[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWM614453U - Detachable powder atomic layer deposition device - Google Patents

Detachable powder atomic layer deposition device Download PDF

Info

Publication number
TWM614453U
TWM614453U TW110203371U TW110203371U TWM614453U TW M614453 U TWM614453 U TW M614453U TW 110203371 U TW110203371 U TW 110203371U TW 110203371 U TW110203371 U TW 110203371U TW M614453 U TWM614453 U TW M614453U
Authority
TW
Taiwan
Prior art keywords
vacuum chamber
reaction space
atomic layer
layer deposition
sealing device
Prior art date
Application number
TW110203371U
Other languages
Chinese (zh)
Inventor
林俊成
張容華
Original Assignee
天虹科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天虹科技股份有限公司 filed Critical 天虹科技股份有限公司
Priority to TW110203371U priority Critical patent/TWM614453U/en
Publication of TWM614453U publication Critical patent/TWM614453U/en

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

本新型提供一種可拆式粉末原子層沉積裝置,主要包括一真空腔體、一軸封裝置及一驅動單元,其中驅動單元連接軸封裝置,而真空腔體的底部透過至少一連接單元鎖固在軸封裝置的一端。驅動單元透過軸封裝置帶動真空腔體轉動,以攪拌真空腔體的一反應空間內的粉末,以利於在粉末的表面形成厚度均勻的薄膜。此外完成原子層沉積的真空腔體可由軸封裝置上卸下,並透過一保護蓋覆蓋真空腔體的底部,以避免真空腔體內的粉末由底部散失,並降低粉末的損耗率。The invention provides a detachable powder atomic layer deposition device, which mainly includes a vacuum chamber, a shaft sealing device and a driving unit. The driving unit is connected to the shaft sealing device, and the bottom of the vacuum chamber is locked in by at least one connecting unit. One end of the shaft sealing device. The driving unit drives the vacuum chamber to rotate through the shaft sealing device to stir the powder in a reaction space of the vacuum chamber to facilitate the formation of a thin film with uniform thickness on the surface of the powder. In addition, the vacuum chamber completed with atomic layer deposition can be removed from the shaft sealing device, and the bottom of the vacuum chamber is covered by a protective cover to prevent the powder in the vacuum chamber from being lost from the bottom and reduce the powder loss rate.

Description

可拆式粉末原子層沉積裝置Detachable powder atomic layer deposition device

本新型有關於一種可拆式粉末原子層沉積裝置,主要透過一保護蓋覆蓋一真空腔體的底部,以防止真空腔體內的粉末由真空腔體的底部散失。The invention relates to a detachable powder atomic layer deposition device, which mainly covers the bottom of a vacuum chamber through a protective cover to prevent the powder in the vacuum chamber from being lost from the bottom of the vacuum chamber.

奈米顆粒(nanoparticle)一般被定義為在至少一個維度上小於100奈米的顆粒,奈米顆粒與宏觀物質在物理及化學上的特性截然不同。一般而言,宏觀物質的物理特性與本身的尺寸無關,但奈米顆粒則非如此,奈米顆粒在生物醫學、光學和電子等領域都具有潛在的應用。Nanoparticles are generally defined as particles smaller than 100 nanometers in at least one dimension. Nanoparticles and macroscopic substances have completely different physical and chemical properties. Generally speaking, the physical properties of macroscopic matter have nothing to do with its size, but nanoparticle is not the case. Nanoparticles have potential applications in the fields of biomedicine, optics, and electronics.

量子點(Quantum Dot)是半導體材料的奈米顆粒,目前研究的半導體材料為II-VI材料,如ZnS、CdS、CdSe等,其中又以CdSe最受到矚目。量子點的尺寸通常在2至50奈米之間,量子點被紫外線照射後,量子點中的電子會吸收能量,並從價帶躍遷到傳導帶。被激發的電子從傳導帶回到價帶時,會通過發光釋放出能量。Quantum dots are nano-particles of semiconductor materials. The semiconductor materials currently studied are II-VI materials, such as ZnS, CdS, CdSe, etc., of which CdSe has attracted the most attention. The size of quantum dots is usually between 2 and 50 nanometers. After the quantum dots are irradiated with ultraviolet light, the electrons in the quantum dots absorb energy and transition from the valence band to the conduction band. When the excited electron returns from the conduction band to the valence band, it releases energy through light emission.

量子點的能隙與尺寸大小相關,量子點的尺寸越大能隙越小,經照射後會發出波長較長的光,量子點的尺寸越小則能隙越大,經照射後會發出波長較短的光。例如5到6奈米的量子點會發出橘光或紅光,而2到3奈米的量子點則會發出藍光或綠光,當然光色還需取決於量子點的材料組成。The energy gap of a quantum dot is related to the size. The larger the size of the quantum dot, the smaller the energy gap, and will emit light with a longer wavelength after irradiation. The smaller the size of the quantum dot, the larger the energy gap, and the wavelength will be emitted after irradiation. Shorter light. For example, quantum dots of 5 to 6 nanometers emit orange or red light, while quantum dots of 2 to 3 nanometers emit blue or green light. Of course, the color of light also depends on the material composition of the quantum dots.

應用量子點的發光二極體(LED)產生的光接近連續光譜,同時具有高演色性,並有利於提高發光二極體的發光品質。此外亦可透過改變量子點的尺寸調整發射光的波長,使得量子點成為新一代發光裝置及顯示器的發展重點。Light-emitting diodes (LEDs) using quantum dots produce light close to a continuous spectrum, and at the same time have high color rendering properties, and help to improve the luminous quality of the light-emitting diodes. In addition, the wavelength of the emitted light can be adjusted by changing the size of the quantum dots, making the quantum dots the focus of the development of new generation light-emitting devices and displays.

量子點雖然具有上述的優點及特性,但在應用或製造的過程中容易產生團聚現象。此外量子點具有較高的表面活性,並容易與空氣及水氣發生反應,進而縮短量子點的壽命。Although quantum dots have the above-mentioned advantages and characteristics, they are prone to agglomeration during the application or manufacturing process. In addition, quantum dots have high surface activity and are easy to react with air and moisture, thereby shortening the lifespan of quantum dots.

具體來說,將量子點製作成為發光二極體的密封膠時,可能會產生團聚效應,而降低量子點的光學性能。此外,量子點在製作成發光二極體的密封膠後,外界的氧或水氣仍可能會穿過密封膠而接觸量子點的表面,導致量子點氧化,並影響量子點及發光二極體的效能或使用壽命。量子點表面的缺陷及懸空鍵(dangling bonds)亦可能造成非輻射復合(non-radiative recombination),同樣會影響量子點的發光效率。Specifically, when the quantum dots are made into a sealant for light-emitting diodes, agglomeration effect may occur, which reduces the optical performance of the quantum dots. In addition, after quantum dots are made into the sealant of light-emitting diodes, external oxygen or moisture may still pass through the sealant and contact the surface of the quantum dots, causing the quantum dots to oxidize and affect the quantum dots and light-emitting diodes. The effectiveness or service life of the product. Defects on the surface of quantum dots and dangling bonds may also cause non-radiative recombination, which also affects the luminous efficiency of quantum dots.

目前業界主要透過原子層沉積 (atomic layer deposition,ALD)在量子點的表面形成一層奈米厚度的薄膜,或者是在量子點的表面形成多層薄膜,以形成量子井結構。At present, the industry mainly uses atomic layer deposition (ALD) to form a nano-thick film on the surface of quantum dots, or form multiple layers of thin films on the surface of quantum dots to form a quantum well structure.

原子層沉積可以在基板上形成厚度均勻的薄膜,並可有效控制薄膜的厚度,理論上亦適用於三維的量子點。量子點靜置在承載盤時,相鄰的量子點之間會存在接觸點,使得原子層沉積的前驅物氣體無法接觸這些接觸點,並導致無法在所有的奈米顆粒的表面皆形成厚度均勻的薄膜。Atomic layer deposition can form a thin film with uniform thickness on the substrate, and can effectively control the thickness of the thin film. In theory, it is also suitable for three-dimensional quantum dots. When the quantum dots are placed on the carrier plate, there will be contact points between adjacent quantum dots, so that the precursor gas deposited by the atomic layer cannot contact these contact points, and it is impossible to form a uniform thickness on the surface of all nano particles.的膜。 The film.

