TWI832251B - Power supply device with high conversion efficiency - Google Patents
Power supply device with high conversion efficiency Download PDFInfo
- Publication number
- TWI832251B TWI832251B TW111118626A TW111118626A TWI832251B TW I832251 B TWI832251 B TW I832251B TW 111118626 A TW111118626 A TW 111118626A TW 111118626 A TW111118626 A TW 111118626A TW I832251 B TWI832251 B TW I832251B
- Authority
- TW
- Taiwan
- Prior art keywords
- terminal
- coupled
- node
- transistor
- potential
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 8
- 239000003990 capacitor Substances 0.000 claims abstract description 106
- 239000013078 crystal Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 9
- 230000005669 field effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明係關於一種電源供應器,特別係關於一種高轉換效率之電源供應器。The present invention relates to a power supply, and in particular to a power supply with high conversion efficiency.
在傳統電源供應器中,因為電壓增益與操作頻寬之限制,其通常無法提供高壓輸出之規格。另一方面,前述限制往往又導致傳統電源供應器之損耗過大且轉換效率過低,此皆降低傳統電源供應器之整體使用性能。有鑑於此,勢必要提出一種全新之解決方案,以克服先前技術所面臨之困境。In traditional power supplies, due to limitations in voltage gain and operating bandwidth, they are usually unable to provide high-voltage output specifications. On the other hand, the aforementioned limitations often result in excessive losses and low conversion efficiency of traditional power supplies, which reduce the overall performance of traditional power supplies. In view of this, it is necessary to propose a new solution to overcome the difficulties faced by previous technologies.
在較佳實施例中,本發明提出一種高轉換效率之電源供應器,包括:一輸入整流電路,根據一第一時脈電位和一第二時脈電位來產生一第一整流電流和一第二整流電流;一輸入控制電路,耦接至該輸入整流電路,並根據一輸入電位來產生一第一控制電位和一第二控制電位;一第一變壓器,包括一第一主線圈和一第一副線圈,其中該第一變壓器內建一第一漏電感器和一第一激磁電感器,而該第一主線圈係經由該第一漏電感器接收該第一整流電流;一第一電容器,耦接至該第一激磁電感器;一第二變壓器,包括一第二主線圈和一第二副線圈,其中該第二變壓器內建一第二漏電感器和一第二激磁電感器,而該第二主線圈係經由該第二漏電感器接收該第二整流電流;一第二電容器,耦接至該第二激磁電感器;一輸出整流電路,耦接至該第一副線圈和該第二副線圈,並根據該第一控制電位和該第二控制電位來產生一輸出電位;以及一微控制器,監控該輸入控制電路,並據以產生該第一時脈電位和該第二時脈電位。In a preferred embodiment, the present invention proposes a power supply with high conversion efficiency, including: an input rectifier circuit that generates a first rectified current and a second clock potential according to a first clock potential and a second clock potential. two rectified currents; an input control circuit coupled to the input rectifying circuit and generating a first control potential and a second control potential according to an input potential; a first transformer including a first main coil and a first A secondary coil, wherein the first transformer has a built-in first leakage inductor and a first exciting inductor, and the first main coil receives the first rectified current through the first leakage inductor; a first capacitor , coupled to the first exciting inductor; a second transformer including a second main coil and a second secondary coil, wherein the second transformer has a built-in second leakage inductor and a second exciting inductor, The second main coil receives the second rectified current through the second leakage inductor; a second capacitor is coupled to the second exciting inductor; an output rectifier circuit is coupled to the first secondary coil and The second secondary coil generates an output potential according to the first control potential and the second control potential; and a microcontroller monitors the input control circuit and generates the first clock potential and the third clock potential accordingly. Second clock potential.
為讓本發明之目的、特徵和優點能更明顯易懂,下文特舉出本發明之具體實施例,並配合所附圖式,作詳細說明如下。In order to make the purpose, features and advantages of the present invention more obvious and easy to understand, specific embodiments of the present invention are listed below and described in detail with reference to the accompanying drawings.
在說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。本領域技術人員應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的「包含」及「包括」一詞為開放式的用語,故應解釋成「包含但不僅限定於」。「大致」一詞則是指在可接受的誤差範圍內,本領域技術人員能夠在一定誤差範圍內解決所述技術問題,達到所述基本之技術效果。此外,「耦接」一詞在本說明書中包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接至一第二裝置,則代表該第一裝置可直接電性連接至該第二裝置,或經由其它裝置或連接手段而間接地電性連接至該第二裝置。Certain words are used in the specification and patent claims to refer to specific components. Those skilled in the art will understand that hardware manufacturers may use different names to refer to the same component. This specification and the patent application do not use differences in names as a way to distinguish components, but differences in functions of components as a criterion for distinction. The words "include" and "include" mentioned throughout the specification and the scope of the patent application are open-ended terms, and therefore should be interpreted as "include but not limited to." The term "approximately" means that within an acceptable error range, those skilled in the art can solve the technical problem and achieve the basic technical effect within a certain error range. In addition, the word "coupling" in this specification includes any direct and indirect electrical connection means. Therefore, if a first device is coupled to a second device, it means that the first device can be directly electrically connected to the second device, or indirectly electrically connected to the second device via other devices or connections. Two devices.
