[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20010013908A1 - Method of making an ldc or x-ray imaging device with first and second insulating layers - Google Patents

Method of making an ldc or x-ray imaging device with first and second insulating layers Download PDF

Info

Publication number
US20010013908A1
US20010013908A1 US08/954,725 US95472597A US2001013908A1 US 20010013908 A1 US20010013908 A1 US 20010013908A1 US 95472597 A US95472597 A US 95472597A US 2001013908 A1 US2001013908 A1 US 2001013908A1
Authority
US
United States
Prior art keywords
insulating layer
tfts
layer
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US08/954,725
Other versions
US6359672B2 (en
Inventor
Tieer Gu
Willem den Boer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innolux Corp
First Chicago NBD Bank NA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US08/954,725 priority Critical patent/US6359672B2/en
Application filed by Individual filed Critical Individual
Assigned to OIS OPTICAL IMAGING SYSTEMS, INC. reassignment OIS OPTICAL IMAGING SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GU, TIEER
Assigned to OIS OPTICAL IMAGING SYSTEMS, INC. reassignment OIS OPTICAL IMAGING SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEN BOER, WILLEM
Assigned to FIRST CHICAGO/NBD BANK N.A. reassignment FIRST CHICAGO/NBD BANK N.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OIS OPTICAL IMAGING SYSTEMS, INC.
Assigned to GUARDIAN INDUSTRIES CORP. reassignment GUARDIAN INDUSTRIES CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OIS OPTICAL IMAGING SYSTEMS, INC.
Assigned to OIS OPTICAL IMAGING SYSTEMS, INC. reassignment OIS OPTICAL IMAGING SYSTEMS, INC. FULL RELEASE OF SECURITY INTEREST IN PENDING PATENT APPLICATIONS Assignors: BANK ONE, MICHIGAN FORMERLY FIRST CHICAGO/NBD, N.A.
Publication of US20010013908A1 publication Critical patent/US20010013908A1/en
Publication of US6359672B2 publication Critical patent/US6359672B2/en
Application granted granted Critical
Assigned to CHIMEI INNOLUX CORPORATION reassignment CHIMEI INNOLUX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUARDIAN INDUSTRIES CORP.
Assigned to Innolux Corporation reassignment Innolux Corporation CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CHIMEI INNOLUX CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14696The active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe

Definitions

  • AMLCDs active matrix liquid crystal displays
  • Such AMLCDs and X-ray imagers generally include X and Y (or row and column) address lines which are horizontally and vertically spaced apart and cross at an angle to one another thereby forming a plurality of crossover points.
  • an element e.g. pixel
  • These elements in many instances are liquid crystal display pixels or alternatively the memory cells of an electronically adjustable memory array or X-ray imaging array.
  • a switching or isolation device such as a diode or thin film transistor (TFT) is associated with each array element or pixel.
  • TFT thin film transistor
  • the isolation devices permit the individual pixels to be selectively addressed by the application of suitable potentials between respective pairs of the X and Y address lines.
  • the TFTs act as switching elements for energizing or otherwise addressing corresponding pixel electrodes.
  • Amorphous silicon (a-Si) TFTs have found wide usage for isolation devices in liquid crystal display (LCD) arrays and X-ray imagers.
  • TFTs generally include substantially co-planar source and drain electrodes, a thin film semiconductor material (e.g. a-Si) disposed between the source and drain electrodes, and a gate electrode in proximity to the semiconductor but electrically insulated therefrom by a gate insulator.
  • a-Si thin film semiconductor material
  • a gate electrode in proximity to the semiconductor but electrically insulated therefrom by a gate insulator.
  • current flow through a TFT between the source and drain is controlled by the application of voltage to the gate electrode.
  • the voltage to the gate electrode produces an electric field which accumulates a charged region near the semiconductor-gate insulator interface. This charged region forms a current conducting channel in the semiconductor through which current is conducted.
  • pixels may be switched on and off in a known manner.
  • drain electrodes are those which are in communication with a drain address line and “source” electrodes are those that are in communication with the pixel electrodes through vias in the insulating layers.
  • is the dielectric constant of the insulating layer
  • co is a constant value of about 8.85 ⁇ 10 ⁇ 14 F/cm
  • A is the area of the resulting capacitor in the area of overlap
  • d is the thickness of the insulating layer in the area of overlap.
  • the '356 patent for example, its disclosure does not appreciate the importance of the dielectric constant ⁇ of the insulating layer. While referencing numerous materials including silicon nitride and SiO 2 , which may be used for the insulating layer, the '356 patent does not discuss either the dielectric constant values of these materials or their importance in helping reduce C PL in overlap areas. When ⁇ of the insulating layer is too high, capacitive crosstalk results.
  • this invention fulfills the above-described needs in the art by providing an X-ray imager comprising:
  • an array of thin film transistors disposed on the substrate, the array of TFTs including a plurality of address lines connected to the TFTs;
  • an array of substantially transparent electrodes disposed on the first substrate, a plurality of the electrodes in the array of electrodes overlapping at least one of the address lines;
  • an organic photo-imageable insulating layer having a dielectric constant less than about 4.0 disposed on the substrate between the address lines and the electrodes at least in areas of overlap and areas adjacent source electrodes of the TFTs;
  • an intermediate protective insulating layer disposed between the TFTs and the photo-imageable insulating layer so as to prevent the organic photo-imageable insulating layer from directly contacting semiconductor material in channels of the TFTs thereby reducing potential shifts of threshold voltage and subthreshold swings in the TFTs;
  • the photo-imageable insulating layer and the intermediate protective layer each having a plurality of contact vias defined therein, wherein the electrodes are in electrical communication with corresponding TFT source electrodes through the contact vias defined in the insulating layers.
  • the organic photo-imageable insulating layer is a negative resist which includes BCB.
  • the organic photo-imageable insulating layer has a dielectric constant of less than about 3.0.
  • the organic photo-imageable insulating layer has a thickness of from about 0.9 ⁇ m to 2.75 ⁇ m, with the thickness in the areas of overlap, of course, being smaller than the above-recited thickness.
  • the intermediate insulating layer has a thickness of from about 100 ⁇ -1,000 ⁇ .
  • This invention further fulfills the above-described needs in the art by providing a liquid crystal display comprising:
  • a source and drain electrode in each TFT area on the first substrate a TFT channel being defined between a corresponding source and drain electrodes of each TFT, thereby forming an array of TFTs on the first substrate;
  • drain lines connected to the drain electrodes
  • a substantially transparent photo-imageable insulating layer having a dielectric constant less than about 4.0, the photo-imageable insulating layer being disposed on the first substrate between (i) the pixel electrodes and (ii) the TFTs and the overlapped lines so as to insulate the pixel electrodes from the overlapped lines and the TFTs;
  • an intermediate insulating layer disposed between the photo-imageable insulating layer and the TFTs so as to prevent the photo-imageable insulating layer from directly contacting TFT portions which the photo-imageable insulating layer overlap.
  • This invention further fulfills the above-described needs in the art by providing a TFT array structure comprising:
  • an array of TFTs on a substrate the TFTs being connected to a corresponding array of electrodes;
  • organic photo-imageable insulating means having a dielectric constant less than about 4.0 disposed between the electrodes and the address lines so as to reduce crosstalk and permit the insulating means to be photoimaged;
  • an intermediate protective insulating layer disposed between the photo-imageable insulating means and the TFTs so as to prevent the insulating means from contacting semiconductor material of the TFTs.
  • This invention further fulfills the above-described needs in the art by providing a method of making a TFT structure, including first and second insulating layers over the TFTs.
  • This invention still further fulfills the above-described needs in the art by providing a method of making an X-ray imager, the method including the steps of providing a substrate, forming an array of TFTs on the substrate, forming a first inorganic (e.g. silicon nitride) insulating layer over the TFTs, forming a second organic insulating layer over the first layer so that the first insulating layer prevents the second insulating layer from directly contacting the semiconductor material of the TFTs, and forming an array of electrode members over the second insulating layer with each of the electrode members in communication with one of the TFTs through a contact hole defined in the first and second insulating layers.
  • a first inorganic e.g. silicon nitride
  • This invention further fulfills the above-described needs in the art by providing a method of making a liquid crystal display, the method comprising the steps of providing a substrate, forming an array of TFTs or other switching elements on the substrate, forming first and second insulating layers over the TFTs or other switching elements, forming contact holes in the first and second insulating layers proximate TFTs, and forming a plurality of pixel electrodes over the second insulating layer so that each of the pixel electrodes is in communication with one of the TFTs through a corresponding one of the contact holes.
  • FIG. 1 is a top view of an AMLCD according to this invention, this figure illustrating pixel electrodes overlapping surrounding row and column address lines along their respective lengths throughout the display's pixel area so as to increase the pixel aperture ratio of the display.
  • FIG. 2 is a top view of the column (or drain) address lines and corresponding drain electrodes of FIG. 1 (or of an X-ray imager), this figure also illustrating the TFT source electrodes disposed adjacent the drain electrodes so as to define the TFT channels having length “L.”
  • FIG. 3 is a top view of the pixel electrodes of FIG. 1 (or of an X-ray imager) except for their extensions.
  • FIG. 4 is a side elevational cross-sectional view of the linear-shaped thin film transistors (TFTs) of FIGS. 1 - 2 , this structure being utilized in either an LCD or an X-ray imager according to this invention.
  • TFTs thin film transistors
  • AMLCDs The structure and function of AMLCDs are disclosed in U.S. Pat. No. 5,641,974, and the structure and function of X-ray imagers are disclosed in U.S. Pat. Nos. 5,525,527; 5,498,880; 5,396,072; and 5,619,033, the disclosure of which are incorporated herein by reference. Familiarity with such structures and functions is assumed herein.
  • FIG. 1 is a top view of four pixels in an array of an active matrix liquid crystal display (AMLCD) 2 according to an embodiment of this invention.
  • This portion of the display includes substantially transparent pixel electrodes 3 , drain address lines 5 , gate address lines 7 , an array of four thin film transistors (TFTs) 9 , and auxiliary storage capacitors 11 associated with each pixel.
  • Each storage capacitor 11 is defined on one side by a gate line 7 and on the other side by an independent storage capacitor electrode 12 .
  • Storage capacitor electrodes 12 are formed along with drain electrodes 13 . As shown, the longitudinally extending edges of each pixel electrode 3 overlap drain lines 5 and gate lines 7 respectively along the edges thereof so as to increase the pixel aperture ratio (or pixel opening size) of the LCD.
  • a pixel-line (PL) capacitor is defined by an electrode 3 on one side and the overlapped address line on the other.
  • the dielectric disposed between the electrodes of these PL capacitors is insulation layer 33 (see FIGS. 4 and 7).
  • the TFTs may be swung 90° so that the gates are formed by perpendicular extensions from the gate lines and the drains are formed by the drain lines themselves. This may be used in both LCD and X-ray imager embodiments of this invention.
  • FIG. 2 is a top view of drain address lines 5 of AMLCD 2 (or of an X-ray imager) showing how extensions of address lines 5 may form drain electrodes 13 of TFTs 9 in the FIG. 1 illustrated embodiment.
  • Each TFT 9 in the array includes source electrode 15 , 31 . drain electrode 13 , 29 , and gate electrode 17 .
  • Gate electrode 17 of each TFT 9 is formed by the corresponding gate address line 7 in the FIG. 1 illustrated embodiment. According to other embodiments discussed above, the gate electrode 17 may be formed by a branch extending substantially perpendicular to the gate line, while drain electrodes 13 are formed by the drain lines 5 themselves.
  • FIG. 3 is a top view illustrating pixel electrodes 3 (absent their extension portions 38 ) of AMLCD 2 or an X-ray imager arranged in array form.
  • FIG. 4 is a side elevational cross-sectional view of a single thin film transistor (TFT) 9 in the TFT array of either an X-ray imager or AMLCD 2 , with each TFT 9 in the array being substantially the same according to preferred embodiments.
  • Each linear TFT 9 has a channel length “L” defined by the gap 27 between source electrode 15 and drain electrode 13 .
  • Source electrode 15 is connected to pixel electrode 3 by way of via or contact hole 35 so as to permit TFT 9 to act as a switching element and selectively energize a corresponding pixel in AMLCD 2 in order to provide image data to a viewer, or to address the memory cell of an X-ray imager.
  • An array of these TFTs 9 is provided as illustrated in FIG. 1.
  • electrode 3 in FIG. 4 overlaps the TFT channel 27 , as shown in FIG. 4 while in certain LCD embodiments electrode 3 overlaps the source 15 but not channel 27 .
  • a separate collecting capacitor may be provided as illustrated and discussed in U.S. Pat. Nos. 5,498,880 and 5,396,072, or a separate photosensitive element as in U.S. Pat. No. 5,619,033, the disclosures of which are hereby incorporated herein by reference.
  • X-ray imagers according to this invention function as discussed in any of the aforesaid three U.S. patents.
  • each TFT 9 structure in both LCD and X-ray imager embodiments includes substantially transparent substrate 19 (e.g. made of glass), metal gate electrode 17 , gate insulating layer or film 21 , semiconductor layer 23 (e.g. intrinsic amorphous silicon), doped semiconductor contact layer 25 , drain electrode 13 , source electrode 15 , substantially transparent intermediate insulating layer 32 , substantially transparent second insulation layer 33 , and a corresponding substantially transparent electrode 3 .
  • substantially transparent substrate 19 e.g. made of glass
  • metal gate electrode 17 e.g. made of glass
  • gate insulating layer or film 21 semiconductor layer 23 (e.g. intrinsic amorphous silicon), doped semiconductor contact layer 25 , drain electrode 13 , source electrode 15 , substantially transparent intermediate insulating layer 32 , substantially transparent second insulation layer 33 , and a corresponding substantially transparent electrode 3 .
  • TFT channel 27 of length “L” is defined between source 15 and drain 13 .
  • drain electrode 13 is made up of a drain metal layer (e.g. Mo) which is deposited on substrate 19 over top of doped contact layer 25 .
  • Contact film or layer 25 may be, for example, amorphous silicon doped with an impurity such as phosphorous (i.e. n+a-Si) and is sandwiched between semiconductor layer 23 and drain metal layer 13 .
  • Source electrode 15 includes doped semiconductor contact layer 25 and source metal layer 15 .
  • Metal layers 13 and 15 may be of the same metal and deposited and patterned together according to certain embodiments of this invention. Alternatively, layer 13 may be deposited and patterned separately from layer 15 so that drain metal layer is of one metal (e.g. Mo) and the source metal layer is of another (e.g. Cr).
  • Substantially transparent layers 32 and 33 make up the dual-layered insulator according to this invention, where layer 32 is provided to improve TFT performance by preventing direct contact between organic or acrylic layer 33 and intrinsic a-Si layer 23 .
  • insulating layer 33 with a low dielectric constant allows crosstalk to be reduced so as to improve TFT and image performance while intermediate insulating layer 32 (e.g. silicon nitride, silicon oxide, or SiO X N Y ) eliminates potential TFT off current and large subthreshold slope, and improves TFT thermal and electrical stability.
  • Substantially transparent insulating layer 33 having a dielectric constant less than about 5.0 is deposited as a sheet on substrate 19 so as to cover inorganic intermediate insulating layer 32 , TFTs 9 , and address lines 5 and 7 .
  • Organic layer 33 is formed of a photo-imageable material such as Fuji ClearTM or a photo-imageable type of BCB.
  • Substantially transparent layer 33 may also be formed of a non-photo-imageable type of BCB.
  • Insulating layers 32 and 33 are continuous in the viewing area of the display or imager except for vias or contact holes 35 (and sometimes 36 ) formed therein to allow electrodes 3 to contact corresponding TFT source electrodes 15 and the storage capacitor electrodes respectively.
  • Layer 33 has a dielectric constant e less than or equal to about 5.0 according to certain embodiments of this invention, preferably less than about 4.0, and more preferably less than about 3.0.
