per 10 6 cells such that the m.o.i. was 3, and incubated for 45 min at 24° C.
  • the virus solution was aspirated and 2 ml of complete growth medium (see example 2) was added per 10 6 cells.
  • the cells were incubated for 24 hr at 37° C. during which expression of the HCV proteins took place.
  • the infected cells were washed two times with PBS, directly lysed with lysis buffer (50 mM Tris.HCl pH 7.5, 150 mM NaCl, 1% Triton X-100, 5 mM MgCl 2 , 1 ⁇ g/ml aprotinin (Sigma, Bornem, Belgium)) or detached from the flasks by incubation in 50 mM Tris.HCL pH 7.5/10 mM EDTA/150 mM NaCl for 5 min, and collected by centrifugation (5 min at 1000 g).
  • lysis buffer 50 mM Tris.HCl pH 7.5, 150 mM NaCl, 1% Triton X-100, 5 mM MgCl 2 , 1 ⁇ g/ml aprotinin (Sigma, Bornem, Belgium)
  • the cell pellet was then resuspended in 200 ⁇ l lysis buffer (50 mM Tris.HCL pH 8.0, 2 mM EDTA, 150 mM NaCl, 5 mM MgCl 2 aprotinin, 1% Triton X-100) per 10 5 cells.
  • the call lysates were cleared for 5 min at 14.000 rpm in an Eppendorf centrifuge to remove the insoluble debris. Proteins of 20 ⁇ l lysate were separated by means of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE).
  • the proteins were then electro-transferred from the gel to a nitrocellulose street (Amersham) using a Hoefer HSI transfer unit cooled to 4° C. for 2 hr at 100 V constant voltage, in transfer buffer (25 mM Tris.HCl pH 8.0, 192 mM glycine, 20% (v/v) methanol). Nitrocellulose filters were blocked with Blotto (5% (w/v) fat-free instant milk powder in PBS; Johnson et al., 1981) and incubated with primary antibodies diluted in Blotto/0.1% Tween 20.
  • a human negative control serum or serum of a patient infected with HCV were 200 times diluted and preincubated for 1 hour at room temperature with 200 times diluted wild type vaccinia virus-infected cell lysate in order to decrease the non-specific binding.
  • the nitrocellulose filters were incubated with alkaline phosphatase substrate solution diluted in Blotto/0.1% Tween 20.
  • the filters were incubated with alkaline phosphatase substrate solution (100 mM Tris.HCl pH 9.5, 100 mM NaCl, 5 mM MgCl, 0.38 ⁇ g/ml nitroblue tetrazolium, 0.165 ⁇ g/ml 5-bromo-4-chloro-3-indolylphosphate) All steps, except the electrotransfer, were performed at room temperature.
  • alkaline phosphatase substrate solution 100 mM Tris.HCl pH 9.5, 100 mM NaCl, 5 mM MgCl, 0.38 ⁇ g/ml nitroblue tetrazolium, 0.165 ⁇ g/ml 5-bromo-4-chloro-3-indolylphosphate
  • Infected RK13 cells (carrying E1 or E2 constructs) were washed 2 times with phosphate-buffered saline (PBS) and detached from the culture recipients by incubation in PBS containing 10 mM EDTA.
  • PBS phosphate-buffered saline
  • the detached cells were washed twice with PBS and 1 ml of lysis buffer (50 mM Tris.HCl pH 7.5, 150 mM NaCl, 1% Triton X-100, 5 mM MgCl 2 , 1 ⁇ g/ml aprotinin (Sigma, Bornem, Belgium) containing 2 mM biotinylated N-ethylmaleimide (biotin-NEM) (Sigma) was added per 10 5 cells at 4° C. This lysate was homogenized with a type B douncer and left at room temperature for 0.5 hours. Another 5 volumes of lysis buffer containing 10 mM N-ethylmaleimide (NEM, Aldrich. Bornem.
  • lysis buffer 50 mM Tris.HCl pH 7.5, 150 mM NaCl, 1% Triton X-100, 5 mM MgCl 2 , 1 ⁇ g/ml aprotinin (Sigma, Bor
  • the cleared cell lysate was loaded at a rate of 1 mi/min on a 0.8 by 10 cm Lentil-lectin Sepharose 48 column (Pharmacia) that had been equilibrated with 5 column volumes of lysis buffer at a rate of 1 ml/min.
  • the lentil-lectin column was washed with 5 to 10 column volumes of buffer 1 (0.1M potassium phosphate pH 7.3, 500 mM KCl, 5% glycerol, 1 mM 6-NH 2 -hexanoic acid, 1 mM MgCl 2 , and 1% DecylPEG (KWANT, Bedum, The Netherlands).
  • the column was subsequently washed with 10 column volumes of buffer 1 containing 0.5% Empigen-BB (Calbiochem, San Diego, Calif., USA) instead of 1% DecylPEG.
  • the bound material was eluted by applying elution buffer (10 mM potassium phosphate pH 7.3, 5 % glycerol, 1 mM hexanoic acid, 1 mM MgCl 2 , 0.5% Empigen-BB, and 0.5 M ⁇ -methyl-mannopyranoside).
  • the eluted material was fractionated and fractions were screened for the presence of E1 or E2 protein by means of ELISA as described in example 6.
  • FIG. 22 shows ELISA results obtained from lentil lectin eluate fractions of 4 different E1 purifications of cell lysates infected with vvHCV39 (type 1b), vvHCV40 (type 1b), vvHCV62 (type 3a), and vvHCV63 (type 5a).
  • FIG. 23 shows the profiles obtained from the values shown in FIG. 22. These results show that the lectin affinity column can be employed for envelope proteins of the different types of HCV.
  • the E1- or E2-positive fractions were pooled and concentrated on a Centricon 30 kDa (Amicon) by centrifugation for 3 hours at 5,000 rpm in a Beckman JA-20 rotor at 4° C. In some experiments the E1- or E2-positive fractions were pooled and concentrated by nitrogen evaporation. An equivalent of 3.10 8 cells was concentrated to approximately 200 ⁇ l. For partial reduction, 30% Empigen-BB (Calbiochem, San Diego, Calif., USA) was added to this 200 ⁇ l to a final concentration of 3.5%, and 1M DTT in H 2 O was subsequently added to a final concentration of 1.5 to 7.5 mM and incubated for 30 min at 37 ° C. NEM (1M in dimethylsulphoxide) was subsequently added to a final concentration of 50 mM and left to react for another 30 min at 37° C. to block the free sulphydryl groups.
  • FIG. 24 shows ELISA results obtained from fractions obtained after gelfiltration chromatography of 4 different E1 purifications of cell lysates infected with vvHCV39 (type 1b), vvHCV40 (type 1b), vvHCV62 (type 3a), and vvHCV63 (type 5a)
  • FIG. 25 shows the profiles obtained from purifications of E1 proteins of types 1b, 3a, and 5a from RK13 cells infected with vvHCV39, vvHCV62, and vvHCV63, respectively; purified on lentil lectin and reduced as in the previous examples).
  • the peaks indicated with ‘1’, ‘2’, and ‘3’, represent pure E1 protein peaks (E1 reactivity mainly in fractions 26 to 30). These peaks show very similar molecular weights of approximately 70 kDa, corresponding to dimeric E1protein. Other peaks in the three profiles represent vaccinia virus and/or cellular proteins which could be separated from E1 only because of the reduction step as outlined in example 5.3. and because of the subsequent gelfiltration step in the presence of the proper detergent. As shown in FIG. 26 pool 1 (representing fractions 10 to 17) and pool 2 (representing fractions 18 to 25) contain contaminating proteins not present in the E1 pool (fractions 26 to 30).
  • the E1 peak fractions were ran on SDS/PAGE and blotted as described in example 4. Proteins labelled with NEM-biotin were detected by streptavidin-alkaline phosphatase as shown in FIG. 27. It can be readily observed that amongst others, the 29 kDa and 45 kDa contaminating proteins present before the gelfiltration chromatography (lane 1) are only present at very low levels in the fractions 26 to 30. The band at approximately 65 kDa represents the E1 dimeric form that could not be entirely disrupted into the monomeric E1 form. Similar results were obtained for the type 3a E1 protein (lanes 10 to 15). which shows a faster mobility on SDS/PAGE because of the presence of only 5 carbohydrates instead of 6. FIG. 28 shows a silver stain of an SDS/PAGE gel run in identical conditions as in FIG. 26. A complete overview of the purification procedure is given in FIG. 29.
  • E1 protein was further confirmed by means of western blotting as described in example 4.
  • the dimeric E1 protein appeared to be non-aggregated and free of contaminants.
  • the subtype 1b E1 protein purified from vvHCV40-infected cells according to the above scheme was aminoterminally sequenced on an 477 Perkins-Elmer sequencer and appeared to contain a tyrosine as first residue. This confirmed that the E1 protein had been cleaved by the signal peptidase at the correct position (between A191 and Y192) from its signal sequence. This confirms the finding of Hijikata et al. (1991) that the aminoterminus of the mature E1 protein starts at amino acid position 192.
  • FIG. 30 shows the OD 280 profile (continuous line) of the lentil lectin chromatography.
  • the dotted mine represents the E2 reactivity as detected by ELISA (see example 6).
  • FIG. 31 shows the same profiles obtained from gelfiltration chromatography of the lentil-lectin E2 pool (see FIG. 30), part of which was reduced and blocked according to the methods as set out in example 5.3., and part of which was immediately applied to the column. Both parts of the E2 pool were run on separate gelfiltration columns.
  • FIG. 32 shows an additional Ni 2 ⁇ -IMAC purification step carried out for the E2 protein purification. This affinity purification step employs the 6 histidine residues added to the E2 protein as expressed from vvHCV44. Contaminating proteins either run through the column or can be removed by a 30 mM imidazole wash.
  • FIG. 32 shows an additional Ni 2 ⁇ -IMAC purification step carried out for the E2 protein purification. This affinity purification step employs the 6 histidine residues added to the E2 protein as expressed from vvHCV44. Contaminating proteins either run through the column or can be removed by a 30 mM imidazole wash.
  • FIG. 33 shows a silver-stained SDS/PAGE of 0.5 ⁇ g of purified E2 protein and a 30 mM imidazole wash.
  • the pure E2 protein could be easily recovered by a 200 mM imidazole elution step.
  • FIG. 34 shows an additional desalting step intended to remove imidazole and to be able to switch to the desired buffer, e.g. PES, carbonate buffer, saline.
  • secreted E2 protein (constituting approximately 30-40%, 60-70% being in the intercellular form) is chracterized by aggregate formation (contrary to expectations). The same problem is thus posed to purify secreted E2.
  • the secreted E2 can be purified as disclosed above.
  • Serum samples were diluted 20 times or monoclonal anti-E1 or anti-E2 antibodies were diluted to a concentration of 20 ng/ml in Sample Diluent of the Innotest HCV Ab III kit and 1 volume of the solution was left to react with the E1 or E2 protein for 1 hour at 37° C.
  • the microwells were washed 5 times with 400 ⁇ l of Washing Solution of the Innotest HCV Ab III kit (Innogenetics, Zwijndrecht, Belgium). The bound antibodies were detected by incubating each well for 1 hour at 37° C.
  • HCV hepatitis C virus
  • FIG. 5 shows the anti-E1 signal-to-noise ratios of these patients followed during the course of interferon treatment and during the follow-up period after treatment.
  • Anti-E1 antibody titers had decreased 6.9 times in LTR but only 1.5 times in NR. At the end of follow up, the anti-E1 titers had declined by a factor of 22.5 in the patients with sustained response and even slightly increased in NR. Therefore, based on these data, decrease of anti-E1 antibody levels during monitoring of IFN- ⁇ therapy correlates with long-term, sustained response to treatment.
  • the anti-E1 assay may be very useful for prognosis of long-term response to IFN treatment, or to treatment of the hepatitis C disease in general.
  • the anti-E1 titers were on average at least 2 times higher at the start of treatment in long term responders compared with incomplete responders to treatment. Therefore, measuring the titer of anti-E1 antibodies at the start of treatment, or monitoring the patient during the course of infection and measuring the anti-E1 titer, may become a useful marker for clinical diagnosis of hepatitis C. Furthermore, the use of more defined regions of the E1 or E2 proteins may become desirable, as shown in example 7.3.
  • FIG. 36 depicts average E1 antibody (E1Ab) and E2 antibody (E2Ab) levels in the LTR and NR groups and Tables 4 and 5 show the statistical analyses.
  • E1Ab E1 antibody
  • E2Ab E2 antibody
  • FIG. 13 shows the results of reactivity of human sera to the recombinant E1 (expressed from vvHCV-40) protein, in the presence of single or of a mixture of E1 peptides.
  • biotin-GG-ITGHRMAWDMMMNWSPTTAL-COOH SEQ ID NO 52
  • E1a-BB biotin-GG-TPTVATRDGKLPATQLRRHIDLL, SEQ ID NO 54
  • E1 b-BB biotin-GG-TPTLAARDASVPTTTIRRHVDLL, SEQ ID NO 55
  • epitopes A, B, and C The same series of patients that had been monitored for their reactivity towards the complete E1 protein (example 7.1.) was tested for reactivity towards epitopes A, B, and C. Little reactivity was seen to epitope C, while as shown in FIGS. 15, 16, 17 , and 18 , epitopes A and B reacted with the majority of sera. However, antibodies to the most reactive epitope (epitope A) did not seem to predict remission of disease, while the anti-1bE1 antibodies (epitope B) were present almost exclusively in long term responders at the start of IFN treatment.
  • anti-1bE1 (epitope B) antibodies and anti-env-53 (epitope A) antibodies could be shown to be useful markers for prognosis of hepatitis C disease.
  • the env53 epitope may be advantageously used for the detection of cross-reactive antibodies (antibodies that cross-react between major genotypes) and antibodies to the env53 region may be very useful for universal E1 antigen detection in serum or liver tissue.
  • Monoclonal antibodies that recognized the env53 region were reacted with a random epitope library. In 4 clones that reacted upon immunoscreening with the monoclonal antibody 5E1A10, the sequence -GWD- was present.
  • the sequence AWD is thought to contain the essential sequence of the env53 cross-reactive murine epitope.
  • the env31 clearly also contains a variable region which may contain an epitope in the amino terminal sequence -YQVRNSTGL- (SEQ ID NO 931 and may be useful for diagnosis.
  • Env31 or E -31 as shown in Table 3, is a part of the peptide 1bE1.
  • Peptides 1-33 and E1-51 also reacted to some extent with the murine antibodies, and peptide E1-55 (containing the variable region 6 (V6) scanning amino acid positions 329-336) also reacted with some of the patient sera.
  • Anti-E2 antibodies clearly followed a different pattern than the anti-E1 antibodies, especially in patients with a long-term response to treatment. Therefore, it is clear that the decrease in anti-envelope antibodies could not be measured as efficiently with an assay employing a recombinant E1/E2 protein as with a single anti-E1 or anti-E2 protein.
  • the anti-E2 response would clearly blur the anti-E1 response in an assay measuring both kinds of antibodies at the same time. Therefore, the ability to test anti-envelope antibodies to the single E1 and 2 proteins, was shown to be useful.
  • HVRI epitope A
  • HVRII epitope B
  • epitope E a third linear epitope region
  • epitope D a fourth linear epitope region
  • FIG. 20 A human response to HVRI (epitope A), and to a lesser extent HVRII (epitope B) and a third linear epitope region (competed by peptides E2-23, E2-25 or E2-27, designated epitope E) and a fourth linear epitope region (competed by peptide E2-17B, epitope D) could also frequently be observed, but the majority of sera reacted with conformational epitopes (FIG. 20).
  • conformational epitopes could be grouped according to their relative positions as follows: the IgG antibodies in the supernatant of hybridomas 15C8C1, 12D11F1, 9G3E6 , 8G10D1H9, 10D3C4, 4H6B2, 17F2C2, 5H6A7, 15B7A2 recognizing conformational epitopes were purified by means of protein A affinity chromatography and 1 mg/ml of the resulting IgG's were biotinylated in borate buffer in the presence of biotin. Biotinylated antibodies were separated from free biotin by means of gelfiltration chromatography. Pooled biotinylated antibody fractions were diluted 100 to 10,000 times. E2 protein bound to the solid phase was detected by the biotinylated IgG in the presence of 100 times the amount of non-biotinylated competing antibody and subsequently detected by alkaline phosphatase labeled streptavidin.
  • Mabs may recognize variants of the same linear epitope (epitope C) or recognize a conformational epitope which is sterically hindered or chances conformation after binding of 16A6E7 to the E2-13B region (epitope H).
  • the E1 protein encoded by vvHCV10A, and the E2 protein encoded by vvHCV41 to 44 expressed from mammalian cells contain 6 and 11 carbohydrate moieties. respectively. This could be shown by incubating the lysate of vvHCV10A-infected or vvHCV44-infected RK13 cells with decreasing concentrations of glycosidases (PNGase F or Endoglycosidase H, (Boehringer Mannhein Biochemical according to the manufacturer's instructions), such that the proteins in the lysate (including E1) are partially deglycosylated (FIG. 39 and 40 , respectively).
  • PNGase F or Endoglycosidase H glycosidases
  • Mutants devoid of some of their glycosylation sites could allow the selection of envelope proteins with improved immunological reactivity.
  • gp120 proteins lacking certain selected sugar-addition motifs have been found to be particularly useful for diagnostic or vaccine purpose.
  • the addition of a new oligosaccharide side chain in the hemagglutinin protein of an escape mutant of the A/Hong Kong/3/68 (H3N2) influenza virus prevents reactivity with a neutralizing monoclonal antibody (Skehel et al, 1984).
  • N-linked carbohydrate chains is important for stabilization of folding intermediates and thus for efficient folding, prevention of malfolding and degradation in the endoplasmic reticulum, oligomerization, biological activity, and transport of glycoproteins (see reviews by Rose et at., 1988; Doms et al., 1993; Helenius, 1994).
  • the isolate S83 belonging to genotype 2c, even lacks the first carbohydrate motif in the V1 region (on Asn), while it is present on all other isolates (Stuyver e al., 1994)
  • the presence of the carbohydrate may not be required for folding, but may have a role in evasion of immune surveillance. Therefore, identification of the carbohydrate addition motifs which are not required for proper folding (and reactivity) is not obvious, and each mutant has to be analyzed and tested for reactivity.
  • Mutagenesis of a glycosylation motif can be achieved by either mutating the codons for N, S, or T, in such a way that these codons encode amino acids different from N in the case of N, and/or amino acids different from S or T in the case of S and in the case of T.
  • the X position may be mutated into P1 since it is known that NPS or NPT are not frequently modified with carbohydrates. After establishing which carbohydrate-addition motifs are required for folding and/or reactivity and which are not, combinations of such mutations may be made.
  • FIGS. 42 and 43 For site-directed mutagenesis, the ‘mispriming’ or ‘overlap extension’ (Horton, 1993) was used. The concept is illustrated in FIGS. 42 and 43.
  • the PCR product obtained from the 5′ end (product GLY#) was amplified with the 5′ sense GPT primer (see Table 7) and with the respective 3′ antisense GLY# primers.
  • the second fragment (product OVR#) was amplified with the 3′ antisense Tk 6 primer and the respective 5′ sense primers (OVR# primers, see Table 7, FIG. 43).
  • the OVR# primers target part of the GLY# primer sequence. Therefore, the two groups of PCR products share an overlap region of identical sequence.
  • these intermediate products are mixed (GLY-1 with OVR-1, GLY-2 with OVR-2, etc.), melted at high temperature, and reannealed, the top sense strand of product GLY# can anneal to the antisense strand of product OVR# (and vice versa) in such a way that the two strands act as primers for one another (see FIG. 42.B).
  • Extension of the annealed overlap by Taq polymerase during two PCR cycles created the full-length mutant molecule E1Gly#, which carries the mutation destroying the glycosylation site number #.
  • recombinant vaccinia viruses were generated by recombination with wt vaccinia virus as described in example 2.5. Briefly, 175 cm 2 -flasks of subconfluent RK13 cells were infected with the 6 recombinant vaccinia viruses carrying the mutant E1 sequences, as well as with the vvHCV-10A (carrying the non-mutated E1 sequence) and wt vaccinia viruses. Cells were lysed after 24 hours of infection and analyzed on western blot as described in example 4 (see FIG. 44A).
  • All mutants showed a faster mobility (corresponding to a smaller molecular weight of approximately 2 to 3 kDa) on SDS-PACE than the original E1 protein; confirming that one carbohydrate moiety was not added.
  • Recombinant viruses were also analyzed by PCR and restriction enzyme analysis to confirm the identity of the different mutants.
  • FIG. 44B shows that all mutants (as shown in FIG. 41) contained the expected additional restriction sites.
  • Another part of the cell lysate was used to test the reactivity of the different mutant by ELISA. The lysates were diluted 20 times and added to microwell plates coated with the lectin GNA as described in example 6.
  • the E2 sequence corresponding to clone HCCL41 was provided with the ⁇ -mating factor pre/pro signal sequence, inserted in a yeast expression vector and S. cerevisiae cells transformed with this construct secreted E2 protein into the growth medium. It was observed that most glycosylation sites were modified with high-mannose type glycosylations upon expression of such a construct in S. cerevisiae strains (FIG. 45). This resulted in a too high level of heterogeneity and in shielding of reactivity, which is not desirable for either vaccine or diagnostic purposes. To overcome this problem, S. cerevisiae mutants with modified glycosylation pathways were generated by means of selection of vanadate-resistant clones.
  • Such clones were analyzed for modified glycosylation pathways by analysis of the molecular weight and heterogeneity of the glycoprotein invertase. This allowed us to identify different glycosylation deficient S. cerevisiae mutants.
  • the E2 protein was subsequently expressed in some of the selected mutants and left to react with a monoclonal antibody as described in example 7, on western blot as described in example 4 (FIG. 46)
  • the present results show that not only a good expression system but also a good purification protocol are required to reach a high reactivity of the HCV envelope proteins with human patient sera.
  • This can be obtained using the proper HCV envelope protein expression system and/or purification protocols of the present invention which guarantee the conservation of the natural folding of the protein and the purification protocols of the present invention which guarantee the elimination of contaminating proteins and which preserve the conformation, and thus the reactivity of the HCV envelope proteins.
  • the amounts of purified HCV envelope protein needed for diagnostic screening assays are in the range of grams per year. For vaccine purposes, even higher amounts of envelope protein would be needed.
  • the vaccinia virus system may be used for selecting the best expression constructs and for limited upscaling, and large-scale expression and purification of single or specific oligomeric envelope proteins containing high-mannose carbohydrates may be achieved when expressed from several yeast strains.
  • hepatitis B for example, manufacturing of HBsAg from mammalian cells was much more costly compared with yeast-derived hepatitis B vaccines.
  • the purification method disclosed in the present invention may also be used for ‘viral envelope proteins’ in general.
  • examples are those derived from Flaviviruses, the newly discovered GB-A, GB-B and GB-C Hepatitis viruses, Pestiviruses (such as Bovine viral Diarrhoea Virus (BVDV), Hog Cholera Virus (HCV), Border Disease Virus (BDV)), but also less related virusses such as Hepatitis B Virus (mainly for the purification of HBsAg).
  • the envelope protein purification method of the present invention may be used for intra- as well as extracellularly expressed proteins in lower or higher eukaryotic cells or in prokaryotes as set out in the detailed description section.
  • TABLE 1 Recombinant vaccinia plasmids and viruses cDNA subclone Vector used Plasmid name Name construction Length (nt/aa) for insertion pvHCV-13A E1s EcoR I - Hind III 472/157 pgptATA-18 pvHCV-12A E1s EcoR I - Hind III 472/153 pgptATA-18 pvHCV-9A E1 EcoR I - Hind III 631/211 pgptATA-18 pvHCV-11A E1s EcoR I - Hind III 625/207 pgptATA-18 pvHCV-17A E1s EcoR I - Hind III 625/208 pgptATA-l8 pvHCV-10A E1 EcoR I
  • OVR3 5′- GAGCTC CCGCTGCTGGGTAGCGC-3′ SEQ ID NO. 107
  • OVR4 5′- CCT CCGTCCCCACCACGACAATACG-3′
  • OVR5 5′-CTA CCCGGG CCACATAACGGGTCACCG-3′
  • OVR6 5′-GG AGGCCT ACAACGGCCCTGGTGG-3′ SEQ ID NO. 110
  • GPT-2 5′-TTCTATCGATTAAATAGAATTC-3′
  • 111 TK n -2 5′-GCCATACGCTCACAGCCGATCCC-3′