一般而言,原子層沉積通常需要在真空環境下進行,因此原子層沉積裝置的構造往往較為厚實,並具有一定的重量,不利於使用者搬運及操作。為此本新型提出一種可拆式粉末原子層沉積裝置,在完成粉末的原子層沉積製程後,可將真空腔體由軸封裝置及/或驅動單元上卸下,方便使用者取出真空腔體內的粉末,並清潔真空腔體。此外可透過一保護蓋覆蓋真空腔體的一底部,以避免真空腔體內的粉末由底部散失。Generally speaking, atomic layer deposition usually needs to be performed in a vacuum environment. Therefore, the structure of the atomic layer deposition device is often thicker and has a certain weight, which is not conducive to the user's handling and operation. For this reason, the present invention proposes a detachable powder atomic layer deposition device. After the powder atomic layer deposition process is completed, the vacuum chamber can be removed from the shaft seal device and/or the drive unit to facilitate the user to take out the vacuum chamber Powder and clean the vacuum chamber. In addition, a protective cover can cover a bottom of the vacuum chamber to prevent the powder in the vacuum chamber from being lost from the bottom.

本新型的一目的,在於提供一種可拆式粉末原子層沉積裝置,主要包括一驅動單元、一軸封裝置及一真空腔體,其中驅動單元連接軸封裝置,而軸封裝置的另一端則透過至少一連接單元鎖固在真空腔體的底部,使得驅動單元可透過軸封裝置驅動真空腔體轉動。在完成原子層沉積製程後,可將真空腔體由軸封裝置上卸下,並將一保護蓋覆蓋真空腔體的底部。透過保護蓋的設置可防止在移動真空腔體的過程中,真空腔體內的粉末由底部散失,並有利於降低製程的材料成本並可提高使用時的便利性。One purpose of the present invention is to provide a detachable powder atomic layer deposition device, which mainly includes a driving unit, a shaft sealing device and a vacuum chamber, wherein the driving unit is connected to the shaft sealing device, and the other end of the shaft sealing device passes through At least one connecting unit is locked at the bottom of the vacuum chamber, so that the driving unit can drive the vacuum chamber to rotate through the shaft sealing device. After the atomic layer deposition process is completed, the vacuum chamber can be removed from the shaft sealing device, and a protective cover can cover the bottom of the vacuum chamber. The setting of the protective cover can prevent the powder in the vacuum cavity from being lost from the bottom during the process of moving the vacuum cavity, and is beneficial to reduce the material cost of the manufacturing process and improve the convenience in use.

本新型的一目的,在於提供一種可拆式粉末原子層沉積裝置,可將完成原子層沉積製程的真空腔體及粉末由軸封裝置上卸下,並將另一個裝載粉末的真空腔體鎖固在軸封裝置上,進行粉末的原子層沉積。此外上述已完成原子層沉積的真空腔體及未進行原子層沉積的真空腔體的底部皆覆蓋一保護蓋,以防止完成原子層沉積的粉末及未完成原子層沉積的粉末由真空腔體散失。One purpose of the present invention is to provide a detachable powder atomic layer deposition device, which can unload the vacuum chamber and powder that complete the atomic layer deposition process from the shaft sealing device, and lock another vacuum chamber that contains the powder. It is fixed on the shaft sealing device for atomic layer deposition of powder. In addition, the bottoms of the above-mentioned vacuum chambers that have completed atomic layer deposition and those that have not undergone atomic layer deposition are covered with a protective cover to prevent the powder that has completed atomic layer deposition and the powder that has not completed atomic layer deposition from escaping from the vacuum chamber. .

本新型的一目的,在於提供一種可拆式粉末原子層沉積裝置,其中真空腔體的底部具有一凹部,而凸出軸封裝置的一內管體則用以插設在真空腔體底部的凹部內,並在真空腔體的反應空間內形成一凸出管部。一保護蓋及真空腔體透過一卡扣單元、一磁吸單元或連接單元相連接,並覆蓋真空腔體底部的凹部,以避免真空腔體內的粉末由凹部散失。An object of the present invention is to provide a detachable powder atomic layer deposition device, wherein the bottom of the vacuum chamber has a concave part, and an inner tube protruding from the shaft seal device is used to insert the bottom of the vacuum chamber. A protruding tube is formed in the concave part and in the reaction space of the vacuum chamber. A protective cover and the vacuum chamber are connected through a buckle unit, a magnetic attraction unit or a connecting unit, and cover the recess at the bottom of the vacuum chamber to prevent the powder in the vacuum chamber from being lost through the recess.

本新型的一目的,在於提供一種可拆式粉末原子層沉積裝置,主要於真空腔體的底部設置一過濾單元,軸封裝置連接真空腔體時,設置在軸封裝置內的抽氣管線會經由過濾單元流體連接真空腔體的反應空間。一保護蓋及真空腔體透過一卡扣單元、一磁吸單元或連接單元相連接,並覆蓋真空腔體底部的過濾單元,以避免真空腔體內的粉末經由過濾單元散失。One objective of the present invention is to provide a detachable powder atomic layer deposition device, which is mainly provided with a filter unit at the bottom of the vacuum chamber. When the shaft seal device is connected to the vacuum chamber, the air extraction pipeline arranged in the shaft seal device will The reaction space of the vacuum chamber is fluidly connected via the filter unit. A protective cover and the vacuum chamber are connected through a snap unit, a magnetic attraction unit or a connecting unit, and cover the filter unit at the bottom of the vacuum chamber to prevent the powder in the vacuum chamber from being lost through the filter unit.

為了達到上述的目的,本新型提出一種可拆式粉末原子層沉積裝置,包括:一軸封裝置;一驅動單元,連接軸封裝置;一真空腔體,包括一底部透過至少一連接單元固定在軸封裝置上,並包括一反應空間用以容置複數個粉末,其中驅動單元透過軸封裝置帶動真空腔體轉動,連接單元解除鎖固後,真空腔體由軸封裝置卸下;至少一抽氣管線,位於軸封裝置內,流體連接真空腔體的反應空間,並用以抽出反應空間內的一氣體;至少一進氣管線,位於軸封裝置內,流體連接真空腔體的反應空間,並用以將一前驅物氣體或一非反應氣體輸送至反應空間,其中非反應氣體用以吹動反應空間內的粉末;及一保護蓋,用以覆蓋由軸封裝置卸下的真空腔體的底部。In order to achieve the above purpose, the present invention proposes a detachable powder atomic layer deposition device, which includes: a shaft sealing device; a driving unit connected to the shaft sealing device; a vacuum chamber including a bottom fixed to the shaft through at least one connecting unit The sealing device includes a reaction space for accommodating a plurality of powders. The driving unit drives the vacuum chamber to rotate through the shaft sealing device. After the connecting unit is unlocked, the vacuum chamber is removed by the shaft sealing device; The gas pipeline is located in the shaft sealing device, fluidly connected to the reaction space of the vacuum chamber, and used to extract a gas in the reaction space; at least one gas inlet pipeline, located in the shaft sealing device, is fluidly connected to the reaction space of the vacuum chamber and used To deliver a precursor gas or a non-reactive gas to the reaction space, where the non-reactive gas is used to blow the powder in the reaction space; and a protective cover to cover the bottom of the vacuum chamber removed by the shaft sealing device .

所述的可拆式粉末原子層沉積裝置,其中真空腔體的底部設置一穿孔,而保護蓋則用以覆蓋穿孔。In the detachable powder atomic layer deposition device, a perforation is provided at the bottom of the vacuum chamber, and the protective cover is used to cover the perforation.

所述的可拆式粉末原子層沉積裝置,其中軸封裝置包括一外管體及一內管體,外管體包括一容置空間用以容置內管體,而抽氣管線及進氣管線則位於內管體內,並經由真空腔體的穿孔流體連接反應空間。In the detachable powder atomic layer deposition device, the shaft sealing device includes an outer tube body and an inner tube body, and the outer tube body includes an accommodating space for accommodating the inner tube body, and the air extraction line and the air inlet The pipeline is located in the inner tube and is fluidly connected to the reaction space through the perforation of the vacuum chamber.

所述的可拆式粉末原子層沉積裝置,包括一過濾單元設置於真空腔體的穿孔,抽氣管線及進氣管線則經由過濾單元流體連接真空腔體的反應空間,而保護蓋連接真空腔體的一表面設置至少一環形密封件,保護蓋覆蓋真空腔體的底部時,環形密封件位於穿孔及過濾單元的周圍。The detachable powder atomic layer deposition device includes a filter unit arranged in the perforation of the vacuum chamber, the suction line and the inlet line are fluidly connected to the reaction space of the vacuum chamber through the filter unit, and the protective cover is connected to the vacuum chamber At least one annular sealing element is arranged on one surface of the body. When the protective cover covers the bottom of the vacuum chamber, the annular sealing element is located around the perforation and filter unit.

所述的可拆式粉末原子層沉積裝置,其中真空腔體的底部包括一凹部,凹部由真空腔體的底部延伸至反應空間,用以容置凸出軸封裝置的內管體,穿孔位於凹部連接反應空間的一端,而保護蓋則用以覆蓋凹部及穿孔。In the detachable powder atomic layer deposition device, the bottom of the vacuum chamber includes a recess, which extends from the bottom of the vacuum chamber to the reaction space for accommodating the inner tube protruding from the shaft seal device, and the perforation is located The recess is connected to one end of the reaction space, and the protective cover is used to cover the recess and the perforation.