第1圖係顯示根據本發明一實施例所述之電源供應器100之示意圖。例如,電源供應器100可應用於桌上型電腦、筆記型電腦,或一體成形電腦。如第1圖所示,電源供應器100包括:一輸入整流電路110、一第一變壓器120、一第二變壓器130、一第一電容器C1、一第二電容器C2、一輸出整流電路140、一輸入控制電路150,以及一微控制器180。必須注意的是,雖然未顯示於第1圖中,但電源供應器100更可包括其他元件,例如:一穩壓器或(且)一負回授電路。Figure 1 is a schematic diagram of a
輸入整流電路110可根據一第一時脈電位VA1和一第二時脈電位VA2來產生一第一整流電流IR1和一第二整流電流IR2。輸入控制電路150係耦接至輸入整流電路110,並可根據一輸入電位VIN來產生一第一控制電位VC1和一第二控制電位VC2。輸入電位VIN可來自一外部輸入電源,其中輸入電位VIN可為具有任意位準之一直流電位。例如,直流電位之電位位準可介於300V至500V之間,但亦不僅限於此。第一變壓器120包括一第一主線圈121和一第一副線圈122,其中第一變壓器120更可內建一第一漏電感器LR1和一第一激磁電感器LM1。第一主線圈121、第一漏電感器LR1,以及第一激磁電感器LM1皆可位於第一變壓器120之同一側,而第一副線圈122則可位於第一變壓器120之相對另一側。第一主線圈121可經由第一漏電感器LR1來接收第一整流電流IR1,而第一副線圈122可回應於第一整流電流IR1來進行操作。第一電容器C1係耦接至第一激磁電感器LM1,其中第一漏電感器LR1、第一激磁電感器LM1,以及第一電容器C1三者可共同形成一第一諧振槽(Resonant Tank)。第二變壓器130包括一第二主線圈131和一第二副線圈132,其中第二變壓器130更可內建一第二漏電感器LR2和一第二激磁電感器LM2。第二主線圈131、第二漏電感器LR2,以及第二激磁電感器LM2皆可位於第二變壓器130之同一側,而第二副線圈132則可位於第二變壓器130之相對另一側。第二主線圈131可經由第二漏電感器LR2來接收第二整流電流IR2,而第二副線圈132可回應於第二整流電流IR2來進行操作。第二電容器C2耦接至第二激磁電感器LM2,其中第二漏電感器LR2、第二激磁電感器LM2,以及第二電容器C2三者可共同形成一第二諧振槽。輸出整流電路140係耦接至第一副線圈122和第二副線圈132,並可根據第一控制電位VC1和第二控制電位VC2來產生一輸出電位VOUT。例如,輸出電位VOUT可為另一直流電位,其電位位準可介於40V至60V之間,但亦不僅限於此。微控制器180可監控輸入控制電路150之操作狀態,並可據以產生第一時脈電位VA1和第二時脈電位VA2。在此設計下,由於電源供應器100同時使用輸入整流電路110和輸出整流電路140,加以搭配複數組諧振槽,故其將可承受更大之操作電壓。根據實際量測結果,本發明所提之電源供應器100將可有效降低總損耗及提高整體轉換效率。在另一些實施例中,電源供應器100還可依據不同需求而包括更多組諧振槽。The
以下實施例將介紹電源供應器100之詳細結構及操作方式。必須理解的是,這些圖式和敘述僅為舉例,而非用於限制本發明之範圍。The following embodiments will introduce the detailed structure and operation of the
第2圖係顯示根據本發明一實施例所述之電源供應器200之電路圖。在第2圖之實施例中,電源供應器200具有一輸入節點NIN和一輸出節點NOUT,並包括:一輸入整流電路210、一第一變壓器220、一第二變壓器230、一第一電容器C1、一第二電容器C2、一輸出整流電路240、一輸入控制電路250,以及一微控制器280。電源供應器200之輸入節點NIN可由一外部輸入電源處接收一輸入電位VIN,而電源供應器200之輸出節點NOUT可用於輸出一輸出電位VOUT至一電子裝置(未顯示)。Figure 2 is a circuit diagram of a
輸入整流電路210包括一第一電晶體M1、一第二電晶體M2、一第三電晶體M3,以及一第四電晶體M4。例如,第一電晶體M1、第二電晶體M2、第三電晶體M3,以及第四電晶體M4可各自為一N型金氧半場效電晶體(N-type Metal-Oxide-Semiconductor Field-Effect Transistor,NMOSFET)。第一電晶體M1具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第一電晶體M1之控制端係用於接收一第一時脈電位VA1,第一電晶體M1之第一端係耦接至一第一節點N1,而第一電晶體M1之第二端係耦接至一第二節點N2。第二電晶體M2具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第二電晶體M2之控制端係用於接收一第二時脈電位VA2,第二電晶體M2之第一端係耦接至一接地電位VSS(例如:0V),而第二電晶體M2之第二端係耦接至第一節點N1。例如,第一時脈電位VA1和第二時脈電位VA2可大致具有互補(Complementary)之邏輯位準。第三電晶體M3具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第三電晶體M3之控制端係用於接收第二時脈電位VA2,第三電晶體M3之第一端係耦接至一第三節點N3,而第三電晶體M3之第二端係耦接至一第四節點N4。第四電晶體M4具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第四電晶體M4之控制端係用於接收第一時脈電位VA1,第四電晶體M4之第一端係耦接至接地電位VSS,而第四電晶體M4之第二端係耦接至第三節點N3。必須注意的是,第一節點N1可用於輸出一總整流電流IRT,其中總整流電流IRT可再劃分為一第一整流電流IR1和一第二整流電流IR2(亦即,
)。
The
第一變壓器220包括一第一主線圈221和一第一副線圈222,其中第一變壓器220更內建一第一漏電感器LR1和一第一激磁電感器LM1。第一漏電感器LR1和第一激磁電感器LM1皆可為第一變壓器220製造時所附帶產生之固有元件,其並非外部獨立元件。第一漏電感器LR1、第一主線圈221,以及第一激磁電感器LM1皆可位於第一變壓器220之同一側(例如:一次側),而第一副線圈222則可位於第一變壓器220之相對另一側(例如:二次側,其可與一次側互相隔離開來)。第一漏電感器LR1具有一第一端和一第二端,其中第一漏電感器LR1之第一端係耦接至第一節點N1以接收第一整流電流IR1,而第一漏電感器LR1之第二端係耦接至一第五節點N5。第一主線圈221具有一第一端和一第二端,其中第一主線圈221之第一端係耦接至第五節點N5,而第一主線圈221之第二端係耦接至一第六節點N6。第一激磁電感器LM1具有一第一端和一第二端,其中第一激磁電感器LM1之第一端係耦接至第五節點N5,而第一激磁電感器LM1之第二端係耦接至第六節點N6。第一電容器C1具有一第一端和一第二端,其中第一電容器C1之第一端係耦接至第三節點N3,而第一電容器C1之第二端係耦接至第六節點N6。在一些實施例中,第一漏電感器LR1、第一激磁電感器LM1,以及第一電容器C1三者可共同形成電源供應器200之一第一諧振槽。第一副線圈222具有一第一端和一第二端,其中第一副線圈222之第一端係耦接至一第七節點N7,而第一副線圈222之第二端係耦接至一第八節點N8。The
