[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWM615615U - Powder atomic layer deposition device with percussion unit - Google Patents

Powder atomic layer deposition device with percussion unit Download PDF

Info

Publication number
TWM615615U
TWM615615U TW110204619U TW110204619U TWM615615U TW M615615 U TWM615615 U TW M615615U TW 110204619 U TW110204619 U TW 110204619U TW 110204619 U TW110204619 U TW 110204619U TW M615615 U TWM615615 U TW M615615U
Authority
TW
Taiwan
Prior art keywords
reaction space
vacuum chamber
knocking
unit
atomic layer
Prior art date
Application number
TW110204619U
Other languages
Chinese (zh)
Inventor
林俊成
古家誠
Original Assignee
天虹科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天虹科技股份有限公司 filed Critical 天虹科技股份有限公司
Priority to TW110204619U priority Critical patent/TWM615615U/en
Publication of TWM615615U publication Critical patent/TWM615615U/en

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

本新型提供一種具有敲擊單元的粉末原子層沉積裝置,主要包括一真空腔體、一軸封裝置、一驅動單元及一敲擊單元。驅動單元透過軸封裝置連接真空腔體,並帶動真空腔體轉動。軸封裝置包括一外管體及一內管體,其中內管體設置在外管體的容置空間內。至少一抽氣管線及至少一進氣管線位於內管體內,其中抽氣管線用以抽出真空腔體的反應空間內的氣體,而進氣管線則用以將一前驅物輸送至反應空間。敲擊單元與真空腔體的蓋板相鄰,並用以敲擊真空腔體的蓋板或腔體,以避免反應空間內的粉末沾黏在真空腔體的內表面。The invention provides a powder atomic layer deposition device with a knocking unit, which mainly includes a vacuum chamber, a shaft sealing device, a driving unit and a knocking unit. The driving unit is connected to the vacuum chamber through the shaft sealing device, and drives the vacuum chamber to rotate. The shaft sealing device includes an outer tube body and an inner tube body, wherein the inner tube body is arranged in the accommodating space of the outer tube body. At least one air extraction line and at least one air intake line are located in the inner tube. The air extraction line is used to extract gas in the reaction space of the vacuum chamber, and the air intake line is used to transport a precursor to the reaction space. The knocking unit is adjacent to the cover plate of the vacuum chamber and is used to knock the cover plate or the chamber of the vacuum chamber to prevent the powder in the reaction space from sticking to the inner surface of the vacuum chamber.

Description

具有敲擊單元的粉末原子層沉積裝置Powder atomic layer deposition device with percussion unit

本新型有關於一種具有敲擊單元的粉末原子層沉積裝置,包括一敲擊單元與真空腔體的蓋板相鄰,並用以敲擊真空腔體的蓋板或腔體,以避免真空腔體內的粉末沾黏。The invention relates to a powder atomic layer deposition device with a knocking unit. The knocking unit is adjacent to the cover plate of the vacuum chamber and is used to knock the cover plate or the cavity of the vacuum chamber to avoid the inside of the vacuum chamber. The powder sticks.

奈米顆粒(nanoparticle)一般被定義為在至少一個維度上小於100奈米的顆粒,奈米顆粒與宏觀物質在物理及化學上的特性截然不同。一般而言,宏觀物質的物理特性與本身的尺寸無關,但奈米顆粒則非如此,奈米顆粒在生物醫學、光學和電子等領域都具有潛在的應用。Nanoparticles are generally defined as particles smaller than 100 nanometers in at least one dimension. Nanoparticles and macroscopic substances have completely different physical and chemical properties. Generally speaking, the physical properties of macroscopic matter have nothing to do with its size, but nanoparticle is not the case. Nanoparticles have potential applications in the fields of biomedicine, optics, and electronics.

量子點(Quantum Dot)是半導體的奈米顆粒,目前研究的半導體材料為II-VI材料,如ZnS、CdS、CdSe等,其中又以CdSe最受到矚目。量子點的尺寸通常在2至50奈米之間,量子點被紫外線照射後,量子點中的電子會吸收能量,並從價帶躍遷到傳導帶。被激發的電子從傳導帶回到價帶時,會通過發光釋放出能量。Quantum dots (Quantum Dot) are semiconductor nano-particles. The currently studied semiconductor materials are II-VI materials, such as ZnS, CdS, CdSe, etc., of which CdSe has attracted the most attention. The size of quantum dots is usually between 2 and 50 nanometers. After the quantum dots are irradiated with ultraviolet light, the electrons in the quantum dots absorb energy and transition from the valence band to the conduction band. When the excited electron returns from the conduction band to the valence band, it releases energy through light emission.

量子點的能隙與尺寸大小相關,量子點的尺寸越大能隙越小,經照射後會發出波長較長的光,量子點的尺寸越小則能隙越大,經照射後會發出波長較短的光。例如5到6奈米的量子點會發出橘光或紅光,而2到3奈米的量子點則會發出藍光或綠光,當然光色取決於量子點的材料組成。The energy gap of a quantum dot is related to the size. The larger the size of the quantum dot, the smaller the energy gap, and will emit light with a longer wavelength after irradiation. The smaller the size of the quantum dot, the larger the energy gap, and the wavelength will be emitted after irradiation. Shorter light. For example, quantum dots of 5 to 6 nanometers emit orange or red light, while quantum dots of 2 to 3 nanometers emit blue or green light. Of course, the light color depends on the material composition of the quantum dots.

應用量子點的發光二極體(LED)產生的光可接近連續光譜,同時具有高演色性,並有利於提高發光二極體的發光品質。此外亦可透過改變量子點的尺寸調整發射光的波長,使得量子點成為新一代發光裝置及顯示器的發展重點。Light-emitting diodes (LEDs) using quantum dots can produce light close to a continuous spectrum, and at the same time have high color rendering properties, and help to improve the luminous quality of the light-emitting diodes. In addition, the wavelength of the emitted light can be adjusted by changing the size of the quantum dots, making the quantum dots the focus of the development of a new generation of light-emitting devices and displays.

量子點雖然具有上述的優點及特性,但在應用或製造的過程中容易產生團聚現象。此外量子點具有較高的表面活性,並容易與空氣及水氣發生反應,進而縮短量子點的壽命。Although quantum dots have the above-mentioned advantages and characteristics, they are prone to agglomeration during the application or manufacturing process. In addition, quantum dots have high surface activity and are easy to react with air and moisture, thereby shortening the lifespan of quantum dots.

具體來說,將量子點製作成為發光二極體的密封膠時,可能會產生團聚效應,而降低了量子點的光學性能。此外,量子點在製作成發光二極體的密封膠後,外界的氧或水氣仍可能會穿過密封膠而接觸量子點的表面,導致量子點氧化,並影響量子點及發光二極體的效能或使用壽命。量子點的表面缺陷及懸空鍵(dangling bonds)亦可能造成非輻射復合(nonradiative recombination),同樣會影響量子點的發光效率。Specifically, when the quantum dots are made into a sealant for light-emitting diodes, agglomeration effect may occur, which reduces the optical performance of the quantum dots. In addition, after quantum dots are made into the sealant of light-emitting diodes, external oxygen or moisture may still pass through the sealant and contact the surface of the quantum dots, causing the quantum dots to oxidize and affect the quantum dots and light-emitting diodes. The effectiveness or service life of the product. Surface defects and dangling bonds of quantum dots may also cause nonradiative recombination, which also affects the luminous efficiency of quantum dots.