所述的可拆式粉末原子層沉積裝置,包括一過濾單元設置於凹部的穿孔,抽氣管線及進氣管線則經由過濾單元流體連接真空腔體的反應空間,而保護蓋的一表面則設置至少一環形密封單元,保護蓋覆蓋真空腔體的底部時,環形密封單元位於穿孔及過濾單元的周圍。The detachable powder atomic layer deposition device includes a filter unit arranged in the perforation of the recess, the suction line and the inlet line are fluidly connected to the reaction space of the vacuum chamber through the filter unit, and a surface of the protective cover is provided At least one annular sealing unit. When the protective cover covers the bottom of the vacuum chamber, the annular sealing unit is located around the perforation and filter unit.

所述的可拆式粉末原子層沉積裝置,其中真空腔體的底部及保護蓋上設置對應的至少一卡扣單元或至少一磁吸單元,保護蓋透過卡扣單元或磁吸單元連接並固定在真空腔體的底部。In the detachable powder atomic layer deposition device, the bottom of the vacuum chamber and the protective cover are provided with at least one corresponding snap unit or at least one magnetic attraction unit, and the protective cover is connected and fixed by the snap unit or the magnetic attraction unit At the bottom of the vacuum chamber.

所述的可拆式粉末原子層沉積裝置,包括至少一連接單元,用以將保護蓋固定在真空腔體的底部。The detachable powder atomic layer deposition device includes at least one connecting unit for fixing the protective cover on the bottom of the vacuum chamber.

所述的可拆式粉末原子層沉積裝置,其中進氣管線包括至少一非反應氣體輸送管線位於軸封裝置內,流體連接真空腔體的反應空間,並用以將非反應氣體輸送至真空腔體的反應空間,以吹動反應空間內的粉末。In the detachable powder atomic layer deposition device, the gas inlet pipeline includes at least one non-reactive gas delivery pipeline located in the shaft seal device, fluidly connected to the reaction space of the vacuum chamber, and used to deliver the non-reactive gas to the vacuum chamber The reaction space to blow the powder in the reaction space.

所述的可拆式粉末原子層沉積裝置,其中真空腔體包括一蓋板及一腔體,蓋板的一內表面覆蓋腔體以在兩者之間形成反應空間,並於蓋板的內表面設置一監控晶圓。In the detachable powder atomic layer deposition device, the vacuum chamber includes a cover plate and a cavity, an inner surface of the cover plate covers the cavity to form a reaction space between the two, and is located inside the cover plate A monitoring wafer is provided on the surface.

請參閱圖1、圖2、圖3及圖4,分別為本新型可拆式粉末原子層沉積裝置一實施例的立體示意圖、可拆式粉末原子層沉積裝置的軸封裝置的剖面示意圖、剖面示意圖及剖面分解示意圖。如圖所示,可拆式粉末原子層沉積裝置10主要包括一真空腔體11、一軸封裝置13及一驅動單元15,其中驅動單元15透過軸封裝置13連接並帶動真空腔體11轉動。Please refer to Figure 1, Figure 2, Figure 3 and Figure 4, which are respectively a three-dimensional schematic diagram of an embodiment of the new detachable powder atomic layer deposition device, a cross-sectional schematic diagram and a cross-section of the shaft sealing device of the detachable powder atomic layer deposition device Schematic diagram and cross-sectional decomposition diagram. As shown in the figure, the detachable powder atomic layer deposition apparatus 10 mainly includes a vacuum chamber 11, a shaft sealing device 13 and a driving unit 15. The driving unit 15 is connected through the shaft sealing device 13 and drives the vacuum chamber 11 to rotate.

真空腔體11內具有一反應空間12,用以容置複數個粉末121,其中粉末121可以是量子點(Quantum Dot),例如ZnS、CdS、CdSe等II-VI半導體材料,而形成在量子點上的薄膜可以是三氧化二鋁(Al2O3)。真空腔體11可包括一蓋板111及一腔體113,其中蓋板111的一內表面1111用以覆蓋腔體113,並在兩者之間形成反應空間12。The vacuum cavity 11 has a reaction space 12 for accommodating a plurality of powders 121. The powders 121 may be Quantum Dots, such as II-VI semiconductor materials such as ZnS, CdS, and CdSe, which are formed in the quantum dots. The above film can be aluminum oxide (Al2O3). The vacuum chamber 11 may include a cover 111 and a cavity 113, wherein an inner surface 1111 of the cover 111 is used to cover the cavity 113, and a reaction space 12 is formed between the two.

在本新型一實施例中,可於蓋板111的內表面1111設置一監控晶圓115,當蓋板111覆蓋腔體113時,監控晶圓115會位於反應空間12內。在反應空間12內進行原子層沉積時,監控晶圓115的表面會形成薄膜。在實際應用時可進一步量測監控晶圓115表面的薄膜厚度與粉末121表面的薄膜厚度,並計算出兩者之間的關係。而後便可透過量測監控晶圓115表面的薄膜厚度,換算出粉末121表面的薄膜厚度。In an embodiment of the present invention, a monitoring wafer 115 may be disposed on the inner surface 1111 of the cover plate 111, and when the cover plate 111 covers the cavity 113, the monitoring wafer 115 will be located in the reaction space 12. When atomic layer deposition is performed in the reaction space 12, a thin film is formed on the surface of the monitoring wafer 115. In actual application, the film thickness on the surface of the monitoring wafer 115 and the film thickness on the surface of the powder 121 can be further measured, and the relationship between the two can be calculated. Then, the film thickness on the surface of the monitoring wafer 115 can be measured to calculate the film thickness on the surface of the powder 121.

軸封裝置13包括一外管體131及一內管體133,其中外管體131具有一容置空間132,而內管體133則具有一連接空間134,例如外管體131及內管體133可為空心柱狀體。外管體131的容置空間132用以容置內管體133,其中外管體131及內管體133同軸設置。軸封裝置13可以是一般常見的軸封或磁流體軸封,主要用以隔離真空腔體11的反應空間12與外部的空間,以維持反應空間12的真空。The shaft sealing device 13 includes an outer tube body 131 and an inner tube body 133. The outer tube body 131 has a accommodating space 132, and the inner tube body 133 has a connecting space 134, such as the outer tube body 131 and the inner tube body. 133 can be a hollow cylinder. The accommodating space 132 of the outer tube body 131 is used for accommodating the inner tube body 133, wherein the outer tube body 131 and the inner tube body 133 are coaxially arranged. The shaft sealing device 13 may be a common shaft seal or a magnetic fluid shaft seal, and is mainly used to isolate the reaction space 12 of the vacuum chamber 11 from the external space, so as to maintain the vacuum of the reaction space 12.

驅動單元15連接軸封裝置13的一端,並透過軸封裝置13帶動真空腔體11轉動,例如透過外管體131連接真空腔體11,並透過外管體131帶動真空腔體11轉動。The driving unit 15 is connected to one end of the shaft sealing device 13, and drives the vacuum chamber 11 to rotate through the shaft sealing device 13, for example, connects to the vacuum chamber 11 through the outer tube body 131, and drives the vacuum chamber 11 to rotate through the outer tube body 131.

驅動單元15可帶動外管體131及真空腔體11以同一方向持續轉動,例如順時針或逆時針方向持續轉動。在不同實施例中,驅動單元15可帶動外管體131及真空腔體11以順時針的方向旋轉一特定角度後,再以逆時針的方向旋轉特定角度,例如特定角度可為360度。真空腔體11轉動時,會攪拌反應空間12內的粉末121,以利於粉末121均勻受熱並與前驅物氣體或非反應氣體接觸。The driving unit 15 can drive the outer tube 131 and the vacuum chamber 11 to continuously rotate in the same direction, for example, to continuously rotate clockwise or counterclockwise. In different embodiments, the driving unit 15 can drive the outer tube body 131 and the vacuum chamber 11 to rotate a specific angle in a clockwise direction, and then rotate a specific angle in a counterclockwise direction, for example, the specific angle may be 360 degrees. When the vacuum chamber 11 rotates, it will agitate the powder 121 in the reaction space 12, so that the powder 121 is evenly heated and comes into contact with the precursor gas or non-reactive gas.

在本新型一實施例中,驅動單元15可為馬達,透過至少一齒輪14連接外管體131,並經由齒輪14帶動外管體131及真空腔體11相對於內管體133轉動。In an embodiment of the present invention, the driving unit 15 may be a motor, which is connected to the outer tube body 131 through at least one gear 14 and drives the outer tube body 131 and the vacuum chamber 11 to rotate relative to the inner tube body 133 via the gear 14.