  • layer 33 has a dielectric constant of about 2.7 and is made of a photo-imageable type of Benzocyclobutene (BCB), an organic material available from Dow Chemical, for the purpose of reducing capacitive crosstalk (or capacitive coupling) between pixel electrodes 3 and the address lines in overlap areas 18 .
  • BCB Benzocyclobutene
  • Layer 33 has a low dielectric constant and/or a relatively large thickness for the specific purpose of reducing CPL in overlap areas 18 .
  • layer 33 may be of a photo-imageable material known as Fuji ClearTM, which is an organic mixture including 2-Ethoxyethyl acetate (55-70%), methacrylate derivative copolymer (10-20%), and polyfunctional acrylate (10-20%).
  • Fuji ClearTM has a dielectric constant of about 3.5.
  • Other materials which may be used as layer 33 includes PFCB available from Dow, and known polyimides.
  • Inorganic layer 32 may be of any material which either eliminates or lessens the degree of TFT threshold voltage and sub-threshold swings, by preventing direct contact between semiconductor material of the TFT and organic or acrylic insulating layer 33 .
  • Insulating layer 32 is formed on the TFT array over substantially the entire viewing area.
  • layer 32 may be formed only over the TFTs.
  • vias 35 are formed in insulation layer 33 by way of photo-imaging.
  • Layer 33 acts as a negative resist so that UV exposed areas remain on the substrate and areas of layer 33 unexposed to UV during photo-imaging are removed during developing.
  • vias 35 are etched in intermediate layer 32 so as to expose the source electrodes 15 .
  • substantially transparent electrodes 3 e.g. made of indium-tin-oxide or ITO are deposited and patterned over top of layers 32 and 33 on substrate 19 so that each electrode 3 contacts a corresponding source electrode 15 of a corresponding TFT 9 through a via 35 as illustrated in FIG. 4.
  • auxiliary vias 36 are formed in layers 32 and 33 at the same time as vias 35 so that electrodes 3 can contact storage capacitor electrodes 12 via electrode extensions 38 . Peripheral lead areas and seal areas are also removed by photo-imaging.
  • Insulating layers 32 and 33 are deposited on substrate 19 over the address lines, storage capacitors, and TFTs to a thickness “d” of at least about 0.5 ⁇ m in overlap areas 18 .
  • the total thickness “d” of the insulating layers 32 and 33 is from about 1 to 2.8 ⁇ m, with layer 32 being from about 100-1,000 ⁇ thick (preferably from about 500-1,000 ⁇ thick) and layer 33 being from about 0.90-2.75 ⁇ m thick (preferably from about 1.5-2.5 ⁇ m thick).
  • layer 33 Another advantage of layer 33 is that liquid crystal layer disclinations induced at pixel electrode 3 edges by the topography of TFTs 9 , storage capacitors, and address lines are substantially eliminated by planarization (i.e. few, if any, hills and valleys are present in the top surface of layer 33 ). Thus, the thickness of the LC layer is substantially maintained and display functionality is improved because electrodes 3 are substantially flat because of the substantial planarization of the surface of layer 33 adjacent the pixel electrodes 3 .
  • the capacitive crosstalk problems of the prior art resulting from overly high C PL values are substantially reduced in areas 18 where pixel electrodes 3 overlap address lines 5 and/or 7 . Because layer 33 is disposed between pixel electrodes 3 and the overlapped address lines, the capacitive crosstalk problems of the prior art are substantially reduced or eliminated and increased pixel openings are achievable without sacrificing display performance (pixel isolation).
  • Pixel opening sizes or the pixel aperture ratio of AMLCD 2 is at least about 65% (preferably from about 68% to 80%) according to certain embodiments of this invention when the pixel pitch is about 150 ⁇ m. This will, of course, vary depending upon the pixel pitch of the X-ray imager or display (pitches of from about 40-500 ⁇ m may be used). Electrodes 3 overlap address lines 5 and 7 along the edges thereof as shown in FIG. 1 by an amount up to about 3 ⁇ m. In certain preferred embodiments of this invention, the overlap 18 of electrodes 3 over the edges of address lines 5 and 7 is designed to be from about 2 to 3 ⁇ m, with the end result after overetching being at least about 0.5 ⁇ m.
  • the amount of overlap may be designed to be from about 2-3 ⁇ m, with the resulting post-processing overlap being from about 0 to 2 ⁇ m.
  • the overlap amount may be adjusted in accordance with different LCD or imager applications and pitch sizes as will be appreciated by those of skill in the art.
  • electrodes 3 may not overlap the address lines at all according to certain embodiments of this invention, although some overlap 18 is preferred. When no overlap occurs, the parasitic capacitance CPL between the address lines and the adjacent electrode 3 is still minimized or reduced due to insulating layer 33 .
  • the TFT structures according to this invention have C PL line-pixel capacitance values, given the stated overlap and thickness parameters, as in U.S. Pat. No. 5,641,974.
  • C PL in areas of overlap of address lines is preferably less than about 12.0 fF, and more preferably less than about 9.0 fF.
  • substantially transparent substrate 19 is provided.
  • a gate metal layer or sheet (which results in gate electrodes 17 and in some embodiments lines 7 ) is deposited on the top surface (surface to be closest to the LC layer LCDs or the image to be received in imagers) of substrate 19 to a thickness of from about 1,000-5,000 ⁇ , most preferably to a thickness of about 2,500 ⁇ .
  • the gate metal sheet is deposited by way of sputtering or vapor deposition.
  • the gate metal may be of tantalum (Ta) according to certain embodiments of this invention.
  • Insulating substrate 19 may be of glass, quartz, sapphire, or the like.
  • the structure including substrate 19 and the deposited gate metal is then patterned by photolithography to the desired gate electrode 17 and gate address line 7 configuration.
  • the upper surface of the gate metal is exposed in a window where the photoresist has not been retained.
  • the gate metal (e.g. Ta) layer is then dry etched (preferably using reactive ion etching) in order to pattern the gate metal layer in accordance with the retained photoresist pattern.
  • the structure is mounted in a known reactive ion etching (RIE) apparatus which is then purged and evacuated in accordance with known RIE procedures and etchants.
  • RIE reactive ion etching
  • This etching of the gate metal layer is preferably carried out until the gate metal is removed in center areas of the windows and is then permitted to proceed for an additional time (e.g. 20 to 40 seconds) of overetching to ensure that the gate metal is entirely removed from within the windows.
  • the result is gate address lines 7 and gate electrodes 17 being left on substrate 19 .
  • substantially transparent gate insulating or dielectric layer 21 is deposited over substantially the entire substrate 19 , preferably by plasma enhanced chemical vapor deposition (CVD) or some other process known to produce a high integrity dielectric.
  • CVD plasma enhanced chemical vapor deposition
  • the resulting structure is shown in FIG. 5.
  • Gate insulating layer 21 is preferably silicon nitride (e.g. Si 3 N 4 ) but may also be silicon dioxide or other known dielectrics. Silicon Nitride has a dielectric constant of about 6.4.
  • Gate insulating layer 21 is deposited to a thickness of from about 2,000-3,000 ⁇ (preferably either about 2,000 ⁇ or 3,000 ⁇ ) according to certain embodiments.
  • gate Ta layer 17 which was deposited as the gate electrode and gate line layer (when originally about 2,500 ⁇ thick) is about 1,800 ⁇ thick and a newly created TaO layer is about 1,600 ⁇ .
  • Anodization takes place after the gate line patterning and before further processing.
  • gate insulating layer 21 over gate lines 7 and electrodes 17 is made up of both the anodization created TaO layer and the silicon nitride layer.
  • Other metals from which gate electrode 17 and address line layer 7 may be made include Cr, Al, titanium, tungsten, copper, and combinations thereof.
  • semiconductor layer 23 is deposited on top of gate insulating layer 21 to a thickness of about 2,000 ⁇ .
  • Semiconductor layer 23 may be from about 1,000 ⁇ to 4,000 ⁇ thick in certain embodiments of this invention.
  • doped (typically phosphorous doped, that is n+) amorphous silicon contact layer 25 is deposited over intrinsic a-Si layer 23 in a known manner to a thickness of, for example, about 500 ⁇ .
  • Doped contact layer 25 may be from about 200 ⁇ to 1,000 ⁇ thick according to certain embodiments of this invention. The result is the FIG. 6 structure.
  • Gate insulating layer 21 , semiconductor layer 23 and semiconductor contact layer 25 may all be deposited on substrate 19 in the same deposition chamber without breaking the vacuum according to certain embodiments of this invention.
  • the plasma discharge in the deposition chamber is stopped after the completion of the deposition of a particular layer (e.g. insulating layer 21 ) until the proper gas composition for deposition of the next layer (e.g. semiconductor layer 23 ) is established. Subsequently, the plasma discharge is re-established to deposit the next layer (e.g. semiconductor layer 23 ).
  • layers 21 , 23 , and 25 may be deposited in different chambers by any known method.
  • the TFT islands or areas may be formed by way of etching of the semiconductor layers across the array, for example, so that the TFT metal layers can be deposited thereon.
  • one of the TFT metal source/drain layers may be deposited before forming the TFT island.
  • a source-drain metal sheet or layer (which results in drain metal layer 13 and source metal layer 15 ) is deposited on substrate 19 over top of semiconductor layer 23 and contact layer 25 .
  • This source-drain metal layer may be chromium (Cr) or molybdenum (Mo) according to certain embodiments of this invention.
  • Cr chromium
  • Mo molybdenum
  • the layer is deposited to a thickness of about 500-2,000 ⁇ , preferably about 1,000 ⁇ according to certain embodiments.
  • molybdenum the layer is deposited to a thickness of from about 2,000 to 7,000 ⁇ , preferably about 5,000 ⁇ .
  • the deposited source drain metal layer sheet is then patterned (masked and etched) to form the source 15 , drain 13 , and in some embodiments the storage capacitor electrodes.
  • a first metal layer may be deposited and patterned to form a drain electrode portion 13
  • a second metal layer may be deposited and patterned to form a source electrode portion 15 .
  • source metal layer 15 may be chromium (Cr) while drain metal 13 and storage capacitor electrode layer is Mo according to certain embodiments of this invention.
  • Other metals which may be used for the source and drain metals include titanium, Al, tungsten, tantalum, copper, or the like.
  • contact layer 25 is etched in the TFT channel 27 area and inevitably a bit of semiconductor layer 23 is etched along with it. The result is TFT 9 with channel 27 as shown in FIGS. 4 and 7.
  • substantially transparent dielectric intermediate protective layer 32 is deposited to a thickness of from about 100-1,000 ⁇ (preferably from about 500 ⁇ to 1,000 ⁇ ) on substrate 19 via CVD or the like.
  • This substantially transparent intermediate protective layer 32 preferably includes or is of silicon nitride, but may be of other known passivation materials such as SiO 2 , SiO X N Y , or the like.
  • Substantially transparent organic polymer insulating layer 33 is then deposited onto substantially the entire substrate 19 over top of intermediate layer 32 by way of spin-coating according to certain embodiments of this invention.
  • Layer 33 may be of either photo-imageable BCB or acrylic Fuji ClearTM according to certain embodiments. As layer 33 is much thicker than layer 32 , Insulating layer 33 fills recesses generated upon formation of TFTs 9 and flattens the surface above substrate 19 at least about 60% planarization according to certain embodiments.
  • Photo-imageable insulating layer 33 acts as a negative resist layer according to certain embodiments of this invention so that no additional photoresist is needed to form vias in layer 33 .
  • layer 33 is irradiated by ultraviolet (UV) rays (e.g. i rays of 365 nm), with UV irradiated areas of layer 33 to remain and non-exposed or non-radiated areas of layer 33 to be removed in developing.
  • UV ultraviolet
  • a mask may be used.
  • the areas of the negative resist 33 corresponding to vias 35 (and in some embodiments 36 ) are not exposed to the UV radiation, while the rest of the layer 33 across the substrate is exposed to UV.
  • layer 33 is developed by using a known developing solution at a known concentration. In the developing stage, the areas of layer 33 corresponding to the vias are removed (i.e. dissolved) so as to form the vias in the insulating layer 33 . After developing, the resist layer 33 is cured or subjected to postbaking (e.g. about 240 degrees C for about one hour) to eliminate the solvent so that the layer 33 with the vias therein is resinified. Thus, no dry or wet etching is needed to form the vias (e.g. 35 ) in layer 33 . According to alternative embodiments, layer 33 may be a positive resist as opposed to a negative resist. The resulting structure is shown in FIG. 7.
  • vias 35 are formed in intermediate layer 32 by RIE or the like, using the patterned layer 33 as an etch mask.
  • Conventional reactive plasma CHF 3 /O 2 ; CF 4 /O 2 ; SF 6 /O 2 ; Cl 2 ; and/or NF 3 can be used to etch SiO X , SiN X , and/or SiO X N Y films.
  • Vias or apertures 35 are thus formed in insulation layers 32 and 33 over top of (or adjacent) each source metal electrode 15 so as to permit electrodes 3 to electrically contact corresponding source electrodes 15 through vias 35 .
  • Layers 32 and 33 remains across the rest of the substrate or array except for the storage capacitor vias (if needed) and certain edge areas where contacts must be made or glueing done.
  • layer 32 and/or layer 33 An alternative way to form layer 32 and/or layer 33 is to deposit layer 32 first, and then pattern layer 32 with photoresist and etch layer 32 . After layer 32 is finished, layer 33 is then deposited and patterned. This approach will add an additional photo step, but is feasible.
  • a substantially transparent conducting layer e.g. ITO
  • electrodes 3 are deposited and patterned (photomasked and etched) on substrate 19 over top of layer 33 .
  • patterning e.g. mask and etching
  • electrodes 3 are left as shown in FIGS. 1 and 4.
  • each electrode 3 contacts a TFT source electrode 15 as shown in FIG. 4.
  • the result is the active plate of either an LCD or an X-ray imager, including an array of TFTs.
  • the electrode layer (when made of ITO) 3 is deposited to a thickness of from about 500 to 3,000 ⁇ (preferably about 1,400 ⁇ ) according to certain embodiments of this invention.
  • Other known materials may be used as electrode layer 3 . It is noted that in X-ray imager embodiments, electrodes 3 are preferably ITO, but need not be transparent.
  • this invention allows fabrication of TFTs with higher performance and reliability.
  • liquid crystal layer 45 is disposed and sealed between the active plate and the passive plate, the passive plate including substrate 51 , polarizer 53 , electrode 49 , and orientation film 47 as shown in the '974 patent.
  • Electrodes 3 are patterned to a size so that they overlap both drain address lines 5 and gate address lines 7 along the edges thereof so as to result in an increased aperture ratio for the imager or the AMLCD 2 .
  • electrodes 3 need not overlap all address lines, but may only partially overlap certain address lines 5 or 7 in certain embodiments. Electrodes also overlap the TFT channels in X-ray imager embodiments as shown in FIG. 4, but only partially overlap the TFTs and do not overlap the TFT channels in certain LCD embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