目前業界主要透過原子層沉積(atomic layer deposition,ALD)在量子點的表面形成一層奈米厚度的薄膜,或者是在量子點的表面形成多層薄膜,以形成量子井結構。At present, the industry mainly uses atomic layer deposition (ALD) to form a nanometer-thick film on the surface of quantum dots, or form a multilayer film on the surface of quantum dots to form a quantum well structure.

原子層沉積可以在基板上形成厚度均勻的薄膜,並可有效控制薄膜的厚度,理論上亦適用於三維的量子點。量子點靜置在承載盤時,相鄰的量子點之間會存在接觸點,使得原子層沉積的前驅物無法接觸這些接觸點,並導致無法在所有的奈米顆粒的表面皆形成厚度均勻的薄膜。Atomic layer deposition can form a thin film with uniform thickness on the substrate, and can effectively control the thickness of the thin film. In theory, it is also suitable for three-dimensional quantum dots. When the quantum dots are placed on the carrier plate, there will be contact points between adjacent quantum dots, so that the precursors of atomic layer deposition cannot contact these contact points, and it is impossible to form a uniform thickness on the surface of all nano particles. film.

為了解決上述先前技術面臨的問題,本新型提出一種具有敲擊單元的粉末原子層沉積裝置,主要在真空腔體的蓋板設置一敲擊單元,並透過敲擊單元敲擊真空腔體的蓋板或腔體,以將沉積過程中沾黏在真空腔體的內表面上粉末震落。In order to solve the above-mentioned problems faced by the prior art, the present invention proposes a powder atomic layer deposition apparatus with a knocking unit. A knocking unit is mainly arranged on the cover plate of the vacuum chamber, and the cover of the vacuum chamber is knocked through the knocking unit. Plate or cavity to shake off the powder adhering to the inner surface of the vacuum cavity during the deposition process.

本新型的一目的,在於提供一種具有敲擊單元的粉末原子層沉積裝置,主要包括一驅動單元、一軸封裝置、一真空腔體及一敲擊單元,其中驅動單元透過軸封裝置連接真空腔體的一後壁。敲擊單元與真空腔體的一蓋板相鄰,並敲擊真空腔體的蓋板或腔體以震動真空腔體的內表面,以去除沾黏在真空腔體的內表面上的粉末。An object of the present invention is to provide a powder atomic layer deposition device with a knocking unit, which mainly includes a driving unit, a shaft sealing device, a vacuum chamber and a knocking unit, wherein the driving unit is connected to the vacuum chamber through the shaft sealing device A back wall of the body. The knocking unit is adjacent to a cover plate of the vacuum chamber, and knocks the cover plate or the cavity of the vacuum chamber to vibrate the inner surface of the vacuum chamber to remove the powder adhering to the inner surface of the vacuum chamber.

一般而言,在對粉末進行原子層沉積的過程中,很可能無法在沾黏在真空腔體的粉末的表面形成均勻的薄膜,進而影響粉末的良率、壽命及效能。為此本新型提出透過敲擊單元敲擊真空腔體的蓋板,以避免粉末沾黏在真空腔體的內表面。Generally speaking, in the process of atomic layer deposition of the powder, it is likely that a uniform film cannot be formed on the surface of the powder adhering to the vacuum chamber, which will affect the yield, life and performance of the powder. For this reason, the present invention proposes to knock the cover plate of the vacuum cavity through the knocking unit to prevent the powder from sticking to the inner surface of the vacuum cavity.

為了達到上述的目的,本新型提出一種具有敲擊單元的粉末原子層沉積裝置,包括:一真空腔體,包括一蓋板及一腔體,其中蓋板連接腔體,並於蓋板及腔體之間形成一反應空間,反應空間用以容置複數顆粉末;一軸封裝置,連接真空腔體的後側,並包括一外管體及一內管體,其中外管體具有一容置空間,用以容置內管體;一驅動單元,連接軸封裝置的外管體,並經由外管體帶動真空腔體轉動;至少一抽氣管線,位於內管體內,流體連接真空腔體的反應空間,並用以抽出反應空間內的一氣體;至少一進氣管線,位於內管體內,流體連接真空腔體的反應空間,並用以將一前驅物輸送至反應空間;及一敲擊單元,與真空腔體的蓋板相鄰,並用以敲擊真空腔體的蓋板或腔體。In order to achieve the above objective, the present invention proposes a powder atomic layer deposition device with a knocking unit, including: a vacuum chamber, including a cover plate and a cavity, wherein the cover plate is connected to the cavity and is connected to the cover plate and the cavity. A reaction space is formed between the bodies, and the reaction space is used to contain a plurality of powders; a shaft sealing device is connected to the rear side of the vacuum chamber and includes an outer tube body and an inner tube body, wherein the outer tube body has a container Space for accommodating the inner tube body; a driving unit connected to the outer tube body of the shaft sealing device and driving the vacuum chamber to rotate through the outer tube body; at least one air extraction pipeline located in the inner tube body and fluidly connected to the vacuum chamber body The reaction space is used to extract a gas in the reaction space; at least one gas inlet line is located in the inner tube and is fluidly connected to the reaction space of the vacuum chamber, and is used to transport a precursor to the reaction space; and a percussion unit , Adjacent to the cover plate of the vacuum chamber, and used to knock the cover plate or cavity of the vacuum chamber.

所述的具有敲擊單元的粉末原子層沉積裝置,其中敲擊單元包括一馬達及一敲擊部,馬達連接敲擊部,並驅動敲擊部敲擊真空腔體的蓋板或腔體。In the powder atomic layer deposition apparatus with a knocking unit, the knocking unit includes a motor and a knocking part, the motor is connected to the knocking part and drives the knocking part to knock the cover plate or cavity of the vacuum chamber.

所述的具有敲擊單元的粉末原子層沉積裝置,其中敲擊單元包括一緩衝部連接敲擊部,敲擊部經由緩衝部敲擊真空腔體的蓋板或腔體。In the described powder atomic layer deposition apparatus with a knocking unit, the knocking unit includes a buffer part connected to the knocking part, and the knocking part knocks the cover plate or cavity of the vacuum cavity through the buffering part.

所述的具有敲擊單元的粉末原子層沉積裝置,其中進氣管線包括至少一非反應氣體輸送管線及至少一反應氣體輸送管線,非反應氣體輸送管線用以將一非反應氣體輸送至反應空間,以吹動反應空間內的粉末,而反應氣體輸送管線則用以將前驅物輸送至反應空間。In the powder atomic layer deposition device with percussion unit, the gas inlet pipeline includes at least one non-reactive gas delivery pipeline and at least one reactive gas delivery pipeline, and the non-reactive gas delivery pipeline is used to deliver a non-reactive gas to the reaction space , To blow the powder in the reaction space, and the reaction gas delivery pipeline is used to deliver the precursor to the reaction space.