第二變壓器230包括一第二主線圈231和一第二副線圈232,其中第二變壓器230更內建一第二漏電感器LR2和一第二激磁電感器LM2。第二漏電感器LR2和第二激磁電感器LM2皆可為第二變壓器230製造時所附帶產生之固有元件,其並非外部獨立元件。第二漏電感器LR2、第二主線圈231,以及第二激磁電感器LM2皆可位於第二變壓器230之同一側(例如:一次側),而第二副線圈232則可位於第二變壓器230之相對另一側(例如:二次側)。第二漏電感器LR2具有一第一端和一第二端,其中第二漏電感器LR2之第一端係耦接至第一節點N1以接收第二整流電流IR2,而第二漏電感器LR2之第二端係耦接至一第九節點N9。第二主線圈231具有一第一端和一第二端,其中第二主線圈231之第一端係耦接至第九節點N9,而第二主線圈231之第二端係耦接至一第十節點N10。第二激磁電感器LM2具有一第一端和一第二端,其中第二激磁電感器LM2之第一端係耦接至第九節點N9,而第二激磁電感器LM2之第二端係耦接至第十節點N10。第二電容器C2具有一第一端和一第二端,其中第二電容器C2之第一端係耦接至第三節點N3,而第二電容器C2之第二端係耦接至第十節點N10。在一些實施例中,第二漏電感器LR2、第二激磁電感器LM2,以及第二電容器C2三者可共同形成電源供應器200之一第二諧振槽。第二副線圈232具有一第一端和一第二端,其中第二副線圈232之第一端係耦接至一第十一節點N11,而第二副線圈232之第二端係耦接至一第十二節點N12。在一些實施例中,第一變壓器220和第二變壓器230兩者可形成於同一鐵芯上(未顯示)。The
輸出整流電路240包括一第五電晶體M5、一第六電晶體M6、一第七電晶體M7、一第八電晶體M8、一第九電晶體M9、一第十電晶體M10、一第十一電晶體M11、一第十二電晶體M12、一第三電容器C3、一第四電容器C4,以及一第五電容器C5。例如,第五電晶體M5、第六電晶體M6、第七電晶體M7、第八電晶體M8、第九電晶體M9、第十電晶體M10、第十一電晶體M11,以及第十二電晶體M12可各自為一N型金氧半場效電晶體。The
第五電晶體M5具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第五電晶體M5之控制端係用於接收一第一控制電位VC1,第五電晶體M5之第一端係耦接至第七節點N7,而第五電晶體M5之第二端係耦接至輸出節點NOUT。第六電晶體M6具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第六電晶體M6之控制端係用於接收一第二控制電位VC2,第六電晶體M6之第一端係耦接至一第十三節點N13,而第六電晶體M6之第二端係耦接至第七節點N7。例如,第一控制電位VC1和第二控制電位VC2可大致具有互補之邏輯位準。第七電晶體M7具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第七電晶體M7之控制端係用於接收第二控制電位VC2,第七電晶體M7之第一端係耦接至第八節點N8,而第七電晶體M7之第二端係耦接至輸出節點NOUT。第八電晶體M8具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第八電晶體M8之控制端係用於接收第一控制電位VC1,第八電晶體M8之第一端係耦接至第十三節點N13,而第八電晶體M8之第二端係耦接至第八節點N8。The fifth transistor M5 has a control terminal (for example: a gate), a first terminal (for example: a source), and a second terminal (for example: a drain), wherein the control terminal of the fifth transistor M5 The terminal is used to receive a first control potential VC1, the first terminal of the fifth transistor M5 is coupled to the seventh node N7, and the second terminal of the fifth transistor M5 is coupled to the output node NOUT. The sixth transistor M6 has a control terminal (for example: a gate), a first terminal (for example: a source), and a second terminal (for example: a drain), wherein the control terminal of the sixth transistor M6 The terminal is used to receive a second control potential VC2, the first terminal of the sixth transistor M6 is coupled to a thirteenth node N13, and the second terminal of the sixth transistor M6 is coupled to the seventh node N7 . For example, the first control potential VC1 and the second control potential VC2 may have substantially complementary logic levels. The seventh transistor M7 has a control terminal (for example: a gate), a first terminal (for example: a source), and a second terminal (for example: a drain), wherein the control terminal of the seventh transistor M7 The terminal is used to receive the second control potential VC2, the first terminal of the seventh transistor M7 is coupled to the eighth node N8, and the second terminal of the seventh transistor M7 is coupled to the output node NOUT. The eighth transistor M8 has a control terminal (for example: a gate), a first terminal (for example: a source), and a second terminal (for example: a drain), wherein the control terminal of the eighth transistor M8 The terminal is used to receive the first control potential VC1, the first terminal of the eighth transistor M8 is coupled to the thirteenth node N13, and the second terminal of the eighth transistor M8 is coupled to the eighth node N8.