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for purifying recombinant HCV single or specific oligomeric envelope proteins selected from the group consisting of E1 and/or E1/E2 characterized in that upon lysing the transformed host cells to isolate the recombinantly expressed protein a disulphide bond cleavage or reduction step is carried out with a disulphide bond cleavage agent. The present invention also relates to a composition isolated by such a method. The present invention also relates to the diagnostic and therapeutic application of these compositions. Furthermore, the invention relates to the use of HCV E1 protein and peptides for prognosing and monitoring the clinical effectiveness and/or clinical outcome of HCV treatment.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the general fields of recombinant protein expression, purification of recombinant proteins, synthetic peptides, diagnosis of HCV infection, prophylactic treatment against HCV infection and to the prognosis/monitoring of the clinical efficiency of treatment of an individual with chronic hepatitis, or the prognosis/monitoring of natural disease. [0001]
  • More particularly, the present invention relates to purification methods for hepatitis C virus envelope proteins, the use in diagnosis, prophylaxis or therapy of HCV envelope proteins purified according to the methods described in the present invention, the use of single or specific oligomeric E1 and/or E2 and/or E1/E2 envelope proteins in assays for monitoring disease, and/or diagnosis of disease, and/or treatment of disease. The invention also relates to epitopes of the E1 and/or E2 envelope proteins and monoclonal antibodies thereto, as well their use in diagnosis, prophylaxis or treatment. [0002]
  • BACKGROUND OF THE INVENTION
  • The E2 protein purified from cell lysates according to the methods described in the present invention reacts with approximately 95% of patient sera. This reactivity is similar to the reactivity obtained with E2 secreted from CHO cells (Spaete et al., 1992). However, the intracallularly expressed form of E2 may more closely resemble the native viral envelope protein because it contains high mannose carbohydrate motifs, whereas the E2 protein secreted from CHO cells is further modified with galactose and sialic acid sugar moieties. When the aminoterminal half of E2 is expressed in the baculovirus system, only about 13 to 21% of sera from several patient groups can be detected (Inoue et al., 1992). After expression of E2 from [0003] E. coli, the reactivity of HCV sera was even lower and ranged from 14 (Yokosuka et al., 1992) to 17% (Mita et al., 1992).
  • About 75% of HCV sera (and 95% of chronic patients) are anti-E1 positive using the purified, vaccinia-expressed recombinant E1 protein of the present invention, in sharp contrast with the results of Kohara et al. (1992) and Hsu et al. (1993). Kohara et al. used a vaccinia-virus expressed E1 protein and detected anti-E1 antibodies in 7 to 23% of patients, while Hsu et al. only detected 14/50 (28%) sera using baculovirus-expressed E1. [0004]
  • These results show that not only a good expression system but also a good purification protocol are required to reach a high reactivity of the envelope proteins with human patient sera. This can be obtained using the proper expression system and/or purification protocols of the present invention which guarantee the conservation of the natural folding of the protein and the purification protocols of the present invention which guarantee the elimination of contaminating proteins and which preserve the conformation, and thus the reactivity of the HCV envelope proteins. The amounts of purified HCV envelope protein needed for diagnostic screening assays are in the range of grams per year. For vaccine purposes, even higher amounts of envelope protein would be needed. Therefore, the vaccinia virus system may be used for selecting the best expression constructs and for limited upscaling, and large-scale expression and purification of single or specific oligomeric envelope proteins containing high-mannose carbohydrates may be achieved when expressed from several yeast strains. In the case of hepatitis B for example, manufacturing of HBsAg from mammalian cells was much more costly compared with yeast-derived hepatitis B vaccines. [0005]
  • AIMS OF THE INVENTION
  • It is an aim of the present invention to provide a new purification method for recombinantly expressed E1 and/or E2 and/or E1/E2 proteins such that said recombinant proteins are directly usable for diagnostic and vaccine purposes as single or specific oligomeric recombinant proteins free from contaminants instead of aggregates. [0006]
  • It is another aim of the present invention to provide compositions comprising purified (single or specific oligomeric) recombinant E1 and/or E2 and/or E1/E2 glycoproteins comprising conformational epitopes from the E1 and/or E2 domains of HCV. [0007]
  • It is yet another aim of the present invention to provide novel recombinant vector constructs for recombinantly expressing E1 and/or E2 and/or E1 /E2 proteins, as well as host cells transformed with said vector constructs. [0008]
  • It is also an aim of the present invention to provide a method for producing and purifying recombinant HCV E1 and/or E2 and/or E1/E2 proteins. [0009]
  • It is also an aim of the present invention to provide diagnostic and immunogenic uses of the recombinant HCV E1 and/or E2 and/or E1/E2 proteins of the present invention, as well as to provide kits for diagnostic use, vaccines or therapeutics comprising any of the recombinant HCV E1 and/or E2 and/or E1/E2 proteins of the present invention. [0010]
  • It is further an aim of the present invention to provide for a new use of E1, E2, and/or E1/E2 proteins, or suitable parts thereof, for monitoring/prognosing the response to treatment of patients (e.g. with interferon) suffering from HCV infection. [0011]
  • It is also an aim of the present invention to provide for the use of the recombinant E1, E2, and/or E1/E2 proteins of the present invention in HCV screening and confirmatory antibody tests. [0012]
  • It is also an aim of the present invention to provide E1 and/or E2 peptides which can be used for diagnosis of HCV infection and for raising antibodies. Such peptides may also be used to isolate human monoclonal antibodies. [0013]
  • It is also an aim of the present invention to provide monoclonal antibodies, more particularly human monoclonal antibodies or mouse monoclonal antibodies which are humanized, which react specifically with E1 and/or E2 epitopes, either comprised in peptides or conformational epitopes comprised in recombinant proteins. [0014]
  • It is also an aim of the present invention to provide possible uses of anti-E1 or anti-E2 monoclonal antibodies for HCV antigen detection or for therapy of chronic HCV infection. [0015]
  • It is also an aim of the present invention to provide kits for monitoring/prognosing the response to treatment (e.g. with interferon) of patients suffering from HCV infection or monitoring/prognosing the outcome of the disease. [0016]
  • All the aims of the present invention are considered to have been met by the embodiments as set out below. [0017]
  • DEFINITIONS
  • The following definitions serve to illustrate the different terms and expressions used in the present invention. [0018]
  • The term ‘hepatitis C virus single envelope protein’ refers to a polypeptide or an analogue thereof (e.g. mimotopes) comprising an amino acid sequence (and/or amino acid analogues) defining at least one HCV epitope of either the E1 or the E2 region. These single envelope proteins in the broad sense of the word may be both monomeric or homo-oligomeric forms of recombinantly expressed envelope proteins. Typically, the sequences defining the epitope correspond to the amino acid sequence of either the E1 or the E2 region of HCV (either identically or via substitution of analogues of the native amino acid residue that do not destroy the epitope). In general, the epitope-defining sequence will be 3 or more amino acids in length, more typically, 5 or more amino acids in length, more typically 8 or more amino acids in length, and even more typically 10 or more amino acids in length. With respect to conformational epitopes, the length of the epitope-defining sequence can be subject to wide variations, since it is believed that these epitopes are formed by the three-dimensional shape of the antigen (e.g. folding). Thus, the amino acids defining the epitope can be relatively few in number, but widely dispersed along the length of the molecule being brought into the correct epitope conformation via folding. The portions of the antigen between the residues defining the epitope may not be critical to the conformational structure of the epitope. For example, deletion or substitution of these intervening sequences may not affect the conformational epitope provided sequences critical to epitope conformation are maintained (e.g. cysteines involved in disulfide bonding, glycosylation sites, etc.). A conformational epitope may also be formed by 2 or more essential regions of subunits of a homooligomer or heterooligomer. [0019]
  • The HCV antigens of the present invention comprise conformational epitopes from the E1 and/or E2 (envelope) domains of HCV. The E1 domain, which is believed to correspond to the viral envelope protein, is currently estimated to span amino acids 192-383 of the HCV polyprotein (Hijikata et al., 1991). Upon expression in a mammalian system (glycosylated), it is believed to have an approximate molecular weight of 35 kDa as determined via SDS-PAGE. The E2 protein, previously called NS1, is believed to span amino acids 384-809 or 384-746 (Grakoui et al., 1993) of the HCV polyprotein and to also be an envelope protein. Upon expression in a vaccinia system (glycosylated), it is believed to have an apparent get molecular weight of about 72 kDa. It is understood that these protein endpoints are approximations (e.g. the carboxy terminal end of E2 could lie somewhere in the 730-820 amino acid region, e.g. ending at amino acid 730, 735, 740, 742, 744, 745, preferably 746, 747, 748, 750, 760, 770, 780, 790, 800, 809, 810, 820). The E2 protein may also be expressed together with the E1, P7 (aa 747-809), NS2 (aa 810-1026), NS4A (aa 1658-1711) or NS4B (aa 1712-1972). Expression together with these other HCV proteins may be important far obtaining the correct protein folding. [0020]
  • It is also understood that the isolates used in the examples section of the present invention were not intended to limit the scope of the invention and that any HCV isolate from [0021] type 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or any other new genotype of HCV is a suitable source of E1 and/or E2 sequence for the practice of the present invention.
  • The E1 and E2 antigens used in the present invention may be full-length viral proteins, substantially full-length versions thereof, or functional fragments thereof (e.g. fragments which are not missing sequence essential to the formation or retention of an epitope). Furthermore, the HCV antigens of the present invention can also include other sequences that do not block or prevent the formation of the conformational epitope of interest. The presence or absence of a conformational epitope can be readily determined though screening the antigen of interest with an antibody (polyclonal serum or monoclonal to the conformational epitope) and comparing its reactivity to that of a denatured version of the antigen which retains only linear epitopes (if any). In such screening using polyclonal antibodies, it may be advantageous to adsorb the polyclonal serum first with the denatured antigen and see if it retains antibodies to the antigen of interest. [0022]
  • The HCV antigens of the present invention can be made by any recombinant method that provides the epitope of interest. For example, recombinant intercellular expression in mammalian or insect cells is a preferred method to provide glycosylated E1 and/or E2 antigens in ‘native’ conformation as is the case for the natural HCV antigens. Yeast cells and mutant yeast strains ([0023] e.g. mnn 9 mutant (Kniskern et al., 1994) or glycosylation mutants derived by means of vanadate resistence selection (Ballou et al., 1991)) may be ideally suited for production of secreted high-mannose-type sugars; whereas proteins secreted from mammalian cells may contain modifications including galactose or sialic acids which may be undesirable for certain diagnostic or vaccine applications. However, it may also be possible and sufficient for certain applications, as it is known for proteins, to express the antigen in other recombinant hosts (such as E. coli) and renature the protein after recovery.
  • The term ‘fusion polypeptide’ intends a polypeptide in which the HCV antigen(s) are part of a single continuous chain of amino acids, which chain does not occur in nature. The HCV antigens may be connected directly to each other by peptide bonds or be separated by intervening amino acid sequences. The fusion polypeptides may also contain amino acid sequences exogenous to HCV. [0024]
  • The term ‘solid phase’ intends a solid body to which the individual HCV antigens or the fusion polypeptide comprised of HCV antigens are bound covalently or by noncovalent means such as hydrophobic adsorption. [0025]
  • The term ‘biological sample’ intends a fluid or tissue of a mammalian individual (e.g. an anthropoid, a human) that commonly contains antibodies produced by the individual, more particularly antibodies against HCV. The fluid or tissue may also contain HCV antigen. Such components are known in the art and include, without limitation, blood, plasma, serum, urine, spinal fluid, lymph fluid, secretions of the respiratory, intestinal or genitourinary tracts, tears, saliva, milk, white blood cells and myelomas. Body components include biological liquids. The term ‘biological liquid’ refers to a fluid obtained from an organism. Some biological fluids are used as a source of other products, such as clotting factors (e.g. Factor VIII;C), serum albumin, growth hormone and the like, in such cases, it is important that the source of biological fluid be free of contamination by virus such as HCV. [0026]
  • The term ‘immunologically reactive’ means that the antigen in question will react specifically with anti-HCV antibodies present in a body component from an HCV infected individual. [0027]
  • The term ‘immune complex’ intends the combination formed when an antibody binds to an epitope on an antigen. [0028]
  • ‘E1’ as used herein refers to a protein or polypeptide expressed within the first 400 amino acids of an HCV polyprotein, sometimes referred to as the E, ENV or S protein. In its natural form it is a 35 kDa glycoprotein which is found in strong association with membranes. In most natural HCV strains, the E1 protein is encoded in the viral polyprotein following the C (core) protein. The E1 protein extends from approximately amino acid (aa) 192 to about aa 383 of the full-length polyprotein. [0029]
  • The term ‘E1’ as used herein also includes analogs and truncated forms that are immunologically cross-reactive with natural E1, and includes E1 proteins of [0030] genotypes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or any other newly identified HCV type or subtype.
  • ‘E2’ as used herein refers to a protein or polypeptide expressed within the first 900 amino acids of an HCV polyprotein, sometimes referred to as the NS1 protein. In its natural form it is a 72 kDa glycoprotein that is found in strong association with membranes. In most natural HCV strains, the E2 protein is encoded in the viral polyprotein following the E1 protein. The E2 protein extends from approximately [0031] amino acid position 384 to amino acid position 746, another form of E2 extends to amino acid position 809. The term ‘E2’ as used herein also includes analogs and truncated forms that are immunologically cross-reactive with natural E2. For example, insertions of multiple codons between codon 383 and 384, as well as deletions of amino acids 384-387 have been reported by Kato et al. (1992).
  • ‘E1/E2’ as used herein refers to an oligomeric form of envelope proteins containing at least one E1 component and at least one E2 component. [0032]
  • The term ‘specific oligomeric’ E1 and/or E2 and/or E1/E2 envelope proteins refers to all possible oligomeric forms of recombinantly expressed E1 and/or E2 envelope proteins which are not aggregates. E1 and/or E2 specific oligomeric envelope proteins are also referred to as homo-oligomeric E1 or E2 envelope proteins (see below). [0033]
  • The term ‘single or specific oligomeric’ E1 and/or E2 and/or E2 envelope proteins refers to single monomeric E1 or E2 proteins (single in the strict sense of the word) as well as specific oligomeric E1 and/or E2 and/or E1/E2 recombinantly expressed proteins. These single or specific oligomeric envelope proteins according to the present invention can be further defined by the following formula (E1)[0034] x(E2)y wherein x can be a number between 0 and 100, and y can be a number between o and 100, provided that x and y are not both 0. With x=1 and y=0 said envelope proteins include monomeric E1.
  • The term ‘homo-oligomer’ as used herein refers to a complex of E1 and/or E2 containing more than one E1 or E2 monomer, e.g. E1/E1 dimers, E1/E1/E1 trimers or E1/E1/E1/E1 tetramers and E2/E2 dimers, E2/E2/E2 trimers or E2/E2/E2/E2 tetramers, E1 pentamers and hexamers, E2 pentamers and hexamers or any higher-order homo-oligomers of E1 or E2 are all ‘homo-oligomers’ within the scope of this definition. The oligomers may contain one, two, or several different monomers of E1 or E2 obtained from different types or subtypes of hepatitis C virus including for example those described in an international application published under WO 94/25601 and European application No. 94870166.9 both by the present applicants. Such mixed oligomers are still homo-oligomers within the scope of this invention, and may allow more universal diagnosis, prophylaxis or treatment of HCV. [0035]
  • The term ‘purified’ as applied to proteins herein refers to a composition wherein the desired protein comprises at least 35% of the total protein component in the composition. The desired protein preferably comprises at least 40%, more preferably at least about 50%, more preferably at least about 60%, still more preferably at least about 70%, even more preferably at least about 80%, even more preferably at least about 90% and most preferably at least about 95% of the total protein component. The composition may contain other compounds such as carbohydrates, salts, lipids, solvents, and the like, without affecting the determination of the percentage purity as used herein. An ‘isolated’ HCV protein intends an HCV protein composition that is at least 35% pure. [0036]
  • The term ‘essentially purified proteins’ refers to proteins purified such that they can be used for in vitro diagnostic methods and as a therapeutic compound. These proteins are substantially free from cellular proteins, vector-derived proteins or other HCV viral components. Usually these proteins are purified to homogeneity (at least 80% pure, preferably, 90%, more preferably 95%, more preferably 97%, more preferably 98%, more preferably 99%, even more preferably 99.5% and most preferably the contaminating proteins should be undetectable by conventional methods like SDS-PAGE and silver staining. [0037]
  • The term ‘recombinantly expressed’ used within the context of the present invention refers to the fact that the proteins of the present invention are produced by recombinant expression methods be it in prokaryotes, or lower or higher eukaryotes as discussed in detail below. [0038]
  • The term ‘lower eukaryote’ refers to host cells such as yeast, fungi and the like. Lower eukaryotes are generally (but no, necessarily) unicellular. Preferred lower eukaryotes are yeasts, particularly species within Saccharomvces, Schizosaccharomyces, Kluveromvces, Pichia (e.g. [0039] Pichia pastoris), Hansenula (e.g. Hansenula polymorpha), Yarowia, Schwaniomyces, Schizosaccharomyces, Zygosaccharomyces and the like. Saccharomyces cerevisiae, S. carlsbergensis and K. lactis are the most commonly used yeast hosts, and are convenient fungal hosts.
  • The term ‘prokaryotes’ refers to hosts such as [0040] E.coli, Lactobacillus, Lactococcus, Salmonella, Streptococcus, Bacillus subtilis or Streptomyces. Also these hosts are contemplated within the present invention.
  • The term ‘higher eukaryote’ refers to host cells derived from higher animals, such as mammals, reptiles, insects, and the like. Presently preferred higher eukaryote host cells are derived from Chinese hamster (e.g. CHO), monkey (e.g. COS and Vero cells), baby hamster kidney (BHK), pig kidney (PK15), [0041] rabbit kidney 13 cells (RK13), the human osteosarcoma cell line 143 B, the human cell line HeLa and human hepatoma cell lines like Hep G2, and insect cell lines (e.g. Soodoptera frugiperda). The host cells may be provided in suspension or flask cultures, tissue cultures, organ cultures and the like. Alternatively the host cells may also be transgenic animals.
  • The term ‘polypeptide’ refers to a polymer of amino acids and does not refer to a specific length of the product; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not refer to or exclude post-expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like. Included within the definition are, for example, polypeptides containing one or more analogues of an amino acid (including, for example, unnatural amino acids, PNA, etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring. [0042]
  • The term ‘recombinant polynucleotide or nucleic acid’ intends a polynucleotide or nucleic acid of genomic, cDNA, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation: (1) is not associated with all or a portion of a polynucleotide with which it is associated in nature, (2) is linked to a polynucleotide other than that to which it is linked in nature, or (3) does not occur in nature. [0043]
  • The term ‘recombinant host cells’, ‘host cells’, ‘cells’, ‘cell lines’, ‘cell cultures’, and other such terms denoting microorganisms or higher eukaryotic cell lines cultured as unicellular entities refer to cells which can be or have been, used as recipients for a recombinant vector or other transfer polynucleotide, and include the progeny of the original cell which has been transfected. It is understood that the progeny of a single parental cell may not necessarily be completely identical in morphology or in genomic or total DNA complement as the original parent, due to natural, accidental, or deliberate mutation. [0044]
  • The term ‘replicon’ is any genetic element, e.g., a plasmid, a chromosome, a virus, a cosmid, etc., that behaves as an autonomous unit of polynucleotide replication within a cell; i.e., capable of replication under its own control. [0045]
  • The term ‘vector’ is a replicon further comprising sequences providing replication and/or expression of a desired open reading frame. [0046]
  • The term ‘control sequence’ refers to polynucleotide sequences which are necessary to effect the expression of coding sequences to which they are ligated. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and terminators; in eukaryotes, generally, such control sequences include promoters, terminators and, in some instances, enhancers. The term ‘control sequences’ is intended to include, at a minimum, all components whose presence is necessary for expression, and may also include additional components whose presence is advantageous, for example, leader sequences which govern secretion. [0047]
  • The term ‘promoter’ is a nucleotide sequence which is comprised of consensus sequences which allow the binding of RNA polymerase to the DNA template in a manner such that mRNA production initiates at the normal transcription initiation site for the adjacent structural gene. [0048]
  • The expression ‘operably linked’ refers to a juxtaposition wherein the components so described are in a relationship permitting them to function in their intended manner. A control sequence ‘operably linked’ to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences. [0049]
  • An ‘open reading frame’ (ORF) is region of a polynucleotide sequence which encodes a polypeptide and does not contain stop codons: this region may represent a portion of a coding sequence or a total coding sequence. [0050]
  • A ‘coding sequence’ is a polynucleotide sequence which is transcribed into mRNA and/or translated into a polypeptide when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a translation start codon at the 5′-terminus and a translation stop codon at the 3′-terminus. A coding sequence can include but is not limited to mRNA, DNA (including cDNA), and recombinant polynucleotide sequences. [0051]
  • As used herein, ‘epitope’ or ‘antigenic determinant’ means an amino acid sequence that is immunoreactive. Generally an epitope consists of at least 3 to 4 amino acids, and more usually, consists of at least 5 or 6 amino acids, sometimes the epitope consists of about 7 to 8, or even about 10 amino acids. As used herein, an epitope of a designated polypeptide denotes epitopes with the same amino acid sequence as the epitope in the designated polypeptide, and immunologic equivalents thereof. Such equivalents also include strain, subtype (=genotype), or type(group)-specific variants, e.g. of the currently known sequences or strains belonging to [0052] genotypes 1a, 1b, 1c, 1d, 1e, 1f, 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i. 3a. 3b, 3c. 3d. 3e, 3f, 3g, 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i, 4j, 4k, 4l, 5a, 5b, 6a, 6b, 6c, 7a, 7b, 7c, 8a, 8b, 9a, 9b, 10a, or any other newly defined HCV (sub)type. It is to be understood that the amino acids constituting the epitope need not be part of a linear sequence, but may be interspersed by any number of amino acids, thus forming a conformational epitope.
  • The term ‘immunogenic’ refers to the ability of a substance to cause a humoral and/or cellular response, whether alone or when linked to a carrier, in the presence or absence of an adjuvant. ‘Neutralization’ refers to an immune response that blocks the infectivity, either partially or fully, of an infectious agent. A ‘vaccine’ is an immunogenic composition capable of eliciting protection against HCV, whether partial or complete. A vaccine may also be useful for treatment of an individual, in which case it is called a therapeutic vaccine. [0053]
  • The term ‘therapeutic’ refers to a composition capable of treating HCV infection. [0054]
  • The term ‘effective amount’ refers to an amount of epitope-bearing polypeptide sufficient to induce an immunogenic response in the individual to which it is administered, or to otherwise detectably immunoreact in its intended system (e.g., immunoassay). Preferably, the effective amount is sufficient to effect treatment as defined above. The exact amount necessary will vary according to the application. For vaccine applications or for the generation of polyclonal antiserum/antibodies, for example, the effective amount may vary depending on the species, age, and general condition of the individual, the severity of the condition being treated, the particular polypeptide selected and its mode of administration, etc. It is also believed that effective amounts will be found within a relatively large, non-critical range. An appropriate effective amount can be readily determined using only routine experimentation. Preferred ranges of E1 and/or E2 and/or E1/E2 single or specific oligomeric envelope proteins for prophylaxis of HCV disease are 0.01 to 100 μg/dose, preferably 0.1 to 60 μg/dose. Several doses may be needed per individual in order to achieve a sufficient immune response and subsequent protection against HCV disease. [0055]
  • DETAILED DESCRIPTION OF THE INVENTION
  • More particularly, the present invention contemplates a method for isolating or purifying recombinant HCV single or specific oligomeric envelope protein selected from the group consisting of E1 and/or E2 and/or E1/E2, characterized in that upon lysing the transformed host cells to isolate the recombinantly expressed protein a disulphide bond cleavage or reduction step is carried out with a disculphide bond cleaving agent. [0056]
  • The essence of these ‘single or specific oligomeric’ envelope proteins of the invention is that they are free from contaminating proteins and that they are not disulphide bond linked with contaminants. [0057]
  • The proteins according to the present invention are recombinantly expressed in lower or higher eukaryotic cells or in prokaryotes. The recombinant proteins of the present invention are preferably glycosylated and may contain high-mannose-type, hybrid, or complex glycosylations. Preferentially said proteins are expressed from mammalian cell lines as discussed in detail in the Examples section, or in yeast such as in mutant yeast strains also as detailed in the Examples section. [0058]
  • The proteins according to the present invention may be secreted or expressed within components of the cell, such as the ER or the Golgi Apparatus. Preferably, however, the proteins of the present invention bear high-mannose-type glycosylations and are retained in the ER or Golgi Apparatus of mammalian cells or are retained in or secreted from yeast cells, preferably secreted from yeast mutant strains such as the mnn9 mutant (Kniskern et al., 1994), or from mutants that have been selected by means of vanadate resistence (Ballou et al., 1991). [0059]
  • Upon expression of HCV envelope proteins, the present inventors could show that some of the free thiol groups of cysteines not involved in intra- or inter-molecular disulphide bridges, react with cysteines of host or expression-system-derived (e.g. vaccinia) proteins or of other HCV envelope proteins (single or oligomeric), and form aspecific intermolecular bridges. This results in the formation of ‘aggregates’ of HCV envelope proteins together with containing proteins. It was also shown in WO 92/08734 that ‘aggregates’ were obtained after purification, but it was not described which protein interactions were involved. In patent application WO 92/08734, recombinant E1/E2 protein expressed with the vaccinia virus system were partially purified as aggregates and only found to be 70% pure, rendering the purified aggregates not useful for diagnostic, prophylactic or therapeutic purposes. [0060]
  • Therefore, a major aim of the present invention resides in the separation of single or specific-oligomeric HCV envelope proteins from contaminating proteins, and to use the purified proteins (>95% pure) for diagnostic, prophylactic and therapeutic purposes. To those purposes, the present inventors have been able to provide evidence that aggregated protein complexes (‘aggregates’) are formed on the basis of disulphide bridges and non-covalent protein-protein interactions. The present invention thus provides a means for selectively cleaving the disulphide bonds under specific conditions and for separating the cleaved proteins from contaminating proteins which greatly interfere with diagnostic, prophylactic and therapeutic applications. The free thiol groups may be blocked (reversibly or irreversibly) in order to prevent the reformation of disulphide bridges, or may be left to oxidize and oligomerize with other envelope proteins (see definition homo-oligomer). It is to be understood that such protein oligomers are essentially different from the ‘aggregates’ described in WO 92/08734 and WO 94/01778, since the level of contaminating proteins is undetectable. [0061]
  • Said disuphide bond cleavage may also be achieved by: [0062]
  • (1) performic acid oxidation by means of cysteic acid in which case the cysteine residues are modified into cysteic acid (Moore et al., 1963). [0063]
  • (2) Sulfitolysis (R—S—S—R→2R—SO[0064] 3) for example by means of sulphite (SO2 3) together with a proper oxidant such as Cu2− in which case the cysteine is modified into S-sulpho-cysteine (Bailey and Cole, 1959).
  • (3) Reduction by means of mercaptars, such as dithiotreitol (DDT), β-mercapto-ethanol, cysteine, glutathione Red, 6-mercapto-ethylamine, or thioglycollic acid, of which DTT and β-mercapto-ethanol are commonly used (Cleland, 1964), is the preferred method of this invention because the method can be performed in a water environment and because the cysteine remains unmodified. [0065]
  • (4) Reduction by means of a phosphine (e.g. Bu[0066] 3P) (Rudinger, 1977).
  • All these compounds are thus to be regarded as agents or means for cleaving disulphide bonds according to the present invention. [0067]
  • Said disulphide bond cleavage (or reducing) step of the present invention is preferably a partial disulphide bond cleavage (reducing) step (carried out under partial cleavage or reducing conditions). [0068]
  • A preferred disulphide bond cleavage or reducing agent according to the present invention is dithiotreitol (DTT). Partial reduction is obtained by using a low concentration of said reducing agent, i.e. for DTT for example in the concentration range of about 0.1 to about 50 mM, preferably about 0.1 to about 20 mM, preferably about 0.5 to about 10 mM, preferably more than 1 mM, more than 2 mM or more than 5 mM, more preferably about 1.5 mM, about 2.0 mM, about 2.5 mM, about 5 mM or about 7.5 mM. [0069]
  • Said disulphide bond cleavage step may also be carried out in the presence of a suitable detergent (as an example of a means for cleaving disulphide bonds or in combination with a cleaving agent) able to dissociate the expressed proteins, such as DecylPEG, EMPIGEN-BB, NP-40, sodium cholate, Triton X-100. [0070]
  • Said reduction or cleavage step (preferably a partial reduction or cleavage step) is carried out preferably in in the presence of (with) a detergent. A preferred detergent according to the present invention is Empigen-BB. The amount of detergent used is preferably in the range of 1 to 10%, preferably more than 3%, more preferably about 3.5% of a detergent such as Empigen-BB. [0071]
  • A particularly preferred method for obtaining disulphide bond cleavage employs a combination of a classical disulphide bond cleavage agent as detailed above and a detergent (also as detailed above). As contemplated in the Examples section, the particular combination of a low concentration of DTT (1.5 to 7.5 mM) and about 3.5% of Empigen-BB is proven to be a particularly preferred combination of reducing agent and detergent for the purification of recombinantly expressed E1 and E2 proteins. Upon gelfiltration chromatography, said partial reduction is shown to result in the production of possibly dimeric E1 protein and separation of this E1 protein from contaminating proteins that cause false reactivity upon use in immunoassays. [0072]
  • It is, however, to be understood that also any other combination of any reducing agent known in the art with any detergent or other means known in the art to make the cysteines better accessible is also within the scope of the present invention, insofar as said combination reaches the same goal of disulphide bridge cleavage as the preferred combination examplified in the present invention. [0073]
  • Apart from reducing the disulphide bonds, a disulphide bond cleaving means according to the present invention may also include any disulphide bridge exchanging agents (competitive agent being either organic or proteinaeous, see for instance Creighton, 1988) known in the art which allows the following type of reaction to occur:[0074]
  • R1 S−S R2+R3 SH→R1 S−S R3+R2 SH
  • R1, R2: compounds of protein aggregates [0075]
  • R3 SH: competitive agent (organic, proteinaeous) [0076]
  • The term ‘disulphide bridge exchanging agent’ is to be interpretated as including disulphide bond reforming as well as disulphide bond blocking agents. [0077]
  • The present invention also relates to methods for purifying or isolating HCV single or specific oligomeric envelelope proteins as set out above further including the use of any SH group blocking or binding reagent known in the art such as chosen from the following list: [0078]
  • Glutathion [0079]
  • 5,5′-dithiobis-(2-nitrobenzoic acid) or bis-(3-carboxy-4-nitrophenyl)-disulphide (DTNB or Ellman's reagent) (Elmann, 1959) [0080]
  • N-ethylmaleimide (NEM; Benesch et. al., 1956) [0081]
  • N-(4-dimethylamino-3,5-dinitrophenyl) maleimide or Tuppy's maleimide which provides a color to the protein [0082]
  • P-chloromercuribenzoate (Grassetti et al., 1969) [0083]
  • 4-vinylpyridine (Friedman and Krull, 1969) can be liberated after reaction by acid hydrolysis [0084]
  • acrylonitrile, can be liberated after reaction by acid hydrolysis (Weil and Seibles, 1961) [0085]
  • NEM-biotin (e.g. obtained from Sigma B1267) [0086]
  • 2,2′-dithiopyridine (Grassetti and Murray, 1967) [0087]
  • 4,4′-dithiopyridine (Grassetti and Murray, 1967) [0088]
  • 6,6′-dithiodinicontinic acid (DTDNA; Brown and Cunnigham, 1970) [0089]
  • 2,2′-dithiobis-(5′-nitropyridine) (DTNP; U.S. Pat. No. 3,597,160) or other dithiobis (heterocyclic derivative) compounds (Crassetti and Murray, 1969) [0090]
  • A survey of the publications cited shows that often different reagents for sulphydryl groups will react with varying numbers of thiol groups of the same protein or enzyme molecule. One may conclude that this variation in reactivity of the thiol groups is due to the steric environment of these groups, such as the shape of the molecule and the surrounding groups of atoms and their charges, as well as to the size. shape and charge of the reagent molecule or ion. Frequently the presence of adequate concentrations of denaturants such as sodium dodecylsulfate, urea or guanicine hydrochoride will cause sufficient unfolding of the protein molecule to permit equal access to all of the reagents for thiol groups. By varying the concentration of denaturant, the degree of unfolding can be controlled and in this way thiol groups with different degrees of reactivity may be revealed. Although up to date most of the work reported has been done with p-chloromercuribenzoate, N-ethylmaleimide and DTNB, it is likely that the other more recently developed reagents may prove equally useful. Because of their varying structures, it seems likely, in fact, that they may respond differently to changes in the steric environment of the thiol groups. [0091]
  • Alternatively, conditions such as low pH (preferably lower than pH 6) for preventing free SH groups from oxidizing and thus preventing the formation of large intermolecular aggregates upon recombinant expression and purification of E1 and E2 (envelope) proteins are also within the scope of the present invention. [0092]
  • A preferred SH group blocking reagent according to the present invention is N-ethylmaleimide (NEM). Said SH group blocking reagent may be administrated during lysis of the recombinant host cells and after the above-mentioned partial reduction process or after any other process for cleaving disulphide bridges. Said SH group blocking reagent may also be modified with any group capable of providing a detectable label and/or any group aiding in the immobilization of said recombinant protein to a solid substrate, e.g. biotinylated NEM. [0093]
  • Methods for cleaving cysteine bridges and blocking free cysteines have also been described in Darbre (1987), Means and Feeney (1971), and by Wong (1993). [0094]
  • A method to purify single or specific oligomeric recombinant E1 and/or E2 and/or E1/E2 proteins according to the present invention as defined above is further characterized as comprising the following steps: [0095]
  • lysing recombinant E1 and/or E2 and, or E1/E2 expressing host cells, preferably in the presence of an SH group blocking agent, such as N-ethylmaleimide (NEM), and possibly a suitable detergent, preferably Empigen-BB. [0096]
  • recovering said HCV envelope protein by affinity purification for instance by means lectin-chromatography, such as lentil-lectin chromatography, or immunoaffinity chromatography using anti-E1 and/or anti-E2 specific monoclonal antibodies, followed by, [0097]
  • reduction or cleavage of disculphide bonds with a disulphide bond cleaving agent, such as DTT, preferably also in the presence of an SH group blocking agent, such as NEM or Biotin-NEM, and, [0098]
  • recovering the reduced HCV E1 and/or E2 and/or E1/E2 envelope proteins for instance by gelfiltration (size exclusion chromatography or molecular sieving) and possibly also by an additional Ni[0099] 2−-IMAC chromatography and desalting step.
  • It is to be understood that the above-mentioned recovery steps may also be carried out using any other suitable technique known by the person skilled in the art. [0100]
  • Preferred lectin-chromatography systems include [0101] Galanthus nivalis agglutinin (GNA)-chromatography, or Lens culinaris agglutinin (LCA) (lentil) lectin chromatography as illustrated in the Examples section. Other useful lectins include those recognizing high-mannose type sugars, such as Narcissus pseudonarcissus agglutinin (NPA), Pisum sativum agglutinin (PSA), or Allium ursinum agglutinin (AUA).
  • Preferably said method is usable to purify single or specific oligomeric HCV envelope protein produced intracellularly as detailed above. [0102]
  • For secreted E1 or E2 or E1/E2 oligomers, lectins binding complex sugars such as [0103] Ricinus communis agglutinin I (RCA I) are preferred lectins.
  • The present invention more particularly contemplates essentially purified recombinant HCV single or specific oligomeric envelope proteins, selected from the group consisting of E1 and/or E2 and/or E1/E2. characterized as being isolated or purified by a method as defined above. [0104]
  • The present invention more particularly relates to the purification or isolation of recombinant envelope proteins which are expressed from recombinant mammalian cells such as vaccinia. [0105]
  • The present invention also relates to the purification or isolation of recombinant envelope proteins which are expressed from recombinant yeast cells. [0106]
  • The present invention equally relates to the purification or isolation of recombinant envelope proteins which are expressed from recombinant bacterial (prokaryotic) cells. [0107]
  • The present invention also contemplates a recombinant vector comprising a vector sequence, an appropriate prokaryotic, eukaryotic or viral or synthetic promoter sequence followed by a nucleotide sequence allowing the expression of the single or specific oligomeric E1 and/or E2 and/or E1/E2 of the invention. [0108]
  • Particularly, the present invention contemplates a recombinant vector comprising a vector sequence, an appropriate prokaryotic, eukaryotic or viral or synthetic promoter sequence followed by a nucleotide sequence allowing the expression of the single E1 or E1 of the invention. [0109]
  • Particularly, the present invention contemplates a recombinant vector comprising a vector sequence, an appropriate prokaryotic, eukaryotic or viral or synthetic promoter sequence followed by a nucleotide sequence allowing the expression of the single E1 or E2 of the invention. [0110]
  • The segment of the HCV cDNA encoding the desired E1 and/or E2 sequence inserted into the vector sequence may be attached to a signal sequence. Said signal sequence may be that from a non-HCV source, e.g. the IgG or tissue plasminogen activator (tpa) leader sequence for expression in mammalian cells, or the α-mating factor sequence for expression into yeast cells, but particularly preferred constructs according to the present invention contain signal sequences appearing in the HCV genome before the respective start points of the E1 and E2 proteins. The segment of the HCV cDNA encoding the desired E1 and/or E2 sequence inserted into the vector may also include deletions e.g. of the hydrophobic domain(s) as illustrated in the examples section, or of the E2 hypervariable region I. [0111]
  • More particularly, the recombinant vectors according to the present invention encompass a nucleic acid having an HCV cDNA segment encoding the polyprotein starting in the region between [0112] amino acid positions 1 and 192 and ending in the region between positions 250 and 400 of the HCV polyprotein, more preferably ending in the region between positions 250 and 341, even more preferably ending in the region between positions 290 and 341 for expression of the HCV single E1 protein. Most preferably, the present recombinant vector encompasses a recombinant nucleic acid having a HCV cDNA segment encoding part of the HCV polyprotein starting in the region between positions 117 and 192, and ending at any position in the region between positions 263 and 326, for expression of HCV single E1 protein. Also within the scope of the present invention are forms that have the first hydrophobic domain deleted (positions 264 to 293 plus or minus 8 amino acids), or forms to which a 5′-terminal ATG codon and a 3′-terminal stop codon has been added, or forms which have a factor Xa cleavage site and/or 3 to 10, preferably 6 Histidine codons have been added.
  • More particularly, the recombinant vectors according to the present invention encompass a nucleic acid having an HCV cDNA segment encoding the polyprotein starting in the region between amino acid positions 290 and 406 and ending in the region between positions 600 and 820 of the HCV polyprotein, more preferably starting in the region between positions 322 and 406, even more preferably starting in the region between positions 347 and 406, even still more preferably starting in the region between positions 364 and 406 for expression of the HCV single E2 protein. Most preferably, the present recombinant vector encompasses a recombinant nucleic acid having a HCV cDNA segment encoding the polyprotein staring in the region between positions 290 and 406, and ending at any position of [0113] positions 623, 650, 661, 673, 710, 715, 720, 746 or 809, for expression of HCV single E2 protein. Also within the scope of the present invention are forms to which a 5′-terminai ATG codon and a 3′-terminal stop codon has been added, or forms which have a factor Xa cleavage site and/or 3 to 10, preferably 6 Histidine codons have been added.
  • A variety of vectors may be used to obtain recombinant expression of HCV single or specific oligomeric envelope proteins of the present invention. Lower eukaryotes such as yeasts and glycosylation mutant strains are typically transformed with plasmids, or are transformed with a recombinant virus. The vectors may replicate within the host independently, or may integrate into the host cell genome. [0114]
  • Higher eukaryotes maybe transformed with vectors, or may be infected with a recombinant virus, for example a recombinant vaccinia virus. Techniques and vectors for the insertion of foreign DNA into vaccinia virus are well known in the art, and utilize. for example homologous recombination. A wide variety of viral promoter sequences, possibly terminator sequences and poly(A)-addition sequences, possibly enhancer sequences and possibly amplification sequences, all required for the mammalian expression, are available in the art. Vaccinia is particularly preferred since vaccinia halts the expression of host cell proteins. Vaccinia is also very much preferred since it allows the expression of E1 and E2 proteins of HCV in cells or individuals which are immunized with the live recombinant vaccinia virus. For vaccination of humans the avipox and Ankara Modified Virus (AMV) are particularly useful vectors. [0115]
  • Also known are insect expression transfer vectors derived from baculovirus [0116] Autographa californica nuclear polyhedrosis virus (AcNPV), which is a helper-independent viral expression vector. Expression vectors derived from this system usually use the strong viral polyhedrin gene promoter to drive the expression of heterologous genes. Different vectors as well as methods for the introduction of heterologous DNA into the desired site of baculovirus are available to the man skilled in the art for baculovirus expression. Also different signals for posttranslational modification recognized by insect cells are known in the art.
  • Also included within the scope of the present invention is a method for producing purified recombinant single or specific oligomeric HCV E1 or E2 or E1/E2 proteins, wherein the cysteine residues involved in aggregates formation are replaced at the level of the nucleic acid sequence by other residues such that aggregate formation is prevented. The recombinant proteins expressed by recombinant vectors carrying such a mutated E1 and/or E2 protein encoding nucleic acid are also within the scope of the present invention. [0117]
  • The present invention also relates to recombinant E1 and/or E2 and/or E1/E2 proteins characterized in that at least one of their glycosylation sites has been removed and are consequently termed glycosylation mutants. As explained in the Examples section, different glycosylation mutants may be desired to diagnose (screening, confirmation, prognosis, etc.) and prevent HCV disease according to the patient in question. An E2 protein glycosylation mutant lacking the GLY4 has for instance been found to improve the reactivity of certain sera in diagnosis. These glycosylation mutants are preferably purified according to the method disclosed in the present invention. Also contemplated within the present invention are recombinant vectors carrying the nucleic acid insert encoding such E1 and/or E2 and/or E1/E2 glycosylation mutant as well as host cells transformed with such a recombinant vector. [0118]
  • The present invention also relates to recombinant vectors including a polynucleotide which also forms part of the present invention. The present invention relates more particularly to the recombinant nucleic acids as represented in [0119] SEQ ID NO 3, 5, 7, 9, 11, 13, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 47 and 49, or parts thereof.
  • The present invention also contemplates host cells transformed with a recombinant vector as defined above, wherein said vector comprises a nucleotide sequence encoding HCV E1 and/or E2 and/or E1,E2 protein as defined above in addition to a regulatory sequence operably linked to said HCV E1 and/or E2 and/or E1/E2 sequence and capable of regulating the expression of said HCV E1 and/or E2 and/or E1/E2 protein. [0120]
  • Eukaryotic hosts include lower and higher eukaryotic hosts as described in the definitions section. Lower eukaryotic hosts include yeast cells well known in the art. Higher eukaryotic hosts mainly include mammalian cell lines known in the art and include many immortalized cell lines available from the ATCC, including HeLa cells, Chinese hamster ovary (CHO) cells, Baby hamster kidney (BHK) cells, PK15, RK13 and a number of other cell lines. [0121]
  • The present invention relates particularly to a recombinant E1 and/or E2 and/or E1/E2 protein expressed by a host cell as defined above containing a recombinany vector as defined above. These recombinant proteins are particularly purified according to the method of the present invention. [0122]
  • A preferred method for isolating or purifying HCV envelope proteins as defined above is further characterized as comprising at least the following steps: [0123]
  • growing a host cell as defined above transformed with a recombinant vector according to the present invention or with a known recombinant vector expressing E1 and/or E2 and/or E1/E2 HCV envelope proteins in a suitable culture medium, [0124]