所述的具有敲擊單元的粉末原子層沉積裝置,其中非反應氣體輸送管線包括一延伸管線,延伸管線位於反應空間內,並朝真空腔體的蓋板的方向延伸。In the powder atomic layer deposition apparatus with a knocking unit, the non-reactive gas delivery pipeline includes an extension pipeline, which is located in the reaction space and extends toward the cover plate of the vacuum chamber.

所述的具有敲擊單元的粉末原子層沉積裝置,包括一過濾單元位於內管體連接反應空間的一端,抽氣管線經由過濾單元流體連接反應空間,而延伸管線穿過過濾單元。The described powder atomic layer deposition device with percussion unit includes a filter unit located at one end of the inner tube body connected to the reaction space, the suction line is fluidly connected to the reaction space via the filter unit, and the extension line passes through the filter unit.

所述的具有敲擊單元的粉末原子層沉積裝置,其中延伸管線包括至少一出風口朝向真空腔體的蓋板或腔體的方向。In the powder atomic layer deposition device with a knocking unit, the extension pipeline includes at least one air outlet facing the cover plate of the vacuum chamber or the direction of the cavity.

所述的具有敲擊單元的粉末原子層沉積裝置,其中進氣管線用以將一非反應氣體輸送至反應空間,並以非反應氣體吹動反應空間內的粉末。In the powder atomic layer deposition device with a knocking unit, the gas inlet line is used to transport a non-reactive gas to the reaction space, and the non-reactive gas blows the powder in the reaction space.

所述的具有敲擊單元的粉末原子層沉積裝置,其中內管體由外管體的容置空間延伸至真空腔體的反應空間,並在反應空間內形成一凸出管部。In the powder atomic layer deposition device with knocking unit, the inner tube extends from the accommodating space of the outer tube to the reaction space of the vacuum chamber, and a protruding tube is formed in the reaction space.

所述的具有敲擊單元的粉末原子層沉積裝置,包括一承載部及一位置調整機構,軸封裝置及驅動單元設置於承載部上,而敲擊單元則透過位置調整機構連接承載部,並透過位置調整機構帶動敲擊單元相對於承載部位移或轉動,以改變敲擊單元與真空腔體之間的間隔。The described powder atomic layer deposition apparatus with a knocking unit includes a bearing part and a position adjustment mechanism. The shaft sealing device and the driving unit are arranged on the bearing part, and the knocking unit is connected to the bearing part through the position adjustment mechanism, and The position adjustment mechanism drives the percussion unit to move or rotate relative to the bearing portion, so as to change the interval between the percussion unit and the vacuum cavity.

請參閱圖1、圖2及圖3,分別為本新型具有敲擊單元的粉末原子層沉積裝置一實施例的立體示意圖、剖面示意圖及具有敲擊單元的粉末原子層沉積裝置的軸封裝置一實施例的剖面示意圖。如圖所示,具有敲擊單元的粉末原子層沉積裝置10主要包括一真空腔體11、一軸封裝置13、一驅動單元15及一敲擊單元14,其中驅動單元15透過軸封裝置13連接真空腔體11,並帶動真空腔體11轉動。Please refer to Figure 1, Figure 2 and Figure 3, which are respectively a three-dimensional schematic diagram, a cross-sectional schematic diagram of an embodiment of a new type of powder atomic layer deposition device with a knocking unit, and a shaft sealing device of the powder atomic layer deposition device with a knocking unit. A schematic cross-sectional view of an embodiment. As shown in the figure, the powder atomic layer deposition apparatus 10 with a knocking unit mainly includes a vacuum chamber 11, a shaft sealing device 13, a driving unit 15 and a knocking unit 14, wherein the driving unit 15 is connected through the shaft sealing device 13 The vacuum chamber 11 drives the vacuum chamber 11 to rotate.

真空腔體11包括一前壁111、一後壁113及一側壁115,其中前壁111面對後壁113,而側壁115位於前壁111及後壁113之間,並連接前壁111及後壁113,以在前壁111、後壁113及側壁115之間形成一反應空間12。The vacuum chamber 11 includes a front wall 111, a rear wall 113, and a side wall 115. The front wall 111 faces the rear wall 113, and the side wall 115 is located between the front wall 111 and the rear wall 113 and connects the front wall 111 and the rear wall. The wall 113 forms a reaction space 12 between the front wall 111, the rear wall 113 and the side wall 115.

反應空間12用以容置複數顆粉末121,其中粉末121可以是量子點(Quantum Dot),例如ZnS、CdS、CdSe等II-VI半導體材料,而形成在量子點上的薄膜可以是三氧化二鋁(Al2O3)。在本新型一實施例中,真空腔體11可包括一蓋板117及一腔體119,其中蓋板117用以覆蓋及連接腔體119,以在兩者之間形成反應空間12。蓋板117可以是真空腔體11的前壁111,而腔體119則由真空腔體11的後壁113及側壁115所構成。The reaction space 12 is used to accommodate a plurality of powders 121, wherein the powder 121 can be a quantum dot (Quantum Dot), such as ZnS, CdS, CdSe and other II-VI semiconductor materials, and the thin film formed on the quantum dot can be two oxides Aluminum (Al2O3). In an embodiment of the present invention, the vacuum chamber 11 may include a cover 117 and a cavity 119, wherein the cover 117 is used to cover and connect the cavity 119 to form a reaction space 12 therebetween. The cover plate 117 may be the front wall 111 of the vacuum chamber 11, and the chamber 119 is formed by the rear wall 113 and the side wall 115 of the vacuum chamber 11.

軸封裝置13連接真空腔體11的後壁113,並包括一外管體131及一內管體133,其中外管體131具有一容置空間132,而內管體133則具有一連接空間134,例如外管體131及內管體133可為空心柱狀體。外管體131的容置空間132用以容置內管體133,其中外管體131及內管體133同軸設置。軸封裝置13可以是一般常見的軸封或磁流體軸封,主要用以隔離真空腔體11的反應空間12與外部的空間,以維持反應空間12的真空。The shaft sealing device 13 is connected to the rear wall 113 of the vacuum chamber 11 and includes an outer tube body 131 and an inner tube body 133. The outer tube body 131 has an accommodation space 132, and the inner tube body 133 has a connection space 134. For example, the outer tube body 131 and the inner tube body 133 may be hollow cylindrical bodies. The accommodating space 132 of the outer tube body 131 is used for accommodating the inner tube body 133, wherein the outer tube body 131 and the inner tube body 133 are coaxially arranged. The shaft sealing device 13 may be a common shaft seal or a magnetic fluid shaft seal, and is mainly used to isolate the reaction space 12 of the vacuum chamber 11 from the external space, so as to maintain the vacuum of the reaction space 12.