This invention is related to an active matrix liquid crystal display (AMLCD) or an X-ray imaging device having a high aperture ratio, and method of making same. The imager or display has an increased aperture ratio because electrodes are formed over dual insulating layers so as to overlap portions of the array address lines and/or TFTs. Both the manufacturability and capacitive crosstalk of the device are improved due to the use of a photo-imageable organic insulating layer between the pixel electrodes and the address lines. An intermediate inorganic insulating layer is provided between the photo-imageable organic insulating layer and the overlapped TFTs in order to prevent the organic insulating layer from directly contacting semiconductor material in the TFTs thereby reducing potential voltage swings.

Description

    BACKGROUND OF THE INVENTION
  • Electronic matrix arrays find considerable application in X-ray imagers and active matrix liquid crystal displays (AMLCDs). Such AMLCDs and X-ray imagers generally include X and Y (or row and column) address lines which are horizontally and vertically spaced apart and cross at an angle to one another thereby forming a plurality of crossover points. Associated with each crossover point is an element (e.g. pixel) to be selectively addressed. These elements in many instances are liquid crystal display pixels or alternatively the memory cells of an electronically adjustable memory array or X-ray imaging array. [0001]
  • Typically, a switching or isolation device such as a diode or thin film transistor (TFT) is associated with each array element or pixel. The isolation devices permit the individual pixels to be selectively addressed by the application of suitable potentials between respective pairs of the X and Y address lines. Thus, the TFTs act as switching elements for energizing or otherwise addressing corresponding pixel electrodes. [0002]
  • Amorphous silicon (a-Si) TFTs have found wide usage for isolation devices in liquid crystal display (LCD) arrays and X-ray imagers. Structurally, TFTs generally include substantially co-planar source and drain electrodes, a thin film semiconductor material (e.g. a-Si) disposed between the source and drain electrodes, and a gate electrode in proximity to the semiconductor but electrically insulated therefrom by a gate insulator. In LCDs, current flow through a TFT between the source and drain is controlled by the application of voltage to the gate electrode. The voltage to the gate electrode produces an electric field which accumulates a charged region near the semiconductor-gate insulator interface. This charged region forms a current conducting channel in the semiconductor through which current is conducted. Thus, by controlling the voltage to the gate and drain electrodes, pixels may be switched on and off in a known manner. [0003]
  • Herein, “drain” electrodes are those which are in communication with a drain address line and “source” electrodes are those that are in communication with the pixel electrodes through vias in the insulating layers. [0004]
  • It is old and well-known to make TFT arrays wherein address lines and overlapping pixel electrodes are insulated from one another by an insulating layer. For example, see U.S. Pat. Nos. 5,641,974; 5,055,899; 5,182,620; 5,414,547; 5,426,523; 5,446,562; 5,453,857; and 5,457,553, the disclosures of which are incorporated herein by reference. [0005]
  • Unfortunately, when certain prior art pixel electrodes are arranged so as to overlap the address lines (e.g. U.S. Pat. No. 5,003,356), an undesirably high parasitic capacitance results in the overlap areas between the pixel electrodes and the address lines. In overlap areas, the pixel electrode forms a capacitor in combination with the overlapped address lines. The resulting parasitic capacitance CPL between the pixel electrode and the address line in the area of overlap is defined as follows: [0006]
  • C PL=(ε·ε0 ·Ad
  • where “ε” is the dielectric constant of the insulating layer, “co” is a constant value of about 8.85×10[0007] −14 F/cm, “A” is the area of the resulting capacitor in the area of overlap, and “d” is the thickness of the insulating layer in the area of overlap.
  • When a thin profile silicon nitride insulator is used as in U.S. Pat. No. 5,003,356, the resulting parasitic capacitance created by the overlap is undesirably high thereby resulting in capacitive crosstalk in the LCD. The dielectric constant of silicon nitride is well over 5.0 (typically from about 6.4 to 7.2). Such crosstalk results when the signal voltage intended to be on a particular pixel is not there. Thus, when C[0008] PL is too high, the voltage on the pixel is either higher or lower than intended depending upon how much voltage the other pixels on the signal address line receive. In other words, the pixel is no longer satisfactorily isolated when CPL is too high. In view of the above, there exists a need in the art for an LCD (and/or X-ray imager) having both an increased aperture ratio as well as reduced capacitive crosstalk in overlap areas so as to simultaneously and properly isolate each pixel and increase the pixel opening sizes.
  • Further with respect to the '356 patent, for example, its disclosure does not appreciate the importance of the dielectric constant ε of the insulating layer. While referencing numerous materials including silicon nitride and SiO[0009] 2, which may be used for the insulating layer, the '356 patent does not discuss either the dielectric constant values of these materials or their importance in helping reduce CPL in overlap areas. When ε of the insulating layer is too high, capacitive crosstalk results.
  • Recently, organic polymer films have been applied to TFT-LCDs as an insulating layer between address lines and pixel electrodes in high aperture applications. For example, see commonly owned U.S. Pat. No. 5,641,974. There has been increasing concern as to how such polymers affect back-channel-etch TFT performance and reliability. It has been found that both threshold voltage and sub-threshold swing can be degraded by acrylic or black resin insulating layers, as compared to silicon nitride, for example. In addition, a high off-current shoulder in sub-threshold regions has been found after negative gate voltage stress on acrylic passivated TFTs. The mechanism behind such degradation is believed to be that fixed charge and defect states are created at the interface between the organic insulating layer and the a-Si TFT layer. [0010]
  • As the performance of LCDs and X-ray imagers is dependent upon TFT characteristics in both the off-state and sub-threshold regions, the below-referenced invention is an improvement over the disclosure of the commonly owned '974 patent in an effort to improve TFT characteristics and performance. [0011]
  • It is apparent from the above that there exists a need in the art for an improved TFT array and/or resulting LCD (or X-ray imager) having an increased pixel aperture ratio, good TFT performance in all regions, and little capacitive crosstalk. Such an LCD or X-ray imager should be made with as few steps as possible. [0012]
  • It is a purpose of this invention to fulfill the above-described needs in the art, as well as other needs which will become apparent to the skilled artisan from the following detailed description of this invention. [0013]
  • SUMMARY OF THE INVENTION
  • Generally speaking, this invention fulfills the above-described needs in the art by providing an X-ray imager comprising: [0014]
  • a substrate; [0015]
  • an array of thin film transistors (TFTs) disposed on the substrate, the array of TFTs including a plurality of address lines connected to the TFTs; [0016]
  • an array of substantially transparent electrodes disposed on the first substrate, a plurality of the electrodes in the array of electrodes overlapping at least one of the address lines; [0017]
  • an organic photo-imageable insulating layer having a dielectric constant less than about 4.0 disposed on the substrate between the address lines and the electrodes at least in areas of overlap and areas adjacent source electrodes of the TFTs; [0018]
  • an intermediate protective insulating layer disposed between the TFTs and the photo-imageable insulating layer so as to prevent the organic photo-imageable insulating layer from directly contacting semiconductor material in channels of the TFTs thereby reducing potential shifts of threshold voltage and subthreshold swings in the TFTs; and [0019]
  • the photo-imageable insulating layer and the intermediate protective layer each having a plurality of contact vias defined therein, wherein the electrodes are in electrical communication with corresponding TFT source electrodes through the contact vias defined in the insulating layers. [0020]
  • In certain preferred embodiments, the organic photo-imageable insulating layer is a negative resist which includes BCB. [0021]
  • In certain preferred embodiments, the organic photo-imageable insulating layer has a dielectric constant of less than about 3.0. [0022]
  • In certain preferred embodiments, the organic photo-imageable insulating layer has a thickness of from about 0.9 μm to 2.75 μm, with the thickness in the areas of overlap, of course, being smaller than the above-recited thickness. [0023]
  • In certain preferred embodiments, the intermediate insulating layer has a thickness of from about 100 Å-1,000 Å. [0024]
  • This invention further fulfills the above-described needs in the art by providing a liquid crystal display comprising: [0025]
  • a first substrate; [0026]
  • a liquid crystal layer; [0027]
  • an array of substantially transparent pixel electrodes on the first substrate for permitting image data to be displayed to a viewer; [0028]
  • a plurality of gatelines and TFT gate electrodes on the first substrate; [0029]
  • a semiconductor layer patterned so as to remain in an array of TFT areas; [0030]
  • a source and drain electrode in each TFT area on the first substrate, a TFT channel being defined between a corresponding source and drain electrodes of each TFT, thereby forming an array of TFTs on the first substrate; [0031]
  • drain lines connected to the drain electrodes; [0032]
  • wherein a plurality of the pixel electrodes overlap at least one of a gateline and a drain line thereby increasing the pixel aperture ratio of the display; [0033]
  • a substantially transparent photo-imageable insulating layer having a dielectric constant less than about 4.0, the photo-imageable insulating layer being disposed on the first substrate between (i) the pixel electrodes and (ii) the TFTs and the overlapped lines so as to insulate the pixel electrodes from the overlapped lines and the TFTs; and [0034]
  • an intermediate insulating layer disposed between the photo-imageable insulating layer and the TFTs so as to prevent the photo-imageable insulating layer from directly contacting TFT portions which the photo-imageable insulating layer overlap. [0035]
  • This invention further fulfills the above-described needs in the art by providing a TFT array structure comprising: [0036]
  • an array of TFTs on a substrate, the TFTs being connected to a corresponding array of electrodes; [0037]
  • row and column address lines on the substrate for addressing the TFTs; [0038]
  • organic photo-imageable insulating means having a dielectric constant less than about 4.0 disposed between the electrodes and the address lines so as to reduce crosstalk and permit the insulating means to be photoimaged; and [0039]
  • an intermediate protective insulating layer disposed between the photo-imageable insulating means and the TFTs so as to prevent the insulating means from contacting semiconductor material of the TFTs. [0040]
  • This invention further fulfills the above-described needs in the art by providing a method of making a TFT structure, including first and second insulating layers over the TFTs. [0041]
  • This invention still further fulfills the above-described needs in the art by providing a method of making an X-ray imager, the method including the steps of providing a substrate, forming an array of TFTs on the substrate, forming a first inorganic (e.g. silicon nitride) insulating layer over the TFTs, forming a second organic insulating layer over the first layer so that the first insulating layer prevents the second insulating layer from directly contacting the semiconductor material of the TFTs, and forming an array of electrode members over the second insulating layer with each of the electrode members in communication with one of the TFTs through a contact hole defined in the first and second insulating layers. [0042]
  • This invention further fulfills the above-described needs in the art by providing a method of making a liquid crystal display, the method comprising the steps of providing a substrate, forming an array of TFTs or other switching elements on the substrate, forming first and second insulating layers over the TFTs or other switching elements, forming contact holes in the first and second insulating layers proximate TFTs, and forming a plurality of pixel electrodes over the second insulating layer so that each of the pixel electrodes is in communication with one of the TFTs through a corresponding one of the contact holes. [0043]
  • This invention will now be described with reference to certain embodiments thereof as illustrated in the following drawings. [0044]
  • IN THE DRAWINGS
  • FIG. 1 is a top view of an AMLCD according to this invention, this figure illustrating pixel electrodes overlapping surrounding row and column address lines along their respective lengths throughout the display's pixel area so as to increase the pixel aperture ratio of the display. [0045]