如圖2及圖3所示,內管體133的連接空間134內可設置至少一抽氣管線171、至少一進氣管線173、至少一非反應氣體輸送管線175、一加熱器177及/或一溫度感測單元179。在本新型一實施例中,真空腔體11的底部117可設置一穿孔118,而抽氣管線171、進氣管線173及/或非反應氣體輸送管線175可經由穿孔118流體連接真空腔體11的反應空間12。As shown in FIGS. 2 and 3, the connecting space 134 of the inner tube body 133 can be provided with at least one gas extraction line 171, at least one gas inlet line 173, at least one non-reactive gas delivery line 175, a heater 177 and/or A temperature sensing unit 179. In an embodiment of the present invention, the bottom 117 of the vacuum chamber 11 may be provided with a perforation 118, and the suction line 171, the inlet line 173 and/or the non-reactive gas delivery line 175 may be fluidly connected to the vacuum chamber 11 through the perforation 118 The reaction space 12.

抽氣管線171流體連接真空腔體11的反應空間12,並用以抽出反應空間12內的氣體,使得反應空間12為真空狀態,以進行原子層沉積製程。具體而言抽氣管線171可連接一幫浦,並透過幫浦抽出反應空間12內的氣體。The gas extraction line 171 is fluidly connected to the reaction space 12 of the vacuum chamber 11 and is used to extract gas in the reaction space 12 so that the reaction space 12 is in a vacuum state for the atomic layer deposition process. Specifically, the pumping line 171 can be connected to a pump, and the gas in the reaction space 12 can be pumped out through the pump.

進氣管線173流體連接真空腔體11的反應空間12,並用以將一前驅物氣體或一非反應氣體輸送至反應空間12,其中非反應氣體可以是氮氣或氬氣等惰性氣體。例如進氣管線173可透過閥件組連接一前驅物氣體儲存槽及一非反應氣體儲存槽,並透過閥件組將前驅物氣體輸送至反應空間12內,使得前驅物氣體沉積粉末121表面。在實際應用時,進氣管線173可能會將一載送氣體(carrier gas)及前驅物氣體一起輸送到反應空間12內。而後透過閥件組將非反應氣體輸送至反應空間12內,並透過抽氣管線171抽氣,以去除反應空間12內的前驅物氣體。在本新型一實施例中,進氣管線173可連接複數個分枝管線,並分別透過各個分枝管線將不同的前驅物氣體依序輸送至反應空間12內。The gas inlet line 173 is fluidly connected to the reaction space 12 of the vacuum chamber 11 and is used to transport a precursor gas or a non-reactive gas to the reaction space 12, where the non-reactive gas can be an inert gas such as nitrogen or argon. For example, the gas inlet line 173 may be connected to a precursor gas storage tank and a non-reactive gas storage tank through the valve assembly, and the precursor gas can be transported into the reaction space 12 through the valve assembly, so that the precursor gas deposits on the surface of the powder 121. In practical applications, the gas inlet line 173 may transport a carrier gas and precursor gas into the reaction space 12 together. Then, the non-reactive gas is transported into the reaction space 12 through the valve assembly, and is pumped through the gas extraction line 171 to remove the precursor gas in the reaction space 12. In an embodiment of the present invention, the gas inlet pipeline 173 can be connected to a plurality of branch pipelines, and different precursor gases can be sequentially delivered into the reaction space 12 through each branch pipeline.

此外進氣管線173可增大輸送至反應空間12的非反應氣體的流量,並透過非反應氣體吹動反應空間12內的粉末121,使得粉末121受到非反應氣體的帶動,而擴散到反應空間12的各個區域。In addition, the gas inlet line 173 can increase the flow rate of the non-reactive gas delivered to the reaction space 12, and blow the powder 121 in the reaction space 12 through the non-reactive gas, so that the powder 121 is driven by the non-reactive gas and diffuses into the reaction space. 12 various areas.

在本新型一實施例中,進氣管線173可包括至少一非反應氣體輸送管線175流體連接真空腔體11的反應空間12,並用以將一非反應氣體輸送至反應空間12,例如非反應氣體輸送管線175可透過閥件組連接一氮氣儲存槽,並透過閥件組將氮氣輸送至反應空間12。非反應氣體用以吹動反應空間12內的粉末121,配合驅動單元15驅動真空腔體11轉動,可有效且均勻的翻攪反應空間12內的粉末121,並在各個粉末121的表面沉積厚度均勻的薄膜。In an embodiment of the present invention, the gas inlet pipeline 173 may include at least one non-reactive gas delivery pipeline 175 fluidly connected to the reaction space 12 of the vacuum chamber 11, and is used to deliver a non-reactive gas to the reaction space 12, such as non-reactive gas The delivery line 175 can be connected to a nitrogen storage tank through the valve assembly, and deliver the nitrogen to the reaction space 12 through the valve assembly. The non-reactive gas is used to blow the powder 121 in the reaction space 12 and cooperate with the driving unit 15 to drive the vacuum chamber 11 to rotate, which can effectively and uniformly stir the powder 121 in the reaction space 12 and deposit thickness on the surface of each powder 121 Uniform film.

可拆式粉末原子層沉積裝置10的進氣管線173及非反應氣體輸送管線175都用以將非反應氣體輸送至反應空間12,其中進氣管線173輸送的非反應氣體的流量較小,主要用以去除反應空間12內的前驅物氣體,而非反應氣體輸送管線175輸送的非反應氣體的流量較大,主要用以吹動反應空間12內的粉末121。The gas inlet pipeline 173 and the non-reactive gas delivery pipeline 175 of the detachable powder atomic layer deposition apparatus 10 are both used to deliver the non-reactive gas to the reaction space 12, and the flow rate of the non-reactive gas delivered by the gas inlet pipeline 173 is relatively small. The non-reactive gas is used to remove the precursor gas in the reaction space 12, and the non-reactive gas transported by the non-reactive gas delivery line 175 has a relatively large flow rate, which is mainly used to blow the powder 121 in the reaction space 12.

具體而言,進氣管線173及非反應氣體輸送管線175將非反應氣體輸送至反應空間12的時間點不同,因此在實際應用時可不設置非反應氣體輸送管線175,並調整進氣管線173在不同時間點輸送的非反應氣體的流量。當要去除反應空間12內的前驅物氣體時,可降低進氣管線173輸送至反應空間12的非反應氣體的流量,而要吹動反應空間12內的粉末121時,則增加進氣管線173輸送至反應空間12的非反應氣體的流量。Specifically, the time points at which the gas inlet line 173 and the non-reactive gas conveying line 175 convey the non-reactive gas to the reaction space 12 are different. Therefore, in actual applications, the non-reactive gas conveying line 175 may not be provided, and the gas inlet line 173 may be adjusted in time. The flow of non-reactive gas delivered at different time points. When the precursor gas in the reaction space 12 is to be removed, the flow rate of the non-reactive gas delivered to the reaction space 12 by the gas inlet line 173 can be reduced, and when the powder 121 in the reaction space 12 is to be blown, the gas inlet line 173 is added. The flow rate of the non-reactive gas delivered to the reaction space 12.

本新型的驅動單元15帶動外管體131及真空腔體11轉動時,內管體133及其內部的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175不會隨著轉動,有利於提高進氣管線173及/或非反應氣體輸送管線175輸送至反應空間12的非反應氣體及/或前驅物氣體的穩定度。When the driving unit 15 of the present invention drives the outer tube body 131 and the vacuum chamber 11 to rotate, the inner tube body 133 and its internal air extraction pipeline 171, intake pipeline 173 and/or non-reactive gas delivery pipeline 175 will not rotate with it , Which is beneficial to improve the stability of the non-reactive gas and/or precursor gas delivered by the gas inlet line 173 and/or the non-reactive gas delivery line 175 to the reaction space 12.

加熱器177用以加熱連接空間134及內管體133,並透過加熱器177加熱內管體133內的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175,以提高抽氣管線171、進氣管線173及/或非反應氣體輸送管線175內的氣體的溫度。例如可提高進氣管線173輸送至反應空間12的非反應氣體及/或前驅物氣體的溫度,並可提高非反應氣體輸送管線175輸送至反應空間12的非反應氣體的溫度。使得非反應氣體及/或前驅物氣體進入反應空間12時,不會造成反應空間12的溫度大幅下降或改變。此外可透過溫度感測單元179量測加熱器177或連接空間134的溫度,以得知加熱器177的工作狀態。當然在真空腔體11的內部、外部或周圍通常會設置另一個加熱裝置,其中加熱裝置鄰近或接觸真空腔體11,並用以加熱真空腔體11及反應空間12。The heater 177 is used to heat the connection space 134 and the inner tube body 133, and heat the air extraction line 171, the air inlet line 173 and/or the non-reactive gas delivery line 175 in the inner tube body 133 through the heater 177 to improve air extraction The temperature of the gas in the pipeline 171, the gas inlet pipeline 173, and/or the non-reactive gas delivery pipeline 175. For example, the temperature of the non-reactive gas and/or the precursor gas delivered by the gas inlet line 173 to the reaction space 12 can be increased, and the temperature of the non-reactive gas delivered by the non-reactive gas delivery line 175 to the reaction space 12 can be increased. When non-reactive gases and/or precursor gases enter the reaction space 12, the temperature of the reaction space 12 will not drop or change significantly. In addition, the temperature of the heater 177 or the connecting space 134 can be measured by the temperature sensing unit 179 to know the working state of the heater 177. Of course, another heating device is usually arranged inside, outside or around the vacuum cavity 11, wherein the heating device is adjacent to or in contact with the vacuum cavity 11 and is used to heat the vacuum cavity 11 and the reaction space 12.