驅動單元15連接軸封裝置13的一端,而軸封裝置13的另一端則連接真空腔體11的後壁113。驅動單元15透過軸封裝置13帶動真空腔體11轉動,例如驅動單元15為馬達,透過外管體131連接真空腔體11的後壁113,並經由外管體131帶動真空腔體11轉動。此外驅動單元15並未連接內管體133,因此驅動單元15帶動外管體131及真空腔體11轉動時,內管體133不會隨著轉動。The driving unit 15 is connected to one end of the shaft sealing device 13, and the other end of the shaft sealing device 13 is connected to the rear wall 113 of the vacuum chamber 11. The driving unit 15 drives the vacuum chamber 11 to rotate through the shaft sealing device 13, for example, the driving unit 15 is a motor that connects the rear wall 113 of the vacuum chamber 11 through the outer tube body 131, and drives the vacuum chamber 11 to rotate through the outer tube body 131. In addition, the driving unit 15 is not connected to the inner tube body 133, so when the driving unit 15 drives the outer tube body 131 and the vacuum chamber 11 to rotate, the inner tube body 133 will not rotate with it.

驅動單元15可帶動外管體131及真空腔體11以同一方向持續轉動,例如順時針或逆時針方向持續轉動。在不同實施例中,驅動單元15可帶動外管體131及真空腔體11以順時針的方向旋轉一特定角度後,再以逆時針的方向旋轉特定角度,例如特定角度可為360度。真空腔體11轉動時會攪拌反應空間12內的粉末121,以利於粉末121均勻受熱並與前驅物或非反應氣體接觸。The driving unit 15 can drive the outer tube 131 and the vacuum chamber 11 to continuously rotate in the same direction, for example, to continuously rotate clockwise or counterclockwise. In different embodiments, the driving unit 15 can drive the outer tube body 131 and the vacuum chamber 11 to rotate a specific angle in a clockwise direction, and then rotate a specific angle in a counterclockwise direction, for example, the specific angle may be 360 degrees. When the vacuum chamber 11 rotates, the powder 121 in the reaction space 12 is stirred, so that the powder 121 is evenly heated and comes into contact with the precursor or non-reactive gas.

內管體133的連接空間134內可設置至少一抽氣管線171、至少一進氣管線173、至少一非反應氣體輸送管線175、一加熱器177及/或一溫度感測單元179,如圖2及圖3所示。The connecting space 134 of the inner tube body 133 can be provided with at least one gas extraction line 171, at least one gas inlet line 173, at least one non-reactive gas delivery line 175, a heater 177 and/or a temperature sensing unit 179, as shown in FIG. 2 and Figure 3.

抽氣管線171流體連接真空腔體11的反應空間12,並用以抽出反應空間12內的氣體,使得反應空間12為真空狀態,以進行原子層沉積製程。具體而言抽氣管線171可連接一幫浦,並透過幫浦抽出反應空間12內的氣體。The gas extraction line 171 is fluidly connected to the reaction space 12 of the vacuum chamber 11 and is used to extract gas in the reaction space 12 so that the reaction space 12 is in a vacuum state for the atomic layer deposition process. Specifically, the pumping line 171 can be connected to a pump, and the gas in the reaction space 12 can be pumped out through the pump.

進氣管線173流體連接真空腔體11的反應空間12,並用以將一前驅物及/或一非反應氣體輸送至反應空間12,其中非反應氣體可以是氮氣或氬氣等惰性氣體。在實際應用時,進氣管線173可能會將一載送氣體(carrier gas)及前驅物一起輸送到反應空間12內。此外進氣管線173亦可將非反應氣體輸送至反應空間12內,並透過抽氣管線171抽氣,以去除反應空間12內的前驅物。在本新型一實施例中,進氣管線173可連接複數個分枝管線,並分別透過各個分枝管線將不同的前驅物依序輸送至反應空間12內。The gas inlet line 173 is fluidly connected to the reaction space 12 of the vacuum chamber 11 and is used to transport a precursor and/or a non-reactive gas to the reaction space 12, where the non-reactive gas may be an inert gas such as nitrogen or argon. In practical applications, the gas inlet line 173 may transport a carrier gas and precursors into the reaction space 12 together. In addition, the gas inlet line 173 can also transport the non-reactive gas into the reaction space 12 and pump the gas through the gas extraction line 171 to remove the precursors in the reaction space 12. In an embodiment of the present invention, the gas inlet pipeline 173 can be connected to a plurality of branch pipelines, and different precursors can be sequentially delivered into the reaction space 12 through each branch pipeline.

進氣管線173可增大輸送至反應空間12的非反應氣體的流量,並透過非反應氣體吹動反應空間12內的粉末121,使得粉末121受到非反應氣體的帶動,擴散到反應空間12的各個區域。The gas inlet line 173 can increase the flow rate of the non-reactive gas delivered to the reaction space 12, and blow the powder 121 in the reaction space 12 through the non-reactive gas, so that the powder 121 is driven by the non-reactive gas and diffuses into the reaction space 12 Various areas.

在本新型一實施例中,進氣管線173可包括至少一非反應氣體輸送管線175及至少一反應氣體輸送管線。非反應氣體輸送管線175流體連接真空腔體11的反應空間12,並用以將一非反應氣體輸送至反應空間12。非反應氣體用以吹動反應空間12內的粉末121,配合驅動單元15驅動真空腔體11轉動,可有效且均勻的翻攪反應空間12內的粉末121,並在各個粉末121的表面沉積厚度均勻的薄膜。反應氣體輸送管線流體連接反應空間12,並用以將前驅物輸送至反應空間12。In an embodiment of the present invention, the gas inlet pipeline 173 may include at least one non-reactive gas delivery pipeline 175 and at least one reactive gas delivery pipeline. The non-reactive gas delivery pipeline 175 is fluidly connected to the reaction space 12 of the vacuum chamber 11 and is used to deliver a non-reactive gas to the reaction space 12. The non-reactive gas is used to blow the powder 121 in the reaction space 12 and cooperate with the driving unit 15 to drive the vacuum chamber 11 to rotate, which can effectively and uniformly stir the powder 121 in the reaction space 12 and deposit thickness on the surface of each powder 121 Uniform film. The reaction gas delivery pipeline is fluidly connected to the reaction space 12 and is used to deliver the precursor to the reaction space 12.

透過驅動單元15經由軸封裝置13驅動真空腔體11轉動,並透過進氣管線173將非反應氣體輸送至反應空間12,雖然可以翻攪反應空間12內的粉末121。但在實際應用時,仍有一定數量的粉末121會沾黏在真空腔體11的內表面,造成輸送至反應空間12的前驅物無法接觸沾黏在真空腔體11上的粉末121,進而無法在所有的粉末121的表面接形成厚度均勻的薄膜。The vacuum chamber 11 is driven to rotate through the drive unit 15 via the shaft sealing device 13, and the non-reactive gas is transported to the reaction space 12 through the gas inlet line 173, although the powder 121 in the reaction space 12 can be stirred. However, in practical applications, there is still a certain amount of powder 121 sticking to the inner surface of the vacuum chamber 11, so that the precursor delivered to the reaction space 12 cannot contact the powder 121 stuck on the vacuum chamber 11, and thus cannot A thin film of uniform thickness is formed on the surface of all the powder 121.