  • causing expression of said vector sequence as defined above under suitable conditions, and, [0125]
  • lysing said transformed host cells, preferably in the presence of a SH group blocking agent, such as N-ethylmalemide (NEM), and possibly a suitable detergent, preferably Empigen-BB, [0126]
  • recovering said HCV envelope protein by affinity purification such as by means of lectin-chromatography or immunoaffinity chromatography using anti-E1 and/or anti-E2 specific monoclonal antibodies, with said lectin being preferably lentil-lectin or GNA, followed by, [0127]
  • incubation of the eluate of the previous step with a disulphide bond cleavage means, such as DTT, preferably followed by incubation with an SH group blocking agent, such as NEM or Biotin-NEM, and, [0128]
  • isolating the HCV single or specific oligomeric E1 and/or E2 and/or E1/E2 proteins such as by means of gelfiltration and possibly also by a subsequent Ni[0129] 2−-IMAC chromatography followed by a desalting step.
  • As a result of the above-mentioned process, E1 and/or E-2 and/or E1 E2 proteins may be produced in a form which elute differently from the large aggregates containing vector-derived components and, or cell components in the void volume of the gelfiltration column or the IMAC collumn as illustrated in the Examples section. The disulphide bridge cleavage step advantageously also eliminates the false reactivity due to the presence of host and/or expression-system-derived proteins. The presence of NEM and a suitable detergent during lysis of the cells may already partly or even completely prevent the aggregation between the HCV envelope proteins and contaminants. [0130]
  • Ni[0131] 2−-IMAC chromatography followed by a desalting step is preferably used for contructs bearing a (His)5 as described by Janknecht et al., 1991, and Hochuli et al., 1988.
  • The present invention also relates to a method for producing monoclonal antibodies in small animals such as mice or rats, as well as a method for screening and isolating human B-cells that recognize anti-HCV antibodies, using the HCV single or specific oligomeric envelope proteins of the present invention. [0132]
  • The present invention further relates to a composition comprising at least one of the following E1 peptides as listed in Table 3: [0133]
  • E1-31 (SEQ ID NO 56) spanning amino acids 181 to 200 of the Core/E1 V1 region, [0134]
  • E1-33 (SEQ ID NO 57) spanning amino acids 193 to 212 of the E1 region. [0135]
  • E1-35 (SEQ ID NO 58) spanning amino acids 205 to 224 of the E1 V2 region (epitope B), [0136]
  • E1-35A (SEQ ID NO 59) spanning amino acids 208 to 227 of the E1 V2 region (epitope B). [0137]
  • 1bE1 (SEQ ID NO 53) spanning [0138] amino acids 192 to 228 of E1 regions (V1, C1, and V2 regions (containing epitope B)),
  • E1-51 (SEQ ID NO 66) spanning amino acids 301 to 320 of the E1 region, E1-53 (SEQ ID NO 67) spanning amino acids 313 to 332 of the E1 C4 region (epitope A), [0139]
  • E1-55 (SEQ ID NO 68) spanning [0140] amino acids 325 to 344 of the E1 region.
  • The present invention also relates to a composition comprising at least one of the following E2 peptides as listed in Table 3: [0141]
  • [0142] Env 67 or E2-67 (SEQ ID NO 72) spanning amino acid positions 397 to 416 of the E2 region (epitope A, recognized by monoclonal antibody 2F1OH10, see FIG. 19),
  • [0143] Env 69 or E2-69 (SEQ ID NO 73) spanning amino acid positions 409 to 428 of the E2 region (epitope A),
  • [0144] Env 23 or E2-23 (SEQ ID NO 86) spanning positions 583 to 602 of the E2 region (epitope E),
  • [0145] Env 25 or E2-25 (SEQ ID NO 87) spanning positions 595 to 614 of the region (epitope E),
  • [0146] Env 27 or E2-27 (SEQ ID NO 88) spanning positions 607 to 626 of the E2 region (epitope E),
  • [0147] Env 17B or E2-17B (SEQ ID NO 83) spanning positions 547 to 566 of the E2 region (epitope D),
  • [0148] Env 13B or E2-13B (SEQ ID NO 82) spanning positions 523 to 542 of the E2 region (epitope C; recognized by monoclonal antibody 16A6E7, see FIG. 19).
  • The present invention also relates to a composition comprising at least one of the following E2 conformational epitopes: [0149]
  • epitope F recognized by monoclonal antibodies 15C8C1, 12D11F1 and 8G10D1H9, [0150]
  • epitope G recognized by monoclonal antibody 9G3E6. [0151]
  • epitope H (or C) recognized by monoclonal antibody 10DC3C4 and 4H6B2, or, epitope I recognized by monoclonal antibody 17F2C2. [0152]
  • The present invention also relates to an E1 or E2 specific antibody raised upon immunization with a peptide or protein composition, with said antibody being specifically reactive with any of the polypeptides or peptides as defined above, and with said antibody being preferably a monoclonal antibody. [0153]
  • The present invention also relates to an E1 or E2 specific antibody screened from a variable chain library in plasmids or phages or from a population of human B-cells by means of a process known in the art, with said antibody being reactive with any of the polypeptides or peptides as defined above, and with said antibody being preferably a monoclonal antibody. [0154]
  • The E1 or E2 specific monoclonal antibodies of the invention can be produced by any hybridoma liable to be formed according to classical methods from splenic cells of an animal, particularly from a mouse or rat, immunized against the HCV polypeptides or peptides according to the invention, as defined above on the one hand, and of cells of a myeloma cell line on the other hard, and to be selected by the ability of the hybridoma to produce the monoclonal antibodies recognizing the polypeptides which has been initially used for the immunization of the animals. [0155]
  • The antibodies involved in the invention can be labelled by an appropriate label of the enzymatic, fluorescent, or radioactive type. [0156]
  • The monoclonal antibodies according to this preferred embodiment of the invention may be humanized versions of mouse monoclonal antibodies made by means of recombinant DNA technology, departing from parts of mouse and/or human genomic DNA sequences coding for H and L chains from cDNA or genomic clones coding for H and L chains. [0157]
  • Alternatively the monoclonal antibodies according to this preferred embodiment of the invention may be human monoclonal antibodies. These antibodies according to the present embodiment of the invention can also be derived from human peripheral blood lymphocytes of patients infected with HCV, or vaccinated against HCV. Such human monoclonal antibodies are prepared, for instance, by means of human peripheral blood lymphocytes (PBL) repopulation of severe combined immune deficiency (SCID) mice (for recent review, see Duchosal et al., 1992). [0158]
  • The invention also relates to the use of the proteins or peptides of the invention, for the selection of recombinant antibodies by the process of repertoire cloning (Persson et al., 1991). [0159]
  • Antibodies directed to peptides or single or specific oligomeric envelope proteins derived from a certain genotype may be used as a medicament, more particularly for incorporation into an immunoassay for the detection of HCV genotypes (for detecting the presence of HCV E1 or E2 antigen), for prognosing/monitoring of HCV disease, or as therapeutic agents. [0160]
  • Alternatively, the present invention also relates to the use of any of the above-specified E1 or E2 specific monoclonal antibodies for the preparation of an immunoassay kit for detecting the presence of E1 or E2 antigen in a biological sample, for the preparation of a kit for prognosing/monitoring of HCV disease or for the preparation of a HCV medicament. [0161]
  • The present invention also relates to the a method for in vitro diagnosis or detection of HCV antigen present in a biological sample, comprising at least the following steps: [0162]
  • (i) contacting said biological sample with any of the E1 and/or E2 specific monoclonal antibodies as defined above, preferably in an immobilized form under appropriate conditions which allow the formation or an immune complex, [0163]
  • (ii) removing unbound components, [0164]
  • (iii) incubating the immune complexes formed with heterologous antibodies, which specifically bind to the antibodies present in the sample to be analyzed, with said heterologous antibodies having conjugated to a detectable label under appropriate conditions, [0165]
  • (iv) detecting the presence of said immune complexes visually or mechanically (e.g. by means of densitometry, fluorimetry, colorimetry). [0166]
  • The present invention also relates to a kit for in vitro diagnosis of HCV antigen present in a biological sample, comprising: [0167]
  • at least one monoclonal antibody as defined above, with said antibody being preferentially immobilized on a solid substrate, [0168]
  • a buffer or components necessary for producing the buffer enabling binding reaction between these antibodies and the HCV antigens present in the biological sample, [0169]
  • a means for detecting the immune complexes formed in the preceding binding reaction, [0170]
  • possibly also including an automated scanning and interpretation device for inferring the HCV antigens present in the sample from the observed binding pattern. [0171]
  • The present invention also relates to a composition comprising E1 and/or E2 and/or E1, E2 recombinant HCV proteins purified according to the method of the present invention or a composition comprising at least one peptides as specified above for use as a medicament. [0172]
  • The present invention more particularly relates to a composition comprising at least one of the above-specified envelope peptides or a recombinant envelope protein composition as defined above, for use as a vaccine for immunizing a mammal, preferably humans, against HCV, comprising administering a sufficient amount of the composition possibly accompanied by pharmaceutically acceptable adjuvant(s), to produce an immune response. [0173]
  • More particularly, the present invention relates to the use of any of the compositions as described here above for the preparation or a vaccine as described above. [0174]
  • Also, the present invention relates to a vaccine composition for immunizing a mammal, preferably humans, against HCV, comprising HCV single or specific oligomeric proteins or peptides derived from the E1 and/or the E2 region as described above. [0175]
  • Immunogenic compositions can be prepared according to methods known in the art. The present compositions comprise an immunogenic amount of a recombinant E1 and/or E2 and/or E1/E2 single or specific oligomeric proteins as defined above or E1 or E2 peptides as defined above, usually combined with a pharmaceutically acceptable carrier, preferably further comprising an adjuvant. [0176]
  • The single or specific oligomeric envelope proteins of the present invention, either E1 and/or E2 and/or E1 /E2, are expected to provide a particularly useful vaccine antigen, since the formation of antibodies to either E1 or E2 may be more desirable than to the other envelope protein, and since the E2 protein is cross-reactive between HCV types and the E1 protein is type-specific. [0177] Cocktails including type 1 E2 protein and E1 proteins derived from several genotypes may be particularly advantageous. Cocktails containing a molar excess of E1 versus E2 or E2 versus E1 may also be particularly useful. Immunogenic compositions may be administered to animals to induce production of antibodies, either to provide a source of antibodies or to induce protective immunity in the animal.
  • Pharmaceutically acceptable carriers include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers; and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. [0178]
  • Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: aluminim hydroxide (alum), N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP) as found in U.S. Pat. No. 4,606,918, N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1′-2′-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE) and RIBI, which contains three components extracted from bacteria, monophosphoryl lipid A, trehalose dimycolate, and cell wall skeleton (MPL+TOM+CWS) in a 2% squalene, [0179] Tween 80 emulsion. Any of the 3 components MPL, TOM or CWS may also be used alone or combined 2 by 2. Additionally, adjuvants such as Stimulon (Cambridge Bioscience, Worcester, Mass.) or SAF-1 (Syntex) may he used. Further, Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA) may be used for non-human applications and research purposes.
  • The immunogenic compositions typically will contain pharmaceutically acceptable vehicles, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, preservatives, and the like, may be included in such vehicles. [0180]
  • Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect. The E1 and -E2 proteins may also be incorporated into Immune Stimulating Complexes together with saponins, for example Quil A (ISCOMS). [0181]
  • Immunogenic compositions used as vaccines comprise a ‘sufficient amount’ or ‘an immunologically effective amount’ of the envelope proteins of the present invention, as well as any other of the above mentioned components, as needed. ‘Immunologically effective amount’, means that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment, as defined above. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (e.g. nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, the strain of infecting HCV, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials. Usually, the amount will vary from 0.01 to 1000 μg/dose, more particularly from 0.1 to 100 μg/dose. [0182]
  • The single or specific oligomeric envelope proteins may also serve as vaccine carriers to present homologous (e.g. T cell epitopes or a cell epitopes from the core, NS2, NS3, NS4 or NS5 regions) or heterologous (non-HCV) haptens, in the same manner as Hepatitis B surface antigen (see European Patent Application 174,444). In this use, envelope proteins provide an immunogenic carrier capable of stimulating an immune response to haptens or antigens conjugated to he aggregate. The antigen may be conjugated either by conventional chemical methods, or may be cloned into the gene encoding E1 and/or E2 at a location corresponding to a hydrophilic region of the protein. Such hydrophylic regions include the V1 region (encompassing amino acid positions 191 to 202), the V2 region (encompassing amino acid positions 213 to 223), the V3 region (encompassing amino acid positions 230 to 242), the V4 region encompassing amino acid positions 230 to 242), the V5 region (encompassing amino acid positions 294 to 303) and the V6 region (encompassing amino acid positions 329 to 336). Another useful location for insertion of haptens is the hydrophobic region (encompassing approximately amino acid positions 264 to 293). It is shown in the present invention that this region can be deleted without affecting the reactivity of the deleted E1 protein with antisera. Therefore, haptens may be inserted at the site of the deletion. [0183]
  • The immunogenic compositions are conventionally administered parenterally, typically by injection, for example, subcutaneously or intramuscularly. Additional formulations suitable for other methods of administration include oral formulations and suppositories. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents. [0184]
  • The present invention also relates to a composition comprising peptides or polypeptides as described above, for in vitro detection of HCV antibodies present in a biological sample. [0185]
  • The present invention also relates to the use of a composition as described above for the preparation of an immunoassay kit for detecting HCV antibodies present in a biological sample. [0186]
  • The present invention also relates to a method for in vitro diagnosis of HCV antibodies present in a biological sample, comprising at least the following steps: [0187]
  • (i) contacting said biological sample with a composition comprising any of the envelope peptide or proteins as defined above, preferably in an immobilized form under appropriate conditions which allow the formation of an immune complex, wherein said peptide or protein can be a biotinylated peptide or protein which is covalently bound to a solid substrate by means of streptavidin or avidin complexes, [0188]
  • (ii) removing unbound components, [0189]
  • (iii) incubating the immune complexes formed with heterologous antibodies, with said heterologous antibodies having conjugated to a detectable label under appropriate conditions, [0190]
  • (iv) detecting the presence of said immune complexes visually or mechanically (e.g. by means of densitometry, fluorimetry, colorimetry). [0191]
  • Alternatively, the present invention also relates to competition immunoassay formats in which recombinantly reduced purified single or specific oligomeric protein E1 and/or E2 and/or E1/E2 proteins as disclosed above are used in combination with E1 and/or E2 peptides in order to compete for HCV antibodies present in a biological sample. [0192]
  • The present invention also relates to a kit for determining the presence of HCV antibodies, in a biological sample, comprising: [0193]
  • at least one peptide or protein composition as defined above, possibly in combination with other polypeptides or peptides from HCV or other types of HCV, with said peptides or proteins being preferentially immobilized on a solid substrate, more preferably on different microwells of the same ELISA plate, and even more preferentially on one and the same membrane strip, [0194]
  • a buffer or components necessary for producing the buffer enabling binding reaction between these polypeptides or peptides and the antibodies against HCV present in the biological sample, [0195]
  • means for detecting the immune complexes formed in the preceding binding reaction, [0196]
  • possibly also including an automated scanning and interpretation device for inferring the HCV genotypes present in the sample from the observed binding pattern. [0197]
  • The immunoassay methods according to the present invention utilize single or specific oligomeric antigens from the E1 and/or E2 domains that maintain linear (in case of peptides) and conformational epitopes (single or specific oligomeric proteins) recognized by antibodies in the sera from individuals infected with HCV. It is within the scope of the invention to use for instance single or specific oligomeric antigens, dimeric antigens, as well as combinations of single or specific oligomeric antigens. The HCV E1 and E2 antigens of the present invention may be employed in virtually any assay format that employs a known antigen to detect antibodies. Of course, a format that denatures the HCV conformational epitope should be avoided or adapted. A common feature of all of these assays is that the antigen is contacted with the body component suspected of containing HCV antibodies under conditions that permit the antigen to bind to any such antibody present in the component. Such conditions will typically be physiologic temperature, pH and ionic strenght using an excess of antigen. The incubation of the antigen with the specimen is followed by detection of immune complexes comprised of the antigen. [0198]
  • Design of the immunoassays is subject to a great deal of variation, and many formats are known in the art. Protocols may, for example, use solid supports, or immunoprecipitation. Most assays involve the use of labeled antibody or polypepide; the labels may be, for example, enzymatic, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the immune complex are also known; examples of which are assays which utilize biotin and avidin or streptavidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays. [0199]
  • The immunoassay may be, without limitation, in a heterogeneous or in a homogeneous format, and of a standard or competitive type. In a heterogeneous format, the polypeptide is typically bound to a solid matrix or support to facilitate separation of the sample from the polypeptide after incubation. Examples of solid supports that can be used are nitrocellulose (e.g., in membrane or microtiter well form), polyvinyl chloride (e.g., in sheets or microtiter wells), polystyrene latex (e.g., in beads or microtiter plates, polyvinylidine fluoride (known as Immunolon™), diazotized paper, nylon membranes, activated beads, and Protein A beads. For example, [0200] Dynatech Immunolon™ 1 or Immunlon™ 2 microtiter plates or 0.25 inch polystyrene beads (Precision Plastic Ball) can be used in the heterogeneous format. The solid support containing the antigenic polypeptides is typically washed after separating it from the test sample, and prior to detection of bound antibodies. Both standard and competitive formats are know in the art.
  • In a homogeneous format, the rest sample is incubated with the combination of antigens in solution. For example, it may be under conditions that will precipitate any antigen-antibody complexes which are formed. Both standard and competitive formats for these assays are known in the art. [0201]
  • In a standard format, the amount of HCV antibodies in the antibody-antigen complexes is directly monitored. This may be accomplished by determining whether labeled anti-xenogeneic (e.g. anti-human) antibodies which recognize an epitope on anti-HCV antibodies will bind due to complex formation. In a competitive format, the amount of HCV antibodies in the sample is deduced by monitoring the competitive effect on the binding of a known amount of labeled antibody (or other competing ligand) in the complex. [0202]
  • Complexes formed comprising anti-HCV, antibody for in the case of competitive assays, the amount of competing antibody are detected by any of a number of known techniques, depending on the format. For example, unlabeled HCV antibodies in the complex may be detected using a conjugate of anti-xenogeneic Ig complexed with a label (e.g. an enzyme label). [0203]
  • In an immunoprecipitation or agglutination assay format the reaction between the HCV antigens and the antibody forms a network that precipitates from the solution or suspension and forms a visible layer or film of precipitate. If no anti-HCV antibody is present in the test specimen, no visible precipitate is formed. [0204]
  • There currently exist three specific types of particle agglutination (PA) assays. These assays are used for the detection of antibodies to various antigens when coated to a support. One type of this assay is the hemagglutination assay using red blood cells (RBCs) that are sensitized by passively adsorbing antigen (or antibody) to the RBC. The addition of specific antigen antibodies present in the body component, if any, causes the RBCs coated with the purified antigen to agglutinate. [0205]
  • To eliminate potential non-specific reactions in the hemagglutination assay, two artificial carriers may be used instead of RBC in the PA. The most common of these are latex particles. However, gelatin particles may also be used. The assays utilizing either of these carriers are based on passive agglutination of the particles coated with purified antigens. [0206]
  • The HCV single or specific oligomeric E1 and/or E2 and/or E1 /E2 antigens of the present invention comprised of conformational epitopes will typically be packaged in the form of a kit for use in these immunoassays. The kit will normally contain in separate containers the native HCV antigen, control antibody formulations (positive and/or negative), labeled antibody when the assay format requires the same and signal generating reagents (e.g. enzyme substrate) if the label does not generate a signal directly. The native HCV antigen may be already bound to a solid matrix or separate with reagents for binding it to the matrix. Instructions (e.g. written, tape. CD-ROM, etc.) for carrying out the assay usually will be included in the kit. [0207]
  • Immunoassays that utilize the native HCV antigen are useful in screening blood for the preparation of a supply from which potentially infective HCV is lacking. The method for the preparation of the blood supply comprises the following steps. Reacting a body component, preferably blood or a blood component, from the individual donating blood with HCV E1 and/or E2 proteins of the present invention to allow an immunological reaction between HCV antibodies, if any, and the HCV antigen. Detecting whether anti-HCV antibody—HCV antigen complexes are formed as a result of the reacting. Blood contributed to the blood supply is from donors that do not exhibit antibodies to the native HCV antigens. E1 or E2. [0208]
  • In cases of a positive reactivity to the HCV antigen, it is preferable to repeat the immunoassay to lessen the possibility of false positives. For example, in the large scale screening of blood for the production of blood products (e.g. blood transfusion, plasma, Factor VIII, immunoglobulin, etc.) ‘screening’ tests are typically formatted to increase sensitivity (to insure no contaminated blood passes) at the expense of specificity; i.e. the false-positive rate is increased. Thus, it is typical to only defer for further testing those donors who are ‘repeatedly reactive’; i.e. positive in two or more runs of the immunoassay on the donated sample. However, for confirmation of HCV-positivity, the ‘confirmation’ tests are typically formatted to increase specificity (to insure that no false-positive samples are confirmed) at the expense of sensitivity. Therefore the purification method described in the present invention for E1 and E2 will be very advantageous for including single or specific oligomeric envelope proteins into HCV diagnostic assays. [0209]
  • The solid phase selected can include polymeric or glass beads, nitrocellulose, microparticles, microwells of a reaction tray, test tubes and magnetic beads. The signal generating compound can include an enzyme, a luminescent compound, a chromogen, a radioactive element and a chemiluminescent compound. Examples of enzymes include alkaline phosphatase, horseradish peroxidase and beta-galactosidase. Examples of enhancer compounds include biotin, anti-biotin and avidin. Examples of enhancer compounds binding members include biotin, anti-biotin and avidin. In order to block the effects of rheumatoid factor-like substances, the test sample is subjected to conditions sufficient to block the effect of rheumatoid factor-like substances. These conditions comprise contacting the test sample with a quantity of anti-human IgG to form a mixture, and incubating the mixture for a time and under conditions sufficient to form a reaction mixture product substantially free of rheumatoid factor-like substance. [0210]
  • The present invention further contemplates the use of E1 proteins, or parts thereof, more particularly HCV single or specific oligomeric E1 proteins as defined above, for in vitro monitoring HCV disease or prognosing the response to treatment (for instance with Interferon) of patients suffering from HCV infection comprising: [0211]
  • incubating a biological sample from a patient with hecatitis C infection with an E1 protein or a suitable part thereof under conditions allowing the formation of an immunological complex, [0212]
  • removing unbound components, [0213]
  • calculating the anti-E1 titers present in said sample (for example at the start of and/or during the course of (interferon) therapy), [0214]
  • monitoring the natural course of HCV disease, or prognosing the response to treatment of said patient on the basis of the amount anti-E1 titers found in said sample at the start of treatment and/or during the course of treatment. [0215]
  • Patients who show a decrease of 2, 3, 4, 5, 7, 10, 15, or preferably more than 20 times of the initial anti-E1 titers could be concluded to be long-term, sustained responders to HCV therapy, more particularly to interferon therapy. It is illustrated in the Examples section, that an anti-E1 assay may be very useful for prognosing long-term response to IFN treatment, or to treatment of Hepatitis C virus disease in general. [0216]
  • More particularly the following E1 peptides as listed in Table 3 were found to be useful for in vitro monitoring HCV disease or prognosing the response to interferon treatment of patients suffering from HCV infection: [0217]
  • E1-31 (SEQ ID NO 56) spanning amino acids 181 to 200 of the Core/E1 V1 region, [0218]
  • E1-33 (SEQ ID NO 57) spanning amino acids 193 to 212 of the E1 region, [0219]
  • E1-35 (SEQ ID NO 58) spanning amino acids 205 to 224 of the E1 V2 region (epitope B), [0220]
  • E1-35A (SEQ ID NO 59) spanning amino acids 208 to 227 of the E1 V2 region (epitope 3). [0221]
  • 1bE1 (SEQ ID NO 53) spanning [0222] amino acids 192 to 228 of E1 regions (V1, C1, and V2 regions (containing epitope B)),
  • E1-51 (SEQ ID NO 66) spanning amino acids 301 to 320 of the E1 region, [0223]
  • E1-53 (SEQ ID NO 67) spanning amino acids 313 to 332 of the E1 C4 region (epitope A), [0224]
  • E1-55 (SEQ ID NO 68) spanning [0225] amino acids 325 to 344 of the E1 region.
  • It is to be understood that smaller fragments of the above-mentioned peptides also fall within the scope of the present invention. Said smaller fragments can be easily prepared by chemical synthesis and can be tested for their ability to be used in an assay as detailed above and in the Examples section. [0226]
  • The present invention also relates to a kit for monitoring HCV disease or prognosing the response to treatment (for instance to interferon) of patients suffering from HCV infection comprising: [0227]
  • at least one E1 protein or E1 peptide, more particularly an E1 protein or E1 peptide as defined above, [0228]
  • a buffer or components necessary for producing the buffer enabling the binding reaction between these proteins or peptides and the anti-E1 antibodies present in a biological sample, [0229]
  • means for detecting the immune complexes formed in the preceding binding reaction, [0230]
  • possibly also an automated scanning and interpretation device for inferring a decrease of anti-E1 titers during the progression of treatment. [0231]
  • It is to be understood that also E2 protein and peptides according to the present invention can be used to a certain degree to monitor/prognose HCV treatment as indicated above for the 1 proteins or peptides because also the anti-E2 levels decrease in comparison to antibodies to the other HCV antigens. It is to be understood, however, that it might be possible to determine certain epitopes in the E2 region which would also be suited for use in an test for monitoring/prognosing HCV disease. [0232]
  • The present invention also relates to a serotyping assay for detecting one or more serological types of HCV present in a biological sample, more particularly for detecting antibodies of the different types of HCV to be detected combined in one assay format, comprising at least the following steps: [0233]
  • (i) contacting the biological sample to be analyzed for the presence of HCV antibodies of one or more serological types, with at least one of the E1 and/or E2 and/or E1/E2 protein compositions or at least one of the E1 or E2 peptide compositions as defined above, preferantially in an immobilized form under appropriate conditions which allow the formation of an immune complex, [0234]
  • (ii) removing unbound components, [0235]
  • (iii) incubating the immune complexes formed with heterologous antibodies, with said heterologous antibodies being conjugated to a detectable label under appropriate conditions, [0236]
  • (iv) detecting the presence of said immune complexes visually or mechanically (e.g. by means of densitometry, fluorimetry, colorimetry) and inferring the presence of one or more HCV serological types present from the observed binding pattern. [0237]
  • It is to be understood that the compositions of proteins or peptides used in this method are recombinantly expressed type-specific envelope proteins or type-specific peptides. [0238]
  • The present invention further relates to a kit for serotyping one or more serological types of HCV present in a biological sample, more particularly for detecting the antibodies to these serological types of HCV comprising: [0239]
  • at least one E1 and/or E2 and/or E1/E2 protein or E1 or E2 peptide, as defined above, [0240]
  • a buffer or components necessary for producing the buffer enabling the binding reaction between these proteins or peptides and the anti-E1 antibodies present in a biological sample, [0241]
  • means for detecting the immune complexes formed in the preceding binding reaction, [0242]
  • possibly also an automated scanning and interpretation device for detecting the presence of one or more serological types present from the observed binding pattern. [0243]
  • The present invention also relates to the use of a peptide or protein composition as defined above, for immobilization on a solid substrate and incorporation into a reversed phase hybridization assay, preferably for immobilization as parallel lines onto a solid support such as a membrane strip, for determining the presence or the genotype of HCV according to a method as defined above. Combination with other type-specific antigens from other HCV polyprotein regions also lies within the scope of the present invention. [0244]
  • FIGURE AND TABLE LEGENDS
  • FIG. 1: Restriction map of [0245] plasmid pgpt ATA 18
  • FIG. 2 Restriction map of [0246] plasmid pgs ATA 18
  • FIG. 3 Restriction map of [0247] plasmid pMS 66
  • FIG. 4 Restriction map of plasmid pv HCV-11A [0248]
  • FIG. 5: Anti-E 1 levels in non-responders to IFN treatment [0249]
  • FIG. 6: Anti-E1 levels in responders to IFN treatment [0250]
  • FIG. 7: Anti-E1 levels in patients with complete response to IFN treatment [0251]
  • FIG. 8 Anti-E1 levels in incomplete responders to IFN treatment [0252]
  • FIG. 9: Anti-E2 levels in non-responders to IFN treatment [0253]
  • FIG. 10 Anti-E2 levels in responders to IFN treatment [0254]
  • FIG. 11: Anti-E2 levels in incomplete respodners to IFN treatment [0255]
  • FIG. 12: Anti-E2 levels in complete responders to IFN treatment [0256]
  • FIG. 13 Human anti-E1 reactivity competed with peptides [0257]
  • FIG. 14 Competition of reactivity of anti-E1 monoclonal antibodies with peptides [0258]
  • FIG. 15 Anti-E1 (epitope 1) levels in non-responders to IFN treatment [0259]
  • FIG. 16 Anti-E1 (epitope 1) levels in responders to IFN treatment [0260]
  • FIG. 17: Anti-E1 (epitope 2) levels in non-responders to IFN treatment [0261]
  • FIG. 18 Anti-E1 (epitope 2) levels in responders to IFN treatment [0262]
  • FIG. 19 Competition of reactivity of anti-E2 monoclonal antibodies with peptides [0263]
  • FIG. 20: Human anti-E2 reactivity competed with peptides [0264]
  • FIG. 21: Nucleic acid sequences of the present invention. The nucleic acid sequences encoding an E1 or E2 protein according to the present invention may be translated ([0265] SEQ ID NO 3 to 13, 21-31, 35 and 41-49 are translated in a reading frame staring from residue number 1, SEQ ID NO 37-39 are translated in a reading frame starting from residue number 2), into the amino acid sequences of the respective E1 or E2 proteins as shown in the sequence listing.
  • FIG. 22: ELISA results obtained from lentil lectin chromatography eluate fractions of 4 different E1 purifications of cell lysates infected with vvHCV39 ([0266] type 1b), vvHCV-40 (type 1b), vvHCV62 type 3a), and vvHCV63 (type 5a)
  • FIG. 23: Elution profiles obtained from the lentil lectin chromatography of the 4 different E1 constructs on the basis of the values as shown in FIG. 22. [0267]
  • FIG. 24: ELISA results obtained from fractions obtained after gelfiltration chromatography of 4 different E1 purifications of cell lysates infected with vvHCV39 ([0268] type 1b), vvHCV40 (type 1b), vvHCV62 (type 3a), and vvHCV63 (type 5a).
  • FIG. 25: Profiles obtained from purifications of E1 proteins of [0269] type 1b (1), type 3a (2), and type 5a (3) (from RK13 cells infected with vvHCV39, vvHCV62, and vvHCV63, respectively; purified on lentil lectin and reduced as in example 5.2-5.3) and a standard (4). The peaks indicated with ‘1’, ‘2’, and ‘3’, represent pure E1 protein peaks (see FIG. 24, E1 reactivity mainly in fractions 26 to 30).
  • FIG. 26: Silver staining of an SDS-PAGE as described in example 4 of a raw lysate of E1 vvHCV40 ([0270] type 1b) (lane 1), pool 1 of the gelfiltration of vvHCV40 representing fractions 10 to 17 as shown in FIG. 25 (lane 2), pool 2 of the gelfiltration of vvHCV40 representing fractions 18 to 25 as shown in FIG. 25 (lane 3), and E1 pool (fractions 26 to 30) (lane 4).
  • FIG. 27: Streptavidine-alkaline phosphatase blot of the fractions of the gelfiltration of E1 constructs 39 ([0271] type 1b) and 62 (type 3a). The proteins were labelled with NEM-biotin. Lane 1: start gelfiltration construct 39, lane 2: fraction 26 construct 39, lane 3: fraction 27 construct 39, lane 4: fraction 28 construct 39, lane 5: fraction 29 construct 39, lane 6: fraction 30 construct 39, lane 7 fraction 31 construct 39, lane 8: molecular weight marker, lane 9: start gelfiltration construct 62, lane 10: fraction 26 construct 62, lane 11: fraction 27 construct 62, lane 1 2: fraction 28 construct 62, lane 13: fraction 29 construct 62, lane 14: fraction 30 construct 62, lane 15: fraction 31 construct 62.
  • FIG. 28: Siver staining of an SOS-PAGE gel of the gelfiltration fractions of vvHCV-39 (E1s, [0272] type 1b) and vvHCV-62 (E1s, type 3a) run under identical conditions as FIG. 26. Lane 1: start gelfiltration construct 39, lane 2: fraction 26 construct 39, lane 3: fraction 27 construct 39, lane 4: fraction 28 construct 39, lane 5: fraction 29 construct 39, lane 6: fraction 30 construct 39, lane 7 fraction 31 construct 39, lane 8: molecular weight marker, lane 9: start gelfiltration construct 62. lane 10: fraction 26 construct 62, lane 11: fraction 27 construct 62, lane 12: fraction 28 construct 62, lane 13: fraction 29 construct 62. lane 14: fraction 30 construct 62. lane 15: fraction 31 construct 62.
  • FIG. 29: Western Blot analysis with anti-E1 mouse monoclonal antibody 5E1A10 giving a complete overview, of the purification procedure. Lane 1: crude lysate. Lane 2: flow through of lentil chromagtography, Lane 3: wash with Empigen BB after lentil chromatography, Lane 4: Eluate of lentil chromatography. Lane 5: Flow through during concentration of the lentil eluate, Lane 6: Pool of E1 after Size Exclusion Chromatography (gelfiltration). [0273]
  • FIG. 30: OD[0274] 280 profile (continuous line) of the lentil lectin chromatography of E2 protein from RK13 cells infected with vvHCV44. The dotted line represents the E2 reactivity as detected by ELISA (as in example 6).
  • FIG. 31A: OD[0275] 280 profile (continuous line) of the lentil-lectin gelfiltration chromatography E-2 protein pool from RK13 cells infected with vvHCV44 in which the E2 pool is applied immediately on the gelfiltration column (non-reduced conditions). The dotted line represents the E-2 reactivity as detected by ELISA (as in example 6).
  • FIG. 31B: OD[0276] 280 profile (continuous line) of the lentil-lectin gelfiltration chromatography E2 protein pool from RK13 cells infected with vvHCV44 in which the E2 pool was ,educed and blocked according to Example 5.3 (reduced conditions). The dotted line represents the E2 reactivity as detected by ELISA (as in example 6).
  • FIG. 32: Ni[0277] 2−-IMAC chromatography and ELISA reactivity of the E2 protein as expressed from vvHCV44 after gelfiltration under reducing conditions as shown in FIG. 31B.
  • FIG. 33: Silver staining of an SDS-PAGE of 0.5 μg of purified E2 protein recovered by a 200 mM imidazole elution step (lane 2) and a 30 mM imidazole wash (lane 1 ) of the Ni[0278] 2−-IMAC chromatography as shown in FIG. 32.
  • FIG. 34: OD profiles of a desalting step of the purified E2 protein recovered by 200 mM immidazole as shown in FIG. 33, intended to remove imidazole. [0279]
  • FIG. 35A: Antibody levels to the different HCV antigens ([0280] Core 1, Core 2, E2HCVR, NS3) for NR and LTR followed during treatment and over a period of 6 to 12 months after treatment determined by means of the LIAscan method. The average values are indicated by the curves with the open squares.
  • FIG. 35B: Antibody levels to :he different HCV antigens (NS4, NS5, E1 and E2) for NR and LTR followed during treatment and over a period of 6 to 12 months after treatment determined by means of the LIAscan method. The avergae values are indicated by the curve with the open squares. [0281]
  • FIG. 36: Average E1 antibody (E1Ab) and E2 antibody (E2Ab) levels in the LTR and NR groups. [0282]
  • FIG. 37: Averages E1 antibody (E1Ab) levels for non-responders (NR) and long term responders (LTR) for [0283] type 1b and type 3a.
  • FIG. 38: Relative map positions of the anti-E2 monoclonal antibodies. [0284]
  • FIG. 39: Partial deglycosylation of HCV E1 envelope protein. The lysate of vvHCV10A-infected RK13 cells were incubated with different concentrations of glycosidases according to the manufacturer's instructions. Right panel: Glycopeptidase F (PNGase F). Left panel: Endoclycosidase H (Endo H). [0285]
  • FIG. 40: Partial deglycosylation of HCV E2 envelope proteins. The lysate of vvHCV64-infected (E2) and vvHCV41-infected (E2s)RK13 cells were incubated with different concentrations of Glycopeptidase F (PNGase F) according to the manufacturer's instructions. [0286]
  • FIG. 41: in vitro mutagenesis of HCV E1 glycoproteins. Map of the mutated sequences and the creation of new restriction sites. [0287]
  • FIG. 42A: In vitro mutagenesis of HCV E1 glycoprotein (part 1). First step of PCR amplification. [0288]
  • FIG. 42B: In vitro mutagensis of HCV E1 glycoprotein (part 2). Overlap extension and nested PCR. [0289]
  • FIG. 43: In vitro mutagesesis of HCV E1 glycoproteins. Map of the PCR mutated fragments (GLY-# and OVR-#) synthesized during the first step of amplification. [0290]
  • FIG. 44A: Analysis of E1 glycoprotein mutants by Western blot expressed in HeLa (left) and RK13 (right) cells. Lane 1: wild type VV (vaccinia virus), Lane 2: original E1 protein (vvHCV-10A), Lane 3: E1 mutant Gly-1 (vvHCV-81). Lane 4: E1 mutant Gly-2 (vvHCV-82), Lane 5: E1 mutant Gly-3 (vvHCV-83), Lane 6: E1 mutant Gly-4 (vvHCV-84), Lane 7: E1 mutant Gly-5 (vvHCV-85), Lane 8: E1 mutant Gly-6 (vvHCV-86). [0291]
  • FIG. 44B: Analysis of E1 glycosylation mutant vaccinia viruses by PCR amplification/restriction. Lane 1: E1 (vvHCV-10A), [0292] BspE 1. Lane 2: E1,GLY-1 (vvHCV-81). BspE I, Lane 4: E1 (vvHCV-10A), Sac I, Lane 5: E1,GLY-2 ,vvHCV-82), Sac I, Lane 7: E1 (vvHCV-10A), Sac I, Lane 8: E1,GLY-3 (vvHCV-83), Sac I, Lane 10: E1(vvHCV-10A), Stu I, Lane 11: E1,GLY-4 (vvHCV-84), Stu I, Lane 13: E1 (vvHCV-10A), Sma I, Lane 14: E1,GLY-5 (vvHCV-85), Sma I, Lane 16:E1 (vvHCV-10A), Stu I, Lane 17: E1,GLY-6 (vvHCV-86), Stu I, Lane 3-6-9-12-15 : Low Molecular Weight Marker, pBluescript SK-, Msp I.
  • FIG. 45: SDS polyacrylamide gel electrophoresis of recombinant E2 expressed in [0293] S. cerevisiae. Innoculates were grown in leucine selective medium for 72 hrs. and diluted 1/15 in complete medium. After 10 days of culture at 28° C., medium samples were taken. The equivalent of 200 μl of culture supernatant concentrated by speedvac was loaded on the gel. Two independent transformants were analysed.
  • FIG. 46: SDS polyacrylamide gel electrophoresis of recombinant E2 expressed in a glycosylation deficient [0294] S. cerevisiae mutant. Innoculae were grown in leucine selective medium for 72 hrs. and diluted 1/15 in complete medium. After 1 0 days of culture at 28° C. medium samples were taken. The equivalent of 350 μl of culture supernatant, concentrated by ion exchange chromatography, was loaded on the gel.
  • Table 1: Features of the respective clones and primers used for amplification for constructing the different forms of the E1 protein as despected in Example 1. [0295]
  • Table 2: Summary of Anti-E1 tests [0296]
  • Table 3: Synthetic peptides for competition studies [0297]
  • Table 4: Changes of envelope antibody levels over time. [0298]
  • Table 5: Difference between LTR and NR [0299]
  • Table 6: Competition experiments between murine E2 monoclonal antibodies [0300]
  • Table 7: Primers for construction of E1 glycosylation mutants [0301]
  • Table 8: Analysis of E1 glycosylation mutants by ELISA [0302]
  • EXAMPLE 1 Cloning and Expression of the Hepatitis C virus E1 Protein
  • 1. Construction of Vaccinia Virus Recombination Vectors [0303]
  • The pgptATA18 vaccinia recombination plasmid is a modified version of pATA18 (Stunnenberg et al, 1988) with an additional insertion containing the [0304] E. coli xanthine guanine phosphoribosyl transferase gene under the control of the vaccinia virus 13 intermediate promoter (FIG. 1). The plasmid pgsATA 18 was constructed by inserting an oligonucleotide linker with SEQ ID NO 1/94, containing stop codons in the three reading frames, into the Pst I and HindIII-cut pATA 18 vector. This created an extra Pac I restriction site (FIG. 21. The original HindIII site was not restored.
    Oligonucleotide linker with SEQ ID NO 1/94:
    5′     G GCATGC AAGCTT AATTAATT 3′
    3′ ACGTC CGTACG TTCGAA TTAATTAA TCGA 5′
    {overscore (PstI )} {overscore (SphI  )}H{overscore (indIII)} {overscore ( Pac I  ()}H{overscore (indI)}II)
  • In order to facilitate rapid and efficient purification by means of Ni[0305] 2− chelation of engineered histidine stretches fused to the recombinant proteins, the vaccinia recombination vector pMS66 was designed to express secreted proteins with an additional carboxy-terminal histidine tag. An oligonuclectide linker with SEQ ID NO 2/95, containing unique sites for 3 restriction enzymes generating blunt ends (Sma I, Stu I and Pml I/Bbr PI) was synthesized in such a way that the carboxy-terminal end of any cDNA could be inserted in frame with a sequence encoding the protease factor Xa cleavage site followed by a nucleotide sequence encoding 6 histidines and 2 stop codons (a new Pac I restriction site was also created downstream the 3′ end). This oligonucleotide with SEQ ID NO 2/95 was introduced between the Xma I and Pst I sites of pgptA18 (FIG. 3).
    Oligonucleotide linker with SEQ ID NO 2/95:
    ′5′ CCGGG GAGGCCTGCACGTGATCGAGGGCAGACACCATCACCACCATCACTAATAGTTAATTAA CTGCA3
    3′     C CTCCGGACGTGCACTAGCTCCCGTCTGTGGTAGTGGTGGTAGTGATTATCAATTAATT G
       {overscore (XmaI )}                                                            {overscore ( PstI)}
  • EXAMPLE 2 Construction of HCV Recombinant Plasmids
  • 2.1. Constructs Encoding Different Forms of the E1 Protein [0306]
  • Polymerase Chain Reaction (PCR) products were derived from the serum samples by RNA preparation and subsequent reverse-transcription and PCR as described previously (Stuyver et al., 1993b). Table 1 shows the features of the respective clones and the primers used for amplification. The PCR fragments were cloned into the Sma I-cut pSP72 (Promega) plasmids. The following clones were selected for insertion into vaccinia recombination vectors: HCCl9A (SEQ ID NO 3), HCCl10A (SEQ ID NO 5), HCCl11A (SEQ ID NO 7), HCCl12A (SE: ID NO 9), HCCl13A (SEQ ID NO 11) and HCCl17A (SEQ ID NO 13) as depicted in FIG. 21. cDNA fragments containing the E1-coding regions were cleaved by EcoRI and HindIII restriction from the respective pSP72 plasmids and inserted into the EcoRI/HindIII-cut pgptA-18 vaccinia recombination vector (described in example 1), downstream of the 11K vaccinia virus late promoter. The respective plasmids were designated pv-HCV-9A, pvHCV-10A, pvHCV-11A, pvHCV-12A, pvHCV-13A and pvHCV-17A, of which pvHCV-11A is shown in FIG. 4. [0307]
  • 2.2. Hydrophobic Region E1 Deletion Mutants [0308]
  • Clone HCCl37, containing a deletion of codons Asp264 to Val237 (nucleotides 790 to 861, region encoding hydrophobic domain 1) was generated as follows: 2 PCR fragments were generated from clone HCCl10A with primer sets HCPr52 (SEQ ID NO 16)/HCPr107 (SEQ ID NO 19) and HCPr108 (SEQ ID NO 20)/HCPR54 (SEQ ID NO 18). These primers are shown in FIG. 21. The two PCR fragments were purified from agarose gel after electrophoresis and 1 ng of each fragment was used together as template for PCR by means of primers HCPr52 (SEQ ID NO 16) and HCPr54 (SEQ ID NO 18). The resulting fragment was cloned into the Sma I-cut pSP72 vector and clones containing the deletion were readily identified because of the deletion of 24 codons (72 base pairs). Plasmid pSP72HCCl37 containing clone HCCl37 (SEQ ID 15) was selected. A recombinant vaccinia plasmid containing the full-length E1 cDNA lacking hydrophobic domain I was constructed by inserting the HCV sequence surrounding the deletion (fragment cleaved by Xma I and BamH I from the vector pSP72-HCCl37) into the Xma I-Bam H I sites of the vaccinia plasmid pvHCV-10A. The resulting plasmid was named pvHCV-37. After confirmatory sequencing, the amino-terminal region containing the internal deletion was isolated from this vector pvHCV-37 (cleavage by EcoR I and BstE II) and reinserted into the Eco RI and Bst Ell-cut pvHCV-11A plasmid. This construct was expected to express an E1 protein with both hydrophobic domains deleted and was named pvHCV-38. The E1-coding region of clone HCCl38 is represented by [0309] SEQ ID NO 23.
  • As the hydrophilic region at the E1 carboxyterminus (theoretically extending to around amino acids 337-340) was not completely included in construct pvHCV-38, a larger E1 region lacking hydrophobic domain I was isolated from the pvHCV-37 plasmid by EcoR I/Bam HI cleavage and cloned into an EcoRI/BamHI-cut pgsATA-18 vector. The resulting plasmid was named pvHCV-39 and contained clone HCCl39 (SEQ ID NO 25). The same fragment was cleaved from the pvHCV-37 vector by BamH I (of which the sticky ends were filled with Klenow DNA Polymerase I (Boehringer)) and subsequently by EcoRI (5′ cohesive end). This sequence was inserted into the EcorI and Bbr PI-cut vector pMS-66. This resulted in clone HCCl40 (SEQ ID NO 27) in plasmid pvHCV-40, containing a 6 histidine tail at its carboxy-terminal end. [0310]
  • 2.3. E1 of Other Genotypes [0311]
  • Clone HCCl62 (SEQ ID NO 29) was derived from a [0312] type 3a-infected patient with chronic hepatitis C (serum BR36, clone BR36-9-13, SEQ ID NO 19 in WO 94/25601, and see also Stuyver et al. 1993a) and HCCl63 (SEQ ID NO 31) was derived from a type 5a-infected child with post-transfusion hepatitis (serum BE95, clone PC-4-1, SEQ ID NO 45 in WO 94/25601).
  • 2.4. E2 Constructs [0313]
  • The HCV [0314] E2 PCR fragment 22 was obtained from serum BE11 (genotype 1b) by means of primers HCPr109 (SEQ ID NO 33) and HCPr72 (SEQ ID NO 34) using techniques of RNA preparation, reverse-transcription and PCR, as described in Stuyver et al., 1993b, and the fragment was cloned into the Sma I-cut pSP72 vector. Clone HCCl22A (SEQ ID NO 35) was cut with Ncol/AlwNl or by BamHI/AlwNl and the sticky ends of the fragments were blunted (Ncol and BamHI sites with Klenow DNA Polymerase I (Boehringer), and AlwNl with T4 DNA polymerase (Boehringer)). The BamHI/AlwNl cDNA fragment was then inserted into the vaccinia pgsATA-18 vector that had been linearized by EcoR I and Hind III cleavage and of which the cohesive ends had been filled with Klenow DNA Polymerase (Boehringer). The resulting plasmid was named pvHCV-41 and encoded the E2 region from amino acids Met347 to Gln673, including 37 amino acids (from Met347 to Gly383) of the E1 protein that can serve as signal sequence. The same HCV cDNA was inserted into the EcoR I and Bbr PI-cut vector pMS66, that had subsequently been blunt ended with Klenow DNA Polymerase. The resulting plasmid was named pvHCV-42 and also encoded amino acids 347 to 683. The Ncol/AlwNl fragment was inserted in a similar way into the same sites of PGsATA-18 (pvHCV-43) or pMS-66 vaccinia vectors (pvHCV-44). pvHCV-43 and pvHCV-44 encoded amino acids 364 to 673 of the HCV polyprotein, of which amino acids 361 to 383 were derived from the natural carboxyterminal region of the E1 protein encoding the signal sequence for E2, and amino acids 384 to 673 of the mature E2 protein.