在進行原子層沉積製程時,真空腔體11的反應空間12需要維持真空狀態,因此真空腔體11的結構通常較為厚實,重量亦較為沉重。軸封裝置13用以承載及驅動真空腔體11,同樣較為厚實及沉重。在操作時使用者需要將真空腔體11及軸封裝置13一起由驅動單元15上卸下,才能將真空腔體11內的粉末121取出,並清潔真空腔體11。如此一來不僅會造成使用者的負擔,亦可能在操作及清潔過程中發生碰撞,而造成使用者受傷或裝置損壞。During the atomic layer deposition process, the reaction space 12 of the vacuum chamber 11 needs to be maintained in a vacuum state. Therefore, the structure of the vacuum chamber 11 is usually relatively thick and heavy. The shaft sealing device 13 is used to carry and drive the vacuum chamber 11, and is also relatively thick and heavy. During operation, the user needs to remove the vacuum chamber 11 and the shaft sealing device 13 from the driving unit 15 together to take out the powder 121 in the vacuum chamber 11 and clean the vacuum chamber 11. This will not only cause a burden on the user, but also may cause a collision during operation and cleaning, which may cause injury to the user or damage to the device.

為了改善上述的問題,本新型將真空腔體11及軸封裝置13設計為兩個獨立的構件。在進行原子層沉積時,真空腔體11固定在軸封裝置13上,如圖3所示,真空腔體11的底部117透過至少一連接單元112連接並固定在軸封裝置13的一端,例如連接單元112可為螺絲。連接單元112為螺絲僅為本新型一實施例,在實際應用時可透過其他不同形式的連接單元112將真空腔體11鎖固在軸封裝置13上,例如透過氣缸接頭、卡扣機構、卡榫、快拆裝置、螺紋等具有可拆卸功能的連接單元112連接真空腔體11及軸封裝置13。In order to improve the above-mentioned problems, the present invention designs the vacuum chamber 11 and the shaft sealing device 13 as two independent components. During atomic layer deposition, the vacuum chamber 11 is fixed on the shaft sealing device 13. As shown in FIG. 3, the bottom 117 of the vacuum chamber 11 is connected and fixed to one end of the shaft sealing device 13 through at least one connecting unit 112, for example The connecting unit 112 may be a screw. The connecting unit 112 being a screw is only an embodiment of the present invention. In actual application, the vacuum chamber 11 can be locked on the shaft sealing device 13 through other different forms of connecting unit 112, such as a cylinder joint, a buckle mechanism, and a clamp. A connecting unit 112 with a detachable function such as a tenon, a quick-release device, and a screw connects the vacuum chamber 11 and the shaft sealing device 13.

在本新型一實施例中,連接單元112、真空腔體11及軸封裝置13可為三個獨立的構件,例如連接單元112為螺絲,而真空腔體11及軸封裝置13上設置對應的連接孔。在本新型另一實施例中,連接單元112可直接設置在真空腔體11及/或軸封裝置13上,例如於真空腔體11及軸封裝置13上設置對應的氣缸接頭及連接孔、榫頭及卯眼、外螺紋及內螺紋等,同樣可透過連接單元112將真空腔體11鎖固在軸封裝置13上。In an embodiment of the present invention, the connecting unit 112, the vacuum chamber 11, and the shaft sealing device 13 can be three independent components. For example, the connecting unit 112 is a screw, and the vacuum chamber 11 and the shaft sealing device 13 are provided with corresponding Connection hole. In another embodiment of the present invention, the connecting unit 112 can be directly arranged on the vacuum chamber 11 and/or the shaft sealing device 13, for example, corresponding cylinder joints and connecting holes are provided on the vacuum chamber 11 and the shaft sealing device 13. Tenon and mortise, external thread and internal thread, etc. can also be used to lock the vacuum chamber 11 on the shaft sealing device 13 through the connecting unit 112.

驅動單元15可經由軸封裝置13帶動真空腔體11轉動,以翻攪真空腔體11的反應空間12內的粉末121。當真空腔體11連接軸封裝置13時,軸封裝置13內的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175會流體連接真空腔體11的反應空間12。The driving unit 15 can drive the vacuum chamber 11 to rotate through the shaft sealing device 13 to stir the powder 121 in the reaction space 12 of the vacuum chamber 11. When the vacuum chamber 11 is connected to the shaft sealing device 13, the suction line 171, the gas inlet line 173 and/or the non-reactive gas delivery line 175 in the shaft seal device 13 will be fluidly connected to the reaction space 12 of the vacuum chamber 11.

在完成粉末121的原子層沉積後,可解除連接單元112的鎖固,將真空腔體11由軸封裝置13上卸下,如圖4所示。由於真空腔體11的重量小於真空腔體11加上軸封裝置13的重量,將真空腔體11由軸封裝置13上卸下,可減低使用者操作或搬運真空腔體11的負擔。將真空腔體11由軸封裝置13上卸下,亦方便操作者取出真空腔體11內完成原子層沉積的粉末121,清潔及保養真空腔體11及/或軸封裝置13,並將新的粉末121放入真空腔體11的反應空間12內。After the atomic layer deposition of the powder 121 is completed, the locking of the connecting unit 112 can be released, and the vacuum chamber 11 can be removed from the shaft sealing device 13, as shown in FIG. 4. Since the weight of the vacuum chamber 11 is less than the weight of the vacuum chamber 11 plus the shaft sealing device 13, removing the vacuum chamber 11 from the shaft sealing device 13 can reduce the burden on the user to operate or carry the vacuum chamber 11. The vacuum chamber 11 is removed from the shaft sealing device 13, and it is also convenient for the operator to take out the atomic layer deposition powder 121 in the vacuum chamber 11, clean and maintain the vacuum chamber 11 and/or the shaft seal device 13, and replace The powder 121 is put into the reaction space 12 of the vacuum chamber 11.

此外,本新型所述的可拆式粉末原子層沉積裝置10亦有利於提高原子層沉積的製程效率。具體而言,可準備多個真空腔體11,並分別在各個真空腔體11內放置粉末121。將其中一個真空腔體11鎖固在軸封裝置13上,並對真空腔體11內的粉末121進行原子層沉積。在完成粉末121的原子層沉積後,將真空腔體11及粉末121由軸封裝置13卸下,並將另一個真空腔體11固定在軸封裝置13上,對該真空腔體11內的粉末121進行原子層沉積製程。被卸下的真空腔體11可放置在冷卻區,待真空腔體11及粉末121的溫度下降後,再將粉末121由真空腔體11內取出。In addition, the detachable powder atomic layer deposition device 10 of the present invention is also beneficial to improve the process efficiency of atomic layer deposition. Specifically, a plurality of vacuum chambers 11 may be prepared, and the powder 121 may be placed in each vacuum chamber 11 respectively. One of the vacuum chambers 11 is locked on the shaft sealing device 13, and the powder 121 in the vacuum chamber 11 is subjected to atomic layer deposition. After the atomic layer deposition of the powder 121 is completed, the vacuum chamber 11 and the powder 121 are removed from the shaft sealing device 13, and the other vacuum chamber 11 is fixed on the shaft sealing device 13, and the pressure in the vacuum chamber 11 The powder 121 undergoes an atomic layer deposition process. The unloaded vacuum chamber 11 can be placed in the cooling zone, and after the temperature of the vacuum chamber 11 and the powder 121 drops, the powder 121 is taken out of the vacuum chamber 11.

在本新型一實施例中,位於真空腔體11的底部117的穿孔118可設置一過濾單元139,當真空腔體11連接軸封裝置13時,真空腔體11上的過濾單元139會覆蓋軸封裝置13的內管體133,使得內管體133內的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175經由過濾單元139流體連接真空腔體11的反應空間12。In an embodiment of the present invention, a filter unit 139 can be provided in the perforation 118 at the bottom 117 of the vacuum chamber 11, and when the vacuum chamber 11 is connected to the shaft sealing device 13, the filter unit 139 on the vacuum chamber 11 will cover the shaft The inner tube 133 of the sealing device 13 is sealed so that the gas extraction line 171, the gas inlet line 173 and/or the non-reactive gas delivery line 175 in the inner tube 133 are fluidly connected to the reaction space 12 of the vacuum chamber 11 via the filter unit 139.