為了解決上述及先前技術面臨的問題,本新型提出在真空腔體11的前壁111或蓋板117的側邊設置一敲擊單元14,其中敲擊單元14與真空腔體11的前壁111或蓋板117相鄰,並用以敲擊真空腔體11的前壁111、蓋板117、腔體119或側壁115。In order to solve the above-mentioned and the problems faced by the prior art, the present invention proposes to provide a percussion unit 14 on the side of the front wall 111 or the cover plate 117 of the vacuum chamber 11, wherein the percussion unit 14 and the front wall 111 of the vacuum chamber 11 Or the cover plate 117 is adjacent to each other and used to knock the front wall 111, cover plate 117, cavity 119 or side wall 115 of the vacuum chamber 11.

敲擊單元14在敲擊真空腔體11的前壁111、蓋板117、腔體119或側壁115時,真空腔體11會產生震動,使得沾黏的粉末121離開真空腔體11的內表面,並散落在真空腔體11的反應空間12內。When the striking unit 14 strikes the front wall 111, the cover plate 117, the cavity 119 or the side wall 115 of the vacuum chamber 11, the vacuum chamber 11 will vibrate, so that the adhered powder 121 will leave the inner surface of the vacuum chamber 11 , And scattered in the reaction space 12 of the vacuum chamber 11.

具體而言,透過驅動單元15、進氣管線173及敲擊單元14的設置,可有效解決粉末121沾黏在真空腔體11的問題,並有利於在絕大部分的粉末121的表面形成厚度均勻的薄膜。Specifically, through the arrangement of the driving unit 15, the air inlet pipe 173 and the knocking unit 14, the problem of the powder 121 sticking to the vacuum chamber 11 can be effectively solved, and it is beneficial to form a thickness on the surface of most of the powder 121 Uniform film.

在本新型一實施例中,敲擊單元14包括一馬達141及一敲擊部143,其中馬達141連接並驅動敲擊部143敲擊真空腔體11的前壁111、蓋板117、腔體119或側壁115。此外敲擊部143上可設置一緩衝部145,其中敲擊部143經由緩衝部145敲擊真空腔體11的前壁111、蓋板117、腔體119或側壁115,以避免在敲擊真空腔體11過程中造成真空腔體11及/或敲擊單元14的損壞,例如緩衝部145可為橡膠墊。In an embodiment of the present invention, the percussion unit 14 includes a motor 141 and a percussion part 143, wherein the motor 141 is connected to and drives the percussion part 143 to strike the front wall 111, the cover plate 117, and the cavity of the vacuum chamber 11 119 or sidewall 115. In addition, a buffer part 145 can be provided on the knocking part 143, wherein the knocking part 143 knocks the front wall 111, the cover plate 117, the cavity 119 or the side wall 115 of the vacuum chamber 11 through the buffer part 145 to avoid hitting the vacuum During the cavity 11 process, the vacuum cavity 11 and/or the knocking unit 14 are damaged. For example, the buffer portion 145 may be a rubber pad.

具有敲擊單元的粉末原子層沉積裝置10的進氣管線173及非反應氣體輸送管線175都用以將非反應氣體輸送至反應空間12,其中進氣管線173輸送的非反應氣體的流量較小,主要用以去除反應空間12內的前驅物,而非反應氣體輸送管線175輸送的非反應氣體的流量較大,主要用以吹動反應空間12內的粉末121。Both the gas inlet pipe 173 and the non-reactive gas delivery pipe 175 of the powder atomic layer deposition apparatus 10 with percussion unit are used to deliver the non-reactive gas to the reaction space 12, and the flow rate of the non-reactive gas delivered by the gas inlet pipe 173 is relatively small. , Which is mainly used to remove the precursors in the reaction space 12, and the non-reactive gas transported by the non-reactive gas pipeline 175 has a relatively large flow rate, which is mainly used to blow the powder 121 in the reaction space 12.

具體而言,進氣管線173及非反應氣體輸送管線175將非反應氣體輸送至反應空間12的時間點不同,因此在實際應用時可不設置非反應氣體輸送管線175,並調整進氣管線173在不同時間點輸送的非反應氣體的流量。當要去除反應空間12內的前驅物時,可降低進氣管線173輸送至反應空間12的非反應氣體的流量,而要吹動反應空間12內的粉末121時,則增加進氣管線173輸送至反應空間12的非反應氣體的流量。Specifically, the time points at which the gas inlet line 173 and the non-reactive gas conveying line 175 convey the non-reactive gas to the reaction space 12 are different. Therefore, in actual applications, the non-reactive gas conveying line 175 may not be provided, and the gas inlet line 173 may be adjusted in time. The flow of non-reactive gas delivered at different time points. When the precursors in the reaction space 12 are to be removed, the flow rate of the non-reactive gas delivered by the gas inlet line 173 to the reaction space 12 can be reduced, and when the powder 121 in the reaction space 12 is to be blown, the gas inlet line 173 is added to deliver The flow rate of the non-reactive gas to the reaction space 12.

本新型的驅動單元15帶動外管體131及真空腔體11轉動時,內管體133及其內部的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175不會隨著轉動,有利於提高進氣管線173及/或非反應氣體輸送管線175輸送至反應空間12的非反應氣體及/或前驅物的穩定度。When the driving unit 15 of the present invention drives the outer tube body 131 and the vacuum chamber 11 to rotate, the inner tube body 133 and its internal air extraction pipeline 171, intake pipeline 173 and/or non-reactive gas delivery pipeline 175 will not rotate with it , It is beneficial to improve the stability of the non-reactive gas and/or precursor that the gas inlet pipe 173 and/or the non-reactive gas delivery pipe 175 transports to the reaction space 12.

加熱器177用以加熱連接空間134及內管體133,並加熱內管體133內的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175,以提高抽氣管線171、進氣管線173及/或非反應氣體輸送管線175內的氣體的溫度。溫度感測單元179用以量測加熱器177或連接空間134的溫度,以得知加熱器177的工作狀態。真空腔體11的內部、外部或周圍通常會設置另一個加熱裝置16,其中加熱裝置16鄰近或接觸真空腔體11的側壁115,並用以加熱真空腔體11及反應空間12。The heater 177 is used to heat the connection space 134 and the inner tube body 133, and heat the gas extraction line 171, the gas inlet line 173, and/or the non-reactive gas delivery line 175 in the inner tube body 133 to increase the gas extraction line 171 and the gas inlet The temperature of the gas in the gas pipeline 173 and/or the non-reactive gas delivery pipeline 175. The temperature sensing unit 179 is used to measure the temperature of the heater 177 or the connecting space 134 to know the working state of the heater 177. Another heating device 16 is usually arranged inside, outside or around the vacuum chamber 11. The heating device 16 is adjacent to or in contact with the side wall 115 of the vacuum chamber 11 and is used to heat the vacuum chamber 11 and the reaction space 12.

內管體133連接反應空間12的一端可設置一過濾單元139,其中內管體133內的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175經由過濾單元139流體連接真空腔體11的反應空間12。One end of the inner tube 133 connected to the reaction space 12 may be provided with a filter unit 139, wherein the suction line 171, the gas inlet line 173, and/or the non-reactive gas delivery line 175 in the inner tube 133 are fluidly connected to the vacuum chamber via the filter unit 139体11的反应空间12。 Body 11 of the reaction space 12.

抽氣管線171經由過濾單元139連體連接反應空間12,可避免抽氣管線171抽出反應空間12內的氣體時,將反應空間12內的粉末121一併抽出,可減少粉末121的損耗。The gas extraction line 171 is connected to the reaction space 12 through the filter unit 139, which can prevent the powder 121 in the reaction space 12 from being drawn out when the gas extraction line 171 extracts the gas in the reaction space 12, which can reduce the loss of the powder 121.

在本新型一實施例中,如圖4所示,進氣管線173及/或非反應氣體輸送管線175可由軸封裝置13的內管體133的連接空間134延伸至真空腔體11的反應空間12內,其中延伸至反應空間12的進氣管線173及/或非反應氣體輸送管線175可被定義為一延伸管線172。延伸管線172可穿過過濾單元139,並延伸至反應空間12。In an embodiment of the present invention, as shown in FIG. 4, the gas inlet line 173 and/or the non-reactive gas delivery line 175 can be extended from the connecting space 134 of the inner tube body 133 of the shaft sealing device 13 to the reaction space of the vacuum chamber 11 Within 12, the gas inlet line 173 and/or the non-reactive gas delivery line 175 extending to the reaction space 12 can be defined as an extension line 172. The extension line 172 may pass through the filter unit 139 and extend to the reaction space 12.

在本新型一實施例中,位於反應空間12內的進氣管線173、非反應氣體輸送管線175及/或延伸管線172,朝真空腔體11的前壁111或蓋板117的方向延伸。在不同實施例中,位於反應空間12內的進氣管線173、非反應氣體輸送管線175及/或延伸管線172亦可朝真空腔體11的側壁115及/或後壁113的方向彎折及延伸。此外延伸管線172可包括至少一出風口1721,其中出風口1721朝向真空腔體的前壁111、蓋板117、腔體119及/或側壁115。In an embodiment of the present invention, the gas inlet pipeline 173, the non-reactive gas delivery pipeline 175 and/or the extension pipeline 172 located in the reaction space 12 extend toward the front wall 111 or the cover plate 117 of the vacuum chamber 11. In different embodiments, the gas inlet pipe 173, the non-reactive gas delivery pipe 175, and/or the extension pipe 172 located in the reaction space 12 can also be bent toward the side wall 115 and/or the rear wall 113 of the vacuum chamber 11 and extend. In addition, the extension pipeline 172 may include at least one air outlet 1721, wherein the air outlet 1721 faces the front wall 111, the cover plate 117, the cavity 119 and/or the side wall 115 of the vacuum chamber.

在本新型另一實施例中,延伸管線172可持續將非反應氣體輸送至反應空間12,並可調整非反應氣體的流量。具體而言,延伸管線172輸出非反應氣體的模式可包括攪動模式及一般模式,在攪動模式下延伸管線172輸出的非反應氣體的流量較大,並可以輸出的非反應氣體攪動反應空間12內的粉末121。在一般模式下延伸管線172輸出的非反應氣體的流量較小,可能無法攪動反應空間12內的粉末121,但在一般模式下輸出的非反應氣體會在延伸管線172的出風口1721形成正壓,以防止粉末121由出風口1721進入延伸管線172。In another embodiment of the present invention, the extension pipeline 172 can continuously transport the non-reactive gas to the reaction space 12 and can adjust the flow rate of the non-reactive gas. Specifically, the non-reactive gas output mode of the extension line 172 may include agitation mode and general mode. In the agitation mode, the flow rate of the non-reactive gas output by the extension line 172 is relatively large, and the output non-reactive gas can agitate the reaction space 12的粉121。 The powder 121. In the general mode, the flow rate of the non-reactive gas output from the extension line 172 is small, and may not agitate the powder 121 in the reaction space 12, but the non-reactive gas output in the general mode will form a positive pressure at the air outlet 1721 of the extension line 172 , To prevent the powder 121 from entering the extension pipeline 172 from the air outlet 1721.

在本新型一實施例中,具有敲擊單元的粉末原子層沉積裝置10可包括一承載部191,用以承載驅動單元15、真空腔體11、軸封裝置13及/或敲擊單元14。例如承載部191連接驅動單元15,並透過驅動單元15連接軸封裝置13及真空腔體11。此外軸封裝置13及/或真空腔體11亦可透過至少一支撐架193連接承載部191,以提高連接的穩定度。In an embodiment of the present invention, the powder atomic layer deposition apparatus 10 with a knocking unit may include a carrying part 191 for supporting the driving unit 15, the vacuum chamber 11, the shaft sealing device 13 and/or the knocking unit 14. For example, the carrying portion 191 is connected to the driving unit 15, and the shaft sealing device 13 and the vacuum chamber 11 are connected through the driving unit 15. In addition, the shaft sealing device 13 and/or the vacuum chamber 11 can also be connected to the bearing portion 191 through at least one support frame 193 to improve the stability of the connection.

如圖5及圖6所示,軸封裝置13及/或驅動單元15設置於承載部191,而敲擊單元14可透過一位置調整機構195連接承載部191,例如敲擊單元14透過一連接支架147連接位置調整機構195。As shown in FIGS. 5 and 6, the shaft sealing device 13 and/or the driving unit 15 are disposed on the bearing portion 191, and the percussion unit 14 can be connected to the bearing portion 191 through a position adjustment mechanism 195, for example, the percussion unit 14 is connected through a connection The bracket 147 is connected to the position adjustment mechanism 195.

位置調整機構195,用以帶動敲擊單元14相對於承載部191位移或轉動,以改變敲擊單元14與真空腔體11的前壁111或蓋板117之間的距離及/或角度。The position adjustment mechanism 195 is used to drive the percussion unit 14 to move or rotate relative to the carrying portion 191 to change the distance and/or angle between the percussion unit 14 and the front wall 111 or the cover plate 117 of the vacuum chamber 11.

此外,軸封裝置13的內管體133可由外管體131的容置空間132延伸至真空腔體11的反應空間12,使得內管體133在反應空間12內形成一凸出管部130。In addition, the inner tube body 133 of the shaft sealing device 13 can extend from the accommodating space 132 of the outer tube body 131 to the reaction space 12 of the vacuum chamber 11, so that the inner tube body 133 forms a protruding tube portion 130 in the reaction space 12.

在本新型一實施例中,位置調整機構195可為滑軌,而敲擊單元14可沿著滑軌相對於真空腔體11位移,以改變敲擊單元14與真空腔體11之間的距離。在沉積過程中,敲擊單元14可沿著滑軌位移並靠近真空腔體11的前壁111或蓋板117,使得敲擊單元14可以敲擊真空腔體11的前壁111、蓋板117、腔體119或側壁115,如圖5所示。在完成沉積製程後,如圖6所示,敲擊單元14可沿著滑軌位移並遠離真空腔體11的前壁111或蓋板117,使得敲擊單元14與真空腔體11的前壁111或蓋板117之間具有間隔,以利於將真空腔體11或蓋板117卸下,並取出真空腔體11內的粉末121。In an embodiment of the present invention, the position adjustment mechanism 195 may be a slide rail, and the percussion unit 14 can move along the slide rail relative to the vacuum chamber 11 to change the distance between the percussion unit 14 and the vacuum chamber 11 . During the deposition process, the percussion unit 14 can move along the slide rail and approach the front wall 111 or the cover plate 117 of the vacuum chamber 11, so that the percussion unit 14 can strike the front wall 111 and the cover plate 117 of the vacuum chamber 11 , The cavity 119 or the side wall 115, as shown in FIG. 5. After the deposition process is completed, as shown in FIG. 6, the percussion unit 14 can be displaced along the slide rail and away from the front wall 111 or the cover plate 117 of the vacuum chamber 11, so that the percussion unit 14 and the front wall of the vacuum chamber 11 There is an interval between 111 or the cover plate 117 to facilitate the removal of the vacuum chamber 11 or the cover plate 117 and take out the powder 121 in the vacuum chamber 11.

在不同實施例中,位置調整機構195亦可以是一轉動裝置,敲擊單元14可經由轉動裝置相對於真空腔體11轉動,例如敲擊單元14可相對於真空腔體11進行水平或垂直方向的轉動,並遠離真空腔體11,使得敲擊單元14不會位於卸下真空腔體11或蓋板117的路徑上。In different embodiments, the position adjustment mechanism 195 can also be a rotating device, and the percussion unit 14 can be rotated relative to the vacuum chamber 11 via the rotating device. For example, the percussion unit 14 can be moved horizontally or vertically relative to the vacuum cavity 11 , And move away from the vacuum chamber 11, so that the percussion unit 14 will not be located on the path of removing the vacuum chamber 11 or the cover plate 117.

以上所述者,僅為本新型之一較佳實施例而已,並非用來限定本新型實施之範圍,即凡依本新型申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本新型之申請專利範圍內。The above is only one of the preferred embodiments of the present invention, and is not intended to limit the scope of implementation of the present invention, that is, all the equivalent changes and changes in the shape, structure, characteristics and spirit described in the scope of the patent application of the present invention Modifications should be included in the scope of the patent application for this new model.

10:具有敲擊單元的粉末原子層沉積裝置 11:真空腔體 111:前壁 113:後壁 115:側壁 117:蓋板 119:腔體 12:反應空間 121:粉末 13:軸封裝置 130:凸出管部 131:外管體 132:容置空間 133:內管體 134:連接空間 139:過濾單元 14:敲擊單元 141:馬達 143:敲擊部 145:緩衝部 147:連接支架 15:驅動單元 16:加熱裝置 171:抽氣管線 172:延伸管線 1721:出風口 173:進氣管線 175:非反應氣體輸送管線 177:加熱器 179:溫度感測單元 191:承載部 193:支撐架 195:位置調整機構 10: Powder atomic layer deposition device with percussion unit 11: Vacuum chamber 111: front wall 113: Back Wall 115: sidewall 117: cover 119: Cavity 12: reaction space 121: powder 13: Shaft seal device 130: protruding tube 131: Outer tube body 132: accommodating space 133: inner tube body 134: Connecting Space 139: filter unit 14: Percussion unit 141: Motor 143: Percussion Department 145: Buffer 147: connecting bracket 15: drive unit 16: heating device 171: Extraction line 172: Extension pipeline 1721: air outlet 173: intake line 175: Non-reactive gas pipeline 177: heater 179: temperature sensing unit 191: Carrying Department 193: support frame 195: Position adjustment mechanism

[圖1]為本新型具有敲擊單元的粉末原子層沉積裝置一實施例的立體示意圖。[Figure 1] is a three-dimensional schematic diagram of an embodiment of a new type of powder atomic layer deposition apparatus with a knocking unit.

[圖2]為本新型具有敲擊單元的粉末原子層沉積裝置一實施例的剖面示意圖。[Figure 2] is a schematic cross-sectional view of an embodiment of a new type of powder atomic layer deposition apparatus with a knocking unit.

[圖3]為本新型具有敲擊單元的粉末原子層沉積裝置的軸封裝置一實施例的剖面示意圖。[Figure 3] is a schematic cross-sectional view of an embodiment of a shaft sealing device of a new type of powder atomic layer deposition device with a knocking unit.

[圖4]為本新型具有敲擊單元的粉末原子層沉積裝置又一實施例的剖面示意圖。[Fig. 4] is a schematic cross-sectional view of another embodiment of the new type of powder atomic layer deposition apparatus with knocking unit.

[圖5]為本新型具有敲擊單元的粉末原子層沉積裝置又一實施例的剖面示意圖。[Figure 5] is a schematic cross-sectional view of another embodiment of a new type of powder atomic layer deposition apparatus with a knocking unit.

[圖6]為本新型具有敲擊單元的粉末原子層沉積裝置又一實施例的剖面示意圖。[Fig. 6] is a schematic cross-sectional view of another embodiment of a new type of powder atomic layer deposition apparatus with a knocking unit.

10:具有敲擊單元的粉末原子層沉積裝置 10: Powder atomic layer deposition device with percussion unit

11:真空腔體 11: Vacuum chamber

13:軸封裝置 13: Shaft seal device

14:敲擊單元 14: Percussion unit

15:驅動單元 15: drive unit

16:加熱裝置 16: heating device

191:承載部 191: Carrying Department

193:支撐架 193: support frame

Claims (10)

一種具有敲擊單元的粉末原子層沉積裝置,包括: 一真空腔體,包括一蓋板及一腔體,其中該蓋板連接該腔體,並於該蓋板及該腔體之間形成一反應空間,該反應空間用以容置複數顆粉末; 一軸封裝置,連接該真空腔體,並包括一外管體及一內管體,其中該外管體具有一容置空間,用以容置該內管體; 一驅動單元,連接該軸封裝置的該外管體,並經由該外管體帶動該真空腔體轉動; 至少一抽氣管線,位於該內管體內,流體連接該真空腔體的該反應空間,並用以抽出該反應空間內的一氣體; 至少一進氣管線,位於該內管體內,流體連接該真空腔體的該反應空間,並用以將一前驅物輸送至該反應空間;及 一敲擊單元,與該真空腔體的該蓋板相鄰,並用以敲擊該真空腔體的該蓋板或該腔體。 A powder atomic layer deposition device with percussion unit, including: A vacuum chamber includes a cover plate and a cavity, wherein the cover plate is connected to the cavity, and a reaction space is formed between the cover plate and the cavity, and the reaction space is used for accommodating a plurality of powders; A shaft sealing device connected to the vacuum chamber and comprising an outer tube body and an inner tube body, wherein the outer tube body has an accommodating space for accommodating the inner tube body; A driving unit connected to the outer tube body of the shaft sealing device, and drives the vacuum chamber to rotate through the outer tube body; At least one gas extraction pipeline located in the inner tube, fluidly connected to the reaction space of the vacuum chamber, and used to extract a gas in the reaction space; At least one gas inlet line located in the inner tube, fluidly connected to the reaction space of the vacuum chamber, and used to transport a precursor to the reaction space; and A knocking unit is adjacent to the cover plate of the vacuum cavity and used for knocking the cover plate or the cavity of the vacuum cavity. 如請求項1所述的具有敲擊單元的粉末原子層沉積裝置,其中該敲擊單元包括一馬達及一敲擊部,該馬達連接該敲擊部,並驅動該敲擊部敲擊該真空腔體的該蓋板或腔體。The powder atomic layer deposition apparatus having a knocking unit according to claim 1, wherein the knocking unit includes a motor and a knocking part, and the motor is connected to the knocking part and drives the knocking part to knock the vacuum The cover or cavity of the cavity. 如請求項2所述的具有敲擊單元的粉末原子層沉積裝置,其中該敲擊單元包括一緩衝部連接該敲擊部,該敲擊部經由該緩衝部敲擊該真空腔體的該蓋板或該腔體。The powder atomic layer deposition apparatus with a knocking unit according to claim 2, wherein the knocking unit includes a buffer part connected to the knocking part, and the knocking part knocks the lid of the vacuum chamber through the buffering part Plate or the cavity. 如請求項1所述的具有敲擊單元的粉末原子層沉積裝置,其中該進氣管線包括至少一非反應氣體輸送管線及至少一反應氣體輸送管線,該非反應氣體輸送管線用以將一非反應氣體輸送至該反應空間,以吹動該反應空間內的該粉末,而該反應氣體輸送管線則用以將該前驅物輸送至該反應空間。The powder atomic layer deposition apparatus with a knocking unit according to claim 1, wherein the gas inlet pipeline includes at least one non-reactive gas delivery pipeline and at least one reactive gas delivery pipeline, and the non-reactive gas delivery pipeline is used to transfer a non-reactive gas The gas is delivered to the reaction space to blow the powder in the reaction space, and the reaction gas delivery pipeline is used to deliver the precursor to the reaction space. 如請求項4所述的具有敲擊單元的粉末原子層沉積裝置,其中該非反應氣體輸送管線包括一延伸管線,該延伸管線位於該反應空間內,並朝該真空腔體的該蓋板的方向延伸。The powder atomic layer deposition apparatus with a knocking unit according to claim 4, wherein the non-reactive gas delivery pipeline includes an extension pipeline located in the reaction space and facing the direction of the cover plate of the vacuum chamber extend. 如請求項5所述的具有敲擊單元的粉末原子層沉積裝置,包括一過濾單元位於該內管體連接該反應空間的一端,該抽氣管線經由該過濾單元流體連接該反應空間,而該延伸管線穿過該過濾單元。The powder atomic layer deposition apparatus with percussion unit according to claim 5, comprising a filter unit at one end of the inner tube connected to the reaction space, the suction line is fluidly connected to the reaction space via the filter unit, and the The extension pipeline passes through the filter unit. 如請求項5所述的具有敲擊單元的粉末原子層沉積裝置,其中該延伸管線包括至少一出風口朝向該真空腔體的該蓋板或該腔體的方向。According to claim 5, the powder atomic layer deposition apparatus having a knocking unit, wherein the extension pipeline includes at least one air outlet facing the cover plate of the vacuum chamber or the direction of the cavity. 如請求項1所述的具有敲擊單元的粉末原子層沉積裝置,其中該進氣管線用以將一非反應氣體輸送至該反應空間,並以該非反應氣體吹動該反應空間內的該粉末。The powder atomic layer deposition apparatus with a knocking unit according to claim 1, wherein the gas inlet line is used to transport a non-reactive gas to the reaction space, and the non-reactive gas is used to blow the powder in the reaction space . 如請求項1所述的具有敲擊單元的粉末原子層沉積裝置,其中該內管體由該外管體的該容置空間延伸至該真空腔體的該反應空間,並在該反應空間內形成一凸出管部。The powder atomic layer deposition apparatus with a knocking unit according to claim 1, wherein the inner tube body extends from the accommodating space of the outer tube body to the reaction space of the vacuum chamber, and is in the reaction space A protruding tube is formed. 如請求項1所述的具有敲擊單元的粉末原子層沉積裝置,包括一承載部及一位置調整機構,該軸封裝置及該驅動單元設置於該承載部上,而該敲擊單元則透過該位置調整機構連接該承載部,並透過該位置調整機構帶動該敲擊單元相對於該承載部位移或轉動,以改變該敲擊單元與該真空腔體之間的間隔。The powder atomic layer deposition apparatus with a knocking unit according to claim 1, comprising a bearing part and a position adjustment mechanism, the shaft sealing device and the driving unit are arranged on the bearing part, and the knocking unit is through The position adjustment mechanism is connected to the bearing portion, and the percussion unit is moved or rotated relative to the bearing portion through the position adjustment mechanism to change the interval between the percussion unit and the vacuum cavity.
TW110204619U 2021-04-26 2021-04-26 Powder atomic layer deposition device with percussion unit TWM615615U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110204619U TWM615615U (en) 2021-04-26 2021-04-26 Powder atomic layer deposition device with percussion unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110204619U TWM615615U (en) 2021-04-26 2021-04-26 Powder atomic layer deposition device with percussion unit

Publications (1)

Publication Number Publication Date
TWM615615U true TWM615615U (en) 2021-08-11

Family

ID=78285919

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110204619U TWM615615U (en) 2021-04-26 2021-04-26 Powder atomic layer deposition device with percussion unit

Country Status (1)

Country Link
TW (1) TWM615615U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784497B (en) * 2021-04-26 2022-11-21 天虹科技股份有限公司 Atomic layer deposition device with knocking device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784497B (en) * 2021-04-26 2022-11-21 天虹科技股份有限公司 Atomic layer deposition device with knocking device

Similar Documents

Publication Publication Date Title
TWI759935B (en) Powder atomic layer deposition device for blowing powders
TWI772913B (en) Atomic layer deposition apparatus for coating particles
TWI740732B (en) Powder atomic layer deposition apparatus with special cover plate
TWI729944B (en) Powder atomic layer deposition apparatus
TWI750836B (en) Detachable powder atomic layer deposition apparatus
TW202214904A (en) Atomic layer deposition apparatus for coating on fine powders
CN112626495B (en) Atomic layer deposition device capable of blowing powder
CN215251163U (en) Powder atomic layer deposition machine table with vibration device
TWM615615U (en) Powder atomic layer deposition device with percussion unit
TWM610395U (en) Powder atomic layer deposition device for preventing powder sticking
TWM617306U (en) Powder atomic layer deposition machine with vibration device
TWM614877U (en) Powder atomic layer deposition device for preventing powder from sticking to inner wall
CN215251162U (en) Powder atomic layer deposition device with knocking unit
TWI784497B (en) Atomic layer deposition device with knocking device
TWI758170B (en) Powder atomic layer deposition device with vibration unit
TWM610491U (en) Atomic layer deposition device capable of blowing powder
TWI777522B (en) Powder atomic layer deposition device for preventing powders from sticking to inner wall
CN214736075U (en) Powder atomic layer deposition device for preventing powder from being sticky
TWM614453U (en) Detachable powder atomic layer deposition device
TWM609525U (en) Detachable powder atomic layer deposition device
TWI750962B (en) Powder atomic layer deposition apparatus for preventing powders from sticking to filter unit
CN115247255A (en) Knocking type powder atomic layer deposition device
CN112695296B (en) Atomic layer deposition device for particles
CN114752919B (en) Powder atomic layer deposition device for preventing powder from sticking
CN115247259A (en) Vibration type powder atomic layer deposition device