  • 2.5. Generation of Recombinant HCV-Vaccinia Viruses [0315]
  • Rabbit kidney RK13 cells (ATCC CCL 37), human osteosarcoma 143B thymidine kinase deficient (TK) (ATCC CRL 8303), HeLa (ATCC CCL 2), and Hep G2 (ATCC HB 8065) cell lines were obtained from the American Type Culture Collection (ATCC, Rockville, Md., USA). The cells were grown in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% foetal calf serum, and with Earle's salts (DMEM) for RK13 and 143B (TK−), and with glucose (4 g/l) for Hep G2. The vaccinia virus WR strain (Western Reserve, ATTC VR119) was routinely propagated in either 143B or RK13 cells, as described previously (Panicali & Pacletti, 1982; Piccini et al., 1987; Macket, et al., 1982, 1984, and 1986). A confluent monolayer of 143B cells was infected with wild type vaccinia virus at a multiplicity of infection (m.o.i.) of 0.1 (=0.1 plaque forming unit (PFU) per cell). Two hours later, the vaccinia recombination plasmid was transfected into the infected cells in the form of a calcium phosphate coprecipitate containing 500 ng of the plasmid DNA to allow homologous recombination (Graham & van der Eb, 1973; Mackett et al., 1985). Recombinant viruses expressing the [0316] Escherichia coli xanthine-guanine phosphoribosyl transferase (gpt) protein were selected on rabbit kidney RK1 3 cells incubated in selection medium (EMEM containing 25 μg/ml mycophenolic acid (MPA), 250 μg/ml xanthine, and 15 μg/ml hypoxanthine; Falkner and Moss, 1988; Janknecht et al, 1991). Single recombinant viruses were purified on fresh monolayers of RK13 cells under a 0.9% agarose overlay in selection medium. Thymidine kinase deficient (TK) recombinant viruses were selected and then plaque purified on fresh monolayers of human 143B cells (TK−) in the presence of 25 μg/ml 5-bromo-2′-deoxyuridine. Stocks of purified recombinant HCV-vaccinia viruses were prepared by infecting either human 143B or rabbit RK13 cells at an m.o.i. of 0.05 (Mackett et al, 1988). The insertion of the HCV cDNA fragment in the recombinant vaccinia viruses was confirmed on an aliquot (50 μl) of the cell lysate after the MPA selection by means of PCR with the primers used to clone the respective HCV fragments (see Table 1). The recombinant vaccinia-HCV viruses were named according to the vaccinia recombination plasmid number, e.g. the recombinant vaccinia virus vvHCV-10A was derived from recombining the wild type WR strain with the pvHCV-10A plasmid.
  • EXAMPLE 3 Infection of Cells with Recombinant Vaccinia Viruses
  • A confluent monolayer of RK13 calls was infected at a m.o.i. of 3 with the recombinant HCV-vaccinia viruses as described in example 2. For infection, the cell monolayer was washed twice with phosphate-buffered saline pH 7.4 (PBS) and the recombinant vaccinia virus stock was diluted in MEM medium. Two hundred μl of the virus solution was added per 10[0317] 6 cells such that the m.o.i. was 3, and incubated for 45 min at 24° C. The virus solution was aspirated and 2 ml of complete growth medium (see example 2) was added per 106 cells. The cells were incubated for 24 hr at 37° C. during which expression of the HCV proteins took place.
  • EXAMPLE 4 Analysis of Recombinant Proteins by Means of Western Blotting
  • The infected cells were washed two times with PBS, directly lysed with lysis buffer (50 mM Tris.HCl pH 7.5, 150 mM NaCl, 1% Triton X-100, 5 mM MgCl[0318] 2, 1 μg/ml aprotinin (Sigma, Bornem, Belgium)) or detached from the flasks by incubation in 50 mM Tris.HCL pH 7.5/10 mM EDTA/150 mM NaCl for 5 min, and collected by centrifugation (5 min at 1000 g). The cell pellet was then resuspended in 200 μl lysis buffer (50 mM Tris.HCL pH 8.0, 2 mM EDTA, 150 mM NaCl, 5 mM MgCl2 aprotinin, 1% Triton X-100) per 105 cells. The call lysates were cleared for 5 min at 14.000 rpm in an Eppendorf centrifuge to remove the insoluble debris. Proteins of 20 μl lysate were separated by means of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The proteins were then electro-transferred from the gel to a nitrocellulose street (Amersham) using a Hoefer HSI transfer unit cooled to 4° C. for 2 hr at 100 V constant voltage, in transfer buffer (25 mM Tris.HCl pH 8.0, 192 mM glycine, 20% (v/v) methanol). Nitrocellulose filters were blocked with Blotto (5% (w/v) fat-free instant milk powder in PBS; Johnson et al., 1981) and incubated with primary antibodies diluted in Blotto/0.1% Tween 20. Usually, a human negative control serum or serum of a patient infected with HCV were 200 times diluted and preincubated for 1 hour at room temperature with 200 times diluted wild type vaccinia virus-infected cell lysate in order to decrease the non-specific binding. After washing with Blotto/0.1% Tween 20, the nitrocellulose filters were incubated with alkaline phosphatase substrate solution diluted in Blotto/0.1% Tween 20. After washing with 0.1%., Tween 20 In PBS, the filters were incubated with alkaline phosphatase substrate solution (100 mM Tris.HCl pH 9.5, 100 mM NaCl, 5 mM MgCl, 0.38 μg/ml nitroblue tetrazolium, 0.165 μg/ml 5-bromo-4-chloro-3-indolylphosphate) All steps, except the electrotransfer, were performed at room temperature.
  • EXAMPLE 5 Purification of Recombinant E1 or E2 Protein
  • 5.1. Lysis [0319]
  • Infected RK13 cells (carrying E1 or E2 constructs) were washed 2 times with phosphate-buffered saline (PBS) and detached from the culture recipients by incubation in PBS containing 10 mM EDTA. The detached cells were washed twice with PBS and 1 ml of lysis buffer (50 mM Tris.HCl pH 7.5, 150 mM NaCl, 1% Triton X-100, 5 mM MgCl[0320] 2, 1 μg/ml aprotinin (Sigma, Bornem, Belgium) containing 2 mM biotinylated N-ethylmaleimide (biotin-NEM) (Sigma) was added per 105 cells at 4° C. This lysate was homogenized with a type B douncer and left at room temperature for 0.5 hours. Another 5 volumes of lysis buffer containing 10 mM N-ethylmaleimide (NEM, Aldrich. Bornem. Belgium) was added to the primary lysate and the mixture was left at room temperature for 15 min. Insoluble cell debris was cleared from the solution by centrifugation in a Beckman JA-14 rotor at 14,000 rpm (30100 g at rmax) for 1 hour at 4° C.
  • 5.2. Lectin Chromatography [0321]
  • The cleared cell lysate was loaded at a rate of 1 mi/min on a 0.8 by 10 cm Lentil-[0322] lectin Sepharose 48 column (Pharmacia) that had been equilibrated with 5 column volumes of lysis buffer at a rate of 1 ml/min. The lentil-lectin column was washed with 5 to 10 column volumes of buffer 1 (0.1M potassium phosphate pH 7.3, 500 mM KCl, 5% glycerol, 1 mM 6-NH2-hexanoic acid, 1 mM MgCl2, and 1% DecylPEG (KWANT, Bedum, The Netherlands). In some experiments, the column was subsequently washed with 10 column volumes of buffer 1 containing 0.5% Empigen-BB (Calbiochem, San Diego, Calif., USA) instead of 1% DecylPEG. The bound material was eluted by applying elution buffer (10 mM potassium phosphate pH 7.3, 5 % glycerol, 1 mM hexanoic acid, 1 mM MgCl2, 0.5% Empigen-BB, and 0.5 M α-methyl-mannopyranoside). The eluted material was fractionated and fractions were screened for the presence of E1 or E2 protein by means of ELISA as described in example 6. FIG. 22 shows ELISA results obtained from lentil lectin eluate fractions of 4 different E1 purifications of cell lysates infected with vvHCV39 (type 1b), vvHCV40 (type 1b), vvHCV62 (type 3a), and vvHCV63 (type 5a). FIG. 23 shows the profiles obtained from the values shown in FIG. 22. These results show that the lectin affinity column can be employed for envelope proteins of the different types of HCV.
  • 5.3. Concentration and Partial Reduction [0323]
  • The E1- or E2-positive fractions were pooled and concentrated on a Centricon 30 kDa (Amicon) by centrifugation for 3 hours at 5,000 rpm in a Beckman JA-20 rotor at 4° C. In some experiments the E1- or E2-positive fractions were pooled and concentrated by nitrogen evaporation. An equivalent of 3.10[0324] 8 cells was concentrated to approximately 200 μl. For partial reduction, 30% Empigen-BB (Calbiochem, San Diego, Calif., USA) was added to this 200 μl to a final concentration of 3.5%, and 1M DTT in H2O was subsequently added to a final concentration of 1.5 to 7.5 mM and incubated for 30 min at 37 ° C. NEM (1M in dimethylsulphoxide) was subsequently added to a final concentration of 50 mM and left to react for another 30 min at 37° C. to block the free sulphydryl groups.
  • 5.4 Gel Filtration Chromatography [0325]
  • A Superdex-200 [0326] HF 10/20 column (Pharmacia) was equilibrated with 3 column volumes PBS/3% Empigen-BB. The reduced mixture was injected in a 500 μl sample loop of the Smart System (Pharmacia) and PBS/3% Empigen-BB buffer was added for gelfiltration. Fractions of 250 μl were collected from V0 to V. . The fractions were screened for the presence of E1 or E2 protein as described in example 6.
  • FIG. 24 shows ELISA results obtained from fractions obtained after gelfiltration chromatography of 4 different E1 purifications of cell lysates infected with vvHCV39 ([0327] type 1b), vvHCV40 (type 1b), vvHCV62 (type 3a), and vvHCV63 (type 5a), FIG. 25 shows the profiles obtained from purifications of E1 proteins of types 1b, 3a, and 5a from RK13 cells infected with vvHCV39, vvHCV62, and vvHCV63, respectively; purified on lentil lectin and reduced as in the previous examples). The peaks indicated with ‘1’, ‘2’, and ‘3’, represent pure E1 protein peaks (E1 reactivity mainly in fractions 26 to 30). These peaks show very similar molecular weights of approximately 70 kDa, corresponding to dimeric E1protein. Other peaks in the three profiles represent vaccinia virus and/or cellular proteins which could be separated from E1 only because of the reduction step as outlined in example 5.3. and because of the subsequent gelfiltration step in the presence of the proper detergent. As shown in FIG. 26 pool 1 (representing fractions 10 to 17) and pool 2 (representing fractions 18 to 25) contain contaminating proteins not present in the E1 pool (fractions 26 to 30). The E1 peak fractions were ran on SDS/PAGE and blotted as described in example 4. Proteins labelled with NEM-biotin were detected by streptavidin-alkaline phosphatase as shown in FIG. 27. It can be readily observed that amongst others, the 29 kDa and 45 kDa contaminating proteins present before the gelfiltration chromatography (lane 1) are only present at very low levels in the fractions 26 to 30. The band at approximately 65 kDa represents the E1 dimeric form that could not be entirely disrupted into the monomeric E1 form. Similar results were obtained for the type 3a E1 protein (lanes 10 to 15). which shows a faster mobility on SDS/PAGE because of the presence of only 5 carbohydrates instead of 6. FIG. 28 shows a silver stain of an SDS/PAGE gel run in identical conditions as in FIG. 26. A complete overview of the purification procedure is given in FIG. 29.
  • The presence of purified E1 protein was further confirmed by means of western blotting as described in example 4. The dimeric E1 protein appeared to be non-aggregated and free of contaminants. The [0328] subtype 1b E1 protein purified from vvHCV40-infected cells according to the above scheme was aminoterminally sequenced on an 477 Perkins-Elmer sequencer and appeared to contain a tyrosine as first residue. This confirmed that the E1 protein had been cleaved by the signal peptidase at the correct position (between A191 and Y192) from its signal sequence. This confirms the finding of Hijikata et al. (1991) that the aminoterminus of the mature E1 protein starts at amino acid position 192.
  • 5.5. Purification of the E2 Protein [0329]
  • The E2 protein ([0330] amino acids 384 to 673) was purified from RK13 cells infected with vvHCV44 as indicated in Examples 5.1 to 5.4. FIG. 30 shows the OD280 profile (continuous line) of the lentil lectin chromatography. The dotted mine represents the E2 reactivity as detected by ELISA (see example 6). FIG. 31 shows the same profiles obtained from gelfiltration chromatography of the lentil-lectin E2 pool (see FIG. 30), part of which was reduced and blocked according to the methods as set out in example 5.3., and part of which was immediately applied to the column. Both parts of the E2 pool were run on separate gelfiltration columns. It could be demonstrated that E2 forms covalently-linked aggregates with contaminating proteins if no reduction has been performed. After reduction and blocking, the majority of contaminating proteins segregated into the V0 fraction. Other contaminating proteins copurified with the 2 protein, were not covalently linked to the E2 protein any more because these contaminants could be removed in a subsequent step. FIG. 32 shows an additional Ni2−-IMAC purification step carried out for the E2 protein purification. This affinity purification step employs the 6 histidine residues added to the E2 protein as expressed from vvHCV44. Contaminating proteins either run through the column or can be removed by a 30 mM imidazole wash. FIG. 33 shows a silver-stained SDS/PAGE of 0.5 μg of purified E2 protein and a 30 mM imidazole wash. The pure E2 protein could be easily recovered by a 200 mM imidazole elution step. FIG. 34 shows an additional desalting step intended to remove imidazole and to be able to switch to the desired buffer, e.g. PES, carbonate buffer, saline.
  • Starting from about 50,000 cm[0331] 2 of RK13 cells infected with vvHCV11A (or vvHCV40) for the production of E1 or vvHCV41, vvHCV42, vvHCV43, or vvHCV44 for production of E2 protein, the procedures described in examples 5.1 to 5.5 allow the purification of approximately 1.3 mg of E1 protein and 0.6 mg of E2 protein.
  • It should also be remarked that secreted E2 protein (constituting approximately 30-40%, 60-70% being in the intercellular form) is chracterized by aggregate formation (contrary to expectations). The same problem is thus posed to purify secreted E2. The secreted E2 can be purified as disclosed above. [0332]
  • EXAMPLE 6 ELISA for the Detection of Anti-E1 or Anti-E2 Antibodies or for the Detection of E1 or E2 Proteins
  • Maxisorb microwell plates (Nunc, Roskilde, Denmark) were coated with 1 volume (e.g. 50 μl or 100 μl or 200 μl) per well of Streptavidin (Boehringer Mannheim) in PBS for 16 hours at 4° C. or for 1 hour at 37° C. Alternatively, the wells were coated with 1 volume of 5 μg/ml of Galanthus nivalis agglutinin (GNA) in 50 mM sodium carbonate buffer pH, 9.6 for 16 hours at 4° C. or for 1 hour at 37° C. In the case of coating with GNA, the plates were washed 2 times with 400 μl of Washing Solution of the innotest HCV Ab III kit (Innogenetics, Zwijindrecht, Beigium). Unbound coating surfaces were blocked with 1.5 to 2 volumes of blocking solution (0.1% casein and 0.1% NaN[0333] 3 in PBS) for 1 hour at 37° C. or for 16 hours at 4° C. Blocking solution was aspirated. Purified E1 or E2 was diluted to 100-1000 ng/ml (concentration measured at A=280 nm) or column fractions to be screened for E1 or E2 (see example 5), or E1 or E2 in non-purified cell lysates (example 5.1.) were diluted 20 times in blocking solution, and 1 volume of the E1 or E2 solution was added to each well and incubated for 1 hour at 37° C. on the Streptavidin- or GNA-coated plates. The microwells were washed 3 times with 1 volume of Washing Solution of the Innotest HCV Ab III kit (Innogenetics, Zwijndrecht, Belgium). Serum samples were diluted 20 times or monoclonal anti-E1 or anti-E2 antibodies were diluted to a concentration of 20 ng/ml in Sample Diluent of the Innotest HCV Ab III kit and 1 volume of the solution was left to react with the E1 or E2 protein for 1 hour at 37° C. The microwells were washed 5 times with 400 μl of Washing Solution of the Innotest HCV Ab III kit (Innogenetics, Zwijndrecht, Belgium). The bound antibodies were detected by incubating each well for 1 hour at 37° C. with a goat anti-human or anti-mouse IgG, peroxidase-conjugated secondary antibody (DAKO, Glostrup, Denmark) diluted 1/80,000 in 1 volume of Conjugate Diluent of the Innotest HCV Ab III kit (Innogenetics, Zwijndrecht, Belgium), and color development was obtained by addition of substrate of the Innotest, HCV Ab III kit (Innogenetics, Zwijndrecht, Belgium) diluted 100 times in 1 volume of Substrate Solution of the Innotest HCV Ab III kit (Innogenetics, Zwijndrecht, Belgium) for 30 min at 24° C. after washing of the plates 3 times with 400 μl of Washing Solution of the Innotest HCV Ab III kit (Innogenetics, Zwijndrecht, Belgium).
  • EXAMPLE 7 Follow up of Patient Groups with Different Clinical Profiles
  • 7.1. Monitoring of Anti-E1 and Anti-E2 Antibodies [0334]
  • The current hepatitis C virus (HCV) diagnostic assays have been developed for screening and confirmation of the presence of HCV antibodies. Such assays do not seem to provide information useful for monitoring of treatment or for prognosis of the outcome of disease. However, as is the case for hepatitis B, detection and quantification of anti-envelope antibodies may prove more useful in a clinical setting. To investigate the possibility of the use of anti-E 1 antibody titer and anti-E2 antibody titer as prognostic markers for outcome of hepatitis C disease, a series of IFN-α treated patients with long-term sustained response (defined as patients with normal transaminase levels and negative HCV-RNA zest (PCR in the 5′ non-coding region) in the blood for a period of at least 1 year after treatment) was compared with patients showing no response or showing biochemical response with relapse at the end of treatment. [0335]
  • A group of 8 IFN-α treated patients with long-term sustained response (LTR, follow up 1 to 3.5 years, 3 [0336] type 3a and 5 type 1b) was compared with 9 patients showing non-complete responses to treatment (NR, follow up 1 to 4 years, 6 type 1b and 3 type 3a). Type 1b (vvHCV-39, see example 2.5.) and 3a E1 (vvHCV-62, see example 2.5.) proteins were expressed by the vaccinia virus system (see examples 3 and 4) and purified to homogeneity (example 5). The samples derived from patients infected with a type 1b hepatitis C virus were tested for reactivity with purified type 1b E1 protein, while samples of a type 3a infection were tested for reactivity of anti-type 3a E1 antibodies in an ELISA as desribed in example 6. The genotypes of nepatitis C viruses infecting the different patients were determined by means of the Inno-LiPA genotyping assay (Innogenetics, Zwijndrecht, Belgium). FIG. 5 shows the anti-E1 signal-to-noise ratios of these patients followed during the course of interferon treatment and during the follow-up period after treatment. LTR cases consistently showed rapidly declining anti-E1 levels (with complete negativation in 3 cases), while anti-E1 levels of NR cases remained approximately constant. Some of the obtained anti-E1 data are shown in Table 2 as average S/N ratios±SD (mean anti-E1 titer). The anti-E1 titer could be deduced from the signal to noise ratio as show in FIGS. 5, 6, 7, and 8.
  • Already at the end of treatment, marked differences could be observed between the 2 groups. Anti-E1 antibody titers had decreased 6.9 times in LTR but only 1.5 times in NR. At the end of follow up, the anti-E1 titers had declined by a factor of 22.5 in the patients with sustained response and even slightly increased in NR. Therefore, based on these data, decrease of anti-E1 antibody levels during monitoring of IFN-α therapy correlates with long-term, sustained response to treatment. The anti-E1 assay may be very useful for prognosis of long-term response to IFN treatment, or to treatment of the hepatitis C disease in general. [0337]
  • This finding was not expected. On the contrary, the inventors had expected the anti-E1 antibody levels to increase during the course of IFN treatment in patients with long term response. As is the case for hepatitis B, the virus is cleared as a consequence of the seroconversion for anti-HBsAg antibodies. Also in many other virus infections, the virus is eliminated when anti-envelope antibodies are raised. However, in the experiments of the present invention, anti-E1 antibodies clearly decreased in patients with a long-term response to treatment, while the antibody-level remained approximately at the same level in non-responding patients. Although the outcome of these experiments was not expected, this non-obvious finding may be very important and useful for clinical diagnosis of HCV infections. As shown in FIGS. 9, 10, [0338] 11, and 12, anti-E2 levels behaved very differently in the same patients studied and no obvious decline in titers was observed as for anti-E1 antibodies. FIG. 35 gives a complete overview of the pilot study.
  • As can be deduced from Table 2, the anti-E1 titers were on average at least 2 times higher at the start of treatment in long term responders compared with incomplete responders to treatment. Therefore, measuring the titer of anti-E1 antibodies at the start of treatment, or monitoring the patient during the course of infection and measuring the anti-E1 titer, may become a useful marker for clinical diagnosis of hepatitis C. Furthermore, the use of more defined regions of the E1 or E2 proteins may become desirable, as shown in example 7.3. [0339]
  • 7.2. Analysis of E1 and E2 antibodies in a Larger Patient Cohort [0340]
  • The pilot study lead the inventors to conclude that, in case infection was completely cleared, antibodies to the HCV envelope proteins changed more rapidly than antibodies to the more conventionally studied HCV antigens, with E1 antibodies changing most vigorously. We therefore included [0341] more type 1b and 3a-infected LTR and further supplemented the cohort with a matched series of NR, such that both groups included 14 patients each. Some partial responders (PR) and responders with relapse (RR) were also analyzed.
  • FIG. 36 depicts average E1 antibody (E1Ab) and E2 antibody (E2Ab) levels in the LTR and NR groups and Tables 4 and 5 show the statistical analyses. In this larger cohort, higher E1 antibody levels before IFN-α therapy were associated with LTR (P<0.03). Since much higher E1 antibody levels were observed in [0342] type 3a-infected patients compared with type 1b-infected patients (FIG. 37), the genotype was taken into account (Table 4). Within the type 1b-infected group, LTR also had higher E1 antibody levels than NR at the initiation of treatment [P<0.05]; the limited number of type 3a-infected NR did not allow statistical analysis.
  • Of antibody levels monitored in LTR during the 1.5-year follow up period, only E1 antibodies cleared rapidly compared with levels measured at initiation of treatment [P=0.0058, end of therapy; P=0.0047 and P=0.0051 at 6 and 12 months after therapy, respectively]. This clearance remained significant within type 1- or type 3-infected LTR (average P values <0.05). These data confirmed the initial finding that E1Ab levels decrease rapidly in the early phase of resolvement. This feature seems to be independent of viral genotype. In NR, PR, or RR, no changes in any of the antibodies measured were observed throughout the follow up period. In patients who responded favourably to treatment with normalization of ALT levels and HCV-RNA negative during treatment, there was a marked difference between sustained responders (LTR) and responders with a relapse (RR). In contrast to LTR, RR did not show any decreasing E1 antibody levels, indicating the presence of occult HCV infection that could neither be demonstrated by PCR or other classical techniques for detection of HCV-RNA, nor by raised ALT levels. The minute quantities of viral RNA, still present in the RR group during treatment, seemed to be capable of anti-E1 B cell stimulation. Anti-E1 monitoring may therefore not only be able to discriminate LTR from NR, but also from RR. [0343]
  • 7.3. Monitoring of Antibodies of Defined Regions of the E1 Protein [0344]
  • Although the molecular biological approach of identifying HCV antigens resulted in unprecedented breakthrough in the development of viral diagnostics, the method of immune screening of λgt11 libraries predominantly yielded linear epitopes dispersed throughout the core and non-structural regions, and analysis of the envelope regions had to await cloning and expression of the E1/E2 region in mammalian cells. This approach sharply contrasts with many other viral infections of which epitopes to the envelope regions had already been mapped long before the deciphering of the genomic structure. Such epitopes and corresponding antibodies often had neutralizing activity useful for vaccine development and/or allowed the development of diagnostic as says with clinical or prognostic significance (e.g. antibodies to hepatitis B surface antigen). As no HCV vaccines or tests allowing clinical diagnosis and prognosis of hepatitis C disease are available today, the characterization of viral envelope regions exposed to immune surveillance may significantly contribute to new directions in HCV diagnosis and prophylaxis. [0345]
  • Several 20-mer peptides (Table 3) that overlapped each other by 8 amino acids, were synthesized according to a previously described method (EP-[0346] A-0 489 968) based on the HC-J1 sequence (Okamoto et al., 1990). None of these, except peptide env35 (also referred to as E1-35), was able to detect antibodies in sera of approximately 200 HCV cases. Only 2 sera reacted slightly with the env35 peptide. However, by means of the anti-E1 ELISA as described in example 6, it was possible to discover additional epitopes as follows: The anti-E1 ELISA as described in example 6 was modified by mixing 50 μg/ml of E1 peptide with the 1/20 diluted human serum in sample diluent. FIG. 13 shows the results of reactivity of human sera to the recombinant E1 (expressed from vvHCV-40) protein, in the presence of single or of a mixture of E1 peptides. While only 2% of the sera could be detected by means of E1 peptides coated on strips in a Line Immunoassay format, over half of the sera contained anti-E1 antibodies which could be competed by means of the same peptides, when tested on the recombinant E1 protein. Some of the murine monoclonal antibodies obtained from Balb/C mice after injection with purified E1 protein were subsequently competed for reactivity to E1 with the single peptides (FIG. 14). Clearly, the region of env53 contained the predominant epitope, as the addition of env53 could substantially compete reactivity of several sera with E1, and antibodies to the env3l region were also detected. This finding was surprising, since the env53 and env31 peptides had not shown any reactivity when coated directly to the solid phase.
  • Therefore peptides were synthesized using technology described by applicant previously (in WO 93/18054). The following peptides were synthesized: [0347]
  • peptide env35A-biotin [0348]
  • NH[0349] 2-SNSSEAADMIMHTPGCV-GKbiotin (SEQ ID NO 51)
  • spanning amino acids 208 to 227 of the HCV polyprotein in the E1 region [0350]
  • peptide biotin-env53 (‘epitope A’) [0351]
  • biotin-GG-ITGHRMAWDMMMNWSPTTAL-COOH (SEQ ID NO 52) [0352]
  • spanning amino acids to 313 of 332 of the HCV polyprotein in the E1 region [0353]
  • peptide 1bE1 (‘epitope B’) NO 53) [0354]
  • H[0355] 2N-YEVRNVSGIYHVTNDCSNSSIVYEAAMIMHTPGCGK-biotin (SEQ ID NO 53)
  • spanning [0356] amino acids 192 to 228 of the HCV polyprotein in the E1 region and compared with the reactivities of peptides E1a-BB (biotin-GG-TPTVATRDGKLPATQLRRHIDLL, SEQ ID NO 54 ) and E1 b-BB (biotin-GG-TPTLAARDASVPTTTIRRHVDLL, SEQ ID NO 55) which are derived from the same region of sequences of genotype 1a and 1b respectively and which have been described at the IXth international virology meeting in Glasgow, 1993 (‘epitope C’). Reactivity of a panel of HCV sera was tested on epitopes A, B and C and epitope B was also compared with env35A (of 47 HCV-positive sera, 8 were positive on epitope B and none reacted with env35A). Reactivity towards epitopes A, B, and C was tested directly to the biotinylated peptides (50 μg/ml) bound to streptavidin-coated plates as described in example 6. Clearly, epitopes A and B were most reactive while epitopes C and env35A-biotin were much less reactive. The same series of patients that had been monitored for their reactivity towards the complete E1 protein (example 7.1.) was tested for reactivity towards epitopes A, B, and C. Little reactivity was seen to epitope C, while as shown in FIGS. 15, 16, 17, and 18, epitopes A and B reacted with the majority of sera. However, antibodies to the most reactive epitope (epitope A) did not seem to predict remission of disease, while the anti-1bE1 antibodies (epitope B) were present almost exclusively in long term responders at the start of IFN treatment. Therefore, anti-1bE1 (epitope B) antibodies and anti-env-53 (epitope A) antibodies could be shown to be useful markers for prognosis of hepatitis C disease. The env53 epitope may be advantageously used for the detection of cross-reactive antibodies (antibodies that cross-react between major genotypes) and antibodies to the env53 region may be very useful for universal E1 antigen detection in serum or liver tissue. Monoclonal antibodies that recognized the env53 region were reacted with a random epitope library. In 4 clones that reacted upon immunoscreening with the monoclonal antibody 5E1A10, the sequence -GWD- was present. Because of its analogy with the universal HCV sequence present in all HCV variants in the env53 region, the sequence AWD is thought to contain the essential sequence of the env53 cross-reactive murine epitope. The env31 clearly also contains a variable region which may contain an epitope in the amino terminal sequence -YQVRNSTGL- (SEQ ID NO 931 and may be useful for diagnosis. Env31 or E -31 as shown in Table 3, is a part of the peptide 1bE1. Peptides 1-33 and E1-51 also reacted to some extent with the murine antibodies, and peptide E1-55 (containing the variable region 6 (V6) scanning amino acid positions 329-336) also reacted with some of the patient sera.
  • Anti-E2 antibodies clearly followed a different pattern than the anti-E1 antibodies, especially in patients with a long-term response to treatment. Therefore, it is clear that the decrease in anti-envelope antibodies could not be measured as efficiently with an assay employing a recombinant E1/E2 protein as with a single anti-E1 or anti-E2 protein. The anti-E2 response would clearly blur the anti-E1 response in an assay measuring both kinds of antibodies at the same time. Therefore, the ability to test anti-envelope antibodies to the single E1 and 2 proteins, was shown to be useful. [0357]
  • 7.4. Mapping of anti-E2 Antibodies [0358]
  • Of the 24 anti-E2 Mabs only three could be competed for reactivity to recombinant E2 by peptides, two of which reacted with the HVRI region (peptides E2-67 and E2-69, designated as epitope A) and one which recognized an epitope competed by peptide E2-13B (epitope C). The majority of murine antibodies recognized conformational anti-E2 epitopes (FIG. 19). A human response to HVRI (epitope A), and to a lesser extent HVRII (epitope B) and a third linear epitope region (competed by peptides E2-23, E2-25 or E2-27, designated epitope E) and a fourth linear epitope region (competed by peptide E2-17B, epitope D) could also frequently be observed, but the majority of sera reacted with conformational epitopes (FIG. 20). These conformational epitopes could be grouped according to their relative positions as follows: the IgG antibodies in the supernatant of hybridomas 15C8C1, 12D11F1, 9G3E6 , 8G10D1H9, 10D3C4, 4H6B2, 17F2C2, 5H6A7, 15B7A2 recognizing conformational epitopes were purified by means of protein A affinity chromatography and 1 mg/ml of the resulting IgG's were biotinylated in borate buffer in the presence of biotin. Biotinylated antibodies were separated from free biotin by means of gelfiltration chromatography. Pooled biotinylated antibody fractions were diluted 100 to 10,000 times. E2 protein bound to the solid phase was detected by the biotinylated IgG in the presence of 100 times the amount of non-biotinylated competing antibody and subsequently detected by alkaline phosphatase labeled streptavidin. [0359]
  • Percentages of competition are given in Table 6. Based on these results, 4 conformational anti-E2 epitope regions (epitopes F, G, H and I) could be delineated (FIG. 38). Alternatively, these Mabs may recognize mutant linear epitopes not represented by the peptides used in this study. Mabs 4H6B2 and 10D3C4 competed reactivity of 16A6E7, but unlike 16A6E7, they did not recognize peptide E2-13B. These Mabs may recognize variants of the same linear epitope (epitope C) or recognize a conformational epitope which is sterically hindered or chances conformation after binding of 16A6E7 to the E2-13B region (epitope H). [0360]
  • EXAMPLE 8 E1 Glycosylation Mutants
  • 8.1 Introduction [0361]
  • The E1 protein encoded by vvHCV10A, and the E2 protein encoded by vvHCV41 to 44 expressed from mammalian cells contain 6 and 11 carbohydrate moieties. respectively. This could be shown by incubating the lysate of vvHCV10A-infected or vvHCV44-infected RK13 cells with decreasing concentrations of glycosidases (PNGase F or Endoglycosidase H, (Boehringer Mannhein Biochemical according to the manufacturer's instructions), such that the proteins in the lysate (including E1) are partially deglycosylated (FIG. 39 and [0362] 40, respectively).
  • Mutants devoid of some of their glycosylation sites could allow the selection of envelope proteins with improved immunological reactivity. For HIV for example, gp120 proteins lacking certain selected sugar-addition motifs, have been found to be particularly useful for diagnostic or vaccine purpose. The addition of a new oligosaccharide side chain in the hemagglutinin protein of an escape mutant of the A/Hong Kong/3/68 (H3N2) influenza virus prevents reactivity with a neutralizing monoclonal antibody (Skehel et al, 1984). When novel glycosylation sites were introduced into the influenza hemaglutinin protein by site-specific mutagenesis, dramatic antigenic changes were observed, suggesting that the carbohydrates serve as a modulator of antigenicity (Gallagher et al., 1988). In another analysis, the 8 carbohydrate-addition motifs of the surface protein gp70 of the Friend Murine Leukemia Virus were deleted. Although seven of the mutations did not affect virus infectivity, mutation of the fourth glycosylation signal with respect to the amino terminus resulted in a non-infectious phenotype (Kayman et al., 1991). Furthermore, its known in the art that addition of N-linked carbohydrate chains is important for stabilization of folding intermediates and thus for efficient folding, prevention of malfolding and degradation in the endoplasmic reticulum, oligomerization, biological activity, and transport of glycoproteins (see reviews by Rose et at., 1988; Doms et al., 1993; Helenius, 1994). [0363]
  • After alignment of the different envelope protein sequences of HCV genotypes, it may be inferred that not all 6 glycosylation sites or, the HCV subtype 1E1 protein are required for proper folding and reactivity, since some are absent in certain (sub)types. The fourth carbohydrate motif (on Asn251), present in [0364] types 1b, 6a, 7, 8, and 9, is absent in all other types know today. This sugar-addition motif may be mutated to yield a type 1b E1 protein with improved reactivity. Also the type 2b sequences show an extra glycosylation site in the V5 region (on Asn299). The isolate S83, belonging to genotype 2c, even lacks the first carbohydrate motif in the V1 region (on Asn), while it is present on all other isolates (Stuyver e al., 1994) However, even among the completely conserved sugar-addition motifs, the presence of the carbohydrate may not be required for folding, but may have a role in evasion of immune surveillance. Therefore, identification of the carbohydrate addition motifs which are not required for proper folding (and reactivity) is not obvious, and each mutant has to be analyzed and tested for reactivity. Mutagenesis of a glycosylation motif (NXS or NXT sequences) can be achieved by either mutating the codons for N, S, or T, in such a way that these codons encode amino acids different from N in the case of N, and/or amino acids different from S or T in the case of S and in the case of T. Alternatively, the X position may be mutated into P1 since it is known that NPS or NPT are not frequently modified with carbohydrates. After establishing which carbohydrate-addition motifs are required for folding and/or reactivity and which are not, combinations of such mutations may be made.
  • 8.2. Mutagenesis of the E1 Protein [0365]
  • All mutations were performed on the E1 sequence of clone HCCl10A (SEQ ID NO. 5). The first round of PCR was performed using sense primer ‘GPT’ (see Table 7) targetting the GPT sequence located upstream of the vaccinia 11K late promoter, and an antisense primer (designated GLY#, with # representing the number of the glycosylation size, see FIG. 41) containing the desired base change to obtain the mutagenesis. The six GLY# primers (each specific for a given glycosylation site) were designed such that: [0366]
  • Modification of the codon encoding for the N-glycosylated Asn (AAC or AAT) to a Gln codon (CAA or CAG). Glutamine was chosen because it is very similar to asparagine (both amino acids are neutral and contain non-polar residues, glutamine has a longer side chain (one more —CH[0367] 2— group).
  • The introduction of silent mutations in one or several of the codons downstream of the glycosylation site, in order to create a new unique or rare (e.g. a second Smal site for E1Gly5) restriction enzyme site. Without modifying the amino acid sequence, this mutation will provide a way to distinguish the mutated sequences from the original E1 sequence (pvHCV-10A) or from each other (FIG. 41). This additional restriction site may also be useful for the construction of new hybrid (double, triple, etc.) glycosylation mutants. [0368]
  • 18 nucleotides extend 5′ of the first mismatched nucleotide and 12 to 16 nucleotides extend to the 3′ end. Table 7 depicts the sequences of the six GLY# primers overlapping the sequence of N-linked glycosylation sites. [0369]
  • For site-directed mutagenesis, the ‘mispriming’ or ‘overlap extension’ (Horton, 1993) was used. The concept is illustrated in FIGS. 42 and 43. First, two separate fragments were amplified from the target gene for each mutated site. The PCR product obtained from the 5′ end (product GLY#) was amplified with the 5′ sense GPT primer (see Table 7) and with the respective 3′ antisense GLY# primers. The second fragment (product OVR#) was amplified with the 3′ antisense Tk[0370] 6 primer and the respective 5′ sense primers (OVR# primers, see Table 7, FIG. 43).
  • The OVR# primers target part of the GLY# primer sequence. Therefore, the two groups of PCR products share an overlap region of identical sequence. When these intermediate products are mixed (GLY-1 with OVR-1, GLY-2 with OVR-2, etc.), melted at high temperature, and reannealed, the top sense strand of product GLY# can anneal to the antisense strand of product OVR# (and vice versa) in such a way that the two strands act as primers for one another (see FIG. 42.B). Extension of the annealed overlap by Taq polymerase during two PCR cycles created the full-length mutant molecule E1Gly#, which carries the mutation destroying the glycosylation site number #. Sufficient quantities of the E1GLY# products for cloning were generated in a third PCR by means of a common set of two internal nested primers. These two new primers are respectively overlapping the 3′ end of the vaccinia 11K promoter (sense GPT-2 primer) and the 5′ end of the vaccinia thymidine kinase locus (antisense TK[0371] R-2 primer, see Table 7). All PCR conditions were performed as described in Stuyver et al. (1993).
  • Each of these PCR products was cloned by EcoRI/BamH) cleavage into the EcoRI/BamHI-cut vaccinia vector containing the original E1 sequence (pvHCV-10A). [0372]
  • The selected clones were analyzed for length of insert by EcoRI/BamH cleavage and for the presence of each new restriction site. The sequences overlapping the mutated sites were confirmed by double-stranded sequencing. [0373]
  • 8.3. Analysis of E1 Glycosylation Mutants [0374]
  • Starting from the 6 plasmids containing the mutant E1 sequences as described in example 8.2, recombinant vaccinia viruses were generated by recombination with wt vaccinia virus as described in example 2.5. Briefly, 175 cm[0375] 2-flasks of subconfluent RK13 cells were infected with the 6 recombinant vaccinia viruses carrying the mutant E1 sequences, as well as with the vvHCV-10A (carrying the non-mutated E1 sequence) and wt vaccinia viruses. Cells were lysed after 24 hours of infection and analyzed on western blot as described in example 4 (see FIG. 44A). All mutants showed a faster mobility (corresponding to a smaller molecular weight of approximately 2 to 3 kDa) on SDS-PACE than the original E1 protein; confirming that one carbohydrate moiety was not added. Recombinant viruses were also analyzed by PCR and restriction enzyme analysis to confirm the identity of the different mutants. FIG. 44B shows that all mutants (as shown in FIG. 41) contained the expected additional restriction sites. Another part of the cell lysate was used to test the reactivity of the different mutant by ELISA. The lysates were diluted 20 times and added to microwell plates coated with the lectin GNA as described in example 6. Captured (mutant) E1 glycoproteins were left to react with 20-times diluted sera of 24 HCV-infected patients as described in example 6. Signal to noise (S/N) values (OD of GLY#/OD of wt) for the six mutants and E1 are shown in Table 8. The table also shows the ratios between S/N values of GLY# and E1 proteins. It should be understood that the approach to use cell lysates of the different mutants for comparison of reactivity with patient sera may result in observations that are the consequence of different expression levels rather then reactivity levels. Such difficulties can be overcome by purification of the different mutants as described in example 5, and by testing identical quantities of all the different E1 proteins. However, the results shown in table 5 already indicate that removal of the 1st (GLY1). 3rd (GLY3), and 6th (GLY6) glycosylation motifs reduces reactivity of some sera, while removal of the 2nd and 5th site does not. Removal of GLY4 seems to improve the reactivity of certain sera. These data indicate that different patients react differently to the glycosylation mutants of the present invention. Thus, such mutant E1 proteins may be useful for the diagnosis (screening, confirmation, prognosis, etc.) and prevention of HCV disease.
  • EXAMPLE 9 Expression of HCV E2 Protein in Glycosylation-Deficient Yeasts
  • The E2 sequence corresponding to clone HCCL41 was provided with the α-mating factor pre/pro signal sequence, inserted in a yeast expression vector and [0376] S. cerevisiae cells transformed with this construct secreted E2 protein into the growth medium. It was observed that most glycosylation sites were modified with high-mannose type glycosylations upon expression of such a construct in S. cerevisiae strains (FIG. 45). This resulted in a too high level of heterogeneity and in shielding of reactivity, which is not desirable for either vaccine or diagnostic purposes. To overcome this problem, S. cerevisiae mutants with modified glycosylation pathways were generated by means of selection of vanadate-resistant clones. Such clones were analyzed for modified glycosylation pathways by analysis of the molecular weight and heterogeneity of the glycoprotein invertase. This allowed us to identify different glycosylation deficient S. cerevisiae mutants. The E2 protein was subsequently expressed in some of the selected mutants and left to react with a monoclonal antibody as described in example 7, on western blot as described in example 4 (FIG. 46)
  • EXAMPLE 10 General Utility
  • The present results show that not only a good expression system but also a good purification protocol are required to reach a high reactivity of the HCV envelope proteins with human patient sera. This can be obtained using the proper HCV envelope protein expression system and/or purification protocols of the present invention which guarantee the conservation of the natural folding of the protein and the purification protocols of the present invention which guarantee the elimination of contaminating proteins and which preserve the conformation, and thus the reactivity of the HCV envelope proteins. The amounts of purified HCV envelope protein needed for diagnostic screening assays are in the range of grams per year. For vaccine purposes, even higher amounts of envelope protein would be needed. Therefore, the vaccinia virus system may be used for selecting the best expression constructs and for limited upscaling, and large-scale expression and purification of single or specific oligomeric envelope proteins containing high-mannose carbohydrates may be achieved when expressed from several yeast strains. In the case of hepatitis B for example, manufacturing of HBsAg from mammalian cells was much more costly compared with yeast-derived hepatitis B vaccines. [0377]
  • The purification method disclosed in the present invention may also be used for ‘viral envelope proteins’ in general. Examples are those derived from Flaviviruses, the newly discovered GB-A, GB-B and GB-C Hepatitis viruses, Pestiviruses (such as Bovine viral Diarrhoea Virus (BVDV), Hog Cholera Virus (HCV), Border Disease Virus (BDV)), but also less related virusses such as Hepatitis B Virus (mainly for the purification of HBsAg). [0378]
  • The envelope protein purification method of the present invention may be used for intra- as well as extracellularly expressed proteins in lower or higher eukaryotic cells or in prokaryotes as set out in the detailed description section. [0379]
    TABLE 1
    Recombinant vaccinia plasmids and viruses
    cDNA subclone Vector used
    Plasmid name Name construction Length (nt/aa) for insertion
    pvHCV-13A E1s EcoR I - Hind III 472/157 pgptATA-18
    pvHCV-12A E1s EcoR I - Hind III 472/153 pgptATA-18
    pvHCV-9A E1 EcoR I - Hind III 631/211 pgptATA-18
    pvHCV-11A E1s EcoR I - Hind III 625/207 pgptATA-18
    pvHCV-17A E1s EcoR I - Hind III 625/208 pgptATA-l8
    pvHCV-10A E1 EcoR I - Hind III 783/262 pgptATA-18
    pvHCV-18A COREs Acc I (KI) - EcoR I (KI) 403/130 pgptATA-18
    pvHCV-34 CORE Acc I (KI) - Fso I 595/197 pgptATA-18
    pvHCV-33 CORE-E1 Acc I (KI) 1150/380 pgptATA-18
    pvHCV-35 CORE-E1b.his EcoR I - BamH I (KI) 1032/352 pMS-66
    pvHCV-36 CORE-E1n.his EcoR I - Nco I (KI) 1106/375 pMS-66
    pvHCV-37 E1Δ Xma I - BamH I 711/239 pvHCV-10A
    pvHCV-38 E1Δs EcoR I - BstE II 553/133 pvHCV-11A
    pvHCV-39 E1Δb EcoR I - BamH I 960/313 pgsATA-18
    pvHCV-40 E1Δb.his EcoR I - BamH I (KI) 960/322 pMS-66
    pvHCV-41 E2bs BamHI (KI)-AIwN I (T4) 1005/331 pgsATA-18
    pvHCV-42 E2bs.his BamH I (KI)-AIwN I (T4) 1005/341 pMS-66
    pvHCV-43 E2ns Nco I (KI) - AIwN I (T4) 932/314 pgsATA-18
    pvHCV-44 E2ns.his Nco I (KI) - AIwN I (T4) 932/321 pMS-66
    pvHCV-62 E1s(type 3a) EcoR I - Hind III 625/207 pgsATA-18
    pvHCV-63 E1s(type 5) EcoR I - Hind III 625/207 pgsATA-18
    pvHCV-64 E2 BamH I - Hind III 1410/463 pgsATA-18
    pvHCV-65 E1-E2 BamH I - Hind III 2072/691 pvHCV-10A
    pvHCV-66 CORE-E1-E2 BamH I - Hind III 2427/809 pvHCV-33
    HCV cDNA subclone Vector
    Plasmid Length used for
    Name Name Construction (nt/aa) insertion
    pvHCV-81 E1-GLY 1 EcoRI - BamH I 783/262 pvHCV-10A
    pvHCV-82 E1-GLY 2 EcoRI - BamH I 783/262 pvHCV-10A
    pvHCV-83 E1-GLY 3 EcoRI - BamH I 783/262 pvHCV-10A
    pvHCV-84 E1-GLY 4 EcoRI - BamH I 783/262 pvHCV-10A
    pvHCV-85 E1-GLY 5 EcoRI - BamH I 783/262 pvHCV-10A
    pvHCV-86 E1-GLY 6 EcoRI - BamH I 783/262 pvHCV-10A
  • [0380]
    TABLE 2
    Summary of anti-E1 tests
    S/N ± SD (mean and-E1 titer)
    Start of treatment End of treatment Follow-up
    LTR 6.94 ± 2.29 4.48 ± 2.69 (1:568) 2.99 ± 2.69 (1:175)
    (1:3946)
    NR 5.77 ± 3.77 5.29 ± 3.99 6.08 ± 3.73
    (1:1607) (1:1060) (1:1978)
  • [0381]
    TABLE 3
    Synthetic peptides for competition studies
    PROTEIN PEPTIDE AMINO ACID SEQUENCE POSITION SEQ ID NO
    E1 E1-31  LLSCLTVPASAYQVRNSTGL 181-200 56
    E1-33  QVRNSTGLYHVTNDCPNSSI 193-212 57
    E1-35  NDCPNSSIVYEAHDAILHTP 205-224 58
    E1-35A SNSSIVYEAADMIMHTPGCV 208-227 59
    E1-37  HDAILHTPGCVPCVREGNVS 217-236 60
    E1-39  CVREGNVSRCWVAMTPTVAT 229-248 61
    E1-41  AMTPTVATRDGKLPATQLRR 241-260 62
    E1-43  LPATQLRRHIDLLVGSATLC 253-272 63
    E1-45  LVGSATLCSALYVGDLCGSV 265-284 64
    E1-49  QLFTFSPRRHWTTQGCNCSI 289-308 65
    E1-51  TQGCNCSIYPGHITGHRMAW 301-320 66
    E1-53  ITGHRMAWDMMMNWSPTAAL 313-332 67
    E1-55  NWSPTAALVMAQLLRIPQAI 325-344 68
    E1-57  LLRIPQAILDMIAGAHWGVL 337-356 69
    E1-59  AGAHWGVLAGIAYFSMVGNM 349-368 70
    E1-63  VVLLLFAGVDAETIVSGGQA 373-392 71
    E2 E2-67  SGLVSLFTPGAKQNIQLINT 397-416 72
    E2-69  QNIQLINTNGSWHINSTALN 409-428 73
    E2-$3B  LNCNESLNTGWWLAGLIYQHK 427-446 74
    E2-$1B AGLIYQHKFNSSGCPERLAS 439-458 75
    E2-1B  GCPERLASCRPLTDFDQGWG 451-470 76
    E2-3B  TDFDQGWGPISYANGSGPDQ 463-482 77
    E2-5B  ANGSGPDQRPYCWHYPPKPC 475-494 78
    E2-7B  WHYPPKPCGIVPAKSVCGPV 487-506 79
    E2-9B  AKSVCGPVYCFTPSPVVVGT 499-518 80
    E2-11B PSPVVVGTTDRSGAPTYSWG 511-530 81
    E2-13B GAPTYSWGENDTDVFVLNNT 523-542 82
    E2-17B GNWFGCTWMNSTGFTKVCGA 547-566 83
    E2-19B GFTKVCGAPPVCIGGAGNNT 559-578 84
    E2-21  IGGAGNNTLHCPTDCFRKHP 571-590 85
    E2-23  TDCFRKHPDATYSRCGSGPW 583-602 86
    E2-25  SRCGSGPWITPRCLVDYPYR 595-614 87
    E2-27  CLVDYPYRLWHYPCTINYTI 607-626 88
    E2-29  PCTINYTIFKIRMYVGGVEH 619-638 89
    E2-31  MYVGGVEHRLEAACNWTPGE 631-650 90
    E2-33  ACNWTPGERCDLEDRDRSEL 643-662 91
    E2-35  EDRDRSELSPLLLTTTQWQV 655-674 92
  • [0382]
    TABLE 4
    Change of Envelope Antibody levels over time (complete study, 28 patients)
    Wilcoxon Signed E1Ab NR E1Ab NR E1Ab NR E1Ab LTR E1Ab LTR E1Ab LTR E2Ab NR E1Ab LTR
    Rank test (P values) All type 1b type 3a All type 1b type 3a All All
    End of therapy* 0.1167 0.2604 0.285 0.0058** 0.043** 0.0499** 0.0186** 0.0640
    6 months follow up* 0.86 0.7213 0.5930 0.0047** 0.043** 0.063 0.04326 0.0464**
    12 months follow up* 0.7989 0.3105 1 0.0051** 0.0679 0.0277** 0.0869 0.0058**
  • [0383]
    TABLE 5
    Difference between LTR and NR (complete study)
    E1Ab E2Ab
    Mann-Withney E1Ab S/N titers E1Ab S/N E1Ab S/N S/N
    U test (P values) All All type 1b type 3a All
    Initiation of therapy 0.0257* 0.05* 0.68 0.1078
    End of therapy 0.1742 0.1295
    6 months follow up 1 0.6099 0.425 0.3081
    12 months follow up 0.67 0.23 0.4386 0.6629
  • [0384]
    TABLE 6
    Competition experiments between murine E2 monoclonal antibodies
    Decrease (%) of anti-E2 reactivity of biotinylated anti-E2 mabs
    competitor 17H10F4D10 2F10H10 16A6E7 10D3C4 4H6B2 17C2F2 9G3E6 12D11F1 15C8C1 8G10D1H9
    17H10F4D10 62 10 ND 11 ND 5 6 30 ND
    2F10H10 90 1 ND 30 ND 0 4 12 ND
    16A6E7 ND ND ND ND ND ND ND ND ND
    10D3C4
    11 50 92 94 26 28 43 53 30