透過過濾單元139的設置,可避免抽氣管線171抽出反應空間12內的氣體時,將反應空間12內的粉末121一併抽出,造成粉末121的損耗。另外將過濾單元139設置在真空腔體11上,而非設置在軸封裝置13上,則可避免真空腔體11由軸封裝置13上卸下時,粉末121由真空腔體11的反應空間12散落到外部。The arrangement of the filter unit 139 can prevent the powder 121 in the reaction space 12 from being drawn out when the gas extraction line 171 extracts the gas in the reaction space 12, resulting in the loss of the powder 121. In addition, the filter unit 139 is arranged on the vacuum chamber 11 instead of the shaft sealing device 13, so as to prevent the powder 121 from being removed from the reaction space of the vacuum chamber 11 when the vacuum chamber 11 is removed from the shaft sealing device 13 12 scattered to the outside.

雖然真空腔體11的底部117設置過濾單元139,但由軸封裝置13上卸下的真空腔體11內的粉末121仍可能會由過濾單元139流失到外部,並造成真空腔體11內的粉末121損耗,進而增加製程的材料成本。為了避免上述的情形發生,本新型增加了一保護蓋16用以覆蓋真空腔體11的底部117,並用以覆蓋真空腔體11的底部117上的穿孔118,以防止真空腔體11內的粉末121散失。Although the bottom 117 of the vacuum chamber 11 is provided with a filter unit 139, the powder 121 in the vacuum chamber 11 removed from the shaft seal device 13 may still be lost from the filter unit 139 to the outside, and cause damage in the vacuum chamber 11 The powder 121 is lost, which in turn increases the material cost of the manufacturing process. In order to avoid the above situation, the present invention adds a protective cover 16 to cover the bottom 117 of the vacuum chamber 11 and to cover the perforation 118 on the bottom 117 of the vacuum chamber 11 to prevent powder in the vacuum chamber 11. 121 is lost.

在本新型一實施例中,如圖5及圖6所示,其中真空腔體11的底部117可設置至少一卡扣單元116,而保護蓋16上則設置有與卡扣單元116互相對應的至少一卡扣單元161,使得保護蓋16及真空腔體11的底部117可經由對應的卡扣單元116/161相連接並固定。例如真空腔體11上的卡扣單元116可以是卡槽,而保護蓋16上的卡扣單元161則是凸出的卡扣件。當然真空腔體11的卡扣單元116為卡槽,保護蓋16的卡扣單元161是凸出的卡扣件,僅為本新型一實施例,並非本新型權利範圍的限制。In an embodiment of the present invention, as shown in FIGS. 5 and 6, the bottom 117 of the vacuum chamber 11 can be provided with at least one snap unit 116, and the protective cover 16 is provided with a snap unit 116 corresponding to each other. At least one buckle unit 161 enables the protective cover 16 and the bottom 117 of the vacuum chamber 11 to be connected and fixed via the corresponding buckle unit 116/161. For example, the buckle unit 116 on the vacuum chamber 11 may be a buckle, and the buckle unit 161 on the protective cover 16 may be a protruding buckle. Of course, the buckle unit 116 of the vacuum chamber 11 is a buckle slot, and the buckle unit 161 of the protective cover 16 is a protruding buckle, which is only an embodiment of the present invention and is not a limitation of the scope of rights of the present invention.

在本新型一實施例中,真空腔體11的底部117可設置一凹部119,凹部119由真空腔體11的底部117朝反應空間12的方向凹陷,其中穿孔118及/或過濾單元139設置在凹部119內,例如穿孔118及/或過濾單元139位於凹部119連接反應空間12的一端。凹部119可由真空腔體11的底部117延伸至反應空間12內,而軸封裝置13的內管體133則由外管體131的容置空間132延伸至外部,並凸出軸封裝置13及外管體131,如圖7所示。連接真空腔體11及軸封裝置13時,凸出軸封裝置13的內管體133可用以插入凹部119。當真空腔體11連接軸封裝置13時,軸封裝置13的內管體133會由外管體131的容置空間132延伸至真空腔體11的凹部119及/或反應空間12,使得內管體133及凹部119在反應空間12內形成一凸出管部130。In an embodiment of the present invention, the bottom 117 of the vacuum chamber 11 may be provided with a recess 119. The recess 119 is recessed from the bottom 117 of the vacuum chamber 11 toward the reaction space 12, wherein the perforation 118 and/or the filter unit 139 are provided in In the recess 119, for example, the perforation 118 and/or the filter unit 139 are located at one end of the recess 119 connected to the reaction space 12. The recess 119 can extend from the bottom 117 of the vacuum chamber 11 into the reaction space 12, and the inner tube 133 of the shaft sealing device 13 extends from the accommodating space 132 of the outer tube 131 to the outside, and protrudes the shaft sealing device 13 and The outer tube body 131 is shown in FIG. 7. When connecting the vacuum chamber 11 and the shaft sealing device 13, the inner tube 133 protruding from the shaft sealing device 13 can be inserted into the recess 119. When the vacuum chamber 11 is connected to the shaft sealing device 13, the inner tube 133 of the shaft sealing device 13 will extend from the accommodating space 132 of the outer tube 131 to the recess 119 of the vacuum chamber 11 and/or the reaction space 12, so that the inner tube The tube body 133 and the concave portion 119 form a protruding tube portion 130 in the reaction space 12.

透過凸出管部130的設置可縮短或調整進氣管線173及/或非反應氣體輸送管線175與蓋板111之間的距離,進氣管線173及/或非反應氣體輸送管線175輸送至反應空間12的非反應氣體可傳遞至蓋板111的內表面1111,並經由蓋板111的內表面1111擴散到反應空間12的各個區域,以利於吹動反應空間12內的粉末121。The arrangement of the protruding pipe 130 can shorten or adjust the distance between the gas inlet pipe 173 and/or the non-reactive gas conveying pipe 175 and the cover 111, and the gas inlet pipe 173 and/or the non-reactive gas conveying pipe 175 can be conveyed to the reaction The non-reactive gas in the space 12 can be transferred to the inner surface 1111 of the cover plate 111 and diffuse to various areas of the reaction space 12 through the inner surface 1111 of the cover plate 111 to facilitate blowing the powder 121 in the reaction space 12.

在本新型一實施例中,保護蓋16連接真空腔體11的底部117的表面上可設置至少一環形密封件163,例如O型環,當保護蓋16覆蓋真空腔體11的底部117時,保護蓋16會覆蓋真空腔體11的穿孔118、凹部119及/或過濾單元139,而環形密封件163會位於真空腔體11的底部117上的穿孔118、凹部119及/或過濾單元139的周圍,並可進一步防止真空腔體11內的粉末121由底部117的穿孔118及/或過濾單元139散失。In an embodiment of the present invention, at least one annular seal 163, such as an O-ring, may be provided on the surface of the protective cover 16 connected to the bottom 117 of the vacuum chamber 11. When the protective cover 16 covers the bottom 117 of the vacuum chamber 11, The protective cover 16 will cover the perforation 118, the recess 119 and/or the filter unit 139 of the vacuum chamber 11, and the annular seal 163 will be located on the perforation 118, the recess 119 and/or the filter unit 139 on the bottom 117 of the vacuum chamber 11 It can further prevent the powder 121 in the vacuum chamber 11 from being lost through the perforation 118 of the bottom 117 and/or the filter unit 139.

此外保護蓋16連接真空腔體11的底部117的表面可設置一凹槽165,其中環形密封件163位於凹槽165的周圍。當保護蓋16連接真空腔體11的底部117時,保護蓋16的凹槽165會對準真空腔體11的穿孔118及/或過濾單元139。In addition, the surface of the protective cover 16 connected to the bottom 117 of the vacuum chamber 11 can be provided with a groove 165, wherein the annular seal 163 is located around the groove 165. When the protective cover 16 is connected to the bottom 117 of the vacuum chamber 11, the groove 165 of the protective cover 16 will be aligned with the perforation 118 of the vacuum chamber 11 and/or the filter unit 139.

在本新型一實施例中,如圖8及圖9所示,真空腔體11的底部117上可設置至少一連接孔118,而保護蓋16上可設置一穿孔167。至少一連接單元181可穿過保護蓋16上的穿孔167,並固定在真空腔體11的底部117的連接孔118上,以將保護蓋16固定在真空腔體11的底部117。In an embodiment of the present invention, as shown in FIGS. 8 and 9, the bottom 117 of the vacuum chamber 11 can be provided with at least one connecting hole 118, and the protective cover 16 can be provided with a through hole 167. At least one connecting unit 181 can pass through the through hole 167 on the protective cover 16 and be fixed on the connecting hole 118 of the bottom 117 of the vacuum chamber 11 to fix the protective cover 16 on the bottom 117 of the vacuum chamber 11.