第九電晶體M9具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第九電晶體M9之控制端係用於接收第一控制電位VC1,第九電晶體M9之第一端係耦接至第十一節點N11,而第九電晶體M9之第二端係耦接至第十三節點N13。第十電晶體M10具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第十電晶體M10之控制端係用於接收第二控制電位VC2,第十電晶體M10之第一端係耦接至一共同節點NCM,而第十電晶體M10之第二端係耦接至第十一節點N11。例如,共同節點NCM可視為另一接地電位,其可與前述之接地電位VSS相同或相異。第十一電晶體M11具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第十一電晶體M11之控制端係用於接收第二控制電位VC2,第十一電晶體M11之第一端係耦接至第十二節點N12,而第十一電晶體M11之第二端係耦接至第十三節點N13。第十二電晶體M12具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第十二電晶體M12之控制端係用於接收第一控制電位VC1,第十二電晶體M12之第一端係耦接至共同節點NCM,而第十二電晶體M12之第二端係耦接至第十二節點N12。The ninth transistor M9 has a control terminal (for example: a gate), a first terminal (for example: a source), and a second terminal (for example: a drain), wherein the control terminal of the ninth transistor M9 The terminal is used to receive the first control potential VC1, the first terminal of the ninth transistor M9 is coupled to the eleventh node N11, and the second terminal of the ninth transistor M9 is coupled to the thirteenth node N13. The tenth transistor M10 has a control terminal (for example: a gate), a first terminal (for example: a source), and a second terminal (for example: a drain), wherein the control terminal of the tenth transistor M10 The terminal is used to receive the second control potential VC2, the first terminal of the tenth transistor M10 is coupled to a common node NCM, and the second terminal of the tenth transistor M10 is coupled to the eleventh node N11. For example, the common node NCM can be regarded as another ground potential, which can be the same as or different from the aforementioned ground potential VSS. The eleventh transistor M11 has a control terminal (for example: a gate), a first terminal (for example: a source), and a second terminal (for example: a drain), wherein the eleventh transistor M11 The control terminal is used to receive the second control potential VC2, the first terminal of the eleventh transistor M11 is coupled to the twelfth node N12, and the second terminal of the eleventh transistor M11 is coupled to the tenth Three nodes N13. The twelfth transistor M12 has a control terminal (for example: a gate), a first terminal (for example: a source), and a second terminal (for example: a drain), wherein the twelfth transistor M12 The control terminal is used to receive the first control potential VC1, the first terminal of the twelfth transistor M12 is coupled to the common node NCM, and the second terminal of the twelfth transistor M12 is coupled to the twelfth node N12.
第三電容器C3具有一第一端和一第二端,其中第三電容器C3之第一端係耦接至輸出節點NOUT,而第三電容器C3之第二端係耦接至第十三節點N13。第四電容器C4具有一第一端和一第二端,其中第四電容器C4之第一端係耦接至第十三節點N13,而第四電容器C4之第二端係耦接至共同節點NCM。第五電容器C5具有一第一端和一第二端,其中第五電容器C5之第一端係耦接至輸出節點NOUT,而第五電容器C5之第二端係耦接至共同節點NCM。The third capacitor C3 has a first terminal and a second terminal, wherein the first terminal of the third capacitor C3 is coupled to the output node NOUT, and the second terminal of the third capacitor C3 is coupled to the thirteenth node N13 . The fourth capacitor C4 has a first terminal and a second terminal, wherein the first terminal of the fourth capacitor C4 is coupled to the thirteenth node N13, and the second terminal of the fourth capacitor C4 is coupled to the common node NCM. . The fifth capacitor C5 has a first terminal and a second terminal, wherein the first terminal of the fifth capacitor C5 is coupled to the output node NOUT, and the second terminal of the fifth capacitor C5 is coupled to the common node NCM.