    4H6F32 ND ND 82 ND ND ND ND ND ND
    17C2F2
    2 ND 75 ND 56 11 10 0 0
    9G3E6 ND ND 68 ND 11 ND 60 76 ND
    12D11F1 ND ND 26 ND 13 ND ND 88 ND
    15C8C1 ND ND 18 ND 10 ND ND ND ND
    BG10D1H9
    2 2 11 ND 15 ND 67 082 81
    competitor
    controls
    15B7A2 0 0 9 15 10 9 0 0 0 5
    5H6A7 0 2 0 12 8 0 0 4 0 0
    23C12H9 ND ND 2 12 ND 4 ND ND ND 2
  • [0385]
    TABLE 7
    Primers
    SEQ ID NO. 96 GPT 5′-GTTTAACCACTGCATGATG-3′
    SEQ ID NO. 97 Tk n 5′-GTCCCATCGAGTGCGGCTAC-3′
    SEQ ID NO. 98 GLY1 5′-CGTGACATGGTACATTCCGGACACTTGGCGCACTTCATAAGCGGA-3′
    SEQ ID NO. 99 GLY2 5′-TGCCTCATACACAATGGAGCTCTGGGACGAGTCGTTCGTGAC-3′
    SEQ ID NO. 100 GLY3 5′-TACCCAGCAGCGGGAGCTCTGTTGCTCCCGAACGCAGGGCAC-3′
    SEQ ID NO. 101 GLY4 5′-TGTCGTGGTGGGGACGGAGGCCTGCCTAGCTGCGAGCGTGGG-3′
    SEQ ID NO. 102 GLY5 5′-CGTTATGTGGCCCGGGTAGATTGAGCACTGGCAGTCCTGCACCGTCTC-3′
    SEQ ID NO. 103 GLY6 5′-CAGGGCCGTTGTAGGCCTCCACTGCATCATCATATCCCAAGC-3′
    SEQ ID NO. 104 OVR1 5′-CCGGAATGTACCATGTCACGAACGAC-3′
    SEQ ID NO. 105 OVR2 5′-GCTCCATTGTGTATGAGGCAGCGG-3′
    SEQ ID NO. 106 OVR3 5′-GAGCTCCCGCTGCTGGGTAGCGC-3′
    SEQ ID NO. 107 OVR4 5′-CCTCCGTCCCCACCACGACAATACG-3′
    SEQ ID NO. 108 OVR5 5′-CTACCCGGGCCACATAACGGGTCACCG-3′
    SEQ ID NO. 109 OVR6 5′-GGAGGCCTACAACGGCCCTGGTGG-3′
    SEQ ID NO. 110 GPT-2 5′-TTCTATCGATTAAATAGAATTC-3′
    SEQ ID NO. 111 TKn-2 5′-GCCATACGCTCACAGCCGATCCC-3′
  • [0386]
    TABLE 8
    Analysis of E1 glycosylation mutants by ELISA
    SERUM
    1 2 3 4 5 6 7 8 9 10 11 12
    LY1 1.802462 2.120971 1.403071 1.205597 2.120191 2.866913 1.950345 1 866103 1.730193 2.468162 1 220654 1 629403
    LY2 2.4001795 1.761110 2.325495 2.639300 2.459019 5.043993 2.146302 1.595477 1 688973 2.482212 1 467582 2.070524
    LY3 1 6427718 1.715477 2.261646 2.354740 1.591010 4.033742 1 96692 1.402099 1 602222 2.191558 1 464216 1 721164
    LY4 2.578154 3.024030 3.074605 1.499301 3.15 4.71302 4.190751 3.959542 3.710507 5 170841 4 250784 3 955153
    LY5 2 482051 1.793761 2.409344 2.627350 1.715311 4.964765 2.13912 1.576336 1 708937 3 021807 1.562092 2.07278
    LY6 2.031487 1.495737 2.131613 2.527925 2.494033 4.704027 2.02069 1.496489 7 704976 2 677757 1.529608 1 744221
    1 2.828205 2.227036 2.512792 2.790001 3.131579 4.069128 2.207753 1.954190 1.805556 2 616822 1.55719 2 593886
    13 14 15 16 17 18 19 20 21 22 23 24
    LY1 5.685561 3.233604 3 763498 1.985105 2.317721 6.675179 1 93476 2.47171 4.378633 1.188748 2 158889 1.706992
    LY2 7.556682 2.567613 3 621920 3.055649 2.933792 7.65433 2.127712 2.921288 4 680101 1.150781 1.661914 1.632785
    LY3 7.930538 2.763055 3 016099 2.945628 2.515305 5.775357 1.980185 2.557384 4.268633 0.97767 1 336775 1 20376
    LY4 8.176816 6 561122 5 707668 5 684498 5.604013 6.4125 3.813321 3 002535 4 293038 2 393011 3 68213 2 481585
    LY5 8 883408 2 940334 3 125561 3.330912 2.654224 5.424107 2.442804 3.126761 4 64557 1 153656 1 817901 1.638211
    LY6 8 005561 2 499952 2 621704 2.572305 2.363301 5.194107 1.506716 2 665433 2 781063 1.280743 1 475062 1 716423
    1 8 825112 3.183771 3 067265 3.280335 2.980354 7.191964 2.771218 3 678068 5 35443 1 167286 2 083333 1.78252
    Sum Average
    S/N S/N
    LY1 59 88534 2 495223
    LY2 69 65243 2 902185
    LY3 62 09872 2.587447
    LY4 102.6978 4 279076
    LY5 69 26511 2 886046
    LY6 61 32181 2 555075
    1 76 54068 3.189195
    SERUM
    1 2 3 4 5 6 7 8 9 10 11 12
    /E1 0 637316 0.952374 0.55069 0.431977 0 677036 0.500794 0.852516 0 954961 0 958261 0 94319 0 783882 0.628171
    /E1 0.848876 0.793961 0 925463 0.94569 0.705233 1.035913 0.93817 0.816436 0 935431 0 94856 0.942455 0.798232
    /E1 0.580834 0.770296 0 900053 0.84373 0.508312 0 992733 0.859761 0.758418 0 887385 0 837488 0.940294 0 663547
    /E1 0.911587 1.717097 1.541952 0.537245 1.005882 0.967939 1 835317 2 026172 2.05505 1 976 2.72978 1.524798
    /E1 0.877607 0.805447 0.950031 0.941408 0.547746 1.019642 0 935031 0.806641 0 946488 1 154762 1.003148 0 799102
    /E1 0 718296 0 671626 0.848305 0.90578 0.796669 0.982522 0.883264 0 765781 0.944294 1 023286 0.982288 0.672435
    13 14 15 16 17 18 19 20 21 22 23 24
    /E1 0.644248 1.015652 1.226988 0.605153 0.777666 0.928144 0.698162 0.672013 0 817759 1.018386 1 036267 0 957628
    /E1 0 85627 0.806469 1 180833 0 931505 0 984377 1.064289 0.76779 0 794245 0 874061 0 98586 0.797719 0 915998
    /E1 0 898633 0 867856 0.983319 0 897966 0.843962 0.803029 0.714554 0.695306 0 797215 0 837558 0 641652 0 675314
    /E1 0 92654 2 060802 1 860833 1.732902 1.880587 0 89162 1.376045 0 816335 0 801773 2 050064 1 767422 1 392178
    /E1 1 006606 0 923538 1.019006 1.017857 0.890574 0 75419 0 881491 0 850109 0 867612 0 988323 0.872593 0 919042
    /E1 0 907134 0 785217 0 854737 0.784184 0 79296 0 72221 0 543702 0.724683 0 519395 1 097197 0 70803 0 962919
    Sum Average
    E1/GLY# E1/GLY#
    /E1 19.36524 0 806885
    /E1 21.67384 0 903077
    /E1 19.19921 0 799967
    /E1 36 38592 1 51608
    /E1 21 78679 0 907783
    /E1 19 59691 0 816538
  • REFERENCES
  • Bailey, J. and Cole, R. (1959) J. Biol. Chem. 234, 1733-1739. [0387]
  • Ballou, L., Hitzeman, R., Lewis, M. & Ballou, C. (1991) PNAS 88, 3209-3212. [0388]
  • Benesch, R., Benesch, R. E., Gutcho, M. & Lanfer, L. (1956) Science 123, 981. [0389]
  • Cavins, J. & Friedman. (1970) Anal. Biochem. 35, 489. [0390]
  • Cleland, W. (1964) [0391] Biochemistry 3, 480
  • Creighton, E. (1988) BioEssays 8, 57 [0392]
  • Darbre, A., John Wiley & Sons Ltd. (1987) Practical Protein Chemistry—A Handbook. [0393]
  • Darbre, A., John Wiley & Sons Ltd. (1987) Practical Proteinchemistry p.69-79. [0394]
  • Doms et al, (1993), Virology 193, 545-562. [0395]
  • Ellman, G. (1959) Arch. Biochem. Bichys. 82, 70. [0396]
  • Falkner, F. & Moss, B. (1988) J. Virol. 62, 1849-1854. [0397]
  • Friedman, M. & Krull. (1969) Biochem. Biophys. Res. Commun. 37, 630. [0398]
  • Gallagher J. (19 88) J. Cell Biol. 107, 2059-2073. [0399]
  • Glazer, A., Delange, R., Sigman. 0. (1975) North Holland publishing company. [0400]
  • Elsevier, Biomedical. Part: Modification of protein (p. 116). [0401]
  • Graham, F. & van der Eb, A. (1973) Virology 52, 456-467. [0402]
  • Grakoul et al. (1993) Journal of Virology 67:1385-1395. [0403]
  • Grassetti D, & Murray. J. (1969) Analyt. Chim. Acta. 46, 139 [0404]
  • Grassetli, D. & Murray, J. (1967) Arch. Biochem Biophys. 119, 41. [0405]
  • Helenius, Mol. Biol. Cell (1994), 5: 253-265. [0406]
  • Hijikata, M., Kato, N., Ootsuyama, Y., Nakagawa, M. & Shimotohno, K. (1991) Proc. Natl. Acad. Sci. U.S.A. 88(13):5547-51. [0407]
  • Hochuli, E., Bannwarth. W., Döbeli, H., Gentz. R., Stuber, D. (1988) Biochemistry 88, 8976. [0408]
  • Hsu H., Donets, M., Greenberg, H. & Feinstone, S, (1993) Hepatology 17:763-771. [0409]
  • Inoue, Y., Suzuki, R, Matsuura, Y., Harada, S., Chiba. J., Watanabe. Y., Saito, I. & Miyamura, T. (1992) J. Gen. Virol. 73:2151-2154. [0410]
  • Janknecht, R., de Martynoff, C. et al., (1991) Proc. Natl. [0411] Acad. Sci. USA 83, 8972-8976.
  • Kayman (1991) [0412] J. Virology 65, 5323-5332.
  • Kato, N., Oostuyama, Y., Tanaka, T., Nakagawa, M., Muraiso, K., Ohkoshi, S., Hijikata, M., Shimitohno, K. (1992) Virus Res. 22:107-123. [0413]
  • Kniskern, P., Hagopian, A., Burke, P., Schultz, L., Montgomery, D., Huni, W., Yu Ip. C., Schulman, C., Maigetter, R., Wampler, D., Kubek, D., Sitrin, R., West, D., Ellis, R., Miller, W. (1994) Vaccine 12:1021-1025. [0414]
  • Kohara, M., Tsukiyama-Kohara, K., Maki, N., Asano, K., Yoshizawa, K., Miki, K., Tanaka, S., Hattori, N., Matsuura, Y., Saito, I., Miyamura, T. & Nomoto, A. (1992) J. Gen. Virol. 73:2313-2318. [0415]
  • Mackett, M., Smith, G. & Moss. S. (1985) In: ‘DNA cloning: a pract:cal approach’ (Ed. Glover, D.) IRL Press, Oxford. [0416]
  • Mackett, M., & Smith, G. (1986) J. Gen. Virol. 67, 2067-2082. [0417]
  • Mackett, M., Smith, C & Moss. E. (1984) J. Virol. 49, 857-864. [0418]
  • Mackett, M., Smith, C. & Moss, B. (1984) Proc. Natl. Acad. Sci., USA 79, 7415-7419. [0419]
  • Means, G. (1971) Holden Day, Inc. [0420]
  • Means, G. & Feeney, R. (1971) Holden Day p.105 & p. 217. [0421]
  • Mita, E., Hayashi, N., Ueda, K., Kasahara, A., Fusamoto, H., Takamizawa, A., Matsubara, K., Okayama, H. & Kamada T. (1992: Biochem. Biophys. Res. Comm. 183:925-930. [0422]
  • Moore, S. (1963) J. Biol. Chem. 238, 235-237. [0423]
  • Okamoto, H., Okada, S., Sugiyama, Y., Yotsumoto, S., Tanaka, T., Yoshizawa, H., Tsuda, F., Miyakawa, Y. & Mayumi, M. (1990) Jpn. J. Exp. Med. 60:167-177. [0424]
  • Panicali & Paoletti (1982) Proc. Natl. Acad. Sci. USA 79, 4927-4931. [0425]
  • Piccini, A., Perkus, M. & Paoletti, E. (1987) Meth. Enzymol. 153, 545-563. [0426]
  • Rose (1988) Annu. Rev. Cell Biol. 1988, 4: 257-288; [0427]
  • Ruegg, V. and Rudinger, J. (1 977) Methods Enzymol. 47, 111-116. [0428]
  • Shan, S. & Wong (1993) CRC-press p. 30-33. [0429]
  • Spaete, R., Alexander, D., Rugrodern, M., Choo, O., Berger, K., Crawford, K., Kuo, C., Leng, S., Lee, C., Ralston, R., et al. (1992) Virology 188(2):819-30. [0430]
  • Skehel, J., (1984) Proc. Natl. [0431] Acad. Sci. USA 81, 1179-1783.
  • Stunnenberg, H., Lange. H., Philipson, L., Miltenburg, R. & van der Vliet. R. (1988) Nucl. Acids Res. 16, 2431-2444. [0432]
  • Stuyver, L., Van Arnhem, W., Wyseur, A., DeLeys, P. & Maertens, G. (1993a) Biochem. Biophys. Res. Commun. 192, 635-641. [0433]
  • Stuyver, L., Rossau, R., Wyseur, A., Duhamel, M., Vanderborght, B., Van Heuverswyn, H., & Maertens. C. (1993b) J. Gen. Virol. 74, 1093-1102. [0434]
  • Sruyver, L., Van Arnhem, W., Wyseur, A., Hernandez, F., Delaporte, E., Maertens, G. (1994), Proc. Natl. Acad. Sci. USA 91:10134-10138. [0435]
  • Weil, L. & Seibier, S. (1961) Arch. Biochen. Biophys. 95, 470. [0436]
  • Yokosuka, O., Ito. Y., Imazeki, F., Ohto, M. & Omata, M. (1992) Biochem. Biophys. Res. Commun. 189:565-571. [0437]
  • Miller P, Yano J, Yano E, Carroll C, Jayaram K, Ts'o P (1979) Biochemistry 18:5134-43. [0438]
  • Nielsen P, Egholm M, Berg R, Buchardt O (1991) Science 254:1497-500. [0439]
  • Nielsen P, Egholm M, Berg R, Buchardt O (1993) Nucleic-Acids-Res. 21:197-200 [0440]
  • Asseline U, Delarue M, Lancelot G, Toulme F, Thuong N (1984) Proc. Natl. Acad. Sci. USA 81:3297-301. [0441]
  • Matsukura M, Shinozuka K, Zon G. Mitsuya H, Reitz M, Cohen J. Broder S (1987) Proc. Natl. Acad. Sci. USA 84:7706-10. [0442]
  • 1 111 21 base pairs nucleic acid single linear cDNA NO NO 1 GGCATGCAAG CTTAATTAAT T 21 68 base pairs nucleic acid single linear cDNA NO NO 2 CCGGGGAGGC CTGCACGTGA TCGAGGGCAG ACACCATCAC CACCATCACT AATAGTTAAT 60 TAACTGCA 68 642 base pairs nucleic acid single linear cDNA NO NO CDS 1..639 mat_peptide 1..636 3 ATG CCC GGT TGC TCT TTC TCT ATC TTC CTC TTG GCT TTA CTG TCC TGT 48 Met Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys 1 5 10 15 CTG ACC ATT CCA GCT TCC GCT TAT GAG GTG CGC AAC GTG TCC GGG ATG 96 Leu Thr Ile Pro Ala Ser Ala Tyr Glu Val Arg Asn Val Ser Gly Met 20 25 30 TAC CAT GTC ACG AAC GAC TGC TCC AAC TCA AGC ATT GTG TAT GAG GCA 144 Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala 35 40 45 GCG GAC ATG ATC ATG CAC ACC CCC GGG TGC GTG CCC TGC GTT CGG GAG 192 Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys Val Arg Glu 50 55 60 AAC AAC TCT TCC CGC TGC TGG GTA GCG CTC ACC CCC ACG CTC GCA GCT 240 Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr Leu Ala Ala 65 70 75 80 AGG AAC GCC AGC GTC CCC ACC ACG ACA ATA CGA CGC CAC GTC GAT TTG 288 Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His Val Asp Leu 85 90 95 CTC GTT GGG GCG GCT GCT CTC TGT TCC GCT ATG TAC GTG GGG GAT CTC 336 Leu Val Gly Ala Ala Ala Leu Cys Ser Ala Met Tyr Val Gly Asp Leu 100 105 110 TGC GGA TCT GTC TTC CTC GTC TCC CAG CTG TTC ACC ATC TCG CCT CGC 384 Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Ile Ser Pro Arg 115 120 125 CGG CAT GAG ACG GTG CAG GAC TGC AAT TGC TCA ATC TAT CCC GGC CAC 432 Arg His Glu Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His 130 135 140 ATA ACA GGT CAC CGT ATG GCT TGG GAT ATG ATG ATG AAC TGG TCG CCT 480 Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp Ser Pro 145 150 155 160 ACA ACG GCC CTG GTG GTA TCG CAG CTG CTC CGG ATC CCA CAA GCT GTC 528 Thr Thr Ala Leu Val Val Ser Gln Leu Leu Arg Ile Pro Gln Ala Val 165 170 175 GTG GAC ATG GTG GCG GGG GCC CAT TGG GGA GTC CTG GCG GGC CTC GCC 576 Val Asp Met Val Ala Gly Ala His Trp Gly Val Leu Ala Gly Leu Ala 180 185 190 TAC TAT TCC ATG GTG GGG AAC TGG GCT AAG GTT TTG ATT GTG ATG CTA 624 Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys Val Leu Ile Val Met Leu 195 200 205 CTC TTT GCT CTC TAATAG 642 Leu Phe Ala Leu 210 212 amino acids amino acid linear protein 4 Met Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys 1 5 10 15 Leu Thr Ile Pro Ala Ser Ala Tyr Glu Val Arg Asn Val Ser Gly Met 20 25 30 Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala 35 40 45 Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys Val Arg Glu 50 55 60 Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr Leu Ala Ala 65 70 75 80 Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His Val Asp Leu 85 90 95 Leu Val Gly Ala Ala Ala Leu Cys Ser Ala Met Tyr Val Gly Asp Leu 100 105 110 Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Ile Ser Pro Arg 115 120 125 Arg His Glu Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His 130 135 140 Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp Ser Pro 145 150 155 160 Thr Thr Ala Leu Val Val Ser Gln Leu Leu Arg Ile Pro Gln Ala Val 165 170 175 Val Asp Met Val Ala Gly Ala His Trp Gly Val Leu Ala Gly Leu Ala 180 185 190 Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys Val Leu Ile Val Met Leu 195 200 205 Leu Phe Ala Leu 210 795 base pairs nucleic acid single linear cDNA NO NO CDS 1..792 mat_peptide 1..789 5 ATG TTG GGT AAG GTC ATC GAT ACC CTT ACA TGC GGC TTC GCC GAC CTC 48 Met Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 GTG GGG TAC ATT CCG CTC GTC GGC GCC CCC CTA GGG GGC GCT GCC AGG 96 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 GCC CTG GCG CAT GGC GTC CGG GTT CTG GAG GAC GGC GTG AAC TAT GCA 144 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 ACA GGG AAT TTG CCC GGT TGC TCT TTC TCT ATC TTC CTC TTG GCT TTG 192 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 CTG TCC TGT CTG ACC GTT CCA GCT TCC GCT TAT GAA GTG CGC AAC GTG 240 Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 TCC GGG ATG TAC CAT GTC ACG AAC GAC TGC TCC AAC TCA AGC ATT GTG 288 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 TAT GAG GCA GCG GAC ATG ATC ATG CAC ACC CCC GGG TGC GTG CCC TGC 336 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 GTT CGG GAG AAC AAC TCT TCC CGC TGC TGG GTA GCG CTC ACC CCC ACG 384 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 CTC GCA GCT AGG AAC GCC AGC GTC CCC ACC ACG ACA ATA CGA CGC CAC 432 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 GTC GAT TTG CTC GTT GGG GCG GCT GCT TTC TGT TCC GCT ATG TAC GTG 480 Val Asp Leu Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val 145 150 155 160 GGG GAC CTC TGC GGA TCT GTC TTC CTC GTC TCC CAG CTG TTC ACC ATC 528 Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Ile 165 170 175 TCG CCT CGC CGG CAT GAG ACG GTG CAG GAC TGC AAT TGC TCA ATC TAT 576 Ser Pro Arg Arg His Glu Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr 180 185 190 CCC GGC CAC ATA ACG GGT CAC CGT ATG GCT TGG GAT ATG ATG ATG AAC 624 Pro Gly His Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn 195 200 205 TGG TCG CCT ACA ACG GCC CTG GTG GTA TCG CAG CTG CTC CGG ATC CCA 672 Trp Ser Pro Thr Thr Ala Leu Val Val Ser Gln Leu Leu Arg Ile Pro 210 215 220 CAA GCT GTC GTG GAC ATG GTG GCG GGG GCC CAT TGG GGA GTC CTG GCG 720 Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly Val Leu Ala 225 230 235 240 GGT CTC GCC TAC TAT TCC ATG GTG GGG AAC TGG GCT AAG GTT TTG ATT 768 Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys Val Leu Ile 245 250 255 GTG ATG CTA CTC TTT GCT CCC TAATAG 795 Val Met Leu Leu Phe Ala Pro 260 263 amino acids amino acid linear protein 6 Met Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 Val Asp Leu Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val 145 150 155 160 Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Ile 165 170 175 Ser Pro Arg Arg His Glu Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr 180 185 190 Pro Gly His Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn 195 200 205 Trp Ser Pro Thr Thr Ala Leu Val Val Ser Gln Leu Leu Arg Ile Pro 210 215 220 Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly Val Leu Ala 225 230 235 240 Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys Val Leu Ile 245 250 255 Val Met Leu Leu Phe Ala Pro 260 633 base pairs nucleic acid single linear cDNA NO NO CDS 1..630 mat_peptide 1..627 7 ATG TTG GGT AAG GTC ATC GAT ACC CTT ACG TGC GGC TTC GCC GAC CTC 48 Met Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 ATG GGG TAC ATT CCG CTC GTC GGC GCC CCC CTA GGG GGT GCT GCC AGA 96 Met Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 GCC CTG GCG CAT GGC GTC CGG GTT CTG GAA GAC GGC GTG AAC TAT GCA 144 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 ACA GGG AAT TTG CCT GGT TGC TCT TTC TCT ATC TTC CTC TTG GCT TTA 192 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 CTG TCC TGT CTG ACC ATT CCA GCT TCC GCT TAT GAG GTG CGC AAC GTG 240 Leu Ser Cys Leu Thr Ile Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 TCC GGG ATG TAC CAT GTC ACG AAC GAC TGC TCC AAC TCA AGC ATT GTG 288 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 TAT GAG GCA GCG GAC ATG ATC ATG CAC ACC CCC GGG TGC GTG CCC TGC 336 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 GTT CGG GAG AAC AAC TCT TCC CGC TGC TGG GTA GCG CTC ACC CCC ACG 384 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 CTC GCA GCT AGG AAC GCC AGC GTC CCC ACT ACG ACA ATA CGA CGC CAC 432 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 GTC GAT TTG CTC GTT GGG GCG GCT GCT TTC TGT TCC GCT ATG TAC GTG 480 Val Asp Leu Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val 145 150 155 160 GGG GAT CTC TGC GGA TCT GTC TTC CTC GTC TCC CAG CTG TTC ACC ATC 528 Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Ile 165 170 175 TCG CCT CGC CGG CAT GAG ACG GTG CAG GAC TGC AAT TGC TCA ATC TAT 576 Ser Pro Arg Arg His Glu Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr 180 185 190 CCC GGC CAC ATA ACA GGT CAC CGT ATG GCT TGG GAT ATG ATG ATG AAC 624 Pro Gly His Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn 195 200 205 TGG TAATAG 633 Trp 210 209 amino acids amino acid linear protein 8 Met Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 Met Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 Leu Ser Cys Leu Thr Ile Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 Val Asp Leu Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val 145 150 155 160 Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Ile 165 170 175 Ser Pro Arg Arg His Glu Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr 180 185 190 Pro Gly His Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn 195 200 205 Trp 483 base pairs nucleic acid single linear cDNA NO NO CDS 1..480 mat_peptide 1..477 9 ATG CCC GGT TGC TCT TTC TCT ATC TTC CTC TTG GCC CTG CTG TCC TGT 48 Met Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys 1 5 10 15 CTG ACC ATA CCA GCT TCC GCT TAT GAA GTG CGC AAC GTG TCC GGG GTG 96 Leu Thr Ile Pro Ala Ser Ala Tyr Glu Val Arg Asn Val Ser Gly Val 20 25 30 TAC CAT GTC ACG AAC GAC TGC TCC AAC TCA AGC ATA GTG TAT GAG GCA 144 Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala 35 40 45 GCG GAC ATG ATC ATG CAC ACC CCC GGG TGC GTG CCC TGC GTT CGG GAG 192 Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys Val Arg Glu 50 55 60 GGC AAC TCC TCC CGT TGC TGG GTG GCG CTC ACT CCC ACG CTC GCG GCC 240 Gly Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr Leu Ala Ala 65 70 75 80 AGG AAC GCC AGC GTC CCC ACA ACG ACA ATA CGA CGC CAC GTC GAT TTG 288 Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His Val Asp Leu 85 90 95 CTC GTT GGG GCT GCT GCT TTC TGT TCC GCT ATG TAC GTG GGG GAT CTC 336 Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val Gly Asp Leu 100 105 110 TGC GGA TCT GTT TTC CTT GTT TCC CAG CTG TTC ACC TTC TCA CCT CGC 384 Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Phe Ser Pro Arg 115 120 125 CGG CAT CAA ACA GTA CAG GAC TGC AAC TGC TCA ATC TAT CCC GGC CAT 432 Arg His Gln Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His 130 135 140 GTA TCA GGT CAC CGC ATG GCT TGG GAT ATG ATG ATG AAC TGG TCC TAATAG 483 Val Ser Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp Ser 145 150 155 160 159 amino acids amino acid linear protein 10 Met Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys 1 5 10 15 Leu Thr Ile Pro Ala Ser Ala Tyr Glu Val Arg Asn Val Ser Gly Val 20 25 30 Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala 35 40 45 Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys Val Arg Glu 50 55 60 Gly Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr Leu Ala Ala 65 70 75 80 Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His Val Asp Leu 85 90 95 Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val Gly Asp Leu 100 105 110 Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Phe Ser Pro Arg 115 120 125 Arg His Gln Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His 130 135 140 Val Ser Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp Ser 145 150 155 480 base pairs nucleic acid single linear cDNA NO NO CDS 1..477 mat_peptide 1..474 11 ATG TCC GGT TGC TCT TTC TCT ATC TTC CTC TTG GCC CTG CTG TCC TGT 48 Met Ser Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys 1 5 10 15 CTG ACC ATA CCA GCT TCC GCT TAT GAA GTG CGC AAC GTG TCC GGG GTG 96 Leu Thr Ile Pro Ala Ser Ala Tyr Glu Val Arg Asn Val Ser Gly Val 20 25 30 TAC CAT GTC ACG AAC GAC TGC TCC AAC TCA AGC ATA GTG TAT GAG GCA 144 Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala 35 40 45 GCG GAC ATG ATC ATG CAC ACC CCC GGG TGC GTG CCC TGC GTT CGG GAG 192 Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys Val Arg Glu 50 55 60 GGC AAC TCC TCC CGT TGC TGG GTG GCG CTC ACT CCC ACG CTC GCG GCC 240 Gly Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr Leu Ala Ala 65 70 75 80 AGG AAC GCC AGC GTC CCC ACA ACG ACA ATA CGA CGC CAC GTC GAT TTG 288 Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His Val Asp Leu 85 90 95 CTC GTT GGG GCT GCT GCT TTC TGT TCC GCT ATG TAC GTG GGG GAT CTC 336 Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val Gly Asp Leu 100 105 110 TGC GGA TCT GTT TTC CTT GTT TCC CAG CTG TTC ACC TTC TCA CCT CGC 384 Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Phe Ser Pro Arg 115 120 125 CGG CAT CAA ACA GTA CAG GAC TGC AAC TGC TCA ATC TAT CCC GGC CAT 432 Arg His Gln Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His 130 135 140 GTA TCA GGT CAC CGC ATG GCT TGG GAT ATG ATG ATG AAC TGG TAATAG 480 Val Ser Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp 145 150 155 158 amino acids amino acid linear protein 12 Met Ser Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys 1 5 10 15 Leu Thr Ile Pro Ala Ser Ala Tyr Glu Val Arg Asn Val Ser Gly Val 20 25 30 Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala 35 40 45 Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys Val Arg Glu 50 55 60 Gly Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr Leu Ala Ala 65 70 75 80 Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His Val Asp Leu 85 90 95 Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val Gly Asp Leu 100 105 110 Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Phe Ser Pro Arg 115 120 125 Arg His Gln Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His 130 135 140 Val Ser Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp 145 150 155 636 base pairs nucleic acid single linear cDNA NO NO CDS 1..633 mat_peptide 1..630 13 ATG CTG GGT AAG GCC ATC GAT ACC CTT ACG TGC GGC TTC GCC GAC CTC 48 Met Leu Gly Lys Ala Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 GTG GGG TAC ATT CCG CTC GTC GGC GCC CCC CTA GGG GGC GCT GCC AGG 96 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 GCC CTG GCG CAT GGC GTC CGG GTT CTG GAA GAC GGC GTG AAC TAT GCA 144 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 ACA GGG AAT TTG CCT GGT TGC TCT TTC TCT ATC TTC CTC TTG GCT TTA 192 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 CTG TCC TGT CTA ACC ATT CCA GCT TCC GCT TAC GAG GTG CGC AAC GTG 240 Leu Ser Cys Leu Thr Ile Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 TCC GGG ATG TAC CAT GTC ACG AAC GAC TGC TCC AAC TCA AGC ATT GTG 288 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 TAT GAG GCA GCG GAC ATG ATC ATG CAC ACC CCC GGG TGC GTG CCC TGC 336 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 GTT CGG GAG AAC AAC TCT TCC CGC TGC TGG GTA GCG CTC ACC CCC ACG 384 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 CTC GCG GCT AGG AAC GCC AGC ATC CCC ACT ACA ACA ATA CGA CGC CAC 432 Leu Ala Ala Arg Asn Ala Ser Ile Pro Thr Thr Thr Ile Arg Arg His 130 135 140 GTC GAT TTG CTC GTT GGG GCG GCT GCT TTC TGT TCC GCT ATG TAC GTG 480 Val Asp Leu Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val 145 150 155 160 GGG GAT CTC TGC GGA TCT GTC TTC CTC GTC TCC CAG CTG TTC ACC ATC 528 Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Ile 165 170 175 TCG CCT CGC CGG CAT GAG ACG GTG CAG GAC TGC AAT TGC TCA ATC TAT 576 Ser Pro Arg Arg His Glu Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr 180 185 190 CCC GGC CAC ATA ACG GGT CAC CGT ATG GCT TGG GAT ATG ATG ATG AAC 624 Pro Gly His Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn 195 200 205 TGG TAC TAATAG 636 Trp Tyr 210 210 amino acids amino acid linear protein 14 Met Leu Gly Lys Ala Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 Leu Ser Cys Leu Thr Ile Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 Leu Ala Ala Arg Asn Ala Ser Ile Pro Thr Thr Thr Ile Arg Arg His 130 135 140 Val Asp Leu Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val 145 150 155 160 Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Ile 165 170 175 Ser Pro Arg Arg His Glu Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr 180 185 190 Pro Gly His Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn 195 200 205 Trp Tyr 210 26 base pairs nucleic acid single linear cDNA NO NO 15 ATGCCCGGTT GCTCTTTCTC TATCTT 26 26 base pairs nucleic acid single linear cDNA NO NO 16 ATGTTGGGTA AGGTCATCGA TACCCT 26 30 base pairs nucleic acid single linear cDNA NO YES 17 CTATTAGGAC CAGTTCATCA TCATATCCCA 30 27 base pairs nucleic acid single linear cDNA NO YES 18 CTATTACCAG TTCATCATCA TATCCCA 27 36 base pairs nucleic acid single linear cDNA NO NO 19 ATACGACGCC ACGTCGATTC CCAGCTGTTC ACCATC 36 36 base pairs nucleic acid single linear cDNA NO YES 20 GATGGTGAAC AGCTGGGAAT CGACGTGGCG TCGTAT 36 723 base pairs nucleic acid single linear cDNA NO NO CDS 1..720 mat_peptide 1..717 21 ATG TTG GGT AAG GTC ATC GAT ACC CTT ACA TGC GGC TTC GCC GAC CTC 48 Met Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 GTG GGG TAC ATT CCG CTC GTC GGC GCC CCC CTA GGG GGC GCT GCC AGG 96 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 GCC CTG GCG CAT GGC GTC CGG GTT CTG GAG GAC GGC GTG AAC TAT GCA 144 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 ACA GGG AAT TTG CCC GGT TGC TCT TTC TCT ATC TTC CTC TTG GCT TTG 192 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 CTG TCC TGT CTG ACC GTT CCA GCT TCC GCT TAT GAA GTG CGC AAC GTG 240 Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 TCC GGG ATG TAC CAT GTC ACG AAC GAC TGC TCC AAC TCA AGC ATT GTG 288 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 TAT GAG GCA GCG GAC ATG ATC ATG CAC ACC CCC GGG TGC GTG CCC TGC 336 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 GTT CGG GAG AAC AAC TCT TCC CGC TGC TGG GTA GCG CTC ACC CCC ACG 384 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 CTC GCA GCT AGG AAC GCC AGC GTC CCC ACC ACG ACA ATA CGA CGC CAC 432 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 GTC GAT TCC CAG CTG TTC ACC ATC TCG CCT CGC CGG CAT GAG ACG GTG 480 Val Asp Ser Gln Leu Phe Thr Ile Ser Pro Arg Arg His Glu Thr Val 145 150 155 160 CAG GAC TGC AAT TGC TCA ATC TAT CCC GGC CAC ATA ACG GGT CAC CGT 528 Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg 165 170 175 ATG GCT TGG GAT ATG ATG ATG AAC TGG TCG CCT ACA ACG GCC CTG GTG 576 Met Ala Trp Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val 180 185 190 GTA TCG CAG CTG CTC CGG ATC CCA CAA GCT GTC GTG GAC ATG GTG GCG 624 Val Ser Gln Leu Leu Arg Ile Pro Gln Ala Val Val Asp Met Val Ala 195 200 205 GGG GCC CAT TGG GGA GTC CTG GCG GGT CTC GCC TAC TAT TCC ATG GTG 672 Gly Ala His Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val 210 215 220 GGG AAC TGG GCT AAG GTT TTG ATT GTG ATG CTA CTC TTT GCT CCC TAATAG 723 Gly Asn Trp Ala Lys Val Leu Ile Val Met Leu Leu Phe Ala Pro 225 230 235 240 239 amino acids amino acid linear protein 22 Met Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 Val Asp Ser Gln Leu Phe Thr Ile Ser Pro Arg Arg His Glu Thr Val 145 150 155 160 Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg 165 170 175 Met Ala Trp Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val 180 185 190 Val Ser Gln Leu Leu Arg Ile Pro Gln Ala Val Val Asp Met Val Ala 195 200 205 Gly Ala His Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val 210 215 220 Gly Asn Trp Ala Lys Val Leu Ile Val Met Leu Leu Phe Ala Pro 225 230 235 561 base pairs nucleic acid single linear cDNA NO NO CDS 1..558 mat_peptide 1..555 23 ATG TTG GGT AAG GTC ATC GAT ACC CTT ACA TGC GGC TTC GCC GAC CTC 48 Met Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 GTG GGG TAC ATT CCG CTC GTC GGC GCC CCC CTA GGG GGC GCT GCC AGG 96 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 GCC CTG GCG CAT GGC GTC CGG GTT CTG GAG GAC GGC GTG AAC TAT GCA 144 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 ACA GGG AAT TTG CCC GGT TGC TCT TTC TCT ATC TTC CTC TTG GCT TTG 192 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 CTG TCC TGT CTG ACC GTT CCA GCT TCC GCT TAT GAA GTG CGC AAC GTG 240 Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 TCC GGG ATG TAC CAT GTC ACG AAC GAC TGC TCC AAC TCA AGC ATT GTG 288 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 TAT GAG GCA GCG GAC ATG ATC ATG CAC ACC CCC GGG TGC GTG CCC TGC 336 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 GTT CGG GAG AAC AAC TCT TCC CGC TGC TGG GTA GCG CTC ACC CCC ACG 384 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 CTC GCA GCT AGG AAC GCC AGC GTC CCC ACC ACG ACA ATA CGA CGC CAC 432 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 GTC GAT TCC CAG CTG TTC ACC ATC TCG CCT CGC CGG CAT GAG ACG GTG 480 Val Asp Ser Gln Leu Phe Thr Ile Ser Pro Arg Arg His Glu Thr Val 145 150 155 160 CAG GAC TGC AAT TGC TCA ATC TAT CCC GGC CAC ATA ACG GGT CAC CGT 528 Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg 165 170 175 ATG GCT TGG GAT ATG ATG ATG AAC TGG TAATAG 561 Met Ala Trp Asp Met Met Met Asn Trp 180 185 185 amino acids amino acid linear protein 24 Met Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 Val Asp Ser Gln Leu Phe Thr Ile Ser Pro Arg Arg His Glu Thr Val 145 150 155 160 Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg 165 170 175 Met Ala Trp Asp Met Met Met Asn Trp 180 185 606 base pairs nucleic acid single linear cDNA NO NO CDS 1..603 mat_peptide 1..600 25 ATG TTG GGT AAG GTC ATC GAT ACC CTT ACA TGC GGC TTC GCC GAC CTC 48 Met Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 GTG GGG TAC ATT CCG CTC GTC GGC GCC CCC CTA GGG GGC GCT GCC AGG 96 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 GCC CTG GCG CAT GGC GTC CGG GTT CTG GAG GAC GGC GTG AAC TAT GCA 144 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 ACA GGG AAT TTG CCC GGT TGC TCT TTC TCT ATC TTC CTC TTG GCT TTG 192 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 CTG TCC TGT CTG ACC GTT CCA GCT TCC GCT TAT GAA GTG CGC AAC GTG 240 Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 TCC GGG ATG TAC CAT GTC ACG AAC GAC TGC TCC AAC TCA AGC ATT GTG 288 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 TAT GAG GCA GCG GAC ATG ATC ATG CAC ACC CCC GGG TGC GTG CCC TGC 336 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 GTT CGG GAG AAC AAC TCT TCC CGC TGC TGG GTA GCG CTC ACC CCC ACG 384 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 CTC GCA GCT AGG AAC GCC AGC GTC CCC ACC ACG ACA ATA CGA CGC CAC 432 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 GTC GAT TCC CAG CTG TTC ACC ATC TCG CCT CGC CGG CAT GAG ACG GTG 480 Val Asp Ser Gln Leu Phe Thr Ile Ser Pro Arg Arg His Glu Thr Val 145 150 155 160 CAG GAC TGC AAT TGC TCA ATC TAT CCC GGC CAC ATA ACG GGT CAC CGT 528 Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg 165 170 175 ATG GCT TGG GAT ATG ATG ATG AAC TGG TCG CCT ACA ACG GCC CTG GTG 576 Met Ala Trp Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val 180 185 190 GTA TCG CAG CTG CTC CGG ATC CTC TAATAG 606 Val Ser Gln Leu Leu Arg Ile Leu 195 200 200 amino acids amino acid linear protein 26 Met Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 Val Asp Ser Gln Leu Phe Thr Ile Ser Pro Arg Arg His Glu Thr Val 145 150 155 160 Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg 165 170 175 Met Ala Trp Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val 180 185 190 Val Ser Gln Leu Leu Arg Ile Leu 195 200 636 base pairs nucleic acid single linear cDNA NO NO CDS 1..633 mat_peptide 1..630 27 ATG TTG GGT AAG GTC ATC GAT ACC CTT ACA TGC GGC TTC GCC GAC CTC 48 Met Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 GTG GGG TAC ATT CCG CTC GTC GGC GCC CCC CTA GGG GGC GCT GCC AGG 96 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 GCC CTG GCG CAT GGC GTC CGG GTT CTG GAG GAC GGC GTG AAC TAT GCA 144 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 ACA GGG AAT TTG CCC GGT TGC TCT TTC TCT ATC TTC CTC TTG GCT TTG 192 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 CTG TCC TGT CTG ACC GTT CCA GCT TCC GCT TAT GAA GTG CGC AAC GTG 240 Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 TCC GGG ATG TAC CAT GTC ACG AAC GAC TGC TCC AAC TCA AGC ATT GTG 288 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 TAT GAG GCA GCG GAC ATG ATC ATG CAC ACC CCC GGG TGC GTG CCC TGC 336 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 GTT CGG GAG AAC AAC TCT TCC CGC TGC TGG GTA GCG CTC ACC CCC ACG 384 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 CTC GCA GCT AGG AAC GCC AGC GTC CCC ACC ACG ACA ATA CGA CGC CAC 432 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 GTC GAT TCC CAG CTG TTC ACC ATC TCG CCT CGC CGG CAT GAG ACG GTG 480 Val Asp Ser Gln Leu Phe Thr Ile Ser Pro Arg Arg His Glu Thr Val 145 150 155 160 CAG GAC TGC AAT TGC TCA ATC TAT CCC GGC CAC ATA ACG GGT CAC CGT 528 Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg 165 170 175 ATG GCT TGG GAT ATG ATG ATG AAC TGG TCG CCT ACA ACG GCC CTG GTG 576 Met Ala Trp Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val 180 185 190 GTA TCG CAG CTG CTC CGG ATC GTG ATC GAG GGC AGA CAC CAT CAC CAC 624 Val Ser Gln Leu Leu Arg Ile Val Ile Glu Gly Arg His His His His 195 200 205 CAT CAC TAATAG 636 His His 210 210 amino acids amino acid linear protein 28 Met Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 Val Asp Ser Gln Leu Phe Thr Ile Ser Pro Arg Arg His Glu Thr Val 145 150 155 160 Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg 165 170 175 Met Ala Trp Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val 180 185 190 Val Ser Gln Leu Leu Arg Ile Val Ile Glu Gly Arg His His His His 195 200 205 His His 210 630 base pairs nucleic acid single linear cDNA NO NO CDS 1..627 mat_peptide 1..624 29 ATG GGT AAG GTC ATC GAT ACC CTT ACG TGC GGA TTC GCC GAT CTC ATG 48 Met Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu Met 1 5 10 15 GGG TAC ATC CCG CTC GTC GGC GCT CCC GTA GGA GGC GTC GCA AGA GCC 96 Gly Tyr Ile Pro Leu Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala 20 25 30 CTT GCG CAT GGC GTG AGG GCC CTT GAA GAC GGG ATA AAT TTC GCA ACA 144 Leu Ala His Gly Val Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr 35 40 45 GGG AAT TTG CCC GGT TGC TCC TTT TCT ATT TTC CTT CTC GCT CTG TTC 192 Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe 50 55 60 TCT TGC TTA ATT CAT CCA GCA GCT AGT CTA GAG TGG CGG AAT ACG TCT 240 Ser Cys Leu Ile His Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser 65 70 75 80 GGC CTC TAT GTC CTT ACC AAC GAC TGT TCC AAT AGC AGT ATT GTG TAC 288 Gly Leu Tyr Val Leu Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr 85 90 95 GAG GCC GAT GAC GTT ATT CTG CAC ACA CCC GGC TGC ATA CCT TGT GTC 336 Glu Ala Asp Asp Val Ile Leu His Thr Pro Gly Cys Ile Pro Cys Val 100 105 110 CAG GAC GGC AAT ACA TCC ACG TGC TGG ACC CCA GTG ACA CCT ACA GTG 384 Gln Asp Gly Asn Thr Ser Thr Cys Trp Thr Pro Val Thr Pro Thr Val 115 120 125 GCA GTC AAG TAC GTC GGA GCA ACC ACC GCT TCG ATA CGC AGT CAT GTG 432 Ala Val Lys Tyr Val Gly Ala Thr Thr Ala Ser Ile Arg Ser His Val 130 135 140 GAC CTA TTA GTG GGC GCG GCC ACG ATG TGC TCT GCG CTC TAC GTG GGT 480 Asp Leu Leu Val Gly Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly 145 150 155 160 GAC ATG TGT GGG GCT GTC TTC CTC GTG GGA CAA GCC TTC ACG TTC AGA 528 Asp Met Cys Gly Ala Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg 165 170 175 CCT CGT CGC CAT CAA ACG GTC CAG ACC TGT AAC TGC TCG CTG TAC CCA 576 Pro Arg Arg His Gln Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro 180 185 190 GGC CAT CTT TCA GGA CAT CGA ATG GCT TGG GAT ATG ATG ATG AAC TGG 624 Gly His Leu Ser Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp 195 200 205 TAATAG 630 208 amino acids amino acid linear protein 30 Met Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu Met 1 5 10 15 Gly Tyr Ile Pro Leu Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala 20 25 30 Leu Ala His Gly Val Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr 35 40 45 Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe 50 55 60 Ser Cys Leu Ile His Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser 65 70 75 80 Gly Leu Tyr Val Leu Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr 85 90 95 Glu Ala Asp Asp Val Ile Leu His Thr Pro Gly Cys Ile Pro Cys Val 100 105 110 Gln Asp Gly Asn Thr Ser Thr Cys Trp Thr Pro Val Thr Pro Thr Val 115 120 125 Ala Val Lys Tyr Val Gly Ala Thr Thr Ala Ser Ile Arg Ser His Val 130 135 140 Asp Leu Leu Val Gly Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly 145 150 155 160 Asp Met Cys Gly Ala Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg 165 170 175 Pro Arg Arg His Gln Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro 180 185 190 Gly His Leu Ser Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp 195 200 205 630 base pairs nucleic acid single linear cDNA NO NO CDS 1..627 mat_peptide 1..624 31 ATG GGT AAG GTC ATC GAT ACC CTA ACG TGC GGA TTC GCC GAT CTC ATG 48 Met Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu Met 1 5 10 15 GGG TAT ATC CCG CTC GTA GGC GGC CCC ATT GGG GGC GTC GCA AGG GCT 96 Gly Tyr Ile Pro Leu Val Gly Gly Pro Ile Gly Gly Val Ala Arg Ala 20 25 30 CTC GCA CAC GGT GTG AGG GTC CTT GAG GAC GGG GTA AAC TAT GCA ACA 144 Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala Thr 35 40 45 GGG AAT TTA CCC GGT TGC TCT TTC TCT ATC TTT ATT CTT GCT CTT CTC 192 Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Ile Leu Ala Leu Leu 50 55 60 TCG TGT CTG ACC GTT CCG GCC TCT GCA GTT CCC TAC CGA AAT GCC TCT 240 Ser Cys Leu Thr Val Pro Ala Ser Ala Val Pro Tyr Arg Asn Ala Ser 65 70 75 80 GGG ATT TAT CAT GTT ACC AAT GAT TGC CCA AAC TCT TCC ATA GTC TAT 288 Gly Ile Tyr His Val Thr Asn Asp Cys Pro Asn Ser Ser Ile Val Tyr 85 90 95 GAG GCA GAT AAC CTG ATC CTA CAC GCA CCT GGT TGC GTG CCT TGT GTC 336 Glu Ala Asp Asn Leu Ile Leu His Ala Pro Gly Cys Val Pro Cys Val 100 105 110 ATG ACA GGT AAT GTG AGT AGA TGC TGG GTC CAA ATT ACC CCT ACA CTG 384 Met Thr Gly Asn Val Ser Arg Cys Trp Val Gln Ile Thr Pro Thr Leu 115 120 125 TCA GCC CCG AGC CTC GGA GCA GTC ACG GCT CCT CTT CGG AGA GCC GTT 432 Ser Ala Pro Ser Leu Gly Ala Val Thr Ala Pro Leu Arg Arg Ala Val 130 135 140 GAC TAC CTA GCG GGA GGG GCT GCC CTC TGC TCC GCG TTA TAC GTA GGA 480 Asp Tyr Leu Ala Gly Gly Ala Ala Leu Cys Ser Ala Leu Tyr Val Gly 145 150 155 160 GAC GCG TGT GGG GCA CTA TTC TTG GTA GGC CAA ATG TTC ACC TAT AGG 528 Asp Ala Cys Gly Ala Leu Phe Leu Val Gly Gln Met Phe Thr Tyr Arg 165 170 175 CCT CGC CAG CAC GCT ACG GTG CAG AAC TGC AAC TGT TCC ATT TAC AGT 576 Pro Arg Gln His Ala Thr Val Gln Asn Cys Asn Cys Ser Ile Tyr Ser 180 185 190 GGC CAT GTT ACC GGC CAC CGG ATG GCA TGG GAT ATG ATG ATG AAC TGG 624 Gly His Val Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp 195 200 205 TAATAG 630 208 amino acids amino acid linear protein 32 Met Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu Met 1 5 10 15 Gly Tyr Ile Pro Leu Val Gly Gly Pro Ile Gly Gly Val Ala Arg Ala 20 25 30 Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala Thr 35 40 45 Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Ile Leu Ala Leu Leu 50 55 60 Ser Cys Leu Thr Val Pro Ala Ser Ala Val Pro Tyr Arg Asn Ala Ser 65 70 75 80 Gly Ile Tyr His Val Thr Asn Asp Cys Pro Asn Ser Ser Ile Val Tyr 85 90 95 Glu Ala Asp Asn Leu Ile Leu His Ala Pro Gly Cys Val Pro Cys Val 100 105 110 Met Thr Gly Asn Val Ser Arg Cys Trp Val Gln Ile Thr Pro Thr Leu 115 120 125 Ser Ala Pro Ser Leu Gly Ala Val Thr Ala Pro Leu Arg Arg Ala Val 130 135 140 Asp Tyr Leu Ala Gly Gly Ala Ala Leu Cys Ser Ala Leu Tyr Val Gly 145 150 155 160 Asp Ala Cys Gly Ala Leu Phe Leu Val Gly Gln Met Phe Thr Tyr Arg 165 170 175 Pro Arg Gln His Ala Thr Val Gln Asn Cys Asn Cys Ser Ile Tyr Ser 180 185 190 Gly His Val Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp 195 200 205 23 base pairs nucleic acid single linear cDNA NO NO 33 TGGGATATGA TGATGAACTG GTC 23 30 base pairs nucleic acid single linear cDNA NO NO 34 CTATTATGGT GGTAAGCCAC AGAGCAGGAG 30 1476 base pairs nucleic acid single linear cDNA NO NO CDS 1..1473 mat_peptide 1..1470 35 TGG GAT ATG ATG ATG AAC TGG TCG CCT ACA ACG GCC CTG GTG GTA TCG 48 Trp Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val Val Ser 1 5 10 15 CAG CTG CTC CGG ATC CCA CAA GCT GTC GTG GAC ATG GTG GCG GGG GCC 96 Gln Leu Leu Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala 20 25 30 CAT TGG GGA GTC CTG GCG GGC CTC GCC TAC TAT TCC ATG GTG GGG AAC 144 His Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn 35 40 45 TGG GCT AAG GTT TTG GTT GTG ATG CTA CTC TTT GCC GGC GTC GAC GGG 192 Trp Ala Lys Val Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly 50 55 60 CAT ACC CGC GTG TCA GGA GGG GCA GCA GCC TCC GAT ACC AGG GGC CTT 240 His Thr Arg Val Ser Gly Gly Ala Ala Ala Ser Asp Thr Arg Gly Leu 65 70 75 80 GTG TCC CTC TTT AGC CCC GGG TCG GCT CAG AAA ATC CAG CTC GTA AAC 288 Val Ser Leu Phe Ser Pro Gly Ser Ala Gln Lys Ile Gln Leu Val Asn 85 90 95 ACC AAC GGC AGT TGG CAC ATC AAC AGG ACT GCC CTG AAC TGC AAC GAC 336 Thr Asn Gly Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp 100 105 110 TCC CTC CAA ACA GGG TTC TTT GCC GCA CTA TTC TAC AAA CAC AAA TTC 384 Ser Leu Gln Thr Gly Phe Phe Ala Ala Leu Phe Tyr Lys His Lys Phe 115 120 125 AAC TCG TCT GGA TGC CCA GAG CGC TTG GCC AGC TGT CGC TCC ATC GAC 432 Asn Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser Cys Arg Ser Ile Asp 130 135 140 AAG TTC GCT CAG GGG TGG GGT CCC CTC ACT TAC ACT GAG CCT AAC AGC 480 Lys Phe Ala Gln Gly Trp Gly Pro Leu Thr Tyr Thr Glu Pro Asn Ser 145 150 155 160 TCG GAC CAG AGG CCC TAC TGC TGG CAC TAC GCG CCT CGA CCG TGT GGT 528 Ser Asp Gln Arg Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys Gly 165 170 175 ATT GTA CCC GCG TCT CAG GTG TGC GGT CCA GTG TAT TGC TTC ACC CCG 576 Ile Val Pro Ala Ser Gln Val Cys Gly Pro Val Tyr Cys Phe Thr Pro 180 185 190 AGC CCT GTT GTG GTG GGG ACG ACC GAT CGG TTT GGT GTC CCC ACG TAT 624 Ser Pro Val Val Val Gly Thr Thr Asp Arg Phe Gly Val Pro Thr Tyr 195 200 205 AAC TGG GGG GCG AAC GAC TCG GAT GTG CTG ATT CTC AAC AAC ACG CGG 672 Asn Trp Gly Ala Asn Asp Ser Asp Val Leu Ile Leu Asn Asn Thr Arg 210 215 220 CCG CCG CGA GGC AAC TGG TTC GGC TGT ACA TGG ATG AAT GGC ACT GGG 720 Pro Pro Arg Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Gly Thr Gly 225 230 235 240 TTC ACC AAG ACG TGT GGG GGC CCC CCG TGC AAC ATC GGG GGG GCC GGC 768 Phe Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn Ile Gly Gly Ala Gly 245 250 255 AAC AAC ACC TTG ACC TGC CCC ACT GAC TGT TTT CGG AAG CAC CCC GAG 816 Asn Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu 260 265 270 GCC ACC TAC GCC AGA TGC GGT TCT GGG CCC TGG CTG ACA CCT AGG TGT 864 Ala Thr Tyr Ala Arg Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys 275 280 285 ATG GTT CAT TAC CCA TAT AGG CTC TGG CAC TAC CCC TGC ACT GTC AAC 912 Met Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val Asn 290 295 300 TTC ACC ATC TTC AAG GTT AGG ATG TAC GTG GGG GGC GTG GAG CAC AGG 960 Phe Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg 305 310 315 320 TTC GAA GCC GCA TGC AAT TGG ACT CGA GGA GAG CGT TGT GAC TTG GAG 1008 Phe Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu 325 330 335 GAC AGG GAT AGA TCA GAG CTT AGC CCG CTG CTG CTG TCT ACA ACA GAG 1056 Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Leu Ser Thr Thr Glu 340 345 350 TGG CAG ATA CTG CCC TGT TCC TTC ACC ACC CTG CCG GCC CTA TCC ACC 1104 Trp Gln Ile Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr 355 360 365 GGC CTG ATC CAC CTC CAT CAG AAC ATC GTG GAC GTG CAA TAC CTG TAC 1152 Gly Leu Ile His Leu His Gln Asn Ile Val Asp Val Gln Tyr Leu Tyr 370 375 380 GGT GTA GGG TCG GCG GTT GTC TCC CTT GTC ATC AAA TGG GAG TAT GTC 1200 Gly Val Gly Ser Ala Val Val Ser Leu Val Ile Lys Trp Glu Tyr Val 385 390 395 400 CTG TTG CTC TTC CTT CTC CTG GCA GAC GCG CGC ATC TGC GCC TGC TTA 1248 Leu Leu Leu Phe Leu Leu Leu Ala Asp Ala Arg Ile Cys Ala Cys Leu 405 410 415 TGG ATG ATG CTG CTG ATA GCT CAA GCT GAG GCC GCC TTA GAG AAC CTG 1296 Trp Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala Leu Glu Asn Leu 420 425 430 GTG GTC CTC AAT GCG GCG GCC GTG GCC GGG GCG CAT GGC ACT CTT TCC 1344 Val Val Leu Asn Ala Ala Ala Val Ala Gly Ala His Gly Thr Leu Ser 435 440 445 TTC CTT GTG TTC TTC TGT GCT GCC TGG TAC ATC AAG GGC AGG CTG GTC 1392 Phe Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys Gly Arg Leu Val 450 455 460 CCT GGT GCG GCA TAC GCC TTC TAT GGC GTG TGG CCG CTG CTC CTG CTT 1440 Pro Gly Ala Ala Tyr Ala Phe Tyr Gly Val Trp Pro Leu Leu Leu Leu 465 470 475 480 CTG CTG GCC TTA CCA CCA CGA GCT TAT GCC TAGTAA 1476 Leu Leu Ala Leu Pro Pro Arg Ala Tyr Ala 485 490 490 amino acids amino acid linear protein 36 Trp Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val Val Ser 1 5 10 15 Gln Leu Leu Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala 20 25 30 His Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn 35 40 45 Trp Ala Lys Val Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly 50 55 60 His Thr Arg Val Ser Gly Gly Ala Ala Ala Ser Asp Thr Arg Gly Leu 65 70 75 80 Val Ser Leu Phe Ser Pro Gly Ser Ala Gln Lys Ile Gln Leu Val Asn 85 90 95 Thr Asn Gly Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp 100 105 110 Ser Leu Gln Thr Gly Phe Phe Ala Ala Leu Phe Tyr Lys His Lys Phe 115 120 125 Asn Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser Cys Arg Ser Ile Asp 130 135 140 Lys Phe Ala Gln Gly Trp Gly Pro Leu Thr Tyr Thr Glu Pro Asn Ser 145 150 155 160 Ser Asp Gln Arg Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys Gly 165 170 175 Ile Val Pro Ala Ser Gln Val Cys Gly Pro Val Tyr Cys Phe Thr Pro 180 185 190 Ser Pro Val Val Val Gly Thr Thr Asp Arg Phe Gly Val Pro Thr Tyr 195 200 205 Asn Trp Gly Ala Asn Asp Ser Asp Val Leu Ile Leu Asn Asn Thr Arg 210 215 220 Pro Pro Arg Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Gly Thr Gly 225 230 235 240 Phe Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn Ile Gly Gly Ala Gly 245 250 255 Asn Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu 260 265 270 Ala Thr Tyr Ala Arg Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys 275 280 285 Met Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val Asn 290 295 300 Phe Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg 305 310 315 320 Phe Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu 325 330 335 Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Leu Ser Thr Thr Glu 340 345 350 Trp Gln Ile Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr 355 360 365 Gly Leu Ile His Leu His Gln Asn Ile Val Asp Val Gln Tyr Leu Tyr 370 375 380 Gly Val Gly Ser Ala Val Val Ser Leu Val Ile Lys Trp Glu Tyr Val 385 390 395 400 Leu Leu Leu Phe Leu Leu Leu Ala Asp Ala Arg Ile Cys Ala Cys Leu 405 410 415 Trp Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala Leu Glu Asn Leu 420 425 430 Val Val Leu Asn Ala Ala Ala Val Ala Gly Ala His Gly Thr Leu Ser 435 440 445 Phe Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys Gly Arg Leu Val 450 455 460 Pro Gly Ala Ala Tyr Ala Phe Tyr Gly Val Trp Pro Leu Leu Leu Leu 465 470 475 480 Leu Leu Ala Leu Pro Pro Arg Ala Tyr Ala 485 490 1021 base pairs nucleic acid single linear cDNA NO NO CDS 2..1018 mat_peptide 2..1015 37 G ATC CCA CAA GCT GTC GTG GAC ATG GTG GCG GGG GCC CAT TGG GGA 46 Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly 1 5 10 15 GTC CTG GCG GGC CTC GCC TAC TAT TCC ATG GTG GGG AAC TGG GCT AAG 94 Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys 20 25 30 GTT TTG GTT GTG ATG CTA CTC TTT GCC GGC GTC GAC GGG CAT ACC CGC 142 Val Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly His Thr Arg 35 40 45 GTG TCA GGA GGG GCA GCA GCC TCC GAT ACC AGG GGC CTT GTG TCC CTC 190 Val Ser Gly Gly Ala Ala Ala Ser Asp Thr Arg Gly Leu Val Ser Leu 50 55 60 TTT AGC CCC GGG TCG GCT CAG AAA ATC CAG CTC GTA AAC ACC AAC GGC 238 Phe Ser Pro Gly Ser Ala Gln Lys Ile Gln Leu Val Asn Thr Asn Gly 65 70 75 AGT TGG CAC ATC AAC AGG ACT GCC CTG AAC TGC AAC GAC TCC CTC CAA 286 Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Gln 80 85 90 95 ACA GGG TTC TTT GCC GCA CTA TTC TAC AAA CAC AAA TTC AAC TCG TCT 334 Thr Gly Phe Phe Ala Ala Leu Phe Tyr Lys His Lys Phe Asn Ser Ser 100 105 110 GGA TGC CCA GAG CGC TTG GCC AGC TGT CGC TCC ATC GAC AAG TTC GCT 382 Gly Cys Pro Glu Arg Leu Ala Ser Cys Arg Ser Ile Asp Lys Phe Ala 115 120 125 CAG GGG TGG GGT CCC CTC ACT TAC ACT GAG CCT AAC AGC TCG GAC CAG 430 Gln Gly Trp Gly Pro Leu Thr Tyr Thr Glu Pro Asn Ser Ser Asp Gln 130 135 140 AGG CCC TAC TGC TGG CAC TAC GCG CCT CGA CCG TGT GGT ATT GTA CCC 478 Arg Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro 145 150 155 GCG TCT CAG GTG TGC GGT CCA GTG TAT TGC TTC ACC CCG AGC CCT GTT 526 Ala Ser Gln Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val 160 165 170 175 GTG GTG GGG ACG ACC GAT CGG TTT GGT GTC CCC ACG TAT AAC TGG GGG 574 Val Val Gly Thr Thr Asp Arg Phe Gly Val Pro Thr Tyr Asn Trp Gly 180 185 190 GCG AAC GAC TCG GAT GTG CTG ATT CTC AAC AAC ACG CGG CCG CCG CGA 622 Ala Asn Asp Ser Asp Val Leu Ile Leu Asn Asn Thr Arg Pro Pro Arg 195 200 205 GGC AAC TGG TTC GGC TGT ACA TGG ATG AAT GGC ACT GGG TTC ACC AAG 670 Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Gly Thr Gly Phe Thr Lys 210 215 220 ACG TGT GGG GGC CCC CCG TGC AAC ATC GGG GGG GCC GGC AAC AAC ACC 718 Thr Cys Gly Gly Pro Pro Cys Asn Ile Gly Gly Ala Gly Asn Asn Thr 225 230 235 TTG ACC TGC CCC ACT GAC TGT TTT CGG AAG CAC CCC GAG GCC ACC TAC 766 Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala Thr Tyr 240 245 250 255 GCC AGA TGC GGT TCT GGG CCC TGG CTG ACA CCT AGG TGT ATG GTT CAT 814 Ala Arg Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys Met Val His 260 265 270 TAC CCA TAT AGG CTC TGG CAC TAC CCC TGC ACT GTC AAC TTC ACC ATC 862 Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val Asn Phe Thr Ile 275 280 285 TTC AAG GTT AGG ATG TAC GTG GGG GGC GTG GAG CAC AGG TTC GAA GCC 910 Phe Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg Phe Glu Ala 290 295 300 GCA TGC AAT TGG ACT CGA GGA GAG CGT TGT GAC TTG GAG GAC AGG GAT 958 Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp 305 310 315 AGA TCA GAG CTT AGC CCG CTG CTG CTG TCT ACA ACA GAG TGG CAG AGT 1006 Arg Ser Glu Leu Ser Pro Leu Leu Leu Ser Thr Thr Glu Trp Gln Ser 320 325 330 335 GGC AGA GCT TAATTA 1021 Gly Arg Ala 338 amino acids amino acid