在本新型另一實施例中,如圖10及圖11所示,真空腔體11的底部117上可設置至少一磁吸單元183,而保護蓋16上一設置與磁吸單元183互相對應的至少一磁吸單元185,例如磁吸單元183/185兩者可皆為磁鐵,或是至少一者為磁鐵。當保護蓋16連接真空腔體11的底部117時,保護蓋16上的磁吸單元185及真空腔體11的底部117的磁吸單元183會相互吸引,以將保護蓋16固定在真空腔體11的底部117。In another embodiment of the present invention, as shown in FIGS. 10 and 11, at least one magnetic attraction unit 183 can be provided on the bottom 117 of the vacuum chamber 11, and a magnetic attraction unit 183 is provided on the protective cover 16 corresponding to each other. At least one magnetic attraction unit 185, for example, both of the magnetic attraction units 183/185 can be magnets, or at least one of them can be magnets. When the protective cover 16 is connected to the bottom 117 of the vacuum chamber 11, the magnetic unit 185 on the protective cover 16 and the magnetic unit 183 on the bottom 117 of the vacuum chamber 11 will attract each other to fix the protective cover 16 in the vacuum chamber. 11 of the bottom 117.

在本新型一實施例中,可拆式粉末原子層沉積裝置10亦可包括一承載板191及至少一固定架193,其中承載板191可為一板體,用以承載驅動單元15、真空腔體11及軸封裝置13。例如承載板191連接驅動單元15,並透過驅動單元15連接軸封裝置13及真空腔體11。此外軸封裝置13及/或真空腔體11亦可透過至少一支撐架連接承載板191,以提高連接的穩定度。In an embodiment of the present invention, the detachable powder atomic layer deposition apparatus 10 may also include a carrying plate 191 and at least one fixing frame 193, wherein the carrying plate 191 may be a plate body for carrying the driving unit 15 and the vacuum chamber体11和轴封装置13。 Body 11 and shaft sealing device 13. For example, the carrier board 191 is connected to the driving unit 15, and the shaft sealing device 13 and the vacuum chamber 11 are connected through the driving unit 15. In addition, the shaft sealing device 13 and/or the vacuum chamber 11 can also be connected to the bearing plate 191 through at least one support frame to improve the stability of the connection.

承載板191可透過至少一連接軸195連接固定架193,其中固定架193的數量可為兩個,並分別設置在承載板191的兩側。承載板191可以連接軸195為軸心相對於固定架193轉動,以改變驅動單元15、軸封裝置13及真空腔體11的仰角,以利於在各個粉末121的表面形成厚度均勻的薄膜。The carrying plate 191 can be connected to the fixing frame 193 through at least one connecting shaft 195, wherein the number of the fixing frame 193 can be two, and the fixing frames 193 can be respectively arranged on both sides of the carrying plate 191. The bearing plate 191 can rotate relative to the fixing frame 193 with the shaft 195 as the axis to change the elevation angle of the driving unit 15, the shaft sealing device 13, and the vacuum chamber 11, so as to facilitate the formation of a thin film of uniform thickness on the surface of each powder 121.

以上所述者,僅為本新型之一較佳實施例而已,並非用來限定本新型實施之範圍,即凡依本新型申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本新型之申請專利範圍內。The above is only one of the preferred embodiments of the present invention, and is not intended to limit the scope of implementation of the present invention, that is, all the equivalent changes and changes in the shape, structure, characteristics and spirit described in the scope of the patent application of the present invention Modifications should be included in the scope of the patent application for this new model.

10:可拆式粉末原子層沉積裝置 11:真空腔體 111:蓋板 1111:內表面 112:連接單元 113:腔體 115:監控晶圓 116:卡扣單元 117:底部 118:穿孔 119:凹部 12:反應空間 121:粉末 13:軸封裝置 130:凸出管部 131:外管體 132:容置空間 133:內管體 134:連接空間 139:過濾單元 14:齒輪 15:驅動單元 16:保護蓋 161:卡扣單元 163:環形密封件 165:凹槽 167:穿孔 171:抽氣管線 173:進氣管線 175:非反應氣體輸送管線 177:加熱器 179:溫度感測單元 181:連接單元 183:磁吸單元 185:磁吸單元 191:承載板 193:固定架 195:連接軸 10: Detachable powder atomic layer deposition device 11: Vacuum chamber 111: cover 1111: inner surface 112: connection unit 113: Cavity 115: monitor wafer 116: buckle unit 117: bottom 118: Piercing 119: Concave 12: reaction space 121: powder 13: Shaft seal device 130: protruding tube 131: Outer tube body 132: accommodating space 133: inner tube body 134: Connecting Space 139: filter unit 14: Gear 15: drive unit 16: Protective cover 161: buckle unit 163: Ring seal 165: Groove 167: Piercing 171: Extraction line 173: intake line 175: Non-reactive gas pipeline 177: heater 179: temperature sensing unit 181: connection unit 183: Magnetic unit 185: Magnetic unit 191: Carrier Board 193: fixed frame 195: connecting shaft

[圖1]為本新型可拆式粉末原子層沉積裝置一實施例的立體示意體。[Figure 1] is a three-dimensional schematic diagram of an embodiment of the new detachable powder atomic layer deposition apparatus.

[圖2]為本新型可拆式粉末原子層沉積裝置的軸封裝置一實施例的剖面示意圖。[Figure 2] is a schematic cross-sectional view of an embodiment of the shaft sealing device of the novel detachable powder atomic layer deposition device.

[圖3]為本新型可拆式粉末原子層沉積裝置一實施例的剖面示意圖。[Figure 3] is a schematic cross-sectional view of an embodiment of the new detachable powder atomic layer deposition device.

[圖4]為本新型可拆式粉末原子層沉積裝置一實施例的剖面分解示意體。[Fig. 4] is a schematic exploded cross-sectional view of an embodiment of the new detachable powder atomic layer deposition apparatus.

[圖5]為本新型可拆式粉末原子層沉積裝置的真空腔體及保護蓋一實施例的立體分解示意圖。[Figure 5] is a three-dimensional exploded schematic view of an embodiment of the vacuum chamber and protective cover of the new detachable powder atomic layer deposition device.

[圖6] 為本新型可拆式粉末原子層沉積裝置的真空腔體及保護蓋一實施例的立體示意圖。[Figure 6] is a three-dimensional schematic diagram of an embodiment of the vacuum chamber and the protective cover of the new detachable powder atomic layer deposition device.

[圖7] 為本新型可拆式粉末原子層沉積裝置又一實施例的剖面分解示意圖。[Figure 7] is a schematic cross-sectional exploded view of another embodiment of the new detachable powder atomic layer deposition device.

[圖8] 為本新型可拆式粉末原子層沉積裝置的真空腔體及保護蓋又一實施例的剖面示意圖。[Figure 8] is a schematic cross-sectional view of another embodiment of the vacuum chamber and the protective cover of the new detachable powder atomic layer deposition device.

[圖9] 為本新型可拆式粉末原子層沉積裝置的真空腔體及保護蓋又一實施例的剖面分解示意圖。[Figure 9] is a schematic cross-sectional exploded view of another embodiment of the vacuum chamber and the protective cover of the new detachable powder atomic layer deposition device.

[圖10] 為本新型可拆式粉末原子層沉積裝置的真空腔體及保護蓋又一實施例的剖面示意圖。[Figure 10] is a schematic cross-sectional view of another embodiment of the vacuum chamber and protective cover of the new detachable powder atomic layer deposition device.

[圖11] 為本新型可拆式粉末原子層沉積裝置的真空腔體及保護蓋又一實施例的剖面分解示意圖。[Figure 11] is a schematic cross-sectional exploded view of another embodiment of the vacuum chamber and the protective cover of the new detachable powder atomic layer deposition device.