輸入整流電路250包括一第三變壓器260、一第四變壓器270、一第一二極體D1、一第二二極體D2、一第三二極體D3、一第四二極體D4、一第六電容器C6、一第七電容器C7、一第一電阻器R1、一第二電阻器R2、一第三電阻器R3,以及一第四電阻器R4。The
第三變壓器260包括一第三主線圈261和一第三副線圈262,其中第三主線圈261可位於第三變壓器260之一側(例如:一次側),而第三副線圈262則可位於第三變壓器260之相對另一側(例如:二次側)。詳細而言,第三主線圈261具有一第一端和一第二端,其中第三主線圈261之第一端係耦接至輸入節點NIN,而第三主線圈261之第二端係耦接至第二節點N2。第三副線圈262具有一第一端和一第二端,其中第三副線圈262之第一端係耦接至一第十四節點N14,而第三副線圈262之第二端係耦接至接地電位VSS。第一二極體D1具有一陽極和一陰極,其中第一二極體D1之陽極係耦接至第十四節點N14,而第一二極體D1之陰極係耦接至一第十五節點N15。第一電阻器R1具有一第一端和一第二端,其中第一電阻器R1之第一端係耦接至接地電位VSS,而第一電阻器R1之第二端係耦接至第十五節點N15。第六電容器C6具有一第一端和一第二端,其中第六電容器C6之第一端係耦接至接地電位VSS,而第六電容器C6之第二端係耦接至第十五節點N15以提供一第一電容電位VP1。第二二極體D2具有一陽極和一陰極,其中第二二極體D2之陽極係耦接至第十五節點N15,而第二二極體D2之陰極係耦接至一第十六節點N16。第二電阻器R2具有一第一端和一第二端,其中第二電阻器R2之第一端係耦接至第十六節點N16,而第二電阻器R2之第二端係耦接至一第一控制節點NC1以輸出第一控制電位VC1。The
第四變壓器270包括一第四主線圈271和一第四副線圈272,其中第四主線圈271可位於第四變壓器270之一側(例如:一次側),而第四副線圈272則可位於第四變壓器270之相對另一側(例如:二次側)。詳細而言,第四主線圈271具有一第一端和一第二端,其中第四主線圈271之第一端係耦接至輸入節點NIN,而第四主線圈271之第二端係耦接至第四節點N4。第四副線圈272具有一第一端和一第二端,其中第四副線圈272之第一端係耦接至一第十七節點N17,而第四副線圈272之第二端係耦接至接地電位VSS。第三二極體D3具有一陽極和一陰極,其中第三二極體D3之陽極係耦接至第十七節點N17,而第三二極體D3之陰極係耦接至一第十八節點N18。第三電阻器R3具有一第一端和一第二端,其中第三電阻器R3之第一端係耦接至接地電位VSS,而第三電阻器R3之第二端係耦接至第十八節點N18。第七電容器C7具有一第一端和一第二端,其中第七電容器C7之第一端係耦接至接地電位VSS,而第七電容器C7之第二端係耦接至第十八節點N18以提供一第二電容電位VP2。第四二極體D4具有一陽極和一陰極,其中第四二極體D4之陽極係耦接至第十八節點N18,而第四二極體D4之陰極係耦接至一第十九節點N19。第四電阻器R4具有一第一端和一第二端,其中第四電阻器R4之第一端係耦接至第十九節點N19,而第四電阻器R4之第二端係耦接至一第二控制節點NC2以輸出第二控制電位VC2。The
微控制器280可持續地監控輸入整流電路250之第一電容電位VP1和第二電容電位VP2。接著,微控制器280更可根據第一電容電位VP1和第二電容電位VP2來產生前述之第一時脈電位VA1和第二時脈電位VA2。The
第3圖係顯示根據本發明一實施例所述之第一時脈電位VA1和第二時脈電位VA2之電位波形圖,其中橫軸代表時間,而縱軸代表電位位準。如第3圖所示,電源供應器200可交替地操作於一第一階段T1和一第二階段T2,其原理可如下列所述。Figure 3 shows a potential waveform diagram of the first clock potential VA1 and the second clock potential VA2 according to an embodiment of the present invention, in which the horizontal axis represents time and the vertical axis represents the potential level. As shown in FIG. 3 , the
在第一階段T1之期間,第一時脈電位VA1為高邏輯位準以致能第一電晶體M1和第四電晶體M4,而第二時脈電位VA2為低邏輯位準以禁能第二電晶體M2和第三電晶體M3。此時,輸入電位VIN之能量可經由第三變壓器260傳送至第六電容器C6,從而同時拉升第一電容電位VP1和第一控制電位VC1。是以,第五電晶體M5、第八電晶體M8、第九電晶體M9,以及第十二電晶體M12於第一階段T1之期間亦均為致能狀態。During the first phase T1, the first clock potential VA1 is a high logic level to enable the first transistor M1 and the fourth transistor M4, and the second clock potential VA2 is a low logic level to disable the second transistor M1. Transistor M2 and third transistor M3. At this time, the energy of the input potential VIN can be transferred to the sixth capacitor C6 through the
在第二階段T2之期間,第一時脈電位VA1為低邏輯位準以禁能第一電晶體M1和第四電晶體M4,而第二時脈電位VA2為高邏輯位準以致能第二電晶體M2和第三電晶體M3。此時,輸入電位VIN之能量可經由第四變壓器270傳送至第七電容器C7,從而同時拉升第二電容電位VP2和第二控制電位VC2。是以,第六電晶體M6、第七電晶體M7、第十電晶體M10,以及第十一電晶體M11於第二階段T2之期間亦均為致能狀態。During the second phase T2, the first clock potential VA1 is at a low logic level to disable the first transistor M1 and the fourth transistor M4, and the second clock potential VA2 is at a high logic level to enable the second transistor M1 and the fourth transistor M4. Transistor M2 and third transistor M3. At this time, the energy of the input potential VIN can be transferred to the seventh capacitor C7 via the
必須注意的是,第一階段T1和第二階段T2之間還存在一中介階段ΔT。在此中介階段ΔT之期間,第一時脈電位VA1和第二時脈電位VA2兩者皆維持於低邏輯位準。根據實際量測結果,此種設計可避免電源供應器200產生誤動作,以提升整體之可靠度。It must be noted that there is an intermediate stage ΔT between the first stage T1 and the second stage T2. During this intermediate period ΔT, both the first clock potential VA1 and the second clock potential VA2 are maintained at a low logic level. According to the actual measurement results, this design can prevent the