linear protein 38 Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly Val 1 5 10 15 Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys Val 20 25 30 Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly His Thr Arg Val 35 40 45 Ser Gly Gly Ala Ala Ala Ser Asp Thr Arg Gly Leu Val Ser Leu Phe 50 55 60 Ser Pro Gly Ser Ala Gln Lys Ile Gln Leu Val Asn Thr Asn Gly Ser 65 70 75 80 Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Gln Thr 85 90 95 Gly Phe Phe Ala Ala Leu Phe Tyr Lys His Lys Phe Asn Ser Ser Gly 100 105 110 Cys Pro Glu Arg Leu Ala Ser Cys Arg Ser Ile Asp Lys Phe Ala Gln 115 120 125 Gly Trp Gly Pro Leu Thr Tyr Thr Glu Pro Asn Ser Ser Asp Gln Arg 130 135 140 Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro Ala 145 150 155 160 Ser Gln Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val 165 170 175 Val Gly Thr Thr Asp Arg Phe Gly Val Pro Thr Tyr Asn Trp Gly Ala 180 185 190 Asn Asp Ser Asp Val Leu Ile Leu Asn Asn Thr Arg Pro Pro Arg Gly 195 200 205 Asn Trp Phe Gly Cys Thr Trp Met Asn Gly Thr Gly Phe Thr Lys Thr 210 215 220 Cys Gly Gly Pro Pro Cys Asn Ile Gly Gly Ala Gly Asn Asn Thr Leu 225 230 235 240 Thr Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala Thr Tyr Ala 245 250 255 Arg Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys Met Val His Tyr 260 265 270 Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val Asn Phe Thr Ile Phe 275 280 285 Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg Phe Glu Ala Ala 290 295 300 Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp Arg 305 310 315 320 Ser Glu Leu Ser Pro Leu Leu Leu Ser Thr Thr Glu Trp Gln Ser Gly 325 330 335 Arg Ala 1034 base pairs nucleic acid single linear cDNA NO NO CDS 2..1032 mat_peptide 2..1029 39 G ATC CCA CAA GCT GTC GTG GAC ATG GTG GCG GGG GCC CAT TGG GGA 46 Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly 1 5 10 15 GTC CTG GCG GGC CTC GCC TAC TAT TCC ATG GTG GGG AAC TGG GCT AAG 94 Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys 20 25 30 GTT TTG GTT GTG ATG CTA CTC TTT GCC GGC GTC GAC GGG CAT ACC CGC 142 Val Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly His Thr Arg 35 40 45 GTG TCA GGA GGG GCA GCA GCC TCC GAT ACC AGG GGC CTT GTG TCC CTC 190 Val Ser Gly Gly Ala Ala Ala Ser Asp Thr Arg Gly Leu Val Ser Leu 50 55 60 TTT AGC CCC GGG TCG GCT CAG AAA ATC CAG CTC GTA AAC ACC AAC GGC 238 Phe Ser Pro Gly Ser Ala Gln Lys Ile Gln Leu Val Asn Thr Asn Gly 65 70 75 AGT TGG CAC ATC AAC AGG ACT GCC CTG AAC TGC AAC GAC TCC CTC CAA 286 Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Gln 80 85 90 95 ACA GGG TTC TTT GCC GCA CTA TTC TAC AAA CAC AAA TTC AAC TCG TCT 334 Thr Gly Phe Phe Ala Ala Leu Phe Tyr Lys His Lys Phe Asn Ser Ser 100 105 110 GGA TGC CCA GAG CGC TTG GCC AGC TGT CGC TCC ATC GAC AAG TTC GCT 382 Gly Cys Pro Glu Arg Leu Ala Ser Cys Arg Ser Ile Asp Lys Phe Ala 115 120 125 CAG GGG TGG GGT CCC CTC ACT TAC ACT GAG CCT AAC AGC TCG GAC CAG 430 Gln Gly Trp Gly Pro Leu Thr Tyr Thr Glu Pro Asn Ser Ser Asp Gln 130 135 140 AGG CCC TAC TGC TGG CAC TAC GCG CCT CGA CCG TGT GGT ATT GTA CCC 478 Arg Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro 145 150 155 GCG TCT CAG GTG TGC GGT CCA GTG TAT TGC TTC ACC CCG AGC CCT GTT 526 Ala Ser Gln Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val 160 165 170 175 GTG GTG GGG ACG ACC GAT CGG TTT GGT GTC CCC ACG TAT AAC TGG GGG 574 Val Val Gly Thr Thr Asp Arg Phe Gly Val Pro Thr Tyr Asn Trp Gly 180 185 190 GCG AAC GAC TCG GAT GTG CTG ATT CTC AAC AAC ACG CGG CCG CCG CGA 622 Ala Asn Asp Ser Asp Val Leu Ile Leu Asn Asn Thr Arg Pro Pro Arg 195 200 205 GGC AAC TGG TTC GGC TGT ACA TGG ATG AAT GGC ACT GGG TTC ACC AAG 670 Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Gly Thr Gly Phe Thr Lys 210 215 220 ACG TGT GGG GGC CCC CCG TGC AAC ATC GGG GGG GCC GGC AAC AAC ACC 718 Thr Cys Gly Gly Pro Pro Cys Asn Ile Gly Gly Ala Gly Asn Asn Thr 225 230 235 TTG ACC TGC CCC ACT GAC TGT TTT CGG AAG CAC CCC GAG GCC ACC TAC 766 Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala Thr Tyr 240 245 250 255 GCC AGA TGC GGT TCT GGG CCC TGG CTG ACA CCT AGG TGT ATG GTT CAT 814 Ala Arg Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys Met Val His 260 265 270 TAC CCA TAT AGG CTC TGG CAC TAC CCC TGC ACT GTC AAC TTC ACC ATC 862 Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val Asn Phe Thr Ile 275 280 285 TTC AAG GTT AGG ATG TAC GTG GGG GGC GTG GAG CAC AGG TTC GAA GCC 910 Phe Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg Phe Glu Ala 290 295 300 GCA TGC AAT TGG ACT CGA GGA GAG CGT TGT GAC TTG GAG GAC AGG GAT 958 Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp 305 310 315 AGA TCA GAG CTT AGC CCG CTG CTG CTG TCT ACA ACA GGT GAT CGA GGG 1006 Arg Ser Glu Leu Ser Pro Leu Leu Leu Ser Thr Thr Gly Asp Arg Gly 320 325 330 335 CAG ACA CCA TCA CCA CCA TCA CTA AT AG 1034 Gln Thr Pro Ser Pro Pro Ser Leu 340 343 amino acids amino acid linear protein 40 Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly Val 1 5 10 15 Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys Val 20 25 30 Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly His Thr Arg Val 35 40 45 Ser Gly Gly Ala Ala Ala Ser Asp Thr Arg Gly Leu Val Ser Leu Phe 50 55 60 Ser Pro Gly Ser Ala Gln Lys Ile Gln Leu Val Asn Thr Asn Gly Ser 65 70 75 80 Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Gln Thr 85 90 95 Gly Phe Phe Ala Ala Leu Phe Tyr Lys His Lys Phe Asn Ser Ser Gly 100 105 110 Cys Pro Glu Arg Leu Ala Ser Cys Arg Ser Ile Asp Lys Phe Ala Gln 115 120 125 Gly Trp Gly Pro Leu Thr Tyr Thr Glu Pro Asn Ser Ser Asp Gln Arg 130 135 140 Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro Ala 145 150 155 160 Ser Gln Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val 165 170 175 Val Gly Thr Thr Asp Arg Phe Gly Val Pro Thr Tyr Asn Trp Gly Ala 180 185 190 Asn Asp Ser Asp Val Leu Ile Leu Asn Asn Thr Arg Pro Pro Arg Gly 195 200 205 Asn Trp Phe Gly Cys Thr Trp Met Asn Gly Thr Gly Phe Thr Lys Thr 210 215 220 Cys Gly Gly Pro Pro Cys Asn Ile Gly Gly Ala Gly Asn Asn Thr Leu 225 230 235 240 Thr Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala Thr Tyr Ala 245 250 255 Arg Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys Met Val His Tyr 260 265 270 Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val Asn Phe Thr Ile Phe 275 280 285 Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg Phe Glu Ala Ala 290 295 300 Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp Arg 305 310 315 320 Ser Glu Leu Ser Pro Leu Leu Leu Ser Thr Thr Gly Asp Arg Gly Gln 325 330 335 Thr Pro Ser Pro Pro Ser Leu 340 945 base pairs nucleic acid single linear cDNA NO NO CDS 1..942 mat_peptide 1..939 41 ATG GTG GGG AAC TGG GCT AAG GTT TTG GTT GTG ATG CTA CTC TTT GCC 48 Met Val Gly Asn Trp Ala Lys Val Leu Val Val Met Leu Leu Phe Ala 1 5 10 15 GGC GTC GAC GGG CAT ACC CGC GTG TCA GGA GGG GCA GCA GCC TCC GAT 96 Gly Val Asp Gly His Thr Arg Val Ser Gly Gly Ala Ala Ala Ser Asp 20 25 30 ACC AGG GGC CTT GTG TCC CTC TTT AGC CCC GGG TCG GCT CAG AAA ATC 144 Thr Arg Gly Leu Val Ser Leu Phe Ser Pro Gly Ser Ala Gln Lys Ile 35 40 45 CAG CTC GTA AAC ACC AAC GGC AGT TGG CAC ATC AAC AGG ACT GCC CTG 192 Gln Leu Val Asn Thr Asn Gly Ser Trp His Ile Asn Arg Thr Ala Leu 50 55 60 AAC TGC AAC GAC TCC CTC CAA ACA GGG TTC TTT GCC GCA CTA TTC TAC 240 Asn Cys Asn Asp Ser Leu Gln Thr Gly Phe Phe Ala Ala Leu Phe Tyr 65 70 75 80 AAA CAC AAA TTC AAC TCG TCT GGA TGC CCA GAG CGC TTG GCC AGC TGT 288 Lys His Lys Phe Asn Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser Cys 85 90 95 CGC TCC ATC GAC AAG TTC GCT CAG GGG TGG GGT CCC CTC ACT TAC ACT 336 Arg Ser Ile Asp Lys Phe Ala Gln Gly Trp Gly Pro Leu Thr Tyr Thr 100 105 110 GAG CCT AAC AGC TCG GAC CAG AGG CCC TAC TGC TGG CAC TAC GCG CCT 384 Glu Pro Asn Ser Ser Asp Gln Arg Pro Tyr Cys Trp His Tyr Ala Pro 115 120 125 CGA CCG TGT GGT ATT GTA CCC GCG TCT CAG GTG TGC GGT CCA GTG TAT 432 Arg Pro Cys Gly Ile Val Pro Ala Ser Gln Val Cys Gly Pro Val Tyr 130 135 140 TGC TTC ACC CCG AGC CCT GTT GTG GTG GGG ACG ACC GAT CGG TTT GGT 480 Cys Phe Thr Pro Ser Pro Val Val Val Gly Thr Thr Asp Arg Phe Gly 145 150 155 160 GTC CCC ACG TAT AAC TGG GGG GCG AAC GAC TCG GAT GTG CTG ATT CTC 528 Val Pro Thr Tyr Asn Trp Gly Ala Asn Asp Ser Asp Val Leu Ile Leu 165 170 175 AAC AAC ACG CGG CCG CCG CGA GGC AAC TGG TTC GGC TGT ACA TGG ATG 576 Asn Asn Thr Arg Pro Pro Arg Gly Asn Trp Phe Gly Cys Thr Trp Met 180 185 190 AAT GGC ACT GGG TTC ACC AAG ACG TGT GGG GGC CCC CCG TGC AAC ATC 624 Asn Gly Thr Gly Phe Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn Ile 195 200 205 GGG GGG GCC GGC AAC AAC ACC TTG ACC TGC CCC ACT GAC TGT TTT CGG 672 Gly Gly Ala Gly Asn Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg 210 215 220 AAG CAC CCC GAG GCC ACC TAC GCC AGA TGC GGT TCT GGG CCC TGG CTG 720 Lys His Pro Glu Ala Thr Tyr Ala Arg Cys Gly Ser Gly Pro Trp Leu 225 230 235 240 ACA CCT AGG TGT ATG GTT CAT TAC CCA TAT AGG CTC TGG CAC TAC CCC 768 Thr Pro Arg Cys Met Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro 245 250 255 TGC ACT GTC AAC TTC ACC ATC TTC AAG GTT AGG ATG TAC GTG GGG GGC 816 Cys Thr Val Asn Phe Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly 260 265 270 GTG GAG CAC AGG TTC GAA GCC GCA TGC AAT TGG ACT CGA GGA GAG CGT 864 Val Glu His Arg Phe Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg 275 280 285 TGT GAC TTG GAG GAC AGG GAT AGA TCA GAG CTT AGC CCG CTG CTG CTG 912 Cys Asp Leu Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Leu 290 295 300 TCT ACA ACA GAG TGG CAG AGC TTA ATT AAT TAG 945 Ser Thr Thr Glu Trp Gln Ser Leu Ile Asn 305 310 314 amino acids amino acid linear protein 42 Met Val Gly Asn Trp Ala Lys Val Leu Val Val Met Leu Leu Phe Ala 1 5 10 15 Gly Val Asp Gly His Thr Arg Val Ser Gly Gly Ala Ala Ala Ser Asp 20 25 30 Thr Arg Gly Leu Val Ser Leu Phe Ser Pro Gly Ser Ala Gln Lys Ile 35 40 45 Gln Leu Val Asn Thr Asn Gly Ser Trp His Ile Asn Arg Thr Ala Leu 50 55 60 Asn Cys Asn Asp Ser Leu Gln Thr Gly Phe Phe Ala Ala Leu Phe Tyr 65 70 75 80 Lys His Lys Phe Asn Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser Cys 85 90 95 Arg Ser Ile Asp Lys Phe Ala Gln Gly Trp Gly Pro Leu Thr Tyr Thr 100 105 110 Glu Pro Asn Ser Ser Asp Gln Arg Pro Tyr Cys Trp His Tyr Ala Pro 115 120 125 Arg Pro Cys Gly Ile Val Pro Ala Ser Gln Val Cys Gly Pro Val Tyr 130 135 140 Cys Phe Thr Pro Ser Pro Val Val Val Gly Thr Thr Asp Arg Phe Gly 145 150 155 160 Val Pro Thr Tyr Asn Trp Gly Ala Asn Asp Ser Asp Val Leu Ile Leu 165 170 175 Asn Asn Thr Arg Pro Pro Arg Gly Asn Trp Phe Gly Cys Thr Trp Met 180 185 190 Asn Gly Thr Gly Phe Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn Ile 195 200 205 Gly Gly Ala Gly Asn Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg 210 215 220 Lys His Pro Glu Ala Thr Tyr Ala Arg Cys Gly Ser Gly Pro Trp Leu 225 230 235 240 Thr Pro Arg Cys Met Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro 245 250 255 Cys Thr Val Asn Phe Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly 260 265 270 Val Glu His Arg Phe Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg 275 280 285 Cys Asp Leu Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Leu 290 295 300 Ser Thr Thr Glu Trp Gln Ser Leu Ile Asn 305 310 961 base pairs nucleic acid single linear cDNA NO NO CDS 1..958 mat_peptide 1..955 43 ATG GTG GGG AAC TGG GCT AAG GTT TTG GTT GTG ATG CTA CTC TTT GCC 48 Met Val Gly Asn Trp Ala Lys Val Leu Val Val Met Leu Leu Phe Ala 1 5 10 15 GGC GTC GAC GGG CAT ACC CGC GTG TCA GGA GGG GCA GCA GCC TCC GAT 96 Gly Val Asp Gly His Thr Arg Val Ser Gly Gly Ala Ala Ala Ser Asp 20 25 30 ACC AGG GGC CTT GTG TCC CTC TTT AGC CCC GGG TCG GCT CAG AAA ATC 144 Thr Arg Gly Leu Val Ser Leu Phe Ser Pro Gly Ser Ala Gln Lys Ile 35 40 45 CAG CTC GTA AAC ACC AAC GGC AGT TGG CAC ATC AAC AGG ACT GCC CTG 192 Gln Leu Val Asn Thr Asn Gly Ser Trp His Ile Asn Arg Thr Ala Leu 50 55 60 AAC TGC AAC GAC TCC CTC CAA ACA GGG TTC TTT GCC GCA CTA TTC TAC 240 Asn Cys Asn Asp Ser Leu Gln Thr Gly Phe Phe Ala Ala Leu Phe Tyr 65 70 75 80 AAA CAC AAA TTC AAC TCG TCT GGA TGC CCA GAG CGC TTG GCC AGC TGT 288 Lys His Lys Phe Asn Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser Cys 85 90 95 CGC TCC ATC GAC AAG TTC GCT CAG GGG TGG GGT CCC CTC ACT TAC ACT 336 Arg Ser Ile Asp Lys Phe Ala Gln Gly Trp Gly Pro Leu Thr Tyr Thr 100 105 110 GAG CCT AAC AGC TCG GAC CAG AGG CCC TAC TGC TGG CAC TAC GCG CCT 384 Glu Pro Asn Ser Ser Asp Gln Arg Pro Tyr Cys Trp His Tyr Ala Pro 115 120 125 CGA CCG TGT GGT ATT GTA CCC GCG TCT CAG GTG TGC GGT CCA GTG TAT 432 Arg Pro Cys Gly Ile Val Pro Ala Ser Gln Val Cys Gly Pro Val Tyr 130 135 140 TGC TTC ACC CCG AGC CCT GTT GTG GTG GGG ACG ACC GAT CGG TTT GGT 480 Cys Phe Thr Pro Ser Pro Val Val Val Gly Thr Thr Asp Arg Phe Gly 145 150 155 160 GTC CCC ACG TAT AAC TGG GGG GCG AAC GAC TCG GAT GTG CTG ATT CTC 528 Val Pro Thr Tyr Asn Trp Gly Ala Asn Asp Ser Asp Val Leu Ile Leu 165 170 175 AAC AAC ACG CGG CCG CCG CGA GGC AAC TGG TTC GGC TGT ACA TGG ATG 576 Asn Asn Thr Arg Pro Pro Arg Gly Asn Trp Phe Gly Cys Thr Trp Met 180 185 190 AAT GGC ACT GGG TTC ACC AAG ACG TGT GGG GGC CCC CCG TGC AAC ATC 624 Asn Gly Thr Gly Phe Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn Ile 195 200 205 GGG GGG GCC GGC AAC AAC ACC TTG ACC TGC CCC ACT GAC TGT TTT CGG 672 Gly Gly Ala Gly Asn Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg 210 215 220 AAG CAC CCC GAG GCC ACC TAC GCC AGA TGC GGT TCT GGG CCC TGG CTG 720 Lys His Pro Glu Ala Thr Tyr Ala Arg Cys Gly Ser Gly Pro Trp Leu 225 230 235 240 ACA CCT AGG TGT ATG GTT CAT TAC CCA TAT AGG CTC TGG CAC TAC CCC 768 Thr Pro Arg Cys Met Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro 245 250 255 TGC ACT GTC AAC TTC ACC ATC TTC AAG GTT AGG ATG TAC GTG GGG GGC 816 Cys Thr Val Asn Phe Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly 260 265 270 GTG GAG CAC AGG TTC GAA GCC GCA TGC AAT TGG ACT CGA GGA GAG CGT 864 Val Glu His Arg Phe Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg 275 280 285 TGT GAC TTG GAG GAC AGG GAT AGA TCA GAG CTT AGC CCG CTG CTG CTG 912 Cys Asp Leu Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Leu 290 295 300 TCT ACA ACA GGT GAT CGA GGG CAG ACA CCA TCA CCA CCA TCA CTA A 958 Ser Thr Thr Gly Asp Arg Gly Gln Thr Pro Ser Pro Pro Ser Leu 305 310 315 TAG 961 319 amino acids amino acid linear protein 44 Met Val Gly Asn Trp Ala Lys Val Leu Val Val Met Leu Leu Phe Ala 1 5 10 15 Gly Val Asp Gly His Thr Arg Val Ser Gly Gly Ala Ala Ala Ser Asp 20 25 30 Thr Arg Gly Leu Val Ser Leu Phe Ser Pro Gly Ser Ala Gln Lys Ile 35 40 45 Gln Leu Val Asn Thr Asn Gly Ser Trp His Ile Asn Arg Thr Ala Leu 50 55 60 Asn Cys Asn Asp Ser Leu Gln Thr Gly Phe Phe Ala Ala Leu Phe Tyr 65 70 75 80 Lys His Lys Phe Asn Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser Cys 85 90 95 Arg Ser Ile Asp Lys Phe Ala Gln Gly Trp Gly Pro Leu Thr Tyr Thr 100 105 110 Glu Pro Asn Ser Ser Asp Gln Arg Pro Tyr Cys Trp His Tyr Ala Pro 115 120 125 Arg Pro Cys Gly Ile Val Pro Ala Ser Gln Val Cys Gly Pro Val Tyr 130 135 140 Cys Phe Thr Pro Ser Pro Val Val Val Gly Thr Thr Asp Arg Phe Gly 145 150 155 160 Val Pro Thr Tyr Asn Trp Gly Ala Asn Asp Ser Asp Val Leu Ile Leu 165 170 175 Asn Asn Thr Arg Pro Pro Arg Gly Asn Trp Phe Gly Cys Thr Trp Met 180 185 190 Asn Gly Thr Gly Phe Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn Ile 195 200 205 Gly Gly Ala Gly Asn Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg 210 215 220 Lys His Pro Glu Ala Thr Tyr Ala Arg Cys Gly Ser Gly Pro Trp Leu 225 230 235 240 Thr Pro Arg Cys Met Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro 245 250 255 Cys Thr Val Asn Phe Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly 260 265 270 Val Glu His Arg Phe Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg 275 280 285 Cys Asp Leu Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Leu 290 295 300 Ser Thr Thr Gly Asp Arg Gly Gln Thr Pro Ser Pro Pro Ser Leu 305 310 315 1395 base pairs nucleic acid single linear cDNA NO NO CDS 1..1392 mat_peptide 1..1389 45 ATG GTG GCG GGG GCC CAT TGG GGA GTC CTG GCG GGC CTC GCC TAC TAT 48 Met Val Ala Gly Ala His Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr 1 5 10 15 TCC ATG GTG GGG AAC TGG GCT AAG GTT TTG GTT GTG ATG CTA CTC TTT 96 Ser Met Val Gly Asn Trp Ala Lys Val Leu Val Val Met Leu Leu Phe 20 25 30 GCC GGC GTC GAC GGG CAT ACC CGC GTG TCA GGA GGG GCA GCA GCC TCC 144 Ala Gly Val Asp Gly His Thr Arg Val Ser Gly Gly Ala Ala Ala Ser 35 40 45 GAT ACC AGG GGC CTT GTG TCC CTC TTT AGC CCC GGG TCG GCT CAG AAA 192 Asp Thr Arg Gly Leu Val Ser Leu Phe Ser Pro Gly Ser Ala Gln Lys 50 55 60 ATC CAG CTC GTA AAC ACC AAC GGC AGT TGG CAC ATC AAC AGG ACT GCC 240 Ile Gln Leu Val Asn Thr Asn Gly Ser Trp His Ile Asn Arg Thr Ala 65 70 75 80 CTG AAC TGC AAC GAC TCC CTC CAA ACA GGG TTC TTT GCC GCA CTA TTC 288 Leu Asn Cys Asn Asp Ser Leu Gln Thr Gly Phe Phe Ala Ala Leu Phe 85 90 95 TAC AAA CAC AAA TTC AAC TCG TCT GGA TGC CCA GAG CGC TTG GCC AGC 336 Tyr Lys His Lys Phe Asn Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser 100 105 110 TGT CGC TCC ATC GAC AAG TTC GCT CAG GGG TGG GGT CCC CTC ACT TAC 384 Cys Arg Ser Ile Asp Lys Phe Ala Gln Gly Trp Gly Pro Leu Thr Tyr 115 120 125 ACT GAG CCT AAC AGC TCG GAC CAG AGG CCC TAC TGC TGG CAC TAC GCG 432 Thr Glu Pro Asn Ser Ser Asp Gln Arg Pro Tyr Cys Trp His Tyr Ala 130 135 140 CCT CGA CCG TGT GGT ATT GTA CCC GCG TCT CAG GTG TGC GGT CCA GTG 480 Pro Arg Pro Cys Gly Ile Val Pro Ala Ser Gln Val Cys Gly Pro Val 145 150 155 160 TAT TGC TTC ACC CCG AGC CCT GTT GTG GTG GGG ACG ACC GAT CGG TTT 528 Tyr Cys Phe Thr Pro Ser Pro Val Val Val Gly Thr Thr Asp Arg Phe 165 170 175 GGT GTC CCC ACG TAT AAC TGG GGG GCG AAC GAC TCG GAT GTG CTG ATT 576 Gly Val Pro Thr Tyr Asn Trp Gly Ala Asn Asp Ser Asp Val Leu Ile 180 185 190 CTC AAC AAC ACG CGG CCG CCG CGA GGC AAC TGG TTC GGC TGT ACA TGG 624 Leu Asn Asn Thr Arg Pro Pro Arg Gly Asn Trp Phe Gly Cys Thr Trp 195 200 205 ATG AAT GGC ACT GGG TTC ACC AAG ACG TGT GGG GGC CCC CCG TGC AAC 672 Met Asn Gly Thr Gly Phe Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn 210 215 220 ATC GGG GGG GCC GGC AAC AAC ACC TTG ACC TGC CCC ACT GAC TGT TTT 720 Ile Gly Gly Ala Gly Asn Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe 225 230 235 240 CGG AAG CAC CCC GAG GCC ACC TAC GCC AGA TGC GGT TCT GGG CCC TGG 768 Arg Lys His Pro Glu Ala Thr Tyr Ala Arg Cys Gly Ser Gly Pro Trp 245 250 255 CTG ACA CCT AGG TGT ATG GTT CAT TAC CCA TAT AGG CTC TGG CAC TAC 816 Leu Thr Pro Arg Cys Met Val His Tyr Pro Tyr Arg Leu Trp His Tyr 260 265 270 CCC TGC ACT GTC AAC TTC ACC ATC TTC AAG GTT AGG ATG TAC GTG GGG 864 Pro Cys Thr Val Asn Phe Thr Ile Phe Lys Val Arg Met Tyr Val Gly 275 280 285 GGC GTG GAG CAC AGG TTC GAA GCC GCA TGC AAT TGG ACT CGA GGA GAG 912 Gly Val Glu His Arg Phe Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu 290 295 300 CGT TGT GAC TTG GAG GAC AGG GAT AGA TCA GAG CTT AGC CCG CTG CTG 960 Arg Cys Asp Leu Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu 305 310 315 320 CTG TCT ACA ACA GAG TGG CAG ATA CTG CCC TGT TCC TTC ACC ACC CTG 1008 Leu Ser Thr Thr Glu Trp Gln Ile Leu Pro Cys Ser Phe Thr Thr Leu 325 330 335 CCG GCC CTA TCC ACC GGC CTG ATC CAC CTC CAT CAG AAC ATC GTG GAC 1056 Pro Ala Leu Ser Thr Gly Leu Ile His Leu His Gln Asn Ile Val Asp 340 345 350 GTG CAA TAC CTG TAC GGT GTA GGG TCG GCG GTT GTC TCC CTT GTC ATC 1104 Val Gln Tyr Leu Tyr Gly Val Gly Ser Ala Val Val Ser Leu Val Ile 355 360 365 AAA TGG GAG TAT GTC CTG TTG CTC TTC CTT CTC CTG GCA GAC GCG CGC 1152 Lys Trp Glu Tyr Val Leu Leu Leu Phe Leu Leu Leu Ala Asp Ala Arg 370 375 380 ATC TGC GCC TGC TTA TGG ATG ATG CTG CTG ATA GCT CAA GCT GAG GCC 1200 Ile Cys Ala Cys Leu Trp Met Met Leu Leu Ile Ala Gln Ala Glu Ala 385 390 395 400 GCC TTA GAG AAC CTG GTG GTC CTC AAT GCG GCG GCC GTG GCC GGG GCG 1248 Ala Leu Glu Asn Leu Val Val Leu Asn Ala Ala Ala Val Ala Gly Ala 405 410 415 CAT GGC ACT CTT TCC TTC CTT GTG TTC TTC TGT GCT GCC TGG TAC ATC 1296 His Gly Thr Leu Ser Phe Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile 420 425 430 AAG GGC AGG CTG GTC CCT GGT GCG GCA TAC GCC TTC TAT GGC GTG TGG 1344 Lys Gly Arg Leu Val Pro Gly Ala Ala Tyr Ala Phe Tyr Gly Val Trp 435 440 445 CCG CTG CTC CTG CTT CTG CTG GCC TTA CCA CCA CGA GCT TAT GCC TAGTAA 1395 Pro Leu Leu Leu Leu Leu Leu Ala Leu Pro Pro Arg Ala Tyr Ala 450 455 460 463 amino acids amino acid linear protein 46 Met Val Ala Gly Ala His Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr 1 5 10 15 Ser Met Val Gly Asn Trp Ala Lys Val Leu Val Val Met Leu Leu Phe 20 25 30 Ala Gly Val Asp Gly His Thr Arg Val Ser Gly Gly Ala Ala Ala Ser 35 40 45 Asp Thr Arg Gly Leu Val Ser Leu Phe Ser Pro Gly Ser Ala Gln Lys 50 55 60 Ile Gln Leu Val Asn Thr Asn Gly Ser Trp His Ile Asn Arg Thr Ala 65 70 75 80 Leu Asn Cys Asn Asp Ser Leu Gln Thr Gly Phe Phe Ala Ala Leu Phe 85 90 95 Tyr Lys His Lys Phe Asn Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser 100 105 110 Cys Arg Ser Ile Asp Lys Phe Ala Gln Gly Trp Gly Pro Leu Thr Tyr 115 120 125 Thr Glu Pro Asn Ser Ser Asp Gln Arg Pro Tyr Cys Trp His Tyr Ala 130 135 140 Pro Arg Pro Cys Gly Ile Val Pro Ala Ser Gln Val Cys Gly Pro Val 145 150 155 160 Tyr Cys Phe Thr Pro Ser Pro Val Val Val Gly Thr Thr Asp Arg Phe 165 170 175 Gly Val Pro Thr Tyr Asn Trp Gly Ala Asn Asp Ser Asp Val Leu Ile 180 185 190 Leu Asn Asn Thr Arg Pro Pro Arg Gly Asn Trp Phe Gly Cys Thr Trp 195 200 205 Met Asn Gly Thr Gly Phe Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn 210 215 220 Ile Gly Gly Ala Gly Asn Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe 225 230 235 240 Arg Lys His Pro Glu Ala Thr Tyr Ala Arg Cys Gly Ser Gly Pro Trp 245 250 255 Leu Thr Pro Arg Cys Met Val His Tyr Pro Tyr Arg Leu Trp His Tyr 260 265 270 Pro Cys Thr Val Asn Phe Thr Ile Phe Lys Val Arg Met Tyr Val Gly 275 280 285 Gly Val Glu His Arg Phe Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu 290 295 300 Arg Cys Asp Leu Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu 305 310 315 320 Leu Ser Thr Thr Glu Trp Gln Ile Leu Pro Cys Ser Phe Thr Thr Leu 325 330 335 Pro Ala Leu Ser Thr Gly Leu Ile His Leu His Gln Asn Ile Val Asp 340 345 350 Val Gln Tyr Leu Tyr Gly Val Gly Ser Ala Val Val Ser Leu Val Ile 355 360 365 Lys Trp Glu Tyr Val Leu Leu Leu Phe Leu Leu Leu Ala Asp Ala Arg 370 375 380 Ile Cys Ala Cys Leu Trp Met Met Leu Leu Ile Ala Gln Ala Glu Ala 385 390 395 400 Ala Leu Glu Asn Leu Val Val Leu Asn Ala Ala Ala Val Ala Gly Ala 405 410 415 His Gly Thr Leu Ser Phe Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile 420 425 430 Lys Gly Arg Leu Val Pro Gly Ala Ala Tyr Ala Phe Tyr Gly Val Trp 435 440 445 Pro Leu Leu Leu Leu Leu Leu Ala Leu Pro Pro Arg Ala Tyr Ala 450 455 460 2082 base pairs nucleic acid single linear cDNA NO NO CDS 1..2079 mat_peptide 1..2076 47 AAT TTG GGT AAG GTC ATC GAT ACC CTT ACA TGC GGC TTC GCC GAC CTC 48 Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 GTG GGG TAC ATT CCG CTC GTC GGC GCC CCC CTA GGG GGC GCT GCC AGG 96 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 GCC CTG GCG CAT GGC GTC CGG GTT CTG GAG GAC GGC GTG AAC TAT GCA 144 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 ACA GGG AAT TTG CCC GGT TGC TCT TTC TCT ATC TTC CTC TTG GCT TTG 192 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 CTG TCC TGT CTG ACC GTT CCA GCT TCC GCT TAT GAA GTG CGC AAC GTG 240 Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 TCC GGG ATG TAC CAT GTC ACG AAC GAC TGC TCC AAC TCA AGC ATT GTG 288 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 TAT GAG GCA GCG GAC ATG ATC ATG CAC ACC CCC GGG TGC GTG CCC TGC 336 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 GTT CGG GAG AAC AAC TCT TCC CGC TGC TGG GTA GCG CTC ACC CCC ACG 384 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 CTC GCA GCT AGG AAC GCC AGC GTC CCC ACC ACG ACA ATA CGA CGC CAC 432 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 GTC GAT TTG CTC GTT GGG GCG GCT GCT TTC TGT TCC GCT ATG TAC GTG 480 Val Asp Leu Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val 145 150 155 160 GGG GAC CTC TGC GGA TCT GTC TTC CTC GTC TCC CAG CTG TTC ACC ATC 528 Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Ile 165 170 175 TCG CCT CGC CGG CAT GAG ACG GTG CAG GAC TGC AAT TGC TCA ATC TAT 576 Ser Pro Arg Arg His Glu Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr 180 185 190 CCC GGC CAC ATA ACG GGT CAC CGT ATG GCT TGG GAT ATG ATG ATG AAC 624 Pro Gly His Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn 195 200 205 TGG TCG CCT ACA ACG GCC CTG GTG GTA TCG CAG CTG CTC CGG ATC CCA 672 Trp Ser Pro Thr Thr Ala Leu Val Val Ser Gln Leu Leu Arg Ile Pro 210 215 220 CAA GCT GTC GTG GAC ATG GTG GCG GGG GCC CAT TGG GGA GTC CTG GCG 720 Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly Val Leu Ala 225 230 235 240 GGC CTC GCC TAC TAT TCC ATG GTG GGG AAC TGG GCT AAG GTT TTG GTT 768 Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys Val Leu Val 245 250 255 GTG ATG CTA CTC TTT GCC GGC GTC GAC GGG CAT ACC CGC GTG TCA GGA 816 Val Met Leu Leu Phe Ala Gly Val Asp Gly His Thr Arg Val Ser Gly 260 265 270 GGG GCA GCA GCC TCC GAT ACC AGG GGC CTT GTG TCC CTC TTT AGC CCC 864 Gly Ala Ala Ala Ser Asp Thr Arg Gly Leu Val Ser Leu Phe Ser Pro 275 280 285 GGG TCG GCT CAG AAA ATC CAG CTC GTA AAC ACC AAC GGC AGT TGG CAC 912 Gly Ser Ala Gln Lys Ile Gln Leu Val Asn Thr Asn Gly Ser Trp His 290 295 300 ATC AAC AGG ACT GCC CTG AAC TGC AAC GAC TCC CTC CAA ACA GGG TTC 960 Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Gln Thr Gly Phe 305 310 315 320 TTT GCC GCA CTA TTC TAC AAA CAC AAA TTC AAC TCG TCT GGA TGC CCA 1008 Phe Ala Ala Leu Phe Tyr Lys His Lys Phe Asn Ser Ser Gly Cys Pro 325 330 335 GAG CGC TTG GCC AGC TGT CGC TCC ATC GAC AAG TTC GCT CAG GGG TGG 1056 Glu Arg Leu Ala Ser Cys Arg Ser Ile Asp Lys Phe Ala Gln Gly Trp 340 345 350 GGT CCC CTC ACT TAC ACT GAG CCT AAC AGC TCG GAC CAG AGG CCC TAC 1104 Gly Pro Leu Thr Tyr Thr Glu Pro Asn Ser Ser Asp Gln Arg Pro Tyr 355 360 365 TGC TGG CAC TAC GCG CCT CGA CCG TGT GGT ATT GTA CCC GCG TCT CAG 1152 Cys Trp His Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro Ala Ser Gln 370 375 380 GTG TGC GGT CCA GTG TAT TGC TTC ACC CCG AGC CCT GTT GTG GTG GGG 1200 Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val Val Gly 385 390 395 400 ACG ACC GAT CGG TTT GGT GTC CCC ACG TAT AAC TGG GGG GCG AAC GAC 1248 Thr Thr Asp Arg Phe Gly Val Pro Thr Tyr Asn Trp Gly Ala Asn Asp 405 410 415 TCG GAT GTG CTG ATT CTC AAC AAC ACG CGG CCG CCG CGA GGC AAC TGG 1296 Ser Asp Val Leu Ile Leu Asn Asn Thr Arg Pro Pro Arg Gly Asn Trp 420 425 430 TTC GGC TGT ACA TGG ATG AAT GGC ACT GGG TTC ACC AAG ACG TGT GGG 1344 Phe Gly Cys Thr Trp Met Asn Gly Thr Gly Phe Thr Lys Thr Cys Gly 435 440 445 GGC CCC CCG TGC AAC ATC GGG GGG GCC GGC AAC AAC ACC TTG ACC TGC 1392 Gly Pro Pro Cys Asn Ile Gly Gly Ala Gly Asn Asn Thr Leu Thr Cys 450 455 460 CCC ACT GAC TGT TTT CGG AAG CAC CCC GAG GCC ACC TAC GCC AGA TGC 1440 Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala Thr Tyr Ala Arg Cys 465 470 475 480 GGT TCT GGG CCC TGG CTG ACA CCT AGG TGT ATG GTT CAT TAC CCA TAT 1488 Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys Met Val His Tyr Pro Tyr 485 490 495 AGG CTC TGG CAC TAC CCC TGC ACT GTC AAC TTC ACC ATC TTC AAG GTT 1536 Arg Leu Trp His Tyr Pro Cys Thr Val Asn Phe Thr Ile Phe Lys Val 500 505 510 AGG ATG TAC GTG GGG GGC GTG GAG CAC AGG TTC GAA GCC GCA TGC AAT 1584 Arg Met Tyr Val Gly Gly Val Glu His Arg Phe Glu Ala Ala Cys Asn 515 520 525 TGG ACT CGA GGA GAG CGT TGT GAC TTG GAG GAC AGG GAT AGA TCA GAG 1632 Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp Arg Ser Glu 530 535 540 CTT AGC CCG CTG CTG CTG TCT ACA ACA GAG TGG CAG ATA CTG CCC TGT 1680 Leu Ser Pro Leu Leu Leu Ser Thr Thr Glu Trp Gln Ile Leu Pro Cys 545 550 555 560 TCC TTC ACC ACC CTG CCG GCC CTA TCC ACC GGC CTG ATC CAC CTC CAT 1728 Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr Gly Leu Ile His Leu His 565 570 575 CAG AAC ATC GTG GAC GTG CAA TAC CTG TAC GGT GTA GGG TCG GCG GTT 1776 Gln Asn Ile Val Asp Val Gln Tyr Leu Tyr Gly Val Gly Ser Ala Val 580 585 590 GTC TCC CTT GTC ATC AAA TGG GAG TAT GTC CTG TTG CTC TTC CTT CTC 1824 Val Ser Leu Val Ile Lys Trp Glu Tyr Val Leu Leu Leu Phe Leu Leu 595 600 605 CTG GCA GAC GCG CGC ATC TGC GCC TGC TTA TGG ATG ATG CTG CTG ATA 1872 Leu Ala Asp Ala Arg Ile Cys Ala Cys Leu Trp Met Met Leu Leu Ile 610 615 620 GCT CAA GCT GAG GCC GCC TTA GAG AAC CTG GTG GTC CTC AAT GCG GCG 1920 Ala Gln Ala Glu Ala Ala Leu Glu Asn Leu Val Val Leu Asn Ala Ala 625 630 635 640 GCC GTG GCC GGG GCG CAT GGC ACT CTT TCC TTC CTT GTG TTC TTC TGT 1968 Ala Val Ala Gly Ala His Gly Thr Leu Ser Phe Leu Val Phe Phe Cys 645 650 655 GCT GCC TGG TAC ATC AAG GGC AGG CTG GTC CCT GGT GCG GCA TAC GCC 2016 Ala Ala Trp Tyr Ile Lys Gly Arg Leu Val Pro Gly Ala Ala Tyr Ala 660 665 670 TTC TAT GGC GTG TGG CCG CTG CTC CTG CTT CTG CTG GCC TTA CCA CCA 2064 Phe Tyr Gly Val Trp Pro Leu Leu Leu Leu Leu Leu Ala Leu Pro Pro 675 680 685 CGA GCT TAT GCC TAGTAA 2082 Arg Ala Tyr Ala 690 692 amino acids amino acid linear protein 48 Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu 1 5 10 15 Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg 20 25 30 Ala Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala 35 40 45 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu 50 55 60 Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Glu Val Arg Asn Val 65 70 75 80 Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser Ile Val 85 90 95 Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys Val Pro Cys 100 105 110 Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr 115 120 125 Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr Thr Ile Arg Arg His 130 135 140 Val Asp Leu Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val 145 150 155 160 Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ser Gln Leu Phe Thr Ile 165 170 175 Ser Pro Arg Arg His Glu Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr 180 185 190 Pro Gly His Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn 195 200 205 Trp Ser Pro Thr Thr Ala Leu Val Val Ser Gln Leu Leu Arg Ile Pro 210 215 220 Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly Val Leu Ala 225 230 235 240 Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys Val Leu Val 245 250 255 Val Met Leu Leu Phe Ala Gly Val Asp Gly His Thr Arg Val Ser Gly 260 265 270 Gly Ala Ala Ala Ser Asp Thr Arg Gly Leu Val Ser Leu Phe Ser Pro 275 280 285 Gly Ser Ala Gln Lys Ile Gln Leu Val Asn Thr Asn Gly Ser Trp His 290 295 300 Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Gln Thr Gly Phe 305 310 315 320 Phe Ala Ala Leu Phe Tyr Lys His Lys Phe Asn Ser Ser Gly Cys Pro 325 330 335 Glu Arg Leu Ala Ser Cys Arg Ser Ile Asp Lys Phe Ala Gln Gly Trp 340 345 350 Gly Pro Leu Thr Tyr Thr Glu Pro Asn Ser Ser Asp Gln Arg Pro Tyr 355 360 365 Cys Trp His Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro Ala Ser Gln 370 375 380 Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val Val Gly 385 390 395 400 Thr Thr Asp Arg Phe Gly Val Pro Thr Tyr Asn Trp Gly Ala Asn Asp 405 410 415 Ser Asp Val Leu Ile Leu Asn Asn Thr Arg Pro Pro Arg Gly Asn Trp 420 425 430 Phe Gly Cys Thr Trp Met Asn Gly Thr Gly Phe Thr Lys Thr Cys Gly 435 440 445 Gly Pro Pro Cys Asn Ile Gly Gly Ala Gly Asn Asn Thr Leu Thr Cys 450 455 460 Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala Thr Tyr Ala Arg Cys 465 470 475 480 Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys Met Val His Tyr Pro Tyr 485 490 495 Arg Leu Trp His Tyr Pro Cys Thr Val Asn Phe Thr Ile Phe Lys Val 500 505 510 Arg Met Tyr Val Gly Gly Val Glu His Arg Phe Glu Ala Ala Cys Asn 515 520 525 Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp Arg Ser Glu 530 535 540 Leu Ser Pro Leu Leu Leu Ser Thr Thr Glu Trp Gln Ile Leu Pro Cys 545 550 555 560 Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr Gly Leu Ile His Leu His 565 570 575 Gln Asn Ile Val Asp Val Gln Tyr Leu Tyr Gly Val Gly Ser Ala Val 580 585 590 Val Ser Leu Val Ile Lys Trp Glu Tyr Val Leu Leu Leu Phe Leu Leu 595 600 605 Leu Ala Asp Ala Arg Ile Cys Ala Cys Leu Trp Met Met Leu Leu Ile 610 615 620 Ala Gln Ala Glu Ala Ala Leu Glu Asn Leu Val Val Leu Asn Ala Ala 625 630 635 640 Ala Val Ala Gly Ala His Gly Thr Leu Ser Phe Leu Val Phe Phe Cys 645 650 655 Ala Ala Trp Tyr Ile Lys Gly Arg Leu Val Pro Gly Ala Ala Tyr Ala 660 665 670 Phe Tyr Gly Val Trp Pro Leu Leu Leu Leu Leu Leu Ala Leu Pro Pro 675 680 685 Arg Ala Tyr Ala 690 2433 base pairs nucleic acid single linear cDNA NO NO CDS 1..2430 mat_peptide 1..2427 49 ATG AGC ACG AAT CCT AAA CCT CAA AGA AAA ACC AAA CGT AAC ACC AAC 48 Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15 CGC CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT GGT CAG ATC GTT GGT 96 Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly 20 25 30 GGA GTT TAC CTG TTG CCG CGC AGG GGC CCC AGG TTG GGT GTG CGC GCG 144 Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala 35 40 45 ACT AGG AAG ACT TCC GAG CGG TCG CAA CCT CGT GGG AGG CGA CAA CCT 192 Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 50 55 60 ATC CCC AAG GCT CGC CGA CCC GAG GGT AGG GCC TGG GCT CAG CCC GGG 240 Ile Pro Lys Ala Arg Arg Pro Glu Gly Arg Ala Trp Ala Gln Pro Gly 65 70 75 80 TAC CCT TGG CCC CTC TAT GGC AAT GAG GGC ATG GGG TGG GCA GGA TGG 288 Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Met Gly Trp Ala Gly Trp 85 90 95 CTC CTG TCA CCC CGC GGC TCT CGG CCT AGT TGG GGC CCT ACA GAC CCC 336 Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro 100 105 110 CGG CGT AGG TCG CGT AAT TTG GGT AAG GTC ATC GAT ACC CTT ACA TGC 384 Arg Arg Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 115 120 125 GGC TTC GCC GAC CTC GTG GGG TAC ATT CCG CTC GTC GGC GCC CCC CTA 432 Gly Phe Ala Asp Leu Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu 130 135 140 GGG GGC GCT GCC AGG GCC CTG GCG CAT GGC GTC CGG GTT CTG GAG GAC 480 Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 145 150 155 160 GGC GTG AAC TAT GCA ACA GGG AAT TTG CCC GGT TGC TCT TTC TCT ATC 528 Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile 165 170 175 TTC CTC TTG GCT TTG CTG TCC TGT CTG ACC GTT CCA GCT TCC GCT TAT 576 Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr 180 185 190 GAA GTG CGC AAC GTG TCC GGG ATG TAC CAT GTC ACG AAC GAC TGC TCC 624 Glu Val Arg Asn Val Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser 195 200 205 AAC TCA AGC ATT GTG TAT GAG GCA GCG GAC ATG ATC ATG CAC ACC CCC 672 Asn Ser Ser Ile Val Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro 210 215 220 GGG TGC GTG CCC TGC GTT CGG GAG AAC AAC TCT TCC CGC TGC TGG GTA 720 Gly Cys Val Pro Cys Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val 225 230 235 240 GCG CTC ACC CCC ACG CTC GCA GCT AGG AAC GCC AGC GTC CCC ACC ACG 768 Ala Leu Thr Pro Thr Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr 245 250 255 ACA ATA CGA CGC CAC GTC GAT TTG CTC GTT GGG GCG GCT GCT TTC TGT 816 Thr Ile Arg Arg His Val Asp Leu Leu Val Gly Ala Ala Ala Phe Cys 260 265 270 TCC GCT ATG TAC GTG GGG GAC CTC TGC GGA TCT GTC TTC CTC GTC TCC 864 Ser Ala Met Tyr Val Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ser 275 280 285 CAG CTG TTC ACC ATC TCG CCT CGC CGG CAT GAG ACG GTG CAG GAC TGC 912 Gln Leu Phe Thr Ile Ser Pro Arg Arg His Glu Thr Val Gln Asp Cys 290 295 300 AAT TGC TCA ATC TAT CCC GGC CAC ATA ACG GGT CAC CGT ATG GCT TGG 960 Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg Met Ala Trp 305 310 315 320 GAT ATG ATG ATG AAC TGG TCG CCT ACA ACG GCC CTG GTG GTA TCG CAG 1008 Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val Val Ser Gln 325 330 335 CTG CTC CGG ATC CCA CAA GCT GTC GTG GAC ATG GTG GCG GGG GCC CAT 1056 Leu Leu Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His 340 345 350 TGG GGA GTC CTG GCG GGC CTC GCC TAC TAT TCC ATG GTG GGG AAC TGG 1104 Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp 355 360 365 GCT AAG GTT TTG GTT GTG ATG CTA CTC TTT GCC GGC GTC GAC GGG CAT 1152 Ala Lys Val Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly His 370 375 380 ACC CGC GTG TCA GGA GGG GCA GCA GCC TCC GAT ACC AGG GGC CTT GTG 1200 Thr Arg Val Ser Gly Gly Ala Ala Ala Ser Asp Thr Arg Gly Leu Val 385 390 395 400 TCC CTC TTT AGC CCC GGG TCG GCT CAG AAA ATC CAG CTC GTA AAC ACC 1248 Ser Leu Phe Ser Pro Gly Ser Ala Gln Lys Ile Gln Leu Val Asn Thr 405 410 415 AAC GGC AGT TGG CAC ATC AAC AGG ACT GCC CTG AAC TGC AAC GAC TCC 1296 Asn Gly Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser 420 425 430 CTC CAA ACA GGG TTC TTT GCC GCA CTA TTC TAC AAA CAC AAA TTC AAC 1344 Leu Gln Thr Gly Phe Phe Ala Ala Leu Phe Tyr Lys His Lys Phe Asn 435 440 445 TCG TCT GGA TGC CCA GAG CGC TTG GCC AGC TGT CGC TCC ATC GAC AAG 1392 Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser Cys Arg Ser Ile Asp Lys 450 455 460 TTC GCT CAG GGG TGG GGT CCC CTC ACT TAC ACT GAG CCT AAC AGC TCG 1440 Phe Ala Gln Gly Trp Gly Pro Leu Thr Tyr Thr Glu Pro Asn Ser Ser 465 470 475 480 GAC CAG AGG CCC TAC TGC TGG CAC TAC GCG CCT CGA CCG TGT GGT ATT 1488 Asp Gln Arg Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys Gly Ile 485 490 495 GTA CCC GCG TCT CAG GTG TGC GGT CCA GTG TAT TGC TTC ACC CCG AGC 1536 Val Pro Ala Ser Gln Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser 500 505 510 CCT GTT GTG GTG GGG ACG ACC GAT CGG TTT GGT GTC CCC ACG TAT AAC 1584 Pro Val Val Val Gly Thr Thr Asp Arg Phe Gly Val Pro Thr Tyr Asn 515 520 525 TGG GGG GCG AAC GAC TCG GAT GTG CTG ATT CTC AAC AAC ACG CGG CCG 1632 Trp Gly Ala Asn Asp Ser Asp Val Leu Ile Leu Asn Asn Thr Arg Pro 530 535 540 CCG CGA GGC AAC TGG TTC GGC TGT ACA TGG ATG AAT GGC ACT GGG TTC 1680 Pro Arg Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Gly Thr Gly Phe 545 550 555 560 ACC AAG ACG TGT GGG GGC CCC CCG TGC AAC ATC GGG GGG GCC GGC AAC 1728 Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn Ile Gly Gly Ala Gly Asn 565 570 575 AAC ACC TTG ACC TGC CCC ACT GAC TGT TTT CGG AAG CAC CCC GAG GCC 1776 Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala 580 585 590 ACC TAC GCC AGA TGC GGT TCT GGG CCC TGG CTG ACA CCT AGG TGT ATG 1824 Thr Tyr Ala Arg Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys Met 595 600 605 GTT CAT TAC CCA TAT AGG CTC TGG CAC TAC CCC TGC ACT GTC AAC TTC 1872 Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val Asn Phe 610 615 620 ACC ATC TTC AAG GTT AGG ATG TAC GTG GGG GGC GTG GAG CAC AGG TTC 1920 Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg Phe 625 630 635 640 GAA GCC GCA TGC AAT TGG ACT CGA GGA GAG CGT TGT GAC TTG GAG GAC 1968 Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp 645 650 655 AGG GAT AGA TCA GAG CTT AGC CCG CTG CTG CTG TCT ACA ACA GAG TGG 2016 Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Leu Ser Thr Thr Glu Trp 660 665 670 CAG ATA CTG CCC TGT TCC TTC ACC ACC CTG CCG GCC CTA TCC ACC GGC 2064 Gln Ile Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr Gly 675 680 685 CTG ATC CAC CTC CAT CAG AAC ATC GTG GAC GTG CAA TAC CTG TAC GGT 2112 Leu Ile His Leu His Gln Asn Ile Val Asp Val Gln Tyr Leu Tyr Gly 690 695 700 GTA GGG TCG GCG GTT GTC TCC CTT GTC ATC AAA TGG GAG TAT GTC CTG 2160 Val Gly Ser Ala Val Val Ser Leu Val Ile Lys Trp Glu Tyr Val Leu 705 710 715 720 TTG CTC TTC CTT CTC CTG GCA GAC GCG CGC ATC TGC GCC TGC TTA TGG 2208 Leu Leu Phe Leu Leu Leu Ala Asp Ala Arg Ile Cys Ala Cys Leu Trp 725 730 735 ATG ATG CTG CTG ATA GCT CAA GCT GAG GCC GCC TTA GAG AAC CTG GTG 2256 Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala Leu Glu Asn Leu Val 740 745 750 GTC CTC AAT GCG GCG GCC GTG GCC GGG GCG CAT GGC ACT CTT TCC TTC 2304 Val Leu Asn Ala Ala Ala Val Ala Gly Ala His Gly Thr Leu Ser Phe 755 760 765 CTT GTG TTC TTC TGT GCT GCC TGG TAC ATC AAG GGC AGG CTG GTC CCT 2352 Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys Gly Arg Leu Val Pro 770 775 780 GGT GCG GCA TAC GCC TTC TAT GGC GTG TGG CCG CTG CTC CTG CTT CTG 2400 Gly Ala Ala Tyr Ala Phe Tyr Gly Val Trp Pro Leu Leu Leu Leu Leu 785 790 795 800 CTG GCC TTA CCA CCA CGA GCT TAT GCC TAGTAA 2433 Leu Ala Leu Pro Pro Arg Ala Tyr Ala 805 810 809 amino acids amino acid linear protein 50 Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15 Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly 20 25 30 Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala 35 40 45 Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 50 55 60 Ile Pro Lys Ala Arg Arg Pro Glu Gly Arg Ala Trp Ala Gln Pro Gly 65 70 75 80 Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Met Gly Trp Ala Gly Trp 85 90 95 Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro 100 105 110 Arg Arg Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 115 120 125 Gly Phe Ala Asp Leu Val Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu 130 135 140 Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 145 150 155 160 Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile 165 170 175 Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr 180 185 190 Glu Val Arg Asn Val Ser Gly Met Tyr His Val Thr Asn Asp Cys Ser 195 200 205 Asn Ser Ser Ile Val Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro 210 215 220 Gly Cys Val Pro Cys Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val 225 230 235 240 Ala Leu Thr Pro Thr Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr 245 250 255 Thr Ile Arg Arg His Val Asp Leu Leu Val Gly Ala Ala Ala Phe Cys 260 265 270 Ser Ala Met Tyr Val Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ser 275 280 285 Gln Leu Phe Thr Ile Ser Pro Arg Arg His Glu Thr Val Gln Asp Cys 290 295 300 Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg Met Ala Trp 305 310 315 320 Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val Val Ser Gln 325 330 335 Leu Leu Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His 340 345 350 Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp 355 360 365 Ala Lys Val Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly His 370 375 380 Thr Arg Val Ser Gly Gly Ala Ala Ala Ser Asp Thr Arg Gly Leu Val 385 390 395 400 Ser Leu Phe Ser Pro Gly Ser Ala Gln Lys Ile Gln Leu Val Asn Thr 405 410 415 Asn Gly Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser 420 425 430 Leu Gln Thr Gly Phe Phe Ala Ala Leu Phe Tyr Lys His Lys Phe Asn 435 440 445 Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser Cys Arg Ser Ile Asp Lys 450 455 460 Phe Ala Gln Gly Trp Gly Pro Leu Thr Tyr Thr Glu Pro Asn Ser Ser 465 470 475 480 Asp Gln Arg Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys Gly Ile 485 490 495 Val Pro Ala Ser Gln Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser 500 505 510 Pro Val Val Val Gly Thr Thr Asp Arg Phe Gly Val Pro Thr Tyr Asn 515 520 525 Trp Gly Ala Asn Asp Ser Asp Val Leu Ile Leu Asn Asn Thr Arg Pro 530 535 540 Pro Arg Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Gly Thr Gly Phe 545 550 555 560 Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn Ile Gly Gly Ala Gly Asn 565 570 575 Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala 580 585 590 Thr Tyr Ala Arg Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys Met 595 600 605 Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val Asn Phe 610 615 620 Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg Phe 625 630 635 640 Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp 645 650 655 Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Leu Ser Thr Thr Glu Trp 660 665 670 Gln Ile Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr Gly 675 680 685 Leu Ile His Leu His Gln Asn Ile Val Asp Val Gln Tyr Leu Tyr Gly 690 695 700 Val Gly Ser Ala Val Val Ser Leu Val Ile Lys Trp Glu Tyr Val Leu 705 710 715 720 Leu Leu Phe Leu Leu Leu Ala Asp Ala Arg Ile Cys Ala Cys Leu Trp 725 730 735 Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala Leu Glu Asn Leu Val 740 745 750 Val Leu Asn Ala Ala Ala Val Ala Gly Ala His Gly Thr Leu Ser Phe 755 760 765 Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys Gly Arg Leu Val Pro 770 775 780 Gly Ala Ala Tyr Ala Phe Tyr Gly Val Trp Pro Leu Leu Leu Leu Leu 785 790 795 800 Leu Ala Leu Pro Pro Arg Ala Tyr Ala 805 17 amino acids amino acid single linear peptide Modified-site 1..17 51 Ser Asn Ser Ser Glu Ala Ala Asp Met Ile Met His Thr Pro Gly Cys 1 5 10 15 Val 22 amino acids amino acid single linear peptide Modified-site 1..22 52 Gly Gly Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp 1 5 10 15 Ser Pro Thr Thr Ala Leu 20 37 amino acids amino acid single linear peptide Modified-site 1..37 53 Tyr Glu Val Arg Asn Val Ser Gly Ile Tyr His Val Thr Asn Asp Cys 1 5 10 15 Ser Asn Ser Ser Ile Val Tyr Glu Ala Ala Asp Met Ile Met His Thr 20 25 30 Pro Gly Cys Gly Lys 35 25 amino acids amino acid single linear peptide Modified-site 1..25 54 Gly Gly Thr Pro Thr Val Ala Thr Arg Asp Gly Lys Leu Pro Ala Thr 1 5 10 15 Gln Leu Arg Arg His Ile Asp Leu Leu 20 25 25 amino acids amino acid single linear peptide Modified-site 1..25 55 Gly Gly Thr Pro Thr Leu Ala Ala Arg Asp Ala Ser Val Pro Thr Thr 1 5 10 15 Thr Ile Arg Arg His Val Asp Leu Leu 20 25 20 amino acids amino acid single linear peptide 56 Leu Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Gln Val Arg Asn 1 5 10 15 Ser Thr Gly Leu 20 20 amino acids amino acid single linear peptide 57 Gln Val Arg Asn Ser Thr Gly Leu Tyr His Val Thr Asn Asp Cys Pro 1 5 10 15 Asn Ser Ser Ile 20 20 amino acids amino acid single linear peptide 58 Asn Asp Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala His Asp Ala Ile 1 5 10 15 Leu His Thr Pro 20 20 amino acids amino acid single linear peptide 59 Ser Asn Ser Ser Ile Val Tyr Glu Ala Ala Asp Met Ile Met His Thr 1 5 10 15 Pro Gly Cys Val 20 19 amino acids amino acid single linear peptide 60 His Asp Ala Ile Leu His Thr Pro Gly Val Pro Cys Val Arg Glu Gly 1 5 10 15 Asn Val Ser 20 amino acids amino acid single linear peptide 61 Cys Val Arg Glu Gly Asn Val Ser Arg Cys Trp Val Ala Met Thr Pro 1 5 10 15 Thr Val Ala Thr 20 20 amino acids amino acid single linear peptide 62 Ala Met Thr Pro Thr Val Ala Thr Arg Asp Gly Lys Leu Pro Ala Thr 1 5 10 15 Gln Leu Arg Arg 20 20 amino acids amino acid single linear peptide 63 Leu Pro Ala Thr Gln Leu Arg Arg His Ile Asp Leu Leu Val Gly Ser 1 5 10 15 Ala Thr Leu Cys 20 20 amino acids amino acid single linear peptide 64 Leu Val Gly Ser Ala Thr Leu Cys Ser Ala Leu Tyr Val Gly Asp Leu 1 5 10 15 Cys Gly Ser Val 20 20 amino acids amino acid single linear peptide 65 Gln Leu Phe Thr Phe Ser Pro Arg Arg His Trp Thr Thr Gln Gly Cys 1 5 10 15 Asn Cys Ser Ile 20 20 amino acids amino acid single linear peptide 66 Thr Gln Gly Cys Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His 1 5 10 15 Arg Met Ala Trp 20 20 amino acids amino acid single linear peptide 67 Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp Ser Pro 1 5 10 15 Thr Ala Ala Leu 20 20 amino acids amino acid single linear peptide 68 Asn Trp Ser Pro Thr Ala Ala Leu Val Met Ala Gln Leu Leu Arg Ile 1 5 10 15 Pro Gln Ala Ile 20 20 amino acids amino acid single linear peptide 69 Leu Leu Arg Ile Pro Gln Ala Ile Leu Asp Met Ile Ala Gly Ala His 1 5 10 15 Trp Gly Val Leu 20 20 amino acids amino acid single linear peptide 70 Ala Gly Ala His Trp Gly Val Leu Ala Gly Ile Ala Tyr Phe Ser Met 1 5 10 15 Val Gly Asn Met 20 20 amino acids amino acid single linear peptide 71 Val Val Leu Leu Leu Phe Ala Gly Val Asp Ala Glu Thr Ile Val Ser 1 5 10 15 Gly Gly Gln Ala 20 20 amino acids amino acid single linear peptide 72 Ser Gly Leu Val Ser Leu Phe Thr Pro Gly Ala Lys Gln Asn Ile Gln 1 5 10 15 Leu Ile Asn Thr 20 20 amino acids amino acid single linear peptide 73 Gln Asn Ile Gln Leu Ile Asn Thr Asn Gly Gln Trp His Ile Asn Ser 1 5 10 15 Thr Ala Leu Asn 20 21 amino acids amino acid single linear peptide 74 Leu Asn Cys Asn Glu Ser Leu Asn Thr Gly Trp Trp Leu Ala Gly Leu 1 5 10 15 Ile Tyr Gln His Lys 20 20 amino acids amino acid single linear peptide 75 Ala Gly Leu Ile Tyr Gln His Lys Phe Asn Ser Ser Gly Cys Pro Glu 1 5 10 15 Arg Leu Ala Ser 20 20 amino acids amino acid single linear peptide 76 Gly Cys Pro Glu Arg Leu Ala Ser Cys Arg Pro Leu Thr Asp Phe Asp 1 5 10 15 Gln Gly Trp Gly 20 20 amino acids amino acid single linear peptide 77 Thr Asp Phe Asp Gln Gly Trp Gly Pro Ile Ser Tyr Ala Asn Gly Ser 1 5 10 15 Gly Pro Asp Gln 20 20 amino acids amino acid single linear peptide 78 Ala Asn Gly Ser Gly Pro Asp Gln Arg Pro Tyr Cys Trp His Tyr Pro 1 5 10 15 Pro Lys Pro Cys 20 20 amino acids amino acid single linear peptide 79 Trp His Tyr Pro Pro Lys Pro Cys Gly Ile Val Pro Ala Lys Ser Val 1 5 10 15 Cys Gly Pro Val 20 20 amino acids amino acid single linear peptide 80 Ala Lys Ser Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val 1 5 10 15 Val Val Gly Thr 20 20 amino acids amino acid single linear peptide 81 Pro Ser Pro Val Val Val Gly Thr Thr Asp Arg Ser Gly Ala Pro Thr 1 5 10 15 Tyr Ser Trp Gly 20 20 amino acids amino acid single linear peptide 82 Gly Ala Pro Thr Tyr Ser Trp Gly Glu Asn Asp Thr Asp Val Phe Val 1 5 10 15 Leu Asn Asn Thr 20 20 amino acids amino acid single linear peptide 83 Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Ser Thr Gly Phe Thr Lys 1 5 10 15 Val Cys Gly Ala 20 20 amino acids amino acid single linear peptide 84 Gly Phe Thr Lys Val Cys Gly Ala Pro Pro Val Cys Ile Gly Gly Ala 1 5 10 15 Gly Asn Asn Thr 20 19 amino acids amino acid single linear peptide 85 Ile Gly Gly Ala Gly Asn Asn Thr Leu His Cys Pro Thr Asp Cys Arg 1 5 10 15 Lys His Pro 20 amino acids amino acid single linear peptide 86 Thr Asp Cys Phe Arg Lys His Pro Asp Ala Thr Tyr Ser Arg Cys Gly 1 5 10 15 Ser Gly Pro Trp 20 20 amino acids amino acid single linear peptide 87 Ser Arg Cys Gly Ser Gly Pro Trp Ile Thr Pro Arg Cys Leu Val Asp 1 5 10 15 Tyr Pro Tyr Arg 20 20 amino acids amino acid single linear peptide 88 Cys Leu Val Asp Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Ile 1 5 10 15 Asn Tyr Thr Ile 20 20 amino acids amino acid single linear peptide 89 Pro Cys Thr Ile Asn Tyr Thr Ile Phe Lys Ile Arg Met Tyr Val Gly 1 5 10 15 Gly Val Glu His 20 20 amino acids amino acid single linear peptide 90 Met Tyr Val Gly Gly Val Glu His Arg Leu Glu Ala Ala Cys Asn Trp 1 5 10 15 Thr Pro Gly Glu 20 20 amino acids amino acid single linear peptide 91 Ala Cys Asn Trp Thr Pro Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp 1 5 10 15 Arg Ser Glu Leu 20 20 amino acids amino acid single linear peptide 92 Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Leu Thr Thr Thr 1 5 10 15 Gln Trp Gln Val 20 9 amino acids amino acid single linear peptide 93 Tyr Gln Val Arg Asn Ser Thr Gly Leu 1 5 29 base pairs nucleic acid single linear cDNA NO YES 94 ACGTCCGTAC GTTCGAATTA ATTAATCGA 29 60 base pairs nucleic acid single linear cDNA NO YES 95 CCTCCGGACG TGCACTAGCT CCCGTCTGTG GTAGTGGTGG TAGTGATTAT CAATTAATTG 60 19 base pairs nucleic acid single linear DNA (genomic) NO NO 96 GTTTAACCAC TGCATGATG 19 20 base pairs nucleic acid single linear DNA (genomic) NO NO 97 GTCCCATCGA GTGCGGCTAC 20 45 base pairs nucleic acid single linear DNA (genomic) NO NO 98 CGTGACATGG TACATTCCGG ACACTTGGCG CACTTCATAA GCGGA 45 42 base pairs nucleic acid single linear DNA (genomic) NO NO 99 TGCCTCATAC ACAATGGAGC TCTGGGACGA GTCGTTCGTG AC 42 42 base pairs nucleic acid single linear DNA (genomic) NO NO 100 TACCCAGCAG CGGGAGCTCT GTTGCTCCCG AACGCAGGGC AC 42 42 base pairs nucleic acid single linear DNA (genomic) NO NO 101 TGTCGTGGTG GGGACGGAGG CCTGCCTAGC TGCGAGCGTG GG 42 48 base pairs nucleic acid single linear DNA (genomic) NO NO 102 CGTTATGTGG CCCGGGTAGA TTGAGCACTG GCAGTCCTGC ACCGTCTC 48 42 base pairs nucleic acid single linear DNA (genomic) NO NO 103 CAGGGCCGTT CTAGGCCTCC ACTGCATCAT CATATCCCAA GC 42 26 base pairs nucleic acid single linear DNA (genomic) NO NO 104 CCGGAATGTA CCATGTCACG AACGAC 26 24 base pairs nucleic acid single linear DNA (genomic) NO NO 105 GCTCCATTGT GTATGAGGCA GCGG 24 23 base pairs nucleic acid single linear DNA (genomic) NO NO 106 GAGCTCCCGC TGCTGGGTAG CGC 23 25 base pairs nucleic acid single linear DNA (genomic) NO NO 107 CCTCCGTCCC CACCACGACA ATACG 25 27 base pairs nucleic acid single linear DNA (genomic) NO NO 108 CTACCCGGGC CACATAACGG GTCACCG 27 24 base pairs nucleic acid single linear DNA (genomic) NO NO 109 GGAGGCCTAC AACGGCCCTG GTGG 24 22 base pairs nucleic acid single linear DNA (genomic) NO NO 110 TTCTATCGAT TAAATAGAAT TC 22 23 base pairs nucleic acid single linear DNA (genomic) NO NO 111 GCCATACGCT CACAGCCGAT CCC 23