11:真空腔體 11: Vacuum chamber

116:卡扣單元 116: buckle unit

117:底部 117: bottom

16:保護蓋 16: Protective cover

161:卡扣單元 161: buckle unit

163:環形密封件 163: Ring seal

165:凹槽 165: Groove

Claims (10)

一種可拆式粉末原子層沉積裝置,包括: 一軸封裝置; 一驅動單元,連接該軸封裝置; 一真空腔體,包括一底部透過至少一連接單元固定在該軸封裝置上,並包括一反應空間用以容置複數個粉末,其中該驅動單元透過該軸封裝置帶動該真空腔體轉動,該連接單元解除鎖固後,該真空腔體由該軸封裝置卸下; 至少一抽氣管線,位於該軸封裝置內,流體連接該真空腔體的該反應空間,並用以抽出該反應空間內的一氣體; 至少一進氣管線,位於該軸封裝置內,流體連接該真空腔體的該反應空間,並用以將一前驅物氣體或一非反應氣體輸送至該反應空間,其中該非反應氣體用以吹動該反應空間內的該粉末;及 一保護蓋,用以覆蓋由該軸封裝置卸下的該真空腔體的該底部。 A detachable powder atomic layer deposition device, including: One shaft sealing device; A drive unit connected to the shaft sealing device; A vacuum chamber includes a bottom fixed to the shaft sealing device through at least one connecting unit, and includes a reaction space for accommodating a plurality of powders, wherein the driving unit drives the vacuum chamber to rotate through the shaft sealing device, After the connection unit is unlocked, the vacuum chamber is removed by the shaft sealing device; At least one gas extraction pipeline located in the shaft sealing device, fluidly connected to the reaction space of the vacuum chamber, and used to extract a gas in the reaction space; At least one gas inlet line is located in the shaft seal device, fluidly connected to the reaction space of the vacuum chamber, and used to transport a precursor gas or a non-reactive gas to the reaction space, wherein the non-reactive gas is used for blowing The powder in the reaction space; and A protective cover is used to cover the bottom of the vacuum chamber removed by the shaft sealing device. 如請求項1所述的可拆式粉末原子層沉積裝置,其中該真空腔體的該底部設置一穿孔,而該保護蓋則用以覆蓋該穿孔。The detachable powder atomic layer deposition apparatus according to claim 1, wherein the bottom of the vacuum chamber is provided with a perforation, and the protective cover is used to cover the perforation. 如請求項2所述的可拆式粉末原子層沉積裝置,其中該軸封裝置包括一外管體及一內管體,該外管體包括一容置空間用以容置該內管體,而該抽氣管線及該進氣管線則位於該內管體內,並經由該真空腔體的該穿孔流體連接該反應空間。The detachable powder atomic layer deposition device according to claim 2, wherein the shaft sealing device includes an outer tube body and an inner tube body, and the outer tube body includes an accommodating space for accommodating the inner tube body, The air extraction line and the air intake line are located in the inner tube, and are fluidly connected to the reaction space through the perforation of the vacuum chamber. 如請求項3所述的可拆式粉末原子層沉積裝置,包括一過濾單元設置於該真空腔體的該穿孔,該抽氣管線及該進氣管線則經由該過濾單元流體連接該真空腔體的該反應空間,而該保護蓋連接該真空腔體的一表面設置至少一環形密封件,該保護蓋覆蓋該真空腔體的該底部時,該環形密封件位於該穿孔及該過濾單元的周圍。The detachable powder atomic layer deposition device according to claim 3, comprising a filter unit provided in the perforation of the vacuum chamber, and the suction line and the air inlet line are fluidly connected to the vacuum chamber through the filter unit At least one annular sealing element is provided on a surface of the protective cover connected to the vacuum chamber. When the protective cover covers the bottom of the vacuum chamber, the annular sealing element is located around the perforation and the filter unit . 如請求項3所述的可拆式粉末原子層沉積裝置,其中該真空腔體的該底部包括一凹部,該凹部由該真空腔體的該底部延伸至該反應空間,用以容置凸出該軸封裝置的該內管體,該穿孔位於該凹部連接該反應空間的一端,而該保護蓋則用以覆蓋該凹部及該穿孔。The detachable powder atomic layer deposition apparatus according to claim 3, wherein the bottom of the vacuum chamber includes a recess, and the recess extends from the bottom of the vacuum chamber to the reaction space for accommodating the protrusion In the inner tube body of the shaft sealing device, the perforation is located at one end of the recess connected to the reaction space, and the protective cover is used to cover the recess and the perforation. 如請求項5所述的可拆式粉末原子層沉積裝置,包括一過濾單元設置於該凹部的該穿孔,該抽氣管線及該進氣管線則經由該過濾單元流體連接該真空腔體的該反應空間,而該保護蓋的一表面則設置至少一環形密封單元,該保護蓋覆蓋該真空腔體的該底部時,該環形密封單元位於該穿孔及該過濾單元的周圍。The detachable powder atomic layer deposition apparatus according to claim 5, comprising a filter unit disposed in the perforation of the recess, and the air suction line and the air inlet line are fluidly connected to the vacuum chamber through the filter unit In the reaction space, at least one annular sealing unit is arranged on a surface of the protective cover. When the protective cover covers the bottom of the vacuum chamber, the annular sealing unit is located around the perforation and the filter unit. 如請求項2所述的可拆式粉末原子層沉積裝置,其中該真空腔體的該底部及該保護蓋上設置對應的至少一卡扣單元或至少一磁吸單元,該保護蓋透過該卡扣單元或該磁吸單元連接並固定在該真空腔體的該底部。The detachable powder atomic layer deposition apparatus according to claim 2, wherein the bottom of the vacuum chamber and the protective cover are provided with at least one corresponding snap unit or at least one magnetic attraction unit, and the protective cover penetrates the card The buckle unit or the magnetic attraction unit is connected and fixed on the bottom of the vacuum chamber. 如請求項2所述的可拆式粉末原子層沉積裝置,包括至少一連接單元,用以將該保護蓋固定在該真空腔體的該底部。The detachable powder atomic layer deposition apparatus according to claim 2 includes at least one connecting unit for fixing the protective cover on the bottom of the vacuum chamber. 如請求項1所述的可拆式粉末原子層沉積裝置,其中該進氣管線包括至少一非反應氣體輸送管線位於該軸封裝置內,該非反應氣體輸送管線流體連接該真空腔體的該反應空間,並用以將該非反應氣體輸送至該真空腔體的該反應空間,以吹動該反應空間內的該粉末。The detachable powder atomic layer deposition apparatus according to claim 1, wherein the gas inlet line includes at least one non-reactive gas delivery line located in the shaft seal device, and the non-reactive gas delivery line is fluidly connected to the reaction of the vacuum chamber The space is used to deliver the non-reactive gas to the reaction space of the vacuum chamber to blow the powder in the reaction space. 如請求項1所述的可拆式粉末原子層沉積裝置,其中該真空腔體包括一蓋板及一腔體,該蓋板的一內表面覆蓋該腔體以在兩者之間形成該反應空間,並於該蓋板的該內表面設置一監控晶圓。The detachable powder atomic layer deposition apparatus according to claim 1, wherein the vacuum chamber includes a cover plate and a cavity, and an inner surface of the cover plate covers the cavity to form the reaction between the two Space, and a monitoring wafer is arranged on the inner surface of the cover plate.
TW110203371U 2021-03-29 2021-03-29 Detachable powder atomic layer deposition device TWM614453U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110203371U TWM614453U (en) 2021-03-29 2021-03-29 Detachable powder atomic layer deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110203371U TWM614453U (en) 2021-03-29 2021-03-29 Detachable powder atomic layer deposition device

Publications (1)

Publication Number Publication Date
TWM614453U true TWM614453U (en) 2021-07-11

Family

ID=77911655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110203371U TWM614453U (en) 2021-03-29 2021-03-29 Detachable powder atomic layer deposition device

Country Status (1)

Country Link
TW (1) TWM614453U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771124B (en) * 2021-07-26 2022-07-11 天虹科技股份有限公司 Atomic layer deposition equipment with down-blowing pipeline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771124B (en) * 2021-07-26 2022-07-11 天虹科技股份有限公司 Atomic layer deposition equipment with down-blowing pipeline

Similar Documents

Publication Publication Date Title
TWI750836B (en) Detachable powder atomic layer deposition apparatus
TWI729945B (en) Atomic layer deposition apparatus for coating on fine powders
TWI740732B (en) Powder atomic layer deposition apparatus with special cover plate
TWI729944B (en) Powder atomic layer deposition apparatus
TWI772913B (en) Atomic layer deposition apparatus for coating particles
TWI759935B (en) Powder atomic layer deposition device for blowing powders
CN112626495B (en) Atomic layer deposition device capable of blowing powder
CN112609169A (en) Detachable powder atomic layer deposition device
TWM614453U (en) Detachable powder atomic layer deposition device
TWM610395U (en) Powder atomic layer deposition device for preventing powder sticking
TWM609525U (en) Detachable powder atomic layer deposition device
CN214088660U (en) Detachable powder atomic layer deposition device
TWM610491U (en) Atomic layer deposition device capable of blowing powder
TWI771124B (en) Atomic layer deposition equipment with down-blowing pipeline
TWI775543B (en) Powder atomic layer deposition equipment with quick release function
TWM621036U (en) Quick release type powder atomic layer deposition equipment
CN214400706U (en) Perspective powder atomic layer deposition device
TWI766535B (en) Automated apparatus for detachable powder atomic layer deposition device
TWM611131U (en) Transparent powder atomic layer deposition device
TWM619359U (en) Powder atom deposition device with special cover plate design
TWM615147U (en) Automated machine for disassembly type powder atomic layer deposition device
TWI750962B (en) Powder atomic layer deposition apparatus for preventing powders from sticking to filter unit
CN214088661U (en) Atomic layer deposition device capable of blowing powder
CN112695296B (en) Atomic layer deposition device for particles
TWM619828U (en) Atomic layer deposition device for blowing powder