第4圖係顯示根據本發明一實施例所述之第一電容電位VP1和第二電容電位VP2之電位波形圖,其中橫軸代表時間,而縱軸代表電位位準。在第一階段T1結束之後,第一電容電位VP1會逐漸放電下滑。若偵測到第一電容電位VP1之下降幅度達一臨界電位差ΔVTH,則微控制器280將可拉升第二時脈電位VA2至高邏輯位準。例如,臨界電位差ΔVTH可約為15V,但亦不僅限於此。反之,在第二階段T2結束之後,第二電容電位VP2會逐漸放電下滑。若偵測到第二電容電位VP2之下降幅度達前述之臨界電位差ΔVTH,則微控制器280亦可拉升第一時脈電位VA1至高邏輯位準。換言之,前述之中介階段ΔT之時間長度將可由第六電容器C6和第七電容器C7之相關時間常數所決定。在一些實施例中,中介階段ΔT之時間長度可根據下列方程式(1)進行設定:Figure 4 shows the potential waveform diagram of the first capacitor potential VP1 and the second capacitor potential VP2 according to an embodiment of the present invention, in which the horizontal axis represents time and the vertical axis represents the potential level. After the end of the first stage T1, the first capacitor potential VP1 will gradually discharge and decline. If it is detected that the drop of the first capacitor potential VP1 reaches a critical potential difference ΔVTH, the
…………………………(1) 其中「ΔT」代表中介階段ΔT之時間長度,「R1」代表第一電阻器R1之電阻值,「R3」代表第三電阻器R3之電阻值,「C6」代表第六電容器C6之電容值,而「C7」代表第七電容器C7之電容值。 …………………………(1) Among them, “ΔT” represents the time length of the intermediate stage ΔT, “R1” represents the resistance value of the first resistor R1, and “R3” represents the resistance value of the third resistor R3. , "C6" represents the capacitance value of the sixth capacitor C6, and "C7" represents the capacitance value of the seventh capacitor C7.
第5圖係顯示根據本發明一實施例所述之第一整流電流IR1、第二整流電流IR2,以及總整流電流IRT之電流波形圖,其中橫軸代表時間,而縱軸代表電流值。根據第5圖之量測結果,在總整流電流IRT進行分割之後,第一整流電流IR1和第二整流電流IR2之能量可分別經由第一變壓器220和第二變壓器230傳送至輸出整流電路240。另一方面,由於輸出整流電路240同時包括第三電容器C3、第四電容器C4,以及第五電容器C5之並聯組合,其將可較傳統設計承受更高之輸出電位VOUT。Figure 5 shows a current waveform diagram of the first rectified current IR1, the second rectified current IR2, and the total rectified current IRT according to an embodiment of the present invention, in which the horizontal axis represents time and the vertical axis represents the current value. According to the measurement results in FIG. 5 , after the total rectified current IRT is divided, the energy of the first rectified current IR1 and the second rectified current IR2 can be transmitted to the
本發明提出一種新穎之電源供應器。根據實際量測結果,使用前述設計之電源供應器之轉換效率將可大幅提升,故其很適合應用於各種各式之裝置當中。The present invention proposes a novel power supply. According to the actual measurement results, the conversion efficiency of the power supply using the above-mentioned design can be greatly improved, so it is very suitable for application in various types of devices.
值得注意的是,以上所述之電位、電流、電阻值、電感值、電容值,以及其餘元件參數均非為本發明之限制條件。設計者可以根據不同需要調整這些設定值。本發明之電源供應器並不僅限於第1-5圖所圖示之狀態。本發明可以僅包括第1-5圖之任何一或複數個實施例之任何一或複數項特徵。換言之,並非所有圖示之特徵均須同時實施於本發明之電源供應器當中。雖然本發明之實施例係使用金氧半場效電晶體為例,但本發明並不僅限於此,本技術領域人士可改用其他種類之電晶體,例如:接面場效電晶體,或是鰭式場效電晶體等等,而不致於影響本發明之效果。It is worth noting that the above-mentioned potential, current, resistance value, inductance value, capacitance value, and other component parameters are not limiting conditions of the present invention. Designers can adjust these settings according to different needs. The power supply of the present invention is not limited to the state shown in Figures 1-5. The present invention may only include any one or multiple features of any one or multiple embodiments of Figures 1-5. In other words, not all features shown in the figures need to be implemented in the power supply of the present invention at the same time. Although the embodiment of the present invention uses a metal oxide semi-field effect transistor as an example, the present invention is not limited thereto. Those skilled in the art can use other types of transistors, such as junction field effect transistors or fins. type field effect transistor, etc., without affecting the effect of the present invention.