Claims (48)

1. Method for purifying recombinant HCV single or specific oligomeric envelope proteins selected from the group consisting of E1 and/or E2 and/or E 1/E2, characterized in that upon lysing the transformed host cells to isolate the recombinantly expressed protein a disulphide bond cleavage or reduction step is carried our with a disulphide bond cleavage agent.
2. Method according to claim 1, wherein said disulphide cleavage or reduction step is carried out under partial cleavage or reducing conditions.
3. Method according to claim 1 or 2, wherein said disulphide bond cleavage agent is dithiotheitol (DTT), preferably in a concentration range of 0.1 to 50 mM, preferably 0.1 to 20 mM, more preferably 0.5 to 10 mM.
4. Method according to claim 1, wherein said disulphide bond cleavage agent is a detergent.
5. Method according to claim 4, wherein said detergent is Empigen-BB, preferably at a concentration of 1 to 10%, more preferably at a concentration of 3.5%.
6. Method according to claim 1 or 2, wherein said disulphide bond cleaving agent comprises a combination of a classical disulphide bond cleavage agent, such as DTT, and a detergent, such as Empigen-BB.
7. Method according to any of claims 1 to 6, further comprising the step of blocking disulphide bond reformation with an SH group blocking agent.
8. Method according to claim 7, wherein said SH group blocking agent is N-ethylmaleimide (NEM) or a derivative thereof.
9. Method according to claim 7, wherein said step of blocking the disulphide bond reformation is brought about by low pH conditions.
10. Method according to any of claims 1 to 9, further characterized by at least the following steps:
lysing recombinant E1 and/or E2 and/or E1 E2 expressing host cells, possibly in the presence of an SH blocking agent such as N-ethylmaleimide (NEM),
recovering said HCV envelope proteins by affinity purification such as by means of lectin-chromatography, such as lentil-lectin chromatography, or by means of immunoaffinity using anti-E1 and/or anti-E2 specific monoclonal antibodies,
reduction or cleavage of the disulfide bonds with a disulphide bond cleaving agent, such as DTT, preferably also in the presence of an SH blocking agent, such as NEM or Biotin-NEM, and,
recovering the reduced E1 and/or E2 and/or E1 E2 envelope proteins by gelfiltration and possibly also by a subsequent Ni-IMAC chromatography and desalting step.
11. Composition comprising essentially purified recombinant HCV single or specific oligomeric recombinant envelope proteins selected from the group consisting of E1 and/or E2 and/or E1/E2, characterized as being isolated by a method according to any of claims 1 to 10.
12. Composition according to claim 11, further characterized in that said recombinant HCV envelope proteins are expressed from recombinant mammalian cells such as vaccinia.
13. Composition according to claim 11, further characterized in that said recombinant HCV envelope proteins are expressed from recombinant yeast cells.
14. Composition according to claim 11, further characterized in that said recombinant HCV envelope proteins are the expression product of at least one of the recombinant vectors according to any of claims 15 to 24.
15. Recombinant vector comprising a vector sequence, an appropriate prokaryotic, eukaryotic or viral promoter sequence followed by a nucleotide sequence allowing the expression of a single or specific oligomeric E1 and/or E2 and/or E1/E2 protein.
16. Recombinant vector according to claim 15, with said nucleotide sequence being characterized further in that it encodes a single HCV E1 protein starting in the regain between amino acid positions 1 and 192 and ending in the region between amino acid positions 250 and 400, more particularly ending in the region between positions 250 and 341, even more preferably ending in the region between position 290 and 341.
17. Recombinant vector according to claim 16, with said nucleotide sequence being characterized further in that it encodes a single HCV E1 protein starting in the region between amino acid positions 117 and 192 and ending in the region between amino acid positions 263 and 400, more particularly ending in the region between positions 250 and 326.
18. Recombinant vector according to any of claims 16 or 17, with said nucleotide sequence being characterized further in that it encodes a single HCV E1 protein bearing a deletion of the first hydrophobic domain between positions 264 to 293, plus or minus 8 amino acids.
19. Recombinant vector according to claim 15, with said nucleotide sequence being characterized further in that it encodes a single HCV E2 protein staring in the region between amino acid positions 290 and 406 and ending in the region between amino acid positions 600 and 820, more particularly starting in the region between positions 322 and 406, even more preferably starting in the region between position 347 and 406 and most preferably starting in the region between positions 364 and 406.
20. Recombinant vector according to claim 19, with said nucleotide sequence being characterized further in that it ends at any of amino acid positions 623, 650, 661, 673, 710, 715, 720, 746 or 809.
21. Recombinant vector according to any of claims 16 to 20, with said nucleotide sequence being characterized further in that a 5′-terminal ATG codon and a 3′-terminal stop codon have been added to it.
22. Recombinant vector according to any of claims 16 to 21, with said nucleotide sequence being characterized further in hat a factor Xa cleavage site and/or 3 to 10, preferably 6, histidine codons have been added 3′-terminally to the coding region.
23. Nucleic acid comprising any of the sequences as represented in SEQ ID NO 3, 5, 7, 9, 11, 13, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 47 and 49, or parts thereof.
24. Recombinant vector carrying a recombinant nucleic acid according to claim 23.
25. Recombinant vector according to any of claims 15 to 24, further characterized in that at least one of the glycosylation sites present in said E1 or E2 protein has been removed at the nucleic acid level.
26. A host cell transformed with at least one recombinant vector according to any of claims 15 to 26, wherein said vector comprises a nucleotide sequence encoding HCV E1 and/or E2 and/or E1/E2 protein as defined in any of claims 15 to 23 in addition to a regulatory sequence operable in said host cell and capable of regulating expression of said HCV E1 and/or E2 and/or E1/E2 protein.
27. A recombinant E1 and/or E2 and/or E1/E2 protein expressed by a host cell according to claim 26.
28. Method according to any of claims 1 to 10, further characterized as comprising at least the following steps:
growing a host cell as defined in claim 26 transformed with a recombinant vector according to any of claims 15 to 25 in a suitable culture medium, causing expression of said vector sequence as defined in any of claims 16 to 25 under suitable conditions, and,
lysing said transformed host cells, preferably in the presence of an SH group blocking agent, such as N-ethylmaleimide (NEM), recovering said HCV envelope protein by affinity purification by means of for instance lectin-chromatography or immunoaffinity chromatography using anti-E1 and/or anti-E2 specific monoclonal antibodies, with said lectin being preferably lentil-lectin, followed by,
incubation of the eluate of the previous step with a disulphide bond cleavage agent, such as DTT, preferably also in the presence of an SH group blocking agent, such as NEM or Biotin-NEM, and,
isolating the HCV single or specific oligomeric E1 and/or E2 and/or E1/E2 proteins by means of gelfiltration and possibly also by means of an additional Ni2−-IMAC chromatography and desalting step.
29. A composition comprising at least one of the following E1 and/or E2 peptides:
E1-31 (SEQ ID NO 56) spanning amino acids 181 to 200 of the Core E1 V1 region,
E1-33 (SEQ ID NO 57) spanning amino acids 193 to 212 of the E1 region,
E1-35 (SEQ ID NO 58) spanning amino acids 205 to 22a of the E1 V2 region (epitope B),
E1-35A (SEQ ID NO 59) spanning amino acids 208 to 227 of the E1 V2 region (epitope B),
1bE1 (SEQ ID NO 53) spanning amino acids 192 to 228 of E1 regions (V1, C1, and V2 regions (containing epitope B),
E1-51 (SEQ ID NO 66) spanning amino acids 301 to 320 of the E1 region,
E1-53 (SEQ ID NO 67) spanning amino acids 313 to 332 of the E1 C4 region (epitope A),
E1-55 (SEQ ID NO 63) spanning amino acids 325 to 344 of the E1 region.
Env 67 or E2-67 (SEQ ID NO 72) spanning amino acid positions 397 to 416 of the E2 region (epitope A),
Env 69 or E2-69 (SEQ ID NO 73) spanning amino acid positions 409 to 428 of the E2 region (epitope A),
Env 23 or E2-23 (SEQ ID NO 86) spanning positions 583 to 602 of the E2 region (epitope E),
Env 25 or E2-25 (SEC ID NO 87) spanning positions 595 to 614 of the E2 region (epitope E),
Env 27 or E2-27 (SEQ ID NO 88) spanning positions 607 to 626 of the E2 region (epitope E),
Env 17B or E2-17B (SEQ ID NO 83) spanning positions 547 to 566 of the E2 region (epitope D),
Env 13B or E2-13B (SEQ ID NO 82) spanning positions 523 to 542 of the E2 region (epitope C).
30. A composition comprising at least one of the following E2 conformational epitopes:
epitope F recognized by monoclonal antibodies 15C8C1, 12D11F1, and 8G10D1H9.
epitope G recognized by monoclonal antibody 9G3E6,
epitope H (or C) recognized by monoclonal antibodies 10D3C4 and 4H6B2,
epitope I recognized by monoclonal antibody 17F2C2.
31. An E1 and/or E2 specific monoclonal antibody raised upon immunization with a composition according to any of claims 11 to 14 or 29 to 30.
32. An E1 and/or E2 specific monoclonal antibody according to claim 31 for use as a medicament, more particularly for incorporation into an immunoassay kit for detecting the presence of HCV E1 or E2 antigen, for prognosis/monitoring of disease or for HCV therapy.
33. Use of an E1 and/or E2 specific monoclonal antibody according to claim 31 for the preparation of an immunoassay kit for detecting HCV E1 or E2 antigens, for the preparation of a kit for prognosing/monitoring of HCV disease or for the preparation of a HCV medicament.
34. Method for in vitro diagnosis of HCV antigen present in a biological sample, comprising at least the following steps:
(i) contacting said biological sample with an E1 and/or E2 specific monoclonal antibody according to claim 31, preferably in an immobilized form under appropriate conditions which allow the formation of an immune complex,
(ii) removing unbound components,
(iii) incubating the immune complexes formed with heterologous antibodies, with said heterologous antibodies being conjugated to a detectable label under appropriate conditions,
(iv) detecting the presence of said immune complexes visually or mechanically.
35. Kit for determining the presence of HCV antigens present in a biological sample, comprising:
at least one E1 and/or E2 specific monoclonal antibody according to claim 31, preferably in an immobilized form on a solid substrate,
a buffer or components necessary for producing the buffer enabling binding reaction between these antibodies and the HCV antigens present in said biological sample,
a means for detecting the immune complexes formed in the preceding binding reaction.
36. A composition according to any of claims 11 to 14 or 29 to 30 for use as a medicament.
37. A composition according to any of claims 11 to 14 or 29 to 30 for use as a vaccine for immunizing a mammal, preferably humans, against HCV, comprising administrating an effective amount of said composition possibly accompanied by pharmaceutically acceptable adjuvants, to produce an immune response.
38. Use of a composition according to any of claims 11 to 14 or 29 to 30, for the preparation of a vaccine for immunizing a mammal, preferably humans, against HCV, comprising administrating an effective amount of said composition possibly accompanied by pharmaceutically acceptable adjuvants, to produce an immune response.
39. Vaccine composition for immunizing a mammal, preferably humans, against HCV, comprising an effective amount of a composition according to any of claims 11 to 14 or 29 to 30 possibly accompanied by pharmaceutically acceptable adjuvants.
40. A composition according to any of claims 11 to 14 or 29 to 30, for in vitro detection of HCV antibodies present in a biological sample.
41. Use of a composition according to claims 11 to 14 or 29 to 30, for the preparation of an immunoassay kit for detecting HCV antibodies present in a biological sample.
42. Method for in vitro diagnosis of HCV antibodies present in a biological sample, comprising at least the following steps:
(i) contacting said biological sample with a composition according to any of claims 11 to 14 or 29 to 30, preferably in an immobilized form under appropriate conditions which allow the formation of an immune complex,
(ii) removing unbound components,
(iii) incubating the immune complexes formed with heterologous antibodies, with said heterologous antibodies being conjugated to a detectable label under appropriate conditions,
(iv) detecting the presence of said immune complexes visually or mechanically.
43. Kit for determining the presence of HCV antibodies present in a biological sample, comprising:
at least one peptide or protein composition according to any of claims 11 to 14 or 29 to 30, preferably in an immobilized form on a solid substrate,
a buffer or components necessary for producing the buffer enabling binding reaction between these proteins or peptides and the antibodies against HCV present in said biological sample,
a means for detecting the immune complexes formed in the preceding binding reaction.
44. Use of composition comprising E1 proteins according to any of claims 11 to 14, or parts thereof according to claim 29, more particularly HCV single E1 proteins or E1 peptides, for in vitro monitoring HCV disease or prognosing the response to treatment, particularly with interferon, of patients suffering from HCV infection comprising:
incubating a biological sample from a patient with HCV infection with an E1 protein or a suitable part thereof under conditions allowing the formation of an immunological complex, removing unbound components,
calculating the anti-E1 titers present in said sample at the start of and during the course of treatment,
monitoring the natural course of HCV disease, or prognosing the response to treatment of said patient on the basis of the amount anti-E1 titers found in said sample at the start of treatment and/or during the course of treatment.
45. Kit for monitoring HCV disease or prognosing the response to treatment, particularly with interferon, of patients suffering from HCV infection comprising:
at least one E1 protein or E1 peptide, more particularly an E1 protein or E1 peptide according to any of claims 11 to 14 or 29.
a buffer or components necessary for producing the buffer enabling the binding reaction between these proteins or peptides and the anti-E1 antibodies present in a biological sample,
means for detecting the immune complexes formed in the preceding binding reaction,
possibly also an automated scanning and interpretation device for inferring a decrease of anti-E1 titers during the progression of treatment.
46. A serotyping assay for detecting one or more serological types of HCV present in a biological sample, more particularly for detecting antibodies of the different types of HCV to be detected combined in one assay format, comprising at least the following steps:
(i) contacting the biological sample to be analyzed for the presence of HCV antibodies of one or more serological types, with at least one of the E1 and/or E2 and/or E1/E2 protein compositions according to any of claims 11 to 14 or at least one of the E1 or E2 peptide compositions according to claim 29, preferentially in an immobilized form under appropriate conditions which allow the formation of an immune complex.
(ii) removing unbound components,
(iii) incubating the immune complexes formed with heterologous antibodies, with said heterologous antibodies being conjugated to a detectable label under appropriate conditions,
(iv) detecting the presence of said immune complexes visually or mechanically (e.g. by means of densitometry, fluorimetry, colorimetry; and inferring the presence of one or more HCV serological types present from the observed binding pattern.
47. Kit for serotyping one or more serological types of HCV present in a biological sample, more particularly for detecting the antibodies to these serological types of HCV comprising:
at least one E-1 and/or E2 and/or E1/E2 protein according to any of claims 11 to 14 or E1 or E2 peptide according to claim 29.
a buffer or components necessary for producing the buffer enabling the binding reaction between these proteins or peptides and the anti-E1 antibodies present in a biological sample,
means for detecting the immune complexes formed in the preceding binding reaction,
possibly also an automated scanning and interpretation device for detecting the presence of one or more serological types present from the observed binding pattern.
48. A peptide or protein composition according to any of claims 11 to 14 or 29, for immobilization on a solid substrate and incorporation into a reversed phase hybridization assay, preferably for immobilization as parallel lines onto a solid support such as a membrane strip, for determining the presence or the genotype of HCV according to a method of any of claims 42 or 46.
US09/899,303 1994-07-29 2001-07-06 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use Abandoned US20030036110A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/899,303 US20030036110A1 (en) 1994-07-29 2001-07-06 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US11/654,514 US20070128721A1 (en) 1994-07-29 2007-01-18 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US11/678,513 US20080138894A1 (en) 1994-07-29 2007-02-23 Purified hepatitis c virus envelope proteins for diagnostic and therapeutic use