  • FIG. 2 is a top view of the column (or drain) address lines and corresponding drain electrodes of FIG. 1 (or of an X-ray imager), this figure also illustrating the TFT source electrodes disposed adjacent the drain electrodes so as to define the TFT channels having length “L.”[0046]
  • FIG. 3 is a top view of the pixel electrodes of FIG. 1 (or of an X-ray imager) except for their extensions. [0047]
  • FIG. 4 is a side elevational cross-sectional view of the linear-shaped thin film transistors (TFTs) of FIGS. [0048] 1-2, this structure being utilized in either an LCD or an X-ray imager according to this invention.
  • FIGS. [0049] 5-7 are side elevational cross-sectional views illustrating how a TFT in an array according to this invention is manufactured.
  • DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS OF THIS INVENTION
  • Referring now more particularly to the accompanying drawings in which like reference numerals indicate like parts throughout the several views. [0050]
  • The structure and function of AMLCDs are disclosed in U.S. Pat. No. 5,641,974, and the structure and function of X-ray imagers are disclosed in U.S. Pat. Nos. 5,525,527; 5,498,880; 5,396,072; and 5,619,033, the disclosure of which are incorporated herein by reference. Familiarity with such structures and functions is assumed herein. [0051]
  • FIG. 1 is a top view of four pixels in an array of an active matrix liquid crystal display (AMLCD) [0052] 2 according to an embodiment of this invention. This portion of the display includes substantially transparent pixel electrodes 3, drain address lines 5, gate address lines 7, an array of four thin film transistors (TFTs) 9, and auxiliary storage capacitors 11 associated with each pixel. Each storage capacitor 11 is defined on one side by a gate line 7 and on the other side by an independent storage capacitor electrode 12. Storage capacitor electrodes 12 are formed along with drain electrodes 13. As shown, the longitudinally extending edges of each pixel electrode 3 overlap drain lines 5 and gate lines 7 respectively along the edges thereof so as to increase the pixel aperture ratio (or pixel opening size) of the LCD.
  • In the areas of [0053] overlap 18 between substantially transparent pixel electrodes 3 and address or bus lines 5, 7, a pixel-line (PL) capacitor is defined by an electrode 3 on one side and the overlapped address line on the other. The dielectric disposed between the electrodes of these PL capacitors is insulation layer 33 (see FIGS. 4 and 7). The parasitic capacitance CPL of these capacitors is defined by the equation: C PL = ε · ε 0 · A d
    Figure US20010013908A1-20010816-M00001
  • where “d” is the thickness of [0054] layer 33, e is the dielectric constant of layer 33, ε0 is the constant 8.85×10−14 F/cm (permitivity in vacuum), and “A” is the area of the PL capacitor in overlap areas 8. The fringing capacitance may also be taken into consideration in a known manner. According to certain other embodiments, CPL is less than or equal to about 0.01 pF for a display with a pixel pitch of about 150 μm. When the pixel pitch is smaller, CPL should be scaled to a lower value as well because overlap areas 18 are smaller. Additionally, the pixel aperture ratio of an LCD decreases as the pixel pitch decreases as is known in the art. The pixel pitch of AMLCD 2 may be from about 40 to 5,000 μm according to certain embodiments of this invention. The pixel pitch as known in the art is the distance between centers of adjacent pixels in the array.
  • According to alternative embodiments of FIG. 1, the TFTs may be swung 90° so that the gates are formed by perpendicular extensions from the gate lines and the drains are formed by the drain lines themselves. This may be used in both LCD and X-ray imager embodiments of this invention. [0055]
  • FIG. 2 is a top view of [0056] drain address lines 5 of AMLCD 2 (or of an X-ray imager) showing how extensions of address lines 5 may form drain electrodes 13 of TFTs 9 in the FIG. 1 illustrated embodiment. Each TFT 9 in the array includes source electrode 15, 31. drain electrode 13, 29, and gate electrode 17. Gate electrode 17 of each TFT 9 is formed by the corresponding gate address line 7 in the FIG. 1 illustrated embodiment. According to other embodiments discussed above, the gate electrode 17 may be formed by a branch extending substantially perpendicular to the gate line, while drain electrodes 13 are formed by the drain lines 5 themselves.
  • FIG. 3 is a top view illustrating pixel electrodes [0057] 3 (absent their extension portions 38) of AMLCD 2 or an X-ray imager arranged in array form.
  • FIG. 4 is a side elevational cross-sectional view of a single thin film transistor (TFT) [0058] 9 in the TFT array of either an X-ray imager or AMLCD 2, with each TFT 9 in the array being substantially the same according to preferred embodiments. Each linear TFT 9 has a channel length “L” defined by the gap 27 between source electrode 15 and drain electrode 13. Source electrode 15 is connected to pixel electrode 3 by way of via or contact hole 35 so as to permit TFT 9 to act as a switching element and selectively energize a corresponding pixel in AMLCD 2 in order to provide image data to a viewer, or to address the memory cell of an X-ray imager. An array of these TFTs 9 is provided as illustrated in FIG. 1.
  • In X-ray imager embodiments, electrode [0059] 3 (e.g. of ITO) in FIG. 4 overlaps the TFT channel 27, as shown in FIG. 4 while in certain LCD embodiments electrode 3 overlaps the source 15 but not channel 27. In X-ray imager embodiments, a separate collecting capacitor may be provided as illustrated and discussed in U.S. Pat. Nos. 5,498,880 and 5,396,072, or a separate photosensitive element as in U.S. Pat. No. 5,619,033, the disclosures of which are hereby incorporated herein by reference. X-ray imagers according to this invention function as discussed in any of the aforesaid three U.S. patents.
  • Still referring to FIG. 4, each [0060] TFT 9 structure in both LCD and X-ray imager embodiments includes substantially transparent substrate 19 (e.g. made of glass), metal gate electrode 17, gate insulating layer or film 21, semiconductor layer 23 (e.g. intrinsic amorphous silicon), doped semiconductor contact layer 25, drain electrode 13, source electrode 15, substantially transparent intermediate insulating layer 32, substantially transparent second insulation layer 33, and a corresponding substantially transparent electrode 3. Overlapping the TFT and/or address line(s). TFT channel 27 of length “L” is defined between source 15 and drain 13.
  • As shown in FIG. 4, [0061] drain electrode 13 is made up of a drain metal layer (e.g. Mo) which is deposited on substrate 19 over top of doped contact layer 25. Contact film or layer 25 may be, for example, amorphous silicon doped with an impurity such as phosphorous (i.e. n+a-Si) and is sandwiched between semiconductor layer 23 and drain metal layer 13. Source electrode 15 includes doped semiconductor contact layer 25 and source metal layer 15. Metal layers 13 and 15 may be of the same metal and deposited and patterned together according to certain embodiments of this invention. Alternatively, layer 13 may be deposited and patterned separately from layer 15 so that drain metal layer is of one metal (e.g. Mo) and the source metal layer is of another (e.g. Cr).
  • Substantially [0062] transparent layers 32 and 33 make up the dual-layered insulator according to this invention, where layer 32 is provided to improve TFT performance by preventing direct contact between organic or acrylic layer 33 and intrinsic a-Si layer 23. Thus, insulating layer 33 with a low dielectric constant allows crosstalk to be reduced so as to improve TFT and image performance while intermediate insulating layer 32 (e.g. silicon nitride, silicon oxide, or SiOXNY) eliminates potential TFT off current and large subthreshold slope, and improves TFT thermal and electrical stability.
  • Substantially transparent insulating [0063] layer 33 having a dielectric constant less than about 5.0 (preferably less than about 4.0 and most preferably less than about 3.0) is deposited as a sheet on substrate 19 so as to cover inorganic intermediate insulating layer 32, TFTs 9, and address lines 5 and 7. Organic layer 33 is formed of a photo-imageable material such as Fuji Clear™ or a photo-imageable type of BCB. Substantially transparent layer 33 may also be formed of a non-photo-imageable type of BCB. Insulating layers 32 and 33 are continuous in the viewing area of the display or imager except for vias or contact holes 35 (and sometimes 36) formed therein to allow electrodes 3 to contact corresponding TFT source electrodes 15 and the storage capacitor electrodes respectively.
  • [0064] Layer 33 has a dielectric constant e less than or equal to about 5.0 according to certain embodiments of this invention, preferably less than about 4.0, and more preferably less than about 3.0. In certain preferred embodiments, layer 33 has a dielectric constant of about 2.7 and is made of a photo-imageable type of Benzocyclobutene (BCB), an organic material available from Dow Chemical, for the purpose of reducing capacitive crosstalk (or capacitive coupling) between pixel electrodes 3 and the address lines in overlap areas 18. Layer 33 has a low dielectric constant and/or a relatively large thickness for the specific purpose of reducing CPL in overlap areas 18.
  • Alternatively, [0065] layer 33 may be of a photo-imageable material known as Fuji Clear™, which is an organic mixture including 2-Ethoxyethyl acetate (55-70%), methacrylate derivative copolymer (10-20%), and polyfunctional acrylate (10-20%). Fuji Clear™ has a dielectric constant of about 3.5. Other materials which may be used as layer 33 includes PFCB available from Dow, and known polyimides.
  • [0066] Inorganic layer 32 may be of any material which either eliminates or lessens the degree of TFT threshold voltage and sub-threshold swings, by preventing direct contact between semiconductor material of the TFT and organic or acrylic insulating layer 33.
  • Insulating [0067] layer 32 is formed on the TFT array over substantially the entire viewing area. Optionally, layer 32 may be formed only over the TFTs. Following the deposition of insulation layer 33 over top of layer 32, TFTs 9, and address lines 5 and 7, vias 35 are formed in insulation layer 33 by way of photo-imaging. Layer 33 acts as a negative resist so that UV exposed areas remain on the substrate and areas of layer 33 unexposed to UV during photo-imaging are removed during developing. Thereafter, using patterned layer 33 as an etch mask, vias 35 are etched in intermediate layer 32 so as to expose the source electrodes 15. For SiNX, SiOX, and/or SiOXNY film, conventional reactive ion etching (RIE) utilizing F or Cl plasma, can be used. Following the forming of vias 35 in layers 32 and 33, substantially transparent electrodes 3 (e.g. made of indium-tin-oxide or ITO) are deposited and patterned over top of layers 32 and 33 on substrate 19 so that each electrode 3 contacts a corresponding source electrode 15 of a corresponding TFT 9 through a via 35 as illustrated in FIG. 4.
  • In certain embodiments, auxiliary vias [0068] 36 (see FIG. 1) are formed in layers 32 and 33 at the same time as vias 35 so that electrodes 3 can contact storage capacitor electrodes 12 via electrode extensions 38. Peripheral lead areas and seal areas are also removed by photo-imaging.
  • Insulating [0069] layers 32 and 33 are deposited on substrate 19 over the address lines, storage capacitors, and TFTs to a thickness “d” of at least about 0.5 μm in overlap areas 18. In preferred embodiments, the total thickness “d” of the insulating layers 32 and 33 is from about 1 to 2.8 μm, with layer 32 being from about 100-1,000 Å thick (preferably from about 500-1,000 Å thick) and layer 33 being from about 0.90-2.75 μm thick (preferably from about 1.5-2.5 μm thick).
  • Another advantage of [0070] layer 33 is that liquid crystal layer disclinations induced at pixel electrode 3 edges by the topography of TFTs 9, storage capacitors, and address lines are substantially eliminated by planarization (i.e. few, if any, hills and valleys are present in the top surface of layer 33). Thus, the thickness of the LC layer is substantially maintained and display functionality is improved because electrodes 3 are substantially flat because of the substantial planarization of the surface of layer 33 adjacent the pixel electrodes 3.
  • Because of the low dielectric constant e and/or relatively high thickness “d” of [0071] layer 33, the capacitive crosstalk problems of the prior art resulting from overly high CPL values are substantially reduced in areas 18 where pixel electrodes 3 overlap address lines 5 and/or 7. Because layer 33 is disposed between pixel electrodes 3 and the overlapped address lines, the capacitive crosstalk problems of the prior art are substantially reduced or eliminated and increased pixel openings are achievable without sacrificing display performance (pixel isolation).
  • Pixel opening sizes or the pixel aperture ratio of AMLCD [0072] 2 (or of an imager) is at least about 65% (preferably from about 68% to 80%) according to certain embodiments of this invention when the pixel pitch is about 150 μm. This will, of course, vary depending upon the pixel pitch of the X-ray imager or display (pitches of from about 40-500 μm may be used). Electrodes 3 overlap address lines 5 and 7 along the edges thereof as shown in FIG. 1 by an amount up to about 3 μm. In certain preferred embodiments of this invention, the overlap 18 of electrodes 3 over the edges of address lines 5 and 7 is designed to be from about 2 to 3 μm, with the end result after overetching being at least about 0.5 μm. According to certain other embodiments of this invention, the amount of overlap may be designed to be from about 2-3 μm, with the resulting post-processing overlap being from about 0 to 2 μm. The overlap amount may be adjusted in accordance with different LCD or imager applications and pitch sizes as will be appreciated by those of skill in the art.
  • In certain situations, after etching and processing, [0073] electrodes 3 may not overlap the address lines at all according to certain embodiments of this invention, although some overlap 18 is preferred. When no overlap occurs, the parasitic capacitance CPL between the address lines and the adjacent electrode 3 is still minimized or reduced due to insulating layer 33.
  • The TFT structures according to this invention have C[0074] PL line-pixel capacitance values, given the stated overlap and thickness parameters, as in U.S. Pat. No. 5,641,974. Thus, CPL in areas of overlap of address lines is preferably less than about 12.0 fF, and more preferably less than about 9.0 fF.
  • Referring now to FIGS. [0075] 4-7, it will be described how an AMLCD 2 or an X-ray imager including the array of TFTs and corresponding address lines is made according to an embodiment of this invention. Firstly, referring to FIG. 5, substantially transparent substrate 19 is provided. Next, a gate metal layer or sheet (which results in gate electrodes 17 and in some embodiments lines 7) is deposited on the top surface (surface to be closest to the LC layer LCDs or the image to be received in imagers) of substrate 19 to a thickness of from about 1,000-5,000 Å, most preferably to a thickness of about 2,500 Å. The gate metal sheet is deposited by way of sputtering or vapor deposition. The gate metal may be of tantalum (Ta) according to certain embodiments of this invention. Insulating substrate 19 may be of glass, quartz, sapphire, or the like.
  • The [0076] structure including substrate 19 and the deposited gate metal is then patterned by photolithography to the desired gate electrode 17 and gate address line 7 configuration. The upper surface of the gate metal is exposed in a window where the photoresist has not been retained. The gate metal (e.g. Ta) layer is then dry etched (preferably using reactive ion etching) in order to pattern the gate metal layer in accordance with the retained photoresist pattern. To do this, the structure is mounted in a known reactive ion etching (RIE) apparatus which is then purged and evacuated in accordance with known RIE procedures and etchants. This etching of the gate metal layer is preferably carried out until the gate metal is removed in center areas of the windows and is then permitted to proceed for an additional time (e.g. 20 to 40 seconds) of overetching to ensure that the gate metal is entirely removed from within the windows. The result is gate address lines 7 and gate electrodes 17 being left on substrate 19.
  • After [0077] gate address lines 7 are deposited and patterned on top of substrate 19 in the above-described manner, substantially transparent gate insulating or dielectric layer 21 is deposited over substantially the entire substrate 19, preferably by plasma enhanced chemical vapor deposition (CVD) or some other process known to produce a high integrity dielectric. The resulting structure is shown in FIG. 5. Gate insulating layer 21 is preferably silicon nitride (e.g. Si3N4) but may also be silicon dioxide or other known dielectrics. Silicon Nitride has a dielectric constant of about 6.4. Gate insulating layer 21 is deposited to a thickness of from about 2,000-3,000 Å (preferably either about 2,000 Å or 3,000 Å) according to certain embodiments.
  • It is noted that after anodization (which is optional), [0078] gate Ta layer 17 which was deposited as the gate electrode and gate line layer (when originally about 2,500 Å thick) is about 1,800 Å thick and a newly created TaO layer is about 1,600 Å. Anodization takes place after the gate line patterning and before further processing. Thus, gate insulating layer 21 over gate lines 7 and electrodes 17 is made up of both the anodization created TaO layer and the silicon nitride layer. Other metals from which gate electrode 17 and address line layer 7 may be made include Cr, Al, titanium, tungsten, copper, and combinations thereof.
  • Next, referring to FIG. 6, after [0079] gate insulating layer 21 has been deposited (FIG. 5), semiconductor (e.g. intrinsic a-Si) layer 23 is deposited on top of gate insulating layer 21 to a thickness of about 2,000 Å. Semiconductor layer 23 may be from about 1,000 Å to 4,000 Å thick in certain embodiments of this invention. Then, doped (typically phosphorous doped, that is n+) amorphous silicon contact layer 25 is deposited over intrinsic a-Si layer 23 in a known manner to a thickness of, for example, about 500 Å. Doped contact layer 25 may be from about 200 Å to 1,000 Å thick according to certain embodiments of this invention. The result is the FIG. 6 structure.
  • [0080] Gate insulating layer 21, semiconductor layer 23 and semiconductor contact layer 25 may all be deposited on substrate 19 in the same deposition chamber without breaking the vacuum according to certain embodiments of this invention. When this is done, the plasma discharge in the deposition chamber is stopped after the completion of the deposition of a particular layer (e.g. insulating layer 21) until the proper gas composition for deposition of the next layer (e.g. semiconductor layer 23) is established. Subsequently, the plasma discharge is re-established to deposit the next layer (e.g. semiconductor layer 23). Alternatively, layers 21, 23, and 25 may be deposited in different chambers by any known method.
  • Following the formation of the FIG. 6 structure, the TFT islands or areas may be formed by way of etching of the semiconductor layers across the array, for example, so that the TFT metal layers can be deposited thereon. Optionally, one of the TFT metal source/drain layers may be deposited before forming the TFT island. [0081]
  • According to preferred embodiments, following the formation of the TFT island from the FIG. 6 structure, a source-drain metal sheet or layer (which results in [0082] drain metal layer 13 and source metal layer 15) is deposited on substrate 19 over top of semiconductor layer 23 and contact layer 25. This source-drain metal layer may be chromium (Cr) or molybdenum (Mo) according to certain embodiments of this invention. When chromium, the layer is deposited to a thickness of about 500-2,000 Å, preferably about 1,000 Å according to certain embodiments. When molybdenum, the layer is deposited to a thickness of from about 2,000 to 7,000 Å, preferably about 5,000 Å. The deposited source drain metal layer sheet is then patterned (masked and etched) to form the source 15, drain 13, and in some embodiments the storage capacitor electrodes.
  • Alternatively, a first metal layer may be deposited and patterned to form a [0083] drain electrode portion 13, and a second metal layer may be deposited and patterned to form a source electrode portion 15. Thus, for example, source metal layer 15 may be chromium (Cr) while drain metal 13 and storage capacitor electrode layer is Mo according to certain embodiments of this invention. Other metals which may be used for the source and drain metals include titanium, Al, tungsten, tantalum, copper, or the like.
  • After patterning of drain and source portions, [0084] contact layer 25 is etched in the TFT channel 27 area and inevitably a bit of semiconductor layer 23 is etched along with it. The result is TFT 9 with channel 27 as shown in FIGS. 4 and 7.
  • After TFTs [0085] 9 are formed across the viewing area of the display or imager, substantially transparent dielectric intermediate protective layer 32 is deposited to a thickness of from about 100-1,000 Å (preferably from about 500 Å to 1,000 Å) on substrate 19 via CVD or the like. This substantially transparent intermediate protective layer 32 preferably includes or is of silicon nitride, but may be of other known passivation materials such as SiO2, SiOXNY, or the like. Substantially transparent organic polymer insulating layer 33 is then deposited onto substantially the entire substrate 19 over top of intermediate layer 32 by way of spin-coating according to certain embodiments of this invention. Layer 33 may be of either photo-imageable BCB or acrylic Fuji Clear™ according to certain embodiments. As layer 33 is much thicker than layer 32, Insulating layer 33 fills recesses generated upon formation of TFTs 9 and flattens the surface above substrate 19 at least about 60% planarization according to certain embodiments.
  • Photo-[0086] imageable insulating layer 33 acts as a negative resist layer according to certain embodiments of this invention so that no additional photoresist is needed to form vias in layer 33. In order to form the vias, layer 33 is irradiated by ultraviolet (UV) rays (e.g. i rays of 365 nm), with UV irradiated areas of layer 33 to remain and non-exposed or non-radiated areas of layer 33 to be removed in developing. A mask may be used. Thus, the areas of the negative resist 33 corresponding to vias 35 (and in some embodiments 36) are not exposed to the UV radiation, while the rest of the layer 33 across the substrate is exposed to UV.
  • Referring to FIG. 7, following exposure of layer [0087] 33 (except in the via or contact hole areas), layer 33 is developed by using a known developing solution at a known concentration. In the developing stage, the areas of layer 33 corresponding to the vias are removed (i.e. dissolved) so as to form the vias in the insulating layer 33. After developing, the resist layer 33 is cured or subjected to postbaking (e.g. about 240 degrees C for about one hour) to eliminate the solvent so that the layer 33 with the vias therein is resinified. Thus, no dry or wet etching is needed to form the vias (e.g. 35) in layer 33. According to alternative embodiments, layer 33 may be a positive resist as opposed to a negative resist. The resulting structure is shown in FIG. 7.
  • After [0088] layer 33 is patterned (see FIG. 7), vias 35 are formed in intermediate layer 32 by RIE or the like, using the patterned layer 33 as an etch mask. Conventional reactive plasma CHF3/O2; CF4/O2; SF6/O2; Cl2; and/or NF3, can be used to etch SiOX, SiNX, and/or SiOXNY films.
  • Vias or [0089] apertures 35 are thus formed in insulation layers 32 and 33 over top of (or adjacent) each source metal electrode 15 so as to permit electrodes 3 to electrically contact corresponding source electrodes 15 through vias 35. Layers 32 and 33 remains across the rest of the substrate or array except for the storage capacitor vias (if needed) and certain edge areas where contacts must be made or glueing done.
  • An alternative way to form [0090] layer 32 and/or layer 33 is to deposit layer 32 first, and then pattern layer 32 with photoresist and etch layer 32. After layer 32 is finished, layer 33 is then deposited and patterned. This approach will add an additional photo step, but is feasible.
  • After the vias are formed in [0091] layers 32 and 33, a substantially transparent conducting layer (e.g. ITO) which results in electrodes 3 is deposited and patterned (photomasked and etched) on substrate 19 over top of layer 33. After patterning (e.g. mask and etching) of this substantially transparent conducting layer, electrodes 3 are left as shown in FIGS. 1 and 4. As a result of vias 35 formed in layer 33, each electrode 3 contacts a TFT source electrode 15 as shown in FIG. 4. The result is the active plate of either an LCD or an X-ray imager, including an array of TFTs. The electrode layer (when made of ITO) 3 is deposited to a thickness of from about 500 to 3,000 Å (preferably about 1,400 Å) according to certain embodiments of this invention. Other known materials may be used as electrode layer 3. It is noted that in X-ray imager embodiments, electrodes 3 are preferably ITO, but need not be transparent.
  • Thus, with one extra deposition step and one extra RIE step, but possibly no extra photo step, this invention allows fabrication of TFTs with higher performance and reliability. [0092]
  • After formation of the active plate, in LCD embodiments, liquid crystal layer [0093] 45 is disposed and sealed between the active plate and the passive plate, the passive plate including substrate 51, polarizer 53, electrode 49, and orientation film 47 as shown in the '974 patent.
  • [0094] Electrodes 3 are patterned to a size so that they overlap both drain address lines 5 and gate address lines 7 along the edges thereof so as to result in an increased aperture ratio for the imager or the AMLCD 2. Optionally, electrodes 3 need not overlap all address lines, but may only partially overlap certain address lines 5 or 7 in certain embodiments. Electrodes also overlap the TFT channels in X-ray imager embodiments as shown in FIG. 4, but only partially overlap the TFTs and do not overlap the TFT channels in certain LCD embodiments.
  • The crosstalk problems of the prior art are substantially eliminated due to the presence of low [0095] dielectric layer 33 in overlap areas 18 between electrodes 3 and the address lines, and TFT performance is improved by the presence of intermediate layer 32.
  • Once given the above disclosure, many other features, modifications, and improvements will become apparent to the skilled artisan. Such other features, modifications, and improvements are, therefore, considered to be a part of this invention, the scope of which is to be determined by the following claims. [0096]

Claims (20)

We claim:
1. A method of making an X-ray imaging device, the method comprising the steps of:
providing a substrate;
forming an array of thin film transistors (TFTs) on the substrate, the array of TFTs including a plurality of address lines connected to the TFTs;
forming a first insulating layer over the TFTs on the substrate;
forming an organic polymer based second insulating layer over the first insulating layer on the substrate;
forming a plurality of contact holes in the second insulating layer; and
forming an array of electrode members on the first substrate over the second insulating layer so that the electrode members in the array are in communication with corresponding TFTs through the contact holes, whereby the first insulating layer prevents the second insulating layer from directly contacting the TFTs.
2. The method of
claim 1
, wherein the organic polymer based second insulating layer is a negative resist layer and is photo-imageable.
3. The method of
claim 1
, wherein the organic polymer based second insulating layer includes one of the 2-Ethoxyethyl acetate and Benzocyclobutene (BCB).
4. The method of
claim 1
, wherein each of said first and second insulating layers is substantially transparent to visible wavelengths, and wherein the dielectric constant of the organic polymer based second insulating layer is less than or equal to about 4.0.
5. The method of
claim 4
, wherein the dielectric constant of the second insulating layer is less than or equal to about 3.0.
6. The method of
claim 1
, wherein the first insulating layer includes one of silicon nitride and silicon oxide.
7. The method of
claim 1
, wherein the organic polymer based second insulating layer has a thickness in certain areas of from about 0.9 to 2.75 μm, and said first insulating layer has a thickness in certain areas from about 100 Å-1,000 Å.
8. The method of
claim 1
, further comprising the step of patterning the electrode members so that a plurality of the electrode members overlap at least a portion of one of the address lines so as to form a high aperture device, and wherein the address line—electrode capacitance CPL in overlap areas is less than about 12.0 fF.
9. The method of
claim 8
, wherein the capacitance CPL is less than about 9.0 fF.
10. A method of making a liquid crystal display, the method comprising the steps of:
providing a first substrate;
providing a liquid crystal layer;
forming an array of TFTs on the first substrate, each of the TFTs being in communication with address lines also on the first substrate;
forming a first passivating insulating layer over the TFTs and address lines on the first substrate;
forming an organic second insulating layer over the first insulating layer, the second insulating layer having a dielectric constant value of less than or equal to about 4.0, said first and second insulating layers each being substantially transparent to visible wavelengths of light;
forming an array of contact holes in each of the first and second insulating layers; and
forming an array of pixel electrodes over the second insulating layer so that each of the pixel electrodes is in communication with a corresponding TFT through a corresponding one of the contact holes defined in the first and second insulating layers.
11. The method of
claim 10
, wherein the second insulating layer is in direct contact with the first insulating layer, and the first insulating layer is in direct contact with at least a portion of each TFT.
12. The method of
claim 10
, wherein each of the TFTs includes a gate electrode, a drain electrode, and a source electrode, the drain electrode of each TFT being in communication with the drain address line and the gate electrode of each TFT being in communication with a gate address line, and wherein each of the pixel electrodes is in communication with one of the source electrodes of a corresponding TFT through a corresponding one of the contact holes.
13. The method of
claim 12
, wherein each of the TFTs includes a semiconductor layer located over the gate electrode, and wherein the source and drain electrodes are located over the semiconductor layer in each TFT.
14. The method of
claim 13
, wherein the first insulating layer prevents the second insulating layer from directly contacting semiconductor material in the TFTs so as to reduce potential shifts of threshold voltage and subthreshold swings in the TFTS.
15. The method of
claim 10
, wherein the second insulating layer has a dielectric constant of less than or equal to about 3.0.
16. The method of
claim 10
, wherein the second insulating layer has a thickness in some areas of from about 0.9 to 2.75 μm.
17. The method of
claim 16
, wherein the first insulating layer is inorganic and has a thickness in some areas of from about 100 Å-1,000 Å.
18. The method of
claim 10
, wherein the display is a high aperture display in that each of the pixel electrodes overlaps at least one of the address lines so as to provide an increased pixel aperture ratio as compared to non-high aperture displays in which no such overlap is provided.
19. A method of making a TFT structure, the method comprising the steps of:
providing a substrate;
forming an array of semiconductor based TFTs on the substrate, wherein each of the TFTs is in communication with at least one address line;
forming a first insulating layer on the substrate over top of the TFTs and address lines;
forming a second organic insulating layer over top of the first insulating layer on at least the TFTs and address lines;
providing the second insulating layer with a dielectric constant value of less than or equal to about 4.0;
forming an array of vias or contact holes in the first and second insulating layers; and
forming an array of electrode members on the substrate so that each of the electrode members is in communication with a corresponding one of the TFTs through a corresponding one of the contact holes.
20. The method of
claim 19
, wherein each of the first and second insulating layers is substantially transparent to visible wavelengths of light.
US08/954,725 1997-10-20 1997-10-20 Method of making an LCD or X-ray imaging device with first and second insulating layers Expired - Lifetime US6359672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/954,725 US6359672B2 (en) 1997-10-20 1997-10-20 Method of making an LCD or X-ray imaging device with first and second insulating layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/954,725 US6359672B2 (en) 1997-10-20 1997-10-20 Method of making an LCD or X-ray imaging device with first and second insulating layers

Publications (2)

Publication Number Publication Date
US20010013908A1 true US20010013908A1 (en) 2001-08-16
US6359672B2 US6359672B2 (en) 2002-03-19

Family

ID=25495843

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/954,725 Expired - Lifetime US6359672B2 (en) 1997-10-20 1997-10-20 Method of making an LCD or X-ray imaging device with first and second insulating layers

Country Status (1)

Country Link
US (1) US6359672B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420251B1 (en) * 1999-01-05 2002-07-16 Trw Inc. Method for fabricating a microelectronic integrated circuit with improved step coverage
US20050206598A1 (en) * 1999-07-23 2005-09-22 Semiconductor Energy Laboratory Co., Ltd. Display device and method for operating the same
US20070236643A1 (en) * 2006-04-07 2007-10-11 Innolux Display Corp. Sealing structure of liquid crystal panel and method for manufacturing same
US20080087886A1 (en) * 2006-10-16 2008-04-17 Lg Philips Lcd Co. Ltd. Array substrate for liquid crystal display device and method of fabricating the same
US20100213463A1 (en) * 2005-12-29 2010-08-26 Lg Display Co., Ltd. Thin film transistor array substrate and method for manufacturing the same
CN103855168A (en) * 2012-11-28 2014-06-11 乐金显示有限公司 Substrate for display device and method of fabricating the same
US20230204996A1 (en) * 2020-12-10 2023-06-29 Japan Display Inc. Display device
US11994779B2 (en) * 2020-10-23 2024-05-28 Innolux Corporation Electronic device

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3592535B2 (en) * 1998-07-16 2004-11-24 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US20020121605A1 (en) * 1999-06-17 2002-09-05 Lutz Fink Semiconductor sensor and method for its wiring
DE19927694C1 (en) * 1999-06-17 2000-11-02 Lutz Fink Semiconductor sensor with pixel structure e.g. for optoelectronic image sensor has overall conductive layer provided with gaps between individual pixel elements filled with relatively insulated conductive layer
KR100326881B1 (en) * 1999-10-15 2002-03-13 구본준, 론 위라하디락사 Liquid Crystal Display Device And Method Of Fabricating The Same
JP4118484B2 (en) 2000-03-06 2008-07-16 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2001257350A (en) 2000-03-08 2001-09-21 Semiconductor Energy Lab Co Ltd Semiconductor device and its preparation method
JP4700160B2 (en) 2000-03-13 2011-06-15 株式会社半導体エネルギー研究所 Semiconductor device
JP4118485B2 (en) * 2000-03-13 2008-07-16 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4683688B2 (en) 2000-03-16 2011-05-18 株式会社半導体エネルギー研究所 Method for manufacturing liquid crystal display device
JP4393662B2 (en) 2000-03-17 2010-01-06 株式会社半導体エネルギー研究所 Method for manufacturing liquid crystal display device
JP4785229B2 (en) 2000-05-09 2011-10-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
GB0102167D0 (en) * 2001-01-27 2001-03-14 Koninl Philips Electronics Nv Pixellated devices such as active matrix liquid crystal displys and methods of manufacturing such
US7071037B2 (en) 2001-03-06 2006-07-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP4002410B2 (en) * 2001-06-22 2007-10-31 日本電気株式会社 Manufacturing method of active matrix type liquid crystal display device
US7623169B2 (en) * 2002-06-26 2009-11-24 Xerox Corporation Low noise charge gain hybrid imager
KR20040037944A (en) * 2002-10-31 2004-05-08 엘지.필립스 엘시디 주식회사 Device and fabrication method for retardation film in substrate of lcd
KR20040037943A (en) * 2002-10-31 2004-05-08 엘지.필립스 엘시디 주식회사 Device and fabrication method for polarizer in substrate of lcd
US7190000B2 (en) * 2003-08-11 2007-03-13 Samsung Electronics Co., Ltd. Thin film transistor array panel and manufacturing method thereof
JP2005203579A (en) * 2004-01-16 2005-07-28 Chi Mei Electronics Corp Array substrate with reduced wiring resistance and its manufacturing method
US7300861B2 (en) * 2004-06-24 2007-11-27 Palo Alto Research Center Incorporated Method for interconnecting electronic components using a blend solution to form a conducting layer and an insulating layer
US7351606B2 (en) * 2004-06-24 2008-04-01 Palo Alto Research Center Incorporated Method for forming a bottom gate thin film transistor using a blend solution to form a semiconducting layer and an insulating layer
US20070299176A1 (en) * 2005-01-28 2007-12-27 Markley Thomas J Photodefinable low dielectric constant material and method for making and using same
US20080264672A1 (en) * 2007-04-26 2008-10-30 Air Products And Chemicals, Inc. Photoimprintable Low Dielectric Constant Material and Method for Making and Using Same
JP5361651B2 (en) 2008-10-22 2013-12-04 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8741702B2 (en) * 2008-10-24 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
EP2180518B1 (en) 2008-10-24 2018-04-25 Semiconductor Energy Laboratory Co, Ltd. Method for manufacturing semiconductor device
KR101667909B1 (en) * 2008-10-24 2016-10-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR101782176B1 (en) 2009-07-18 2017-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR101724558B1 (en) 2010-04-19 2017-04-10 삼성디스플레이 주식회사 Thin film transistor array panel and method for manufacturing the same

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3153620C2 (en) 1980-04-01 1992-01-23 Canon K.K., Tokio/Tokyo, Jp
JPS5910988A (en) 1982-07-12 1984-01-20 ホシデン株式会社 Color liquid crystal display
US4704559A (en) 1986-02-25 1987-11-03 Seiko Instruments & Electronics Ltd. Matrix type multi-color display device
US5032883A (en) 1987-09-09 1991-07-16 Casio Computer Co., Ltd. Thin film transistor and method of manufacturing the same
US4994434A (en) 1988-02-08 1991-02-19 Eastman Kodak Company Method of forming a barrier layer arrangement for conductive layers on silicon substrates
JP2807496B2 (en) 1989-08-11 1998-10-08 シャープ株式会社 Active matrix substrate
US4980002A (en) 1989-08-16 1990-12-25 Unisys Corporation Method of fabricating a layered electronic assembly having compensation for chips of different thickness and different I/O lead offsets
JP2622183B2 (en) 1990-04-05 1997-06-18 シャープ株式会社 Active matrix display device
JPH0431826A (en) * 1990-05-29 1992-02-04 Alps Electric Co Ltd Liquid crystal display element
JP2646289B2 (en) 1990-06-01 1997-08-27 富士写真フイルム株式会社 Resist composition
JP2722832B2 (en) 1991-02-22 1998-03-09 日本電気株式会社 Liquid crystal display device
US5302987A (en) 1991-05-15 1994-04-12 Sharp Kabushiki Kaisha Active matrix substrate including connecting electrode with extended portion
US5414278A (en) 1991-07-04 1995-05-09 Mitsushibi Denki Kabushiki Kaisha Active matrix liquid crystal display device
EP0569601B1 (en) 1991-11-29 1999-10-13 Seiko Epson Corporation Liquid crystal display and method of manufacturing same
JP3067362B2 (en) 1991-12-19 2000-07-17 ソニー株式会社 Liquid crystal panel manufacturing method
US5422293A (en) 1991-12-24 1995-06-06 Casio Computer Co., Ltd. Method for manufacturing a TFT panel
JPH05249478A (en) 1991-12-25 1993-09-28 Toshiba Corp Liquid crystal display device
US5457553A (en) 1991-12-25 1995-10-10 Casio Computer Co., Ltd. Thin-film transistor panel with reduced number of capacitor lines
JP2760462B2 (en) 1992-05-13 1998-05-28 シャープ株式会社 Active matrix substrate
DE69332142T2 (en) 1992-12-25 2003-03-06 Sony Corp., Tokio/Tokyo Active matrix substrate
JP3144132B2 (en) 1993-03-22 2001-03-12 松下電器産業株式会社 Liquid crystal display device and projection display device using the same
US5463484A (en) 1993-10-29 1995-10-31 Brody; Thomas P. Method for manufacturing laminated U V-sensitive color filters for liquid crystal displays
US5414283A (en) 1993-11-19 1995-05-09 Ois Optical Imaging Systems, Inc. TFT with reduced parasitic capacitance
US5483366A (en) 1994-07-20 1996-01-09 David Sarnoff Research Center Inc LCD with hige capacitance pixel having an ITO active region/poly SI pixel region electrical connection and having poly SI selection line extensions along pixel edges
JP3059915B2 (en) 1994-09-29 2000-07-04 三洋電機株式会社 Display device and method of manufacturing display device
JP3240858B2 (en) 1994-10-19 2001-12-25 ソニー株式会社 Color display
US5528209A (en) 1995-04-27 1996-06-18 Hughes Aircraft Company Monolithic microwave integrated circuit and method
US5539219A (en) 1995-05-19 1996-07-23 Ois Optical Imaging Systems, Inc. Thin film transistor with reduced channel length for liquid crystal displays
US5532180A (en) 1995-06-02 1996-07-02 Ois Optical Imaging Systems, Inc. Method of fabricating a TFT with reduced channel length
US6372534B1 (en) 1995-06-06 2002-04-16 Lg. Philips Lcd Co., Ltd Method of making a TFT array with photo-imageable insulating layer over address lines
KR970011972A (en) 1995-08-11 1997-03-29 쯔지 하루오 Transmission type liquid crystal display device and manufacturing method thereof
US5650358A (en) 1995-08-28 1997-07-22 Ois Optical Imaging Systems, Inc. Method of making a TFT having a reduced channel length

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420251B1 (en) * 1999-01-05 2002-07-16 Trw Inc. Method for fabricating a microelectronic integrated circuit with improved step coverage
US20050206598A1 (en) * 1999-07-23 2005-09-22 Semiconductor Energy Laboratory Co., Ltd. Display device and method for operating the same
US9117415B2 (en) * 1999-07-23 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Display device and method for operating the same
US8058651B2 (en) * 2005-12-29 2011-11-15 Lg Display Co., Ltd. Thin film transistor array substrate and method for manufacturing the same
US20100213463A1 (en) * 2005-12-29 2010-08-26 Lg Display Co., Ltd. Thin film transistor array substrate and method for manufacturing the same
US7697104B2 (en) * 2006-04-07 2010-04-13 Innolux Display Corp. Sealing structure of liquid crystal panel having an inverted T shape and method for manufacturing same
US20070236643A1 (en) * 2006-04-07 2007-10-11 Innolux Display Corp. Sealing structure of liquid crystal panel and method for manufacturing same
US20080087886A1 (en) * 2006-10-16 2008-04-17 Lg Philips Lcd Co. Ltd. Array substrate for liquid crystal display device and method of fabricating the same
US8670081B2 (en) * 2006-10-16 2014-03-11 Lg Display Co. Ltd. Array substrate for liquid crystal display device and method of fabricating the same
CN103855168A (en) * 2012-11-28 2014-06-11 乐金显示有限公司 Substrate for display device and method of fabricating the same
US9865626B2 (en) 2012-11-28 2018-01-09 Lg Display Co., Ltd. Substrate for display device and method of fabricating the same
US11994779B2 (en) * 2020-10-23 2024-05-28 Innolux Corporation Electronic device
US20230204996A1 (en) * 2020-12-10 2023-06-29 Japan Display Inc. Display device

Also Published As

Publication number Publication date
US6359672B2 (en) 2002-03-19

Similar Documents

Publication Publication Date Title
US6359672B2 (en) Method of making an LCD or X-ray imaging device with first and second insulating layers
US6011274A (en) X-ray imager or LCD with bus lines overlapped by pixel electrodes and dual insulating layers therebetween
US7445948B2 (en) Method of making a TFT array with photo-imageable insulating layer over address lines
US6365916B1 (en) High aperture LCD with insulating color filters overlapping bus lines on active substrate
US6855954B1 (en) Thin film transistor, fabrication method thereof and liquid crystal display having the thin film transistor
US6713786B2 (en) Thin film transistors with self-aligned transparent pixel electrode
US7785992B2 (en) Array substrate for flat display device and method for fabricating the same
JPH06350089A (en) Reverse staggered type thin film-field effect transistor
MXPA96002205A (en) Liquid crystal screen with common connection lines transferred by pixel electrodes and an insulating photo-image former layer between the

Legal Events

Date Code Title Description
AS Assignment

Owner name: OIS OPTICAL IMAGING SYSTEMS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GU, TIEER;REEL/FRAME:009254/0335

Effective date: 19980302

Owner name: OIS OPTICAL IMAGING SYSTEMS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEN BOER, WILLEM;REEL/FRAME:009119/0207

Effective date: 19980302

AS Assignment

Owner name: FIRST CHICAGO/NBD BANK N.A., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OIS OPTICAL IMAGING SYSTEMS, INC.;REEL/FRAME:009711/0832

Effective date: 19980331

AS Assignment

Owner name: GUARDIAN INDUSTRIES CORP., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OIS OPTICAL IMAGING SYSTEMS, INC.;REEL/FRAME:010343/0187

Effective date: 19991221

AS Assignment

Owner name: OIS OPTICAL IMAGING SYSTEMS, INC., MICHIGAN

Free format text: FULL RELEASE OF SECURITY INTEREST IN PENDING PATENT APPLICATIONS;ASSIGNOR:BANK ONE, MICHIGAN FORMERLY FIRST CHICAGO/NBD, N.A.;REEL/FRAME:010607/0704

Effective date: 20000203

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CHIMEI INNOLUX CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUARDIAN INDUSTRIES CORP.;REEL/FRAME:026156/0119

Effective date: 20110307

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: INNOLUX CORPORATION, TAIWAN

Free format text: CHANGE OF NAME;ASSIGNOR:CHIMEI INNOLUX CORPORATION;REEL/FRAME:032589/0585

Effective date: 20121219