在本說明書以及申請專利範圍中的序數,例如「第一」、「第二」、「第三」等等,彼此之間並沒有順序上的先後關係,其僅用於標示區分兩個具有相同名字之不同元件。The ordinal numbers in this specification and the scope of the patent application, such as "first", "second", "third", etc., have no sequential relationship with each other. They are only used to distinguish two items with the same Different components with names.
本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention is disclosed above in terms of preferred embodiments, they are not intended to limit the scope of the present invention. Anyone skilled in the art can make slight changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.
100,200:電源供應器 110,210:輸入整流電路 120,220:第一變壓器 121,221:第一主線圈 122,222:第一副線圈 130,230:第二變壓器 131,231:第二主線圈 132,232:第二副線圈 140,240:輸出整流電路 150,250:輸入控制電路 180,280:微控制器 260:第三變壓器 261:第三主線圈 262:第三副線圈 270:第四變壓器 271:第四主線圈 272:第四副線圈 C1:第一電容器 C2:第二電容器 C3:第三電容器 C4:第四電容器 C5:第五電容器 C6:第六電容器 C7:第七電容器 D1:第一二極體 D2:第二二極體 D3:第三二極體 D4:第四二極體 IR1:第一整流電流 IR2:第二整流電流 IRT:總整流電流 LM1:第一激磁電感器 LM2:第二激磁電感器 LR1:第一漏電感器 LR2:第二漏電感器 M1:第一電晶體 M2:第二電晶體 M3:第三電晶體 M4:第四電晶體 M5:第五電晶體 M6:第六電晶體 M7:第七電晶體 M8:第八電晶體 M9:第九電晶體 M10:第十電晶體 M11:第十一電晶體 M12:第十二電晶體 N1:第一節點 N2:第二節點 N3:第三節點 N4:第四節點 N5:第五節點 N6:第六節點 N7:第七節點 N8:第八節點 N9:第九節點 N10:第十節點 N11:第十一節點 N12:第十二節點 N13:第十三節點 N14:第十四節點 N15:第十五節點 N16:第十六節點 N17:第十七節點 N18:第十八節點 N19:第十九節點 NC1:第一控制節點 NC2:第二控制節點 NCM:共同節點 NIN:輸入節點 NOUT:輸出節點 R1:第一電阻器 R2:第二電阻器 R3:第三電阻器 R4:第四電阻器 VA1:第一時脈電位 VA2:第二時脈電位 VC1:第一控制電位 VC2:第二控制電位 VIN:輸入電位 VOUT:輸出電位 VP1:第一電容電位 VP2:第二電容電位 T1:第一階段 T2:第二階段 VSS:接地電位 ΔT:中介階段 ΔVTH:臨界電位差 100,200:Power supply 110,210: Input rectifier circuit 120,220:First transformer 121,221: first main coil 122,222: first secondary coil 130,230: Second transformer 131,231: Second main coil 132,232: Second secondary coil 140,240: Output rectifier circuit 150,250: Input control circuit 180,280:Microcontroller 260:Third transformer 261:Third main coil 262: The third secondary coil 270:The fourth transformer 271:Fourth main coil 272: The fourth secondary coil C1: first capacitor C2: Second capacitor C3: The third capacitor C4: The fourth capacitor C5: fifth capacitor C6: The sixth capacitor C7: The seventh capacitor D1: first diode D2: Second diode D3: The third diode D4: The fourth diode IR1: first rectified current IR2: second rectified current IRT: total rectified current LM1: First exciting inductor LM2: Second exciting inductor LR1: First leakage inductor LR2: Second leakage inductor M1: the first transistor M2: Second transistor M3: The third transistor M4: The fourth transistor M5: The fifth transistor M6: The sixth transistor M7: The seventh transistor M8: The eighth transistor M9: Ninth transistor M10: The tenth transistor M11: The eleventh transistor M12: Twelfth transistor N1: first node N2: second node N3: The third node N4: fourth node N5: fifth node N6: The sixth node N7: The seventh node N8: The eighth node N9: Ninth node N10: tenth node N11: The eleventh node N12: Twelfth node N13: The thirteenth node N14: The fourteenth node N15: The fifteenth node N16: The sixteenth node N17: The seventeenth node N18: The eighteenth node N19:Nineteenth node NC1: first control node NC2: second control node NCM: common node NIN: input node NOUT: output node R1: first resistor R2: second resistor R3: The third resistor R4: The fourth resistor VA1: first clock potential VA2: second clock potential VC1: first control potential VC2: second control potential VIN: input potential VOUT: output potential VP1: first capacitor potential VP2: second capacitor potential T1: first stage T2: The second stage VSS: ground potential ΔT: Intermediary stage ΔVTH: critical potential difference
第1圖係顯示根據本發明一實施例所述之電源供應器之示意圖。 第2圖係顯示根據本發明一實施例所述之電源供應器之電路圖。 第3圖係顯示根據本發明一實施例所述之第一時脈電位和第二時脈電位之電位波形圖。 第4圖係顯示根據本發明一實施例所述之第一電容電位和第二電容電位之電位波形圖。 第5圖係顯示根據本發明一實施例所述之第一整流電流、第二整流電流,以及總整流電流之電流波形圖。 Figure 1 is a schematic diagram of a power supply according to an embodiment of the present invention. Figure 2 is a circuit diagram showing a power supply according to an embodiment of the present invention. Figure 3 is a potential waveform diagram showing the first clock potential and the second clock potential according to an embodiment of the present invention. FIG. 4 shows potential waveforms of the first capacitor potential and the second capacitor potential according to an embodiment of the present invention. Figure 5 is a current waveform diagram showing the first rectified current, the second rectified current, and the total rectified current according to an embodiment of the present invention.
100:電源供應器 110:輸入整流電路 120:第一變壓器 121:第一主線圈 122:第一副線圈 130:第二變壓器 131:第二主線圈 132:第二副線圈 140:輸出整流電路 150:輸入控制電路 180:微控制器 C1:第一電容器 C2:第二電容器 IR1:第一整流電流 IR2:第二整流電流 LM1:第一激磁電感器 LM2:第二激磁電感器 LR1:第一漏電感器 LR2:第二漏電感器 VA1:第一時脈電位 VA2:第二時脈電位 VC1:第一控制電位 VC2:第二控制電位 VIN:輸入電位 VOUT:輸出電位 100:Power supply 110:Input rectifier circuit 120:First transformer 121: First main coil 122: First secondary coil 130:Second transformer 131: Second main coil 132: Second secondary coil 140:Output rectifier circuit 150:Input control circuit 180:Microcontroller C1: first capacitor C2: Second capacitor IR1: first rectified current IR2: second rectified current LM1: First exciting inductor LM2: Second exciting inductor LR1: First leakage inductor LR2: Second leakage inductor VA1: first clock potential VA2: second clock potential VC1: first control potential VC2: second control potential VIN: input potential VOUT: output potential
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111118626A TWI832251B (en) | 2022-05-19 | 2022-05-19 | Power supply device with high conversion efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111118626A TWI832251B (en) | 2022-05-19 | 2022-05-19 | Power supply device with high conversion efficiency |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202347949A TW202347949A (en) | 2023-12-01 |
TWI832251B true TWI832251B (en) | 2024-02-11 |
Family
ID=90039419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111118626A TWI832251B (en) | 2022-05-19 | 2022-05-19 | Power supply device with high conversion efficiency |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI832251B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160149501A1 (en) * | 2014-11-20 | 2016-05-26 | Futurewei Technologies, Inc. | Parallel Hybrid Converter Apparatus and Method |
CN107276418A (en) * | 2017-08-14 | 2017-10-20 | 深圳市保益新能电气有限公司 | A kind of wide scope Sofe Switch DC transfer circuit and its control method |
TW202011680A (en) * | 2018-09-12 | 2020-03-16 | 國立臺灣科技大學 | Interleaved LLC half-bridge series resonant converter having integrated transformer |
CN112019055A (en) * | 2019-05-31 | 2020-12-01 | Abb电力电子公司 | Wide range gain converter |
TW202203565A (en) * | 2020-07-01 | 2022-01-16 | 宏碁股份有限公司 | Power supply device for eliminating ringing effect |
-
2022
- 2022-05-19 TW TW111118626A patent/TWI832251B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160149501A1 (en) * | 2014-11-20 | 2016-05-26 | Futurewei Technologies, Inc. | Parallel Hybrid Converter Apparatus and Method |
CN107276418A (en) * | 2017-08-14 | 2017-10-20 | 深圳市保益新能电气有限公司 | A kind of wide scope Sofe Switch DC transfer circuit and its control method |
TW202011680A (en) * | 2018-09-12 | 2020-03-16 | 國立臺灣科技大學 | Interleaved LLC half-bridge series resonant converter having integrated transformer |
CN112019055A (en) * | 2019-05-31 | 2020-12-01 | Abb电力电子公司 | Wide range gain converter |
TW202203565A (en) * | 2020-07-01 | 2022-01-16 | 宏碁股份有限公司 | Power supply device for eliminating ringing effect |
Also Published As
Publication number | Publication date |
---|---|
TW202347949A (en) | 2023-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI688195B (en) | Power supply device | |
WO2020125669A1 (en) | Analog switch circuit and charge pump circuit | |
TWI692185B (en) | Boost converter | |
TWI740686B (en) | Boost converter for reducing total harmonic distortion | |
CN109149944B (en) | On-chip integrated active negative voltage clamping circuit suitable for flyback converter | |
US11303216B2 (en) | Power supply device for eliminating ringing effect | |
TWI832251B (en) | Power supply device with high conversion efficiency | |
TWI731675B (en) | Power supply device for eliminating ringing effect | |
TW202349837A (en) | Power supply device with fast discharge function | |
TWI704756B (en) | Boost converter | |
TWI704757B (en) | Boost converter | |
TWI715487B (en) | Power supply device for eliminating ringing effect | |
TWI698075B (en) | Power supply device | |
TW202341634A (en) | Power supply device for suppressing noise | |
TWI812079B (en) | Power supply device with high output stability | |
WO2021036607A1 (en) | Flyback converter and electronic device | |
TWI812354B (en) | Power supply device with high efficiency | |
TW202347935A (en) | Power supply device | |
JP2015126596A (en) | High-frequency ac power-supply device | |
TWI857781B (en) | Power supply device with high conversion efficiency | |
CN113644823B (en) | Power supply device for eliminating ringing effect | |
TWI835405B (en) | Power supply circuit | |
WO2022237382A1 (en) | Resonant converter and power adapter | |
CN113938014A (en) | Power supply for eliminating ringing effect | |
TW202343946A (en) | Power supply device |