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP94870132.1 1994-07-29
EP94870132 1994-07-29
US08/612,973 US6150134A (en) 1994-07-29 1995-07-31 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
USPCT/EP95/03031 1995-07-31
PCT/EP1995/003031 WO1996004385A2 (en) 1994-07-29 1995-07-31 Purified hepatitis c virus envelope proteins for diagnostic and therapeutic use
US92801797A 1997-09-11 1997-09-11
US09/899,303 US20030036110A1 (en) 1994-07-29 2001-07-06 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US92801797A Division 1994-07-29 1997-09-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/654,514 Division US20070128721A1 (en) 1994-07-29 2007-01-18 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US11/678,513 Division US20080138894A1 (en) 1994-07-29 2007-02-23 Purified hepatitis c virus envelope proteins for diagnostic and therapeutic use

Publications (1)

Publication Number Publication Date
US20030036110A1 true US20030036110A1 (en) 2003-02-20

Family

ID=8218662

Family Applications (7)

Application Number Title Priority Date Filing Date
US08/612,973 Expired - Fee Related US6150134A (en) 1994-07-29 1995-07-31 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US08/927,597 Expired - Fee Related US6245503B1 (en) 1994-07-29 1997-09-11 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US08/928,757 Expired - Fee Related US6890737B1 (en) 1994-07-29 1997-09-12 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US09/899,303 Abandoned US20030036110A1 (en) 1994-07-29 2001-07-06 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US09/973,025 Expired - Fee Related US7026457B2 (en) 1994-07-29 2001-10-10 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US11/654,514 Abandoned US20070128721A1 (en) 1994-07-29 2007-01-18 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US11/678,513 Abandoned US20080138894A1 (en) 1994-07-29 2007-02-23 Purified hepatitis c virus envelope proteins for diagnostic and therapeutic use

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/612,973 Expired - Fee Related US6150134A (en) 1994-07-29 1995-07-31 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US08/927,597 Expired - Fee Related US6245503B1 (en) 1994-07-29 1997-09-11 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US08/928,757 Expired - Fee Related US6890737B1 (en) 1994-07-29 1997-09-12 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use

Family Applications After (3)

Application Number Title Priority Date Filing Date
US09/973,025 Expired - Fee Related US7026457B2 (en) 1994-07-29 2001-10-10 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US11/654,514 Abandoned US20070128721A1 (en) 1994-07-29 2007-01-18 Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US11/678,513 Abandoned US20080138894A1 (en) 1994-07-29 2007-02-23 Purified hepatitis c virus envelope proteins for diagnostic and therapeutic use

Country Status (13)

Country Link
US (7) US6150134A (en)
EP (3) EP0721505B2 (en)
JP (3) JPH09503396A (en)
AT (1) ATE217345T1 (en)
BR (1) BR9506059A (en)
CA (1) CA2172273A1 (en)
DE (2) DE69526636T3 (en)
DK (1) DK0721505T4 (en)
ES (1) ES2174957T5 (en)
HK (1) HK1049022A1 (en)
PT (1) PT721505E (en)
SG (1) SG71728A1 (en)
WO (1) WO1996004385A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211597A1 (en) * 2001-04-24 2003-11-13 Fons Bosman Expression of core-glycosylated HCV envelope proteins in yeast
US20050158767A1 (en) * 2003-12-19 2005-07-21 Haskell Robert E. System for managing healthcare data including genomic and other patient specific information

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG71728A1 (en) 1994-07-29 2000-04-18 Innogenetics Nv Purified hepatitis c virus envelope proteins for diagnostic and therapeutic use
US20040185061A1 (en) * 1994-07-29 2004-09-23 Innogenetics N.V. Redox reversible HCV proteins with native-like conformation
ATE417109T1 (en) 1994-07-29 2008-12-15 Novartis Vaccines & Diagnostic HEPATITIS C E2 SHORTENED POLYPEPTIDE AND METHOD FOR THE PRODUCTION THEREOF
CA2288374A1 (en) 1997-05-06 1998-11-12 Chiron Corporation Intracellular production of hepatitis c e1 and e2 truncated polypeptides
ES2297889T3 (en) 1997-07-14 2008-05-01 Bolder Biotechnology, Inc. DERIVATIVES OF HORMONE OF GROWTH AND RELATED PROTEINS.
US20080076706A1 (en) 1997-07-14 2008-03-27 Bolder Biotechnology, Inc. Derivatives of Growth Hormone and Related Proteins, and Methods of Use Thereof
US7495087B2 (en) 1997-07-14 2009-02-24 Bolder Biotechnology, Inc. Cysteine muteins in the C-D loop of human interleukin-11
US7153943B2 (en) 1997-07-14 2006-12-26 Bolder Biotechnology, Inc. Derivatives of growth hormone and related proteins, and methods of use thereof
US6753165B1 (en) 1999-01-14 2004-06-22 Bolder Biotechnology, Inc. Methods for making proteins containing free cysteine residues
EP1028742B1 (en) * 1997-11-06 2006-12-27 Innogenetics N.V. Apo b, annexin v and tubulin : medical, diagnostic and purification uses for hcv
AU752131C (en) * 1997-11-06 2003-12-04 Innogenetics N.V. Multi-mer peptides derived from hepatitis C virus envelope proteins for diagnostic use and vaccination purposes
EP0947525A1 (en) 1998-03-27 1999-10-06 Innogenetics N.V. Epitopes in viral envelope proteins and specific antibodies directed against these epitopes: use for detection of HCV viral antigen in host tissue
AU751362B2 (en) * 1998-04-17 2002-08-15 Innogenetics N.V. Improved immunodiagnostic assays using reducing agents
TR200003843T2 (en) 1998-06-24 2001-06-21 Innogenetics N.V. Particles of HCV coating proteins: use for vaccination
US7108855B2 (en) * 1998-06-24 2006-09-19 Innogenetics N.V. Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
WO2000005266A1 (en) * 1998-07-21 2000-02-03 Connex Gesellschaft Zur Optimierung Von Forschung Und Entwicklung Mbh Anti hepatitis c virus antibody and uses thereof
US20030180284A1 (en) * 1998-11-05 2003-09-25 Board Of Trustees Of Leland Stanford Junior University Prevention and treatment of HCV infection employing antibodies directed against conformational and linear epitopes
US8288126B2 (en) 1999-01-14 2012-10-16 Bolder Biotechnology, Inc. Methods for making proteins containing free cysteine residues
JP2002534119A (en) * 1999-01-14 2002-10-15 ボルダー バイオテクノロジー, インコーポレイテッド Method for producing a protein having a free cysteine residue
US7009044B1 (en) * 1999-06-04 2006-03-07 The United States Of America As Represented By The Department Of Health And Human Services HCV/BVDV chimeric genomes and uses thereof
MXPA02004052A (en) * 1999-10-27 2002-11-07 Innogenetics Nv Redox reversible hcv proteins with native like conformation.
NZ518999A (en) * 1999-11-19 2002-12-20 Csl Ltd Vaccine compositions
US6740323B1 (en) * 1999-11-24 2004-05-25 Chiron Corporation HBV/HCV virus-like particle
JP2002030098A (en) * 2000-07-17 2002-01-29 Institute Of Immunology Co Ltd Method for recovering virion envelope from budded virus of baculovirus
EP1354064A2 (en) * 2000-12-01 2003-10-22 Visigen Biotechnologies, Inc. Enzymatic nucleic acid synthesis: compositions and methods for altering monomer incorporation fidelity
US7101561B2 (en) 2000-12-01 2006-09-05 Innogenetics N.V. Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
AU2002238502B2 (en) * 2001-01-11 2007-09-06 Genimmune N.V. Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
DE60231475D1 (en) * 2001-01-12 2009-04-23 Molecules Of Man Ab MATERIALS AND METHODS FOR THE TREATMENT OF HEPATITIS C
AU2002322358B2 (en) * 2001-06-29 2009-06-18 Novartis Vaccines And Diagnostics, Inc. HCV E1E2 vaccine compositions
US20040126395A1 (en) * 2001-12-18 2004-07-01 Geert Maertens Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US7439042B2 (en) * 2002-12-16 2008-10-21 Globeimmune, Inc. Yeast-based therapeutic for chronic hepatitis C infection
ATE397619T1 (en) 2003-01-31 2008-06-15 Organon Nv METHOD FOR PROTEIN ISOLATION UNDER ANOXIC CONDITIONS
ES2377968T3 (en) * 2003-04-01 2012-04-03 Institut National De La Sante Et De La Recherche Medicale (Inserm) Antibodies directed against the hepatitis C virus E1E2 complex and pharmaceutical compositions
JP4885476B2 (en) * 2004-05-21 2012-02-29 株式会社日本触媒 Method for introducing protein and / or peptide into cell
SG156652A1 (en) 2004-10-18 2009-11-26 Globeimmune Inc Yeast-based therapeutic for chronic hepatitis c infection
US20060292647A1 (en) * 2004-12-03 2006-12-28 Green Lawrence R Reflex supplemental testing - A rapid, efficient and highly accurate method to identify subjects with an infection, disease or other condition
US20080124738A1 (en) * 2005-03-01 2008-05-29 Pritest, Inc Compositions and methods of testing for tuberculosis and mycobacterium infection
JP2008151505A (en) * 2005-04-05 2008-07-03 Biomarker Science:Kk Method of assessing effectiveness of interferon medical treatment, and kit for assessing the same
WO2008025067A1 (en) * 2006-08-30 2008-03-06 Hepgenics Pty Ltd Recombinant proteins and virus like particles comprising l and s polypeptides of avian hepadnaviridae and methods, nucleic acid constructs, vectors and host cells for producing same
EP2201023A2 (en) * 2007-09-14 2010-06-30 GENimmune N.V. Affinity tag
US20110091495A1 (en) * 2008-04-22 2011-04-21 Rutgers, The State University Of New Jersey Hcv e2 construct compositions and methods
US9758794B2 (en) 2008-04-22 2017-09-12 Rutgers, The State University Of New Jersey HCV E2 construct compositions and methods
JP2012503011A (en) 2008-09-19 2012-02-02 グローブイミューン,インコーポレイテッド Immunotherapy of chronic hepatitis C virus infection
US20100104555A1 (en) * 2008-10-24 2010-04-29 The Scripps Research Institute HCV neutralizing epitopes
CN107375919B (en) 2009-03-27 2022-07-29 台湾地区“中央研究院” Methods and compositions for antiviral immunization
US10080799B2 (en) * 2010-02-12 2018-09-25 Arizona Board Of Regents On Behalf Of Arizona State University Methods and compositions related to glycoprotein-immunoglobulin fusions
WO2011147863A1 (en) 2010-05-25 2011-12-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Combination of anti-envelope antibodies and anti-receptor antibodies for the treatment and prevention of hcv infection
US9512184B2 (en) 2011-05-20 2016-12-06 Emory University Hepatitis C virus particles, vaccines, compositions and methods related thereto
TW201346040A (en) * 2012-03-30 2013-11-16 Tanaka Precious Metal Ind Kit for identifying influenza a virus
CN104812376A (en) 2012-09-27 2015-07-29 Msd消费保健品公司 Foaming skincare formulations
US20170242010A1 (en) * 2014-02-11 2017-08-24 The Regents Of The University Of California Combo-Hepatitis Antigen Assays and Kits for Detection of Active Hepatitis Virus Infections
SG11201806622PA (en) 2016-02-05 2018-09-27 Univ Texas Egfl6 specific monoclonal antibodies and methods of their use
US11236153B2 (en) 2016-09-23 2022-02-01 Emory University Compositions and methods for identifying and sorting antigen-specific B cells
US20190284230A1 (en) * 2016-09-29 2019-09-19 Macfarlane Burnet Institute For Medical Research And Public Health Limited Assembled glycoproteins
CN109160942B (en) * 2018-09-26 2021-06-29 广州市第八人民医院 Peptide 502-518 of highly conserved region of HCV envelope protein and application thereof
CN113125712B (en) * 2019-12-31 2023-06-16 科美博阳诊断技术(上海)有限公司 Homogeneous chemiluminescence detection kit for hepatitis C virus antibody and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942234A (en) * 1990-11-08 1999-08-24 Chiron Corporation Hepatitis C virus asialoglycoproteins
US6121020A (en) * 1994-07-29 2000-09-19 Chiron Corporation Hepatitis C E1 and E2 polypeptides and methods of obtaining the same

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2212511B (en) * 1987-11-18 1992-01-22 Chiron Corp Hepatitis c virus
KR0185373B1 (en) * 1989-03-17 1999-05-01 로버트 피. 블랙버언 Nanbv diagnostics and vaccines
KR100189050B1 (en) * 1989-12-01 1999-06-01 펜스케 라피체 Use of complex ligands for ions in ferroelectric liquid crystal mixtures
US5308750A (en) * 1989-12-22 1994-05-03 Abbott Laboratories Monoclonal antibodies to putative HCV E2/NS1 proteins and methods for using same
US5582968A (en) * 1990-02-16 1996-12-10 United Biomedical, Inc. Branched hybrid and cluster peptides effective in diagnosing and detecting non-A, non-B hepatitis
US5747239A (en) * 1990-02-16 1998-05-05 United Biomedical, Inc. Synthetic peptides specific for the detection of antibodies to HCV, diagnosis of HCV infection and preventions thereof as vaccines
ATE185486T1 (en) * 1990-06-29 1999-10-15 Chiron Corp VACCINE COMPOSITIONS CONTAINING LIPOSOMES
EP0554241A1 (en) * 1990-10-15 1993-08-11 LIPP, Robert Edmond Device for orienting rotor blades in a transverse fluid flow and applications
SK286106B6 (en) * 1990-11-08 2008-03-05 Novartis Vaccines & Diagnostics, Inc. An immunoassay method for detecting an antibody against hepatitis C virus
AU662517B2 (en) 1991-01-31 1995-09-07 Abbott Laboratories Monoclonal antibodies to putative HCV envelope region and methods for using same
FR2677372B1 (en) * 1991-06-06 1994-11-10 Pasteur Institut NUCLEOTIDE AND PEPTIDE SEQUENCES OF A HEPATITIS C VIRUS ISOLATE, DIAGNOSTIC AND THERAPEUTIC APPLICATIONS.
DE4209215A1 (en) * 1991-07-04 1993-01-07 Boehringer Mannheim Gmbh HCV PEPTIDE ANTIGEN AND METHOD FOR DETERMINING HCV
AT397102B (en) * 1991-07-09 1994-02-25 Ahsen Uwe Von Dr USE OF ANTIBIOTIC OF TYPE 2-DESOXYSTREPTAMINE
IT1249684B (en) * 1991-07-19 1995-03-09 Sorin Biomedica Spa HEPATITIS VIRUS PROTEIN ENV EPITOPES
CA2115926A1 (en) * 1991-08-21 1993-03-04 Stephen H. Dailey Hepatitis c assay utilizing recombinant antigens to ns1
WO1993004888A1 (en) 1991-09-06 1993-03-18 Siemens Aktiengesellschaft Device for maintaining a preselected travelling direction of a vehicle, in particular an electric car, on slopes
WO1993006126A1 (en) * 1991-09-13 1993-04-01 Chiron Corporation Immunoreactive hepatitis c virus polypeptide compositions
AU2683792A (en) * 1991-09-16 1993-04-27 Genelabs Technologies, Inc. Peptide based hepatitis c virus immunoassays
ATE191792T1 (en) * 1991-09-16 2000-04-15 Abbott Lab METHOD FOR DETECTING HEPATITIS C
JP3158177B2 (en) * 1991-10-08 2001-04-23 国立感染症研究所長 Hepatitis C diagnostic agent
CA2129733C (en) * 1992-01-31 2006-10-31 James M. Casey Mammalian expression systems for hcv proteins
US6165730A (en) * 1992-03-06 2000-12-26 N.V. Innogenetics S.A. Hepatitis C virus peptides obtained from the NS4 coding region and their use in diagnostic assays
US5866139A (en) * 1992-06-04 1999-02-02 Institut Pasteur Nucleotide and peptide sequences of a hepatitis C virus isolate, diagnostic and therapeutic applications
JPH05344899A (en) 1992-06-11 1993-12-27 Kokuritsu Yobou Eisei Kenkyusho Production of coat protein of hepatitis c virus
UA39944C2 (en) * 1992-07-07 2001-07-16 Чірон Корпорейшн METHOD FOR DETERMINATION OF EARLY SEROCONVERSION IN MAMMAL-TO-MACHINE TO HEPATITIS C VIRUS AND KIT FOR USE IN THE METHOD
US5514539A (en) * 1993-06-29 1996-05-07 The United States Of America As Represented By The Department Of Health And Human Services Nucleotide and deduced amino acid sequences of the envelope 1 gene of 51 isolates of hepatitis C virus and the use of reagents derived from these sequences in diagnostic methods and vaccines
US5610009A (en) * 1994-01-28 1997-03-11 Abbott Laboratories Mammalian expression systems for hepatitis C virus envelope genes
SG71728A1 (en) 1994-07-29 2000-04-18 Innogenetics Nv Purified hepatitis c virus envelope proteins for diagnostic and therapeutic use
EP0947525A1 (en) * 1998-03-27 1999-10-06 Innogenetics N.V. Epitopes in viral envelope proteins and specific antibodies directed against these epitopes: use for detection of HCV viral antigen in host tissue

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942234A (en) * 1990-11-08 1999-08-24 Chiron Corporation Hepatitis C virus asialoglycoproteins
US6121020A (en) * 1994-07-29 2000-09-19 Chiron Corporation Hepatitis C E1 and E2 polypeptides and methods of obtaining the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211597A1 (en) * 2001-04-24 2003-11-13 Fons Bosman Expression of core-glycosylated HCV envelope proteins in yeast
US7048930B2 (en) * 2001-04-24 2006-05-23 Innogenetics N.V. Expression of core-glycosylated HCV envelope proteins in yeast
US20050158767A1 (en) * 2003-12-19 2005-07-21 Haskell Robert E. System for managing healthcare data including genomic and other patient specific information
US7788040B2 (en) 2003-12-19 2010-08-31 Siemens Medical Solutions Usa, Inc. System for managing healthcare data including genomic and other patient specific information

Also Published As

Publication number Publication date
DE69526636T4 (en) 2003-06-26
EP0721505B1 (en) 2002-05-08
WO1996004385A2 (en) 1996-02-15
US7026457B2 (en) 2006-04-11
JP2004222729A (en) 2004-08-12
US20020182706A1 (en) 2002-12-05
SG71728A1 (en) 2000-04-18
EP1211315A1 (en) 2002-06-05
JP4105203B2 (en) 2008-06-25
EP0721505B2 (en) 2006-05-10
EP0721505A1 (en) 1996-07-17
PT721505E (en) 2002-10-31
DK0721505T4 (en) 2006-08-14
US6245503B1 (en) 2001-06-12
JP3892443B2 (en) 2007-03-14
DK0721505T3 (en) 2002-08-19
US20080138894A1 (en) 2008-06-12
DE69526636T2 (en) 2002-12-12
ATE217345T1 (en) 2002-05-15
ES2174957T5 (en) 2006-12-16
DE69526636T3 (en) 2006-11-23
HK1049022A1 (en) 2003-04-25
ES2174957T3 (en) 2002-11-16
JP2007105038A (en) 2007-04-26
EP1845108A2 (en) 2007-10-17
JPH09503396A (en) 1997-04-08
BR9506059A (en) 1997-10-28
CA2172273A1 (en) 1996-02-15
WO1996004385A3 (en) 1996-03-07
US6890737B1 (en) 2005-05-10
EP1845108A3 (en) 2007-10-24
US20070128721A1 (en) 2007-06-07
DE69526636D1 (en) 2002-06-13
US6150134A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
US6245503B1 (en) Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US7101561B2 (en) Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
AU2002361160B2 (en) Purified Hepatitis C virus envelope proteins for diagnostic and therapeutic use
US20040126395A1 (en) Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
AU2002238502B2 (en) Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US7108855B2 (en) Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
AU757962B2 (en) Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
AU708174B2 (en) Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
US20030095980A1 (en) Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
NZ521299A (en) Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
ZA200207272B (en) Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use.
ZA200405218B (en) Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use.
JP2004525885A (en) Purified hepatitis C virus envelope protein for diagnostic and therapeutic use

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION