[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI720178B - Fine metal mask for producing organic light-emitting diodes - Google Patents

Fine metal mask for producing organic light-emitting diodes Download PDF

Info

Publication number
TWI720178B
TWI720178B TW106111997A TW106111997A TWI720178B TW I720178 B TWI720178 B TW I720178B TW 106111997 A TW106111997 A TW 106111997A TW 106111997 A TW106111997 A TW 106111997A TW I720178 B TWI720178 B TW I720178B
Authority
TW
Taiwan
Prior art keywords
fine metal
metal mask
photomask
mask
unit
Prior art date
Application number
TW106111997A
Other languages
Chinese (zh)
Other versions
TW201802268A (en
Inventor
魯平 王
黃曦
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW201802268A publication Critical patent/TW201802268A/en
Application granted granted Critical
Publication of TWI720178B publication Critical patent/TWI720178B/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The embodiments described herein generally relate to the formation of low tension fine metal masks for electro-optic devices. The low tension fine metal mask has a frame. The frame has a plurality of apertures. The low tension fine metal mask has a plurality of mask units. Each mask unit has a having a plurality of openings. Each metal mask unit is coupled to the frame in a manner that maintains a tension across the mask unit of about less than about 0.4 kgf/cm.

Description

用於生產有機發光二極體的精細金屬光罩Fine metal mask for the production of organic light-emitting diodes

於此所揭露的實施例通常涉及電光裝置的生產。更具體地,於此所揭露的實施例通常涉及形成精細金屬光罩。The embodiments disclosed herein generally involve the production of electro-optical devices. More specifically, the embodiments disclosed herein generally involve forming a fine metal mask.

由於多種原因,利用有機材料的電光裝置變得越來越需要。用以製造這種裝置的許多材料相對便宜,因此有機電光裝置具有超過無機裝置的成本優勢的潛力。同樣地,有機材料的固有性質(諸如它們的撓性)對於特定應用(諸如用於在撓性基板上的沉積或形成)可能是有利的。有機電光裝置的例子包括有機發光裝置(OLED)、有機光電晶體、有機光伏打電池和有機光偵測器。For many reasons, electro-optical devices using organic materials are becoming more and more needed. Many of the materials used to make such devices are relatively cheap, so organic electro-optical devices have the potential to exceed the cost advantages of inorganic devices. Likewise, the inherent properties of organic materials (such as their flexibility) may be advantageous for specific applications (such as for deposition or formation on flexible substrates). Examples of organic electro-optical devices include organic light-emitting devices (OLED), organic photoelectric crystals, organic photovoltaic cells, and organic light detectors.

對於OLED而言,有機材料被認為相較於傳統材料具有性能優點。例如,有機發光層發光的波長通常可用合適的摻雜劑而容易地調諧。當電壓施加在裝置上時,OLED利用發出光的薄有機膜。OLED正在成為越來越令人關注的技術,用於諸如平板顯示器、照明和背光的應用中。For OLEDs, organic materials are considered to have performance advantages compared to traditional materials. For example, the wavelength at which the organic light-emitting layer emits light can usually be easily tuned with a suitable dopant. When voltage is applied to the device, the OLED utilizes a thin organic film that emits light. OLED is becoming an increasingly interesting technology for applications such as flat panel displays, lighting and backlighting.

在OLED材料的蒸發沉積之前和期間,使用精細金屬光罩(FMM)來界定基板上的沉積區域。光罩製造問題、光罩材料、從批次到批次的小差異及沉積期間的溫度變化可能導致FFM在基板上失準。到目前為止,這些小的溫度變化和處理期間的變化限制了使用FMM進行蒸發圖案化到相對較小的基板和相對較大的界定特徵。Before and during the evaporative deposition of the OLED material, a fine metal mask (FMM) is used to define the deposition area on the substrate. Mask manufacturing issues, mask materials, small differences from batch to batch, and temperature changes during deposition can cause the FFM to be misaligned on the substrate. So far, these small temperature changes and changes during processing have limited the use of FMM for evaporation patterning to relatively small substrates and relatively large defined features.

一種解決方案是將光罩與基板進行非常精確的對準、在處理期間保持沉積溫度儘可能低且恆定、使用具有低熱膨脹係數的光罩材料及將光罩置於張力下。這種沉積技術已經進行了許多年,且在特徵密度方面(亦即,可在區域中所形成的特徵的數量)已經達到其極限。One solution is to align the photomask with the substrate very accurately, keep the deposition temperature as low and constant as possible during processing, use a photomask material with a low coefficient of thermal expansion, and place the photomask under tension. This deposition technique has been carried out for many years and has reached its limit in terms of feature density (that is, the number of features that can be formed in a region).

另一種可能的解決方案是小光罩掃描(SMS)。SMS涉及使用比整個基板或顯示器小;並相對於基板掃描的光罩,藉此光罩用以沉積紅色、綠色和藍色(RGB)材料的條紋。這種技術具有許多問題,因為在沉積期間必須在基板和光罩之間保持間隙,這導致在發射RGB材料之間的交叉污染。此外,SMS可能由於刮擦而產生缺陷,這是由於希望在掃描期間保持儘可能小的間隙,以避免以上所述的交叉污染。Another possible solution is small mask scanning (SMS). SMS involves the use of a photomask that is smaller than the entire substrate or display; and scanned relative to the substrate, whereby the photomask is used to deposit stripes of red, green, and blue (RGB) materials. This technique has many problems because a gap must be maintained between the substrate and the photomask during deposition, which leads to cross-contamination between emitting RGB materials. In addition, SMS may have defects due to scratches, which is due to the desire to keep the gap as small as possible during scanning to avoid the cross-contamination described above.

因此,存在有用於形成電光裝置的改進的光罩和光罩技術的持續需求。Therefore, there is a continuing need for improved photomasks and photomask technology for forming electro-optical devices.

於此所述的實施例通常涉及形成用於電光裝置的低張力精細金屬光罩。低張力精細金屬光罩具有框架。框架具有複數個孔。低張力精細金屬光罩具有複數個光罩單元。每一光罩單元具有複數個開口。每一金屬光罩單元以保持跨過光罩單元具有大約小於約0.4kgf/cm(諸如0.1kgf/cm)的張力的方式而耦接到框架。The embodiments described herein generally involve the formation of low tension fine metal masks for electro-optical devices. The low tension fine metal mask has a frame. The frame has a plurality of holes. The low-tension fine metal mask has a plurality of mask units. Each mask unit has a plurality of openings. Each metal mask unit is coupled to the frame in a manner to maintain a tension of approximately less than about 0.4 kgf/cm (such as 0.1 kgf/cm) across the mask unit.

在另一個實施例中,揭露了光罩組件。光罩組件具有主體。主體具有框架和複數個支撐件,在框架的至少一側上形成孔。光罩單元的尺寸適合於孔並與孔接合。光罩單元具有精細金屬光罩,精細金屬光罩具有複數個開口。精細金屬光罩設置在邊框內並處於低張力。In another embodiment, a photomask assembly is disclosed. The mask assembly has a main body. The main body has a frame and a plurality of supports, and holes are formed on at least one side of the frame. The size of the mask unit is suitable for the hole and engages with the hole. The photomask unit has a fine metal photomask, and the fine metal photomask has a plurality of openings. The fine metal mask is set in the frame and is under low tension.

在又另一個實施例中,揭露了一種用於形成精細金屬光罩組件的方法。方法開始於製備由矽-金屬混合材料所形成的基板。通過矽-金屬混合材料的矽層在金屬層的空隙中形成通孔。通孔具有以第一角度所形成的側壁。在金屬層的側壁上形成第二角度。將基板切割成適以形成光罩單元的形狀。光罩單元接著耦接到精細金屬光罩組件中,其中跨過光罩單元的張力約小於約0.4kgf/cm。In yet another embodiment, a method for forming a fine metal mask assembly is disclosed. The method begins with the preparation of a substrate formed of a silicon-metal hybrid material. Through the silicon layer of the silicon-metal hybrid material, a through hole is formed in the gap of the metal layer. The through hole has a side wall formed at a first angle. A second angle is formed on the sidewall of the metal layer. The substrate is cut into a shape suitable for forming the mask unit. The photomask unit is then coupled to the fine metal photomask assembly, wherein the tension across the photomask unit is less than about 0.4kgf/cm.

於此所揭露的實施例通常涉及精細金屬光罩。精細金屬光罩是指在將材料沉積到基板期間可使用的光罩。可使用精細金屬光罩來形成具有圖案解析度小於基板的整個有源(發光)區域的特徵。通常,精細金屬光罩具有一定的尺寸,其尺寸是待被設置在基板上的子像素(通常為一種顏色)的一部分的尺寸的層級。因此,精細金屬光罩通常用於沉積有機裝置的發射層,其中顯示器的不同顏色各自通過精細金屬光罩而分別地沉積並經設計以僅允許沉積在存在顯示器中的有源OLED的一部分上(如,僅沉積紅色發射層的精細金屬光罩,僅沉積綠色發光層的另一種精細金屬光罩等)。The embodiments disclosed herein generally involve fine metal masks. A fine metal mask refers to a mask that can be used during the deposition of materials on a substrate. A fine metal mask can be used to form features that have a pattern resolution smaller than the entire active (light-emitting) area of the substrate. Generally, the fine metal mask has a certain size, and the size is the level of the size of a part of the sub-pixel (usually one color) to be disposed on the substrate. Therefore, fine metal photomasks are generally used to deposit the emission layer of organic devices, where the different colors of the display are respectively deposited through the fine metal photomask and designed to allow deposition only on a part of the active OLED present in the display ( For example, a fine metal mask that only deposits a red emission layer, another fine metal mask that only deposits a green emission layer, etc.).

精細金屬光罩可由使用微加工(微機電系統)或電漿處理而從矽-金屬混合材料而形成,以實現具有約1微米準確度的光罩圖案。此外,在沉積製程期間,基板和精細金屬光罩都可被加熱,且因此基板和精細金屬光罩都在一定程度上膨脹。當基板和精細金屬光罩膨脹時,必須保持精細金屬光罩相對於基板的對準,以實現高準確度和高解析度。例如,精細金屬光罩可實現大於600PPI的每英寸像素(PPI)解析度,諸如在下一代和大基板上約800PPI至約1200PPI之間的像素。藉由將精細金屬光罩定位在剛性框架中而不張緊精細金屬光罩,在處理製程期間,精細金屬光罩可與基板對準而無偏移或變形。下面參照圖式更清楚地描述於此所揭露的實施例。The fine metal mask can be formed from a silicon-metal hybrid material using micromachining (MEMS) or plasma processing to achieve a mask pattern with an accuracy of about 1 micron. In addition, during the deposition process, both the substrate and the fine metal mask can be heated, and therefore both the substrate and the fine metal mask expand to a certain extent. When the substrate and the fine metal mask expand, the alignment of the fine metal mask relative to the substrate must be maintained to achieve high accuracy and high resolution. For example, a fine metal mask can achieve a pixel-per-inch (PPI) resolution greater than 600 PPI, such as pixels between about 800 PPI and about 1200 PPI on next-generation and large substrates. By positioning the fine metal mask in the rigid frame without tensioning the fine metal mask, the fine metal mask can be aligned with the substrate without shifting or deformation during the processing process. The embodiments disclosed herein are described more clearly below with reference to the drawings.

第1圖描繪了具有精細金屬光罩組件130的處理腔室100的一部分的示意圖。處理腔室100可為適於與以下所述的實施例一起使用的處理腔室。在一個實施例中,處理腔室100可為可從加州聖克拉拉市應用材料公司的子公司AKT America公司獲得的腔室。應當理解於此所討論的實施例可實施於其他腔室(包括由其他製造商所銷售的那些腔室)。FIG. 1 depicts a schematic diagram of a part of the processing chamber 100 with the fine metal mask assembly 130. The processing chamber 100 may be a processing chamber suitable for use with the embodiments described below. In one embodiment, the processing chamber 100 may be a chamber available from AKT America, a subsidiary of Applied Materials, Inc., Santa Clara, California. It should be understood that the embodiments discussed herein can be implemented in other chambers (including those sold by other manufacturers).

基板102可相關於靜電卡盤(未顯示)而定位在處理腔室100中。基板102可為適合用於在其上形成有機發光二極體(OLED)的基板。另外,基板102可為撓性材料。OLED可由位於兩個電極之間(陽極和陰極)的有機材料層所組成,全部沉積在基板102上。在一個實施例中,基板102基本上由玻璃組成。基板可具有寬的尺寸範圍(如,長度、寬度、形狀、厚度等)。在一個實施例中,基板102為約1米長和1米寬。在這個實施例中,基板102被描繪為具有形成在下表面103之上的陰極104。陰極104可包含氧化銦錫(ITO)。在其它實施例中,陰極104是不連續的且與OLED層(未顯示)的形成結合而形成在基板102上。The substrate 102 may be positioned in the processing chamber 100 in relation to an electrostatic chuck (not shown). The substrate 102 may be a substrate suitable for forming an organic light emitting diode (OLED) thereon. In addition, the substrate 102 may be a flexible material. The OLED may be composed of an organic material layer located between two electrodes (anode and cathode), all of which are deposited on the substrate 102. In one embodiment, the substrate 102 consists essentially of glass. The substrate may have a wide range of dimensions (eg, length, width, shape, thickness, etc.). In one embodiment, the substrate 102 is about 1 meter long and 1 meter wide. In this embodiment, the substrate 102 is depicted as having a cathode 104 formed on the lower surface 103. The cathode 104 may include indium tin oxide (ITO). In other embodiments, the cathode 104 is discontinuous and is formed on the substrate 102 in combination with the formation of an OLED layer (not shown).

源108鄰近基板102和陰極104定位。通常地,源108可為能夠產生有機材料110的蒸氣的源舟或其它容器或儲存器。有機材料110的蒸氣可經配置成在陰極104之上沉積進一步的層,諸如發射層,孔傳輸層,變色層或用於形成OLED結構所需要或所期望的進一步的層(未顯示)。在一個實施例中,源108產生有機材料110的蒸汽,以在陰極104之上形成白色發射層(未顯示),並在白色發射層之上形成變色層。在另一個實施例中,源108產生有機材料110的蒸氣,以在陰極104之上形成彩色發射層(未顯示)。可在陰極104之上形成一或多個附加層,諸如電子傳輸層(未顯示)。The source 108 is positioned adjacent to the substrate 102 and the cathode 104. Generally, the source 108 may be a source boat or other container or reservoir capable of generating vapor of the organic material 110. The vapor of the organic material 110 may be configured to deposit further layers on the cathode 104, such as an emissive layer, a hole transport layer, a color changing layer, or a further layer (not shown) required or desired for forming an OLED structure. In one embodiment, the source 108 generates vapor of the organic material 110 to form a white emission layer (not shown) on the cathode 104 and a color changing layer on the white emission layer. In another embodiment, the source 108 generates vapor of the organic material 110 to form a color emissive layer (not shown) on the cathode 104. One or more additional layers may be formed on the cathode 104, such as an electron transport layer (not shown).

精細金屬光罩組件130位於基板102和源108之間。應當理解精細金屬光罩組件130未按比例而繪製,且與相關結構相比,在長度,寬度或高度上可比所顯示的更小或更大。精細金屬光罩組件130包括精細金屬光罩106和框架112。精細金屬光罩106可定位在框架112中。精細金屬光罩106可至少部分地由一或多個磁性或非磁性金屬所構成。例如,精細金屬光罩可由矽-金屬混合材料所形成。用於精細金屬光罩106或其部件的合適材料包括(但不限於)矽-鎳混合材料,INVAR(64FeNi),ASTM5級鈦(Ti-6Al-4V),鈦,鋁,鉬,銅,440不銹鋼,HASTELLOY®合金C-276,鎳,鉻鉬鋼,304不銹鋼,其他含鐵組合物,或其組合。框架112可由與精細金屬光罩106的材料類似的材料所構成。在一個實施例中,框架112由INVAR所構成。The fine metal mask assembly 130 is located between the substrate 102 and the source 108. It should be understood that the fine metal mask assembly 130 is not drawn to scale, and compared with related structures, may be smaller or larger in length, width, or height than shown. The fine metal mask assembly 130 includes a fine metal mask 106 and a frame 112. The fine metal mask 106 may be positioned in the frame 112. The fine metal mask 106 may be at least partially composed of one or more magnetic or non-magnetic metals. For example, the fine metal mask can be formed of a silicon-metal hybrid material. Suitable materials for the fine metal mask 106 or its components include (but are not limited to) silicon-nickel hybrid materials, INVAR (64FeNi), ASTM5 grade titanium (Ti-6Al-4V), titanium, aluminum, molybdenum, copper, 440 Stainless steel, HASTELLOY® alloy C-276, nickel, chromium molybdenum steel, 304 stainless steel, other iron-containing compositions, or combinations thereof. The frame 112 may be composed of a material similar to that of the fine metal mask 106. In one embodiment, the frame 112 is composed of INVAR.

精細金屬光罩106可具有允許覆蓋基板的至少一部分的尺寸和形狀。在一個實施例中,精細金屬光罩106的長度為從1米和1.5米,高度為從750毫米至925毫米。精細金屬光罩106可具有小於80微米的厚度,諸如約40微米或約20微米。在一個實施例中,精細金屬光罩106具有小於40微米的厚度。The fine metal mask 106 may have a size and shape that allows covering at least a part of the substrate. In one embodiment, the length of the fine metal mask 106 is from 1 meter and 1.5 meters, and the height is from 750 mm to 925 mm. The fine metal mask 106 may have a thickness of less than 80 microns, such as about 40 microns or about 20 microns. In one embodiment, the fine metal mask 106 has a thickness of less than 40 microns.

精細金屬光罩106定位在處理腔室100中。處理腔室被抽真空,其中溫度穩定並準備好接收基板102。然後可將基板102帶入處理腔室100和將在精細金屬光罩106上的對準標記與基板102上的相應特徵對準。The fine metal mask 106 is positioned in the processing chamber 100. The processing chamber is evacuated, where the temperature is stable and ready to receive the substrate 102. The substrate 102 can then be brought into the processing chamber 100 and the alignment marks on the fine metal mask 106 can be aligned with corresponding features on the substrate 102.

為了更好地理解和體會精細金屬光罩106,將首先相對於傳統的精細金屬光罩206來討論精細金屬光罩組件130。第2圖描繪了傳統的精細金屬光罩206的頂視圖,其設置在精細金屬光罩組件130中,適合用於在第1圖的處理腔室100中使用。傳統的精細金屬光罩206連接到框架112。在一個例子中,傳統的精細金屬光罩206使用微致動器214以附接到框架112。在另一個例子中,傳統的精細金屬光罩206被拉伸並焊接到框架112上。In order to better understand and appreciate the fine metal photomask 106, the fine metal photomask assembly 130 will be discussed first with respect to the traditional fine metal photomask 206. FIG. 2 depicts a top view of a conventional fine metal mask 206, which is set in the fine metal mask assembly 130, and is suitable for use in the processing chamber 100 of FIG. 1. The traditional fine metal mask 206 is connected to the frame 112. In one example, the conventional fine metal mask 206 uses micro-actuators 214 to attach to the frame 112. In another example, the traditional fine metal mask 206 is stretched and welded to the frame 112.

拉伸傳統的精細金屬光罩206,或者替代的微致動器214施加對準及/或拉伸傳統的精細金屬光罩206的力。光罩開口216和框架開口218被分別描繪為傳統的精細金屬光罩206和框架112中的孔。然而,可使用其它連接,諸如附接微致動器214的鉤或螺栓,或將微致動器214焊接到框架112,傳統的精細金屬光罩206或兩者。在操作中,傳統的精細金屬光罩206被張緊,以使傳統的精細金屬光罩206和圖案界定特徵220相對於基板102而達到最終所欲的尺寸和位置。例如,精細金屬光罩206可為通常在約0.7至約0.9kgf/cm的範圍中張緊。然後,精細金屬光罩組件130將被加載到處理腔室100中。The traditional fine metal mask 206 is stretched, or the alternative micro-actuator 214 applies force to align and/or stretch the traditional fine metal mask 206. The mask opening 216 and the frame opening 218 are depicted as holes in the traditional fine metal mask 206 and frame 112, respectively. However, other connections may be used, such as hooks or bolts to attach the microactuator 214, or welding the microactuator 214 to the frame 112, a traditional fine metal mask 206, or both. In operation, the conventional fine metal mask 206 is tensioned so that the conventional fine metal mask 206 and the pattern defining features 220 reach the final desired size and position relative to the substrate 102. For example, the fine metal mask 206 may be generally tensioned in the range of about 0.7 to about 0.9 kgf/cm. Then, the fine metal mask assembly 130 will be loaded into the processing chamber 100.

傳統的精細金屬光罩206可包括約750mm×650mm的尺寸,該尺寸在一或多個尺寸上被張緊到高於0.8kgf/cm。用於傳統的精細金屬光罩206的較大尺寸包括約920mm×約730mm,GEN 6半切(約1500mm×約900mm)。The conventional fine metal mask 206 may include a size of about 750 mm×650 mm, which is tensioned to more than 0.8 kgf/cm in one or more sizes. The larger size used for the traditional fine metal mask 206 includes about 920mm×about 730mm, GEN 6 half-cut (about 1500mm×about 900mm).

傳統的精細金屬光罩206由一片低熱膨脹金屬片而形成,其被拉伸且接著以拉伸狀態附接到重的框架。通常需要重的框架來保持精細金屬光罩的高拉伸,亦即,張緊,且可在數千磅的層級上。例如,具有16個致動器的傳統的精細金屬光罩206可由INVAR所形成,其具有1.3μm/m℃的熱膨脹係數(CTE)、70ksi的降服強度和21500ksi的楊氏模數。溫度升高為50℃時,熱膨脹為162.5μm。需要為了膨脹而校正的應變和應力為0.0065%,需要16個致動器的每一者採用27.1磅的力。類似地,精細金屬光罩(FMM)可由以下所形成:Ti-6Al-4V,每一致動器需要的力為137.5磅;鈦,每一致動器需要的力為144.8磅;Al,每一致動器需要的力為222.8磅;鉬鈦,每一致動器需要的力為248.3磅;銅,每一致動器需要的力為254.2磅;不銹鋼,每一致動器需要的力為286.6磅;HASTELLOY®,每一致動器需要的力為322.2磅;鎳,每一致動器需要的力為347.3磅;及鉻鉬鋼,每一致動器需要的力為351.7磅。然而,施加到傳統的精細金屬光罩206的張緊力限制了解析度並導致光罩在高溫下的偏移和偏斜。因此,傳統的精細金屬光罩對於高解析度和更大尺寸的可擴展性而言提供了不良的指引。The conventional fine metal mask 206 is formed of a piece of low thermal expansion metal sheet, which is stretched and then attached to a heavy frame in a stretched state. A heavy frame is usually required to maintain the high stretch, that is, tension, of the fine metal mask, and can be on the order of thousands of pounds. For example, a traditional fine metal mask 206 with 16 actuators can be formed by INVAR, which has a coefficient of thermal expansion (CTE) of 1.3 μm/m° C., a yield strength of 70 ksi, and a Young's modulus of 21500 ksi. When the temperature rises to 50°C, the thermal expansion is 162.5 μm. The strain and stress that need to be corrected for expansion is 0.0065%, and each of the 16 actuators is required to use 27.1 pounds of force. Similarly, a fine metal mask (FMM) can be formed by: Ti-6Al-4V, the force required for each actuator is 137.5 pounds; titanium, the force required for each actuator is 144.8 pounds; Al, for each actuator The force required for the actuator is 222.8 pounds; for molybdenum titanium, the force required for each actuator is 248.3 pounds; for copper, the force required for each actuator is 254.2 pounds; for stainless steel, the force required for each actuator is 286.6 pounds; HASTELLOY® , The force required for each actuator is 322.2 pounds; for nickel, the force required for each actuator is 347.3 pounds; and for chrome-molybdenum steel, the force required for each actuator is 351.7 pounds. However, the tension applied to the traditional fine metal mask 206 limits the resolution and causes the offset and deflection of the mask at high temperatures. Therefore, the traditional fine metal mask provides a poor guideline for high resolution and larger scalability.

第3圖顯示了根據一個實施例的精細金屬光罩106的頂視圖,其設置在適合用於在第1圖的處理腔室中使用的精細金屬光罩組件130中。精細金屬光罩106不受到在以上關於第2圖所討論的傳統的精細金屬光罩206中使用的張緊力。精細金屬光罩106可包括約750mm×650mm的尺寸,該尺寸在一或多個維度上被張緊到小於約0.4kgf/cm,諸如0.1kgf/cm或以下。精細金屬光罩106的較大尺寸包括約920mm×約730mm,GEN 6半切(約1500mm×約900mm),並延伸至甚至更大的尺寸,諸如GEN 6(約1500mm×約1800mm),GEN 8.5(約2200mm×約2500mm)和GEN 10(約2800mm×約3200mm)。 FIG. 3 shows a top view of a fine metal mask 106 according to an embodiment, which is set in a fine metal mask assembly 130 suitable for use in the processing chamber of FIG. 1. The fine metal mask 106 is not subject to the tension force used in the conventional fine metal mask 206 discussed above with respect to FIG. 2. The fine metal mask 106 may include a size of about 750 mm×650 mm, which is tensioned to less than about 0.4 kgf/cm in one or more dimensions, such as 0.1 kgf/cm or less. The larger size of the fine metal mask 106 includes about 920mm×about 730mm, GEN 6 half-cut (about 1500mm×about 900mm), and extends to even larger sizes, such as GEN 6 (about 1500mm×about 1800mm), GEN 8.5 ( About 2200mm×about 2500mm) and GEN 10 (about 2800mm×about 3200mm).

精細金屬光罩組件130的框架112具有主體352。主體352可由INVAR(64FeNi),ASTM 5級鈦(Ti-6Al-4V),鈦,鋁,鉬,銅,440不銹鋼,HASTELLOY®合金C-276,鎳,鉻鉬鋼,304不銹鋼,其他含鐵組合物,或其組合所形成。主體352具有殼體354。殼體354可成形為具有內部部分342和外周邊344的帶狀物。用於殼體354的帶狀的例子可包括圓環形狀,橢圓環形狀,矩形環形狀或具有中心中空區域的其它合適的多邊形帶/環形狀。 The frame 112 of the fine metal mask assembly 130 has a main body 352. The main body 352 can be made of INVAR (64FeNi), ASTM grade 5 titanium (Ti-6Al-4V), titanium, aluminum, molybdenum, copper, 440 stainless steel, HASTELLOY® alloy C-276, nickel, chromium molybdenum steel, 304 stainless steel, and other iron-containing The composition, or a combination thereof. The main body 352 has a housing 354. The housing 354 may be shaped as a ribbon having an inner portion 342 and an outer periphery 344. Examples of the band shape used for the housing 354 may include a circular ring shape, an elliptical ring shape, a rectangular ring shape, or other suitable polygonal band/ring shapes with a central hollow area.

主體352可另外具有一或多個支撐件336。主體352還可具有複數個輔助支撐件334。支撐件336、334將殼體354的內部部分342分成複數個孔332。支撐件336、334可與殼體354一體。例如,孔332和支撐件336、334可藉由從殼體354中移除材料或在製造殼體354期間通過類似3D列印的附加的製造製程而形成,使得殼體354和支撐件336、334由一個固態均勻的材料片所形成。替代地,支撐件336、334可為在形成主體352時附接到殼體354的單個單元或分離的構件。例如,支撐件336、334可藉由其它技術,具張緊或不具張緊,而焊接,膠合,緊固或附接至殼體354。在一個實施例中,框架112具有十個(10)孔332。孔332可成形為矩形,正方形,圓形,三角形,餡餅或其它合適的形狀。例如,十個孔332可具有基本上矩形的形狀。The main body 352 may additionally have one or more supports 336. The main body 352 may also have a plurality of auxiliary supports 334. The support members 336 and 334 divide the inner part 342 of the housing 354 into a plurality of holes 332. The supports 336 and 334 may be integrated with the housing 354. For example, the hole 332 and the supporting members 336, 334 can be formed by removing material from the housing 354 or by an additional manufacturing process like 3D printing during the manufacturing of the housing 354, so that the housing 354 and the supporting members 336, 334 is formed by a solid uniform material sheet. Alternatively, the supports 336, 334 may be a single unit or separate members attached to the housing 354 when the main body 352 is formed. For example, the support members 336 and 334 can be welded, glued, fastened or attached to the housing 354 by other techniques, with or without tension. In one embodiment, the frame 112 has ten (10) holes 332. The holes 332 can be shaped as rectangles, squares, circles, triangles, pies or other suitable shapes. For example, ten holes 332 may have a substantially rectangular shape.

光罩單元306經配置以設置在孔332中。光罩單元306可具有外部支撐件308。精細金屬光罩106可形成在外部支撐件308中或由外部支撐件308支撐以形成光罩單元306。替代地,光罩單元306可僅由精細金屬光罩106所形成。光罩單元306可經成形以藉由支撐件336、334和殼體354的組合而保持。外部支撐件308可基本上或部分地與形成孔332的支撐件336、334和殼體354的一或多個對準。一或多個光罩單元306可經配置以覆蓋孔332的一個。在一個實施例中,每一孔332具有一個個別的光罩單元306。在另一個實施例中,每一孔332具有兩個或兩個以上光罩單元306。在又另一個實施例中,孔332可包含設置在其中的複數個光罩單元306。The mask unit 306 is configured to be disposed in the hole 332. The mask unit 306 may have an external support 308. The fine metal photomask 106 may be formed in the external support 308 or supported by the external support 308 to form the photomask unit 306. Alternatively, the photomask unit 306 may be formed by only the fine metal photomask 106. The mask unit 306 may be shaped to be held by the combination of the supports 336 and 334 and the housing 354. The outer support 308 may be substantially or partially aligned with one or more of the supports 336, 334 and the housing 354 forming the hole 332. One or more photomask units 306 may be configured to cover one of the holes 332. In one embodiment, each hole 332 has an individual mask unit 306. In another embodiment, each hole 332 has two or more mask units 306. In yet another embodiment, the hole 332 may include a plurality of mask units 306 disposed therein.

精細金屬光罩106設置在每一光罩單元306中。用於精細金屬光罩106或其部件的合適材料包括(不限於)矽-金屬混合物,諸如矽-鎳,INVAR 36(64FeNi),ASTM 5級鈦(Ti-6Al-4V),鈦,鋁,鉬,銅,440不銹鋼,HASTELLOY®合金C-276,鎳,鉻鉬鋼,304不銹鋼,其他含鐵組合物,或其組合。The fine metal mask 106 is provided in each mask unit 306. Suitable materials for the fine metal mask 106 or its components include (not limited to) silicon-metal mixtures such as silicon-nickel, INVAR 36 (64FeNi), ASTM grade 5 titanium (Ti-6Al-4V), titanium, aluminum, Molybdenum, copper, 440 stainless steel, HASTELLOY® alloy C-276, nickel, chromium molybdenum steel, 304 stainless steel, other iron-containing compositions, or combinations thereof.

精細金屬光罩106可藉由電鑄製程或MEMS技術而形成,諸如模製和電鍍、濕式蝕刻、乾式蝕刻、放電加工(EDM)、藉由研磨的矽晶圓薄化及適合用於製造小裝置的其它技術。精細金屬光罩106可具有複數個小開口310。小開口310適於在暴露於精細金屬光罩106的基板的表面上形成諸如裝置或像素的特徵。開口310可具有尺寸在約1微米至約100微米(亦即,約0.001毫米至約0.1毫米)之間的面積,諸如約25微米。精細金屬光罩中的小開口310可適於以每英寸的300個特徵或更大的密度形成特徵,諸如每英寸800個特徵或每英寸1000個特徵。例如,精細金屬光罩106可具有經配置以產生在約250個像素/英寸(PPI)和約1200PPI之間的小開口310,諸如在約600PPI和900PPI之間,諸如約800PPI。小開口310可具有小於約1微米(諸如約0.2微米)的尺寸變化,以及小於約+/-3μm/160mm距離的間距(亦即,在小開口310之間的中心到中心距離)。The fine metal mask 106 can be formed by electroforming process or MEMS technology, such as molding and electroplating, wet etching, dry etching, electrical discharge machining (EDM), thinning of silicon wafer by grinding and suitable for manufacturing Other technologies for small devices. The fine metal mask 106 may have a plurality of small openings 310. The small opening 310 is suitable for forming features such as devices or pixels on the surface of the substrate exposed to the fine metal mask 106. The opening 310 may have an area having a size between about 1 micrometer to about 100 micrometers (ie, about 0.001 millimeters to about 0.1 millimeters), such as about 25 micrometers. The small opening 310 in the fine metal mask may be adapted to form features at a density of 300 features per inch or greater, such as 800 features per inch or 1000 features per inch. For example, the fine metal mask 106 may have small openings 310 configured to produce between about 250 pixels per inch (PPI) and about 1200 PPI, such as between about 600 PPI and 900 PPI, such as about 800 PPI. The small openings 310 may have a size variation of less than about 1 micrometer (such as about 0.2 micrometers), and a pitch of less than about +/- 3 μm/160 mm distance (ie, a center-to-center distance between the small openings 310).

複數個光罩單元306可在形成精細金屬光罩組件130時接合到主體352。可藉由焊接(諸如雷射焊接),膠合,諸如藉由環氧樹脂或丙烯酸,與主體352一體形成或藉由其它合適的手段來執行與主體352的接合。執行精細金屬光罩106與外部支撐件308或直接對精細金屬光罩組件130的主體352任一者的接合,使得精細金屬光罩106處於低張力,諸如在約零kg/cm和約0.1kg/cm之間的張力。形成光罩單元306的低張力而沒有任何基本上的下垂,且具有在2微米與約5微米之間的平坦度。諸如藉由環氧樹脂在低溫下接合精細金屬光罩106可防止由於溫度變化引起的精細金屬光罩106的變形。在一個實施例中,光罩單元306用環氧樹脂接合到精細金屬光罩組件130的主體352,以大於約800PPI的密度在約900mm至約1500mm的面積上形成像素。光罩單元306可具有約1微米至約5微米的對準準確度,亦即,光罩單元306、開口310、對準標記(未顯示)等的實際位置(與設計位置相比)準確度在約1微米內。 The plurality of photomask units 306 may be joined to the main body 352 when the fine metal photomask assembly 130 is formed. The joining with the main body 352 may be performed by welding (such as laser welding), gluing, such as by epoxy or acrylic, integrally formed with the main body 352 or by other suitable means. Perform the bonding of the fine metal mask 106 with the external support 308 or directly to any one of the main body 352 of the fine metal mask assembly 130, so that the fine metal mask 106 is under low tension, such as at about zero kg/cm and about 0.1 kg /cm between tension. The low tension of the mask unit 306 is formed without any substantial sagging, and has a flatness between 2 microns and about 5 microns. For example, bonding the fine metal mask 106 with epoxy resin at low temperature can prevent the deformation of the fine metal mask 106 due to temperature changes. In one embodiment, the mask unit 306 is bonded to the main body 352 of the fine metal mask assembly 130 with epoxy resin to form pixels on an area of about 900 mm to about 1500 mm with a density greater than about 800 PPI. The photomask unit 306 may have an alignment accuracy of about 1 micron to about 5 microns, that is, the actual position (compared to the designed position) accuracy of the photomask unit 306, the opening 310, the alignment mark (not shown), etc. Within about 1 micron.

有利地,以上所述的精細金屬光罩組件130可相關於基板而定位在處理腔室中。精細金屬光罩組件130可與基板結合對準和定位以進行沉積。精細金屬光罩106的低張力顯著地防止在高溫下精細金屬光罩組件130與基板的對準中的偏移或變形。因此,精細金屬光罩組件130中的精細金屬光罩106的低張力可具有更高的解析度,且在比諸如第2圖中所示和描述的傳統金屬光罩更高的溫度下操作。 Advantageously, the above-mentioned fine metal mask assembly 130 can be positioned in the processing chamber relative to the substrate. The fine metal mask assembly 130 may be aligned and positioned in conjunction with the substrate for deposition. The low tension of the fine metal mask 106 significantly prevents offset or deformation in the alignment of the fine metal mask assembly 130 and the substrate at high temperatures. Therefore, the low tension of the fine metal photomask 106 in the fine metal photomask assembly 130 can have a higher resolution and operate at a higher temperature than the conventional metal photomask shown and described in FIG. 2.

另外的優點在於,可藉由將光罩單元306從精細金屬光罩組件130的主體352解開或去接合來容易地替換光罩單元306。當光罩單元306變得堵塞,髒污,損壞,或磨損時,可更換或修理各個光罩單元306,從而最小化成本和操作停機時間。 Another advantage is that the photomask unit 306 can be easily replaced by detaching or unbonding the photomask unit 306 from the main body 352 of the fine metal photomask assembly 130. When the photomask unit 306 becomes clogged, dirty, damaged, or worn, each photomask unit 306 can be replaced or repaired, thereby minimizing cost and operating downtime.

第4A和4B圖描繪了用於形成低張力精細金屬光罩的剖圖。圖式顯示了一個開口310。然而,應當理解精細金屬光罩106具有複數個開口,且每平方英寸或更多可具有超過250個開口。 Figures 4A and 4B depict cross-sectional views for forming a low-tension fine metal mask. The diagram shows an opening 310. However, it should be understood that the fine metal mask 106 has a plurality of openings, and may have more than 250 openings per square inch or more.

矽層402具有頂表面472。矽層402可具有在約700微米至約40微米之間的厚度,諸如約65微米。種 子層404可設置在矽層402上。種子層404可為鈦(Ti),銅(Cu)或其它合適的材料。金屬層432可設置在種子層404上。金屬層432可由鎳(Ni)或鎳合金所形成,諸如鎳-鈷(NiCo)或其它合適的材料。 The silicon layer 402 has a top surface 472. The silicon layer 402 may have a thickness between about 700 microns and about 40 microns, such as about 65 microns. Species The sub-layer 404 can be disposed on the silicon layer 402. The seed layer 404 may be titanium (Ti), copper (Cu) or other suitable materials. The metal layer 432 may be disposed on the seed layer 404. The metal layer 432 may be formed of nickel (Ni) or a nickel alloy, such as nickel-cobalt (NiCo) or other suitable materials.

矽層402可變薄,諸如藉由在開口310內和周圍蝕刻,使得矽層402為約30微米厚。例如,可在蝕刻頂表面472之前藉由化學蝕刻或研磨矽層402的底部來進行薄化。替代地,可在單一步驟中對矽層402進行雙向化學蝕刻來執行蝕刻。 The silicon layer 402 can be thinned, such as by etching in and around the opening 310, so that the silicon layer 402 is about 30 microns thick. For example, the thinning may be performed by chemically etching or grinding the bottom of the silicon layer 402 before etching the top surface 472. Alternatively, the silicon layer 402 may be bidirectionally chemically etched in a single step to perform the etching.

在第4A圖中,在矽層402中形成通孔422作為形成開口310的一部分。通孔422可具有側壁,其從矽層402的底表面411延伸到表面。通孔422可藉由各向異性化學蝕刻(諸如氫氧化鉀(KOH)蝕刻)或在矽層402中的其它合適的技術而形成。蝕刻速率可經控制以使通孔422的寬度(諸如底部寬度408)隨著通孔422的深度482自矽層402的頂表面472增加而變窄。通孔422的側壁以角度406延伸,使得通孔422的開口在頂表面472處大於底表面411(即底部寬度408)的開口。角度406可在約40度至約60度之間,諸如約54.7度。角度406可藉由各向異性蝕刻而精確地控制,允許底部寬度408以約1微米的準確度保持,且側壁的角度406保持約54.7度。通孔422的底部寬度408可為約38微米。在頂表面處的通孔422的寬度可為約94微米。因此,與開口310的底部寬度408相鄰的底表面411的相應部分409可為約28微米。 In FIG. 4A, a through hole 422 is formed in the silicon layer 402 as a part of forming the opening 310. The via 422 may have sidewalls that extend from the bottom surface 411 of the silicon layer 402 to the surface. The via 422 may be formed by anisotropic chemical etching (such as potassium hydroxide (KOH) etching) or other suitable techniques in the silicon layer 402. The etching rate can be controlled so that the width of the via 422 (such as the bottom width 408) becomes narrower as the depth 482 of the via 422 increases from the top surface 472 of the silicon layer 402. The sidewall of the through hole 422 extends at an angle 406 such that the opening of the through hole 422 at the top surface 472 is larger than the opening of the bottom surface 411 (ie, the bottom width 408). The angle 406 may be between about 40 degrees to about 60 degrees, such as about 54.7 degrees. The angle 406 can be precisely controlled by anisotropic etching, allowing the bottom width 408 to be maintained with an accuracy of about 1 micron, and the sidewall angle 406 to be maintained at about 54.7 degrees. The bottom width 408 of the through hole 422 may be about 38 microns. The width of the through hole 422 at the top surface may be about 94 microns. Therefore, the corresponding portion 409 of the bottom surface 411 adjacent to the bottom width 408 of the opening 310 may be about 28 microns.

在第4B圖中,金屬層432是圓形的。金屬層432可藉由研磨,蝕刻或其它合適的技術而變圓。例如,可使用三氯化鐵(FeCl3)蝕刻來使金屬層432的鎳材料變圓。金屬層432的側壁425可類似地與矽晶圓的側壁對準。亦即,側壁425可在約40度和約50度之間成角度,諸如約54.7度,以與矽層402的側壁的角度406匹配。用於通孔422的每一開口對應於在完成的低張力精細金屬光罩中的小開口310(如第3圖中所示)。因此,通孔422可以適當的密度而形成,以在具有低拉力精細金屬光罩的基板中形成複數個特徵。現在可將矽層402切割以裝配在每一光罩單元306中,以形成低張力精細金屬光罩106。跨越低張力精細金屬光罩106的張力小於約0.4kgf/cm。低張力精細金屬光罩106可接合並去接合到光罩組件以用於使用和更換單元。例如,低張力精細金屬光罩106可在約攝氏25度或室溫的溫度下藉由環氧樹脂而接合。 In Figure 4B, the metal layer 432 is circular. The metal layer 432 can be rounded by grinding, etching or other suitable techniques. For example, iron trichloride (FeCl 3 ) etching may be used to round the nickel material of the metal layer 432. The sidewalls 425 of the metal layer 432 can be similarly aligned with the sidewalls of the silicon wafer. That is, the sidewall 425 may be angled between about 40 degrees and about 50 degrees, such as about 54.7 degrees, to match the angle 406 of the sidewall of the silicon layer 402. Each opening for the through hole 422 corresponds to a small opening 310 (as shown in Figure 3) in the finished low tension fine metal mask. Therefore, the through holes 422 can be formed at an appropriate density to form a plurality of features in a substrate with a fine metal mask with a low tensile force. The silicon layer 402 can now be cut to fit in each photomask unit 306 to form a low tension fine metal photomask 106. The tension across the low tension fine metal mask 106 is less than about 0.4 kgf/cm. The low tension fine metal photomask 106 can be bonded and unbonded to the photomask assembly for use and replacement of the unit. For example, the low-tension fine metal mask 106 can be joined by epoxy resin at a temperature of about 25 degrees Celsius or room temperature.

有利地,通孔422的側壁425成角度以最小化陰影並促進蒸發性能。低張力精細金屬光罩的矽-金屬混合材料可藉由磁力而偏置到基板上以進行更嚴格的處理控制。矽-金屬混合材料還增強了低張力精細金屬光罩的耐久性。用於低張力精細金屬光罩的材料和製造方法允許更高密度的開口與小於約1微米的對準準確度耦合,以形成具有最小偏斜的基板上的特徵密度。 Advantageously, the sidewalls 425 of the through holes 422 are angled to minimize shadows and promote evaporation performance. The silicon-metal hybrid material of the low-tension fine metal mask can be magnetically biased to the substrate for more stringent processing control. The silicon-metal hybrid material also enhances the durability of the low-tension fine metal mask. The materials and manufacturing methods used for the low tension fine metal masks allow higher density openings to be coupled with alignment accuracy of less than about 1 micron to form a feature density on the substrate with minimal skew.

雖然前述內容涉及本發明的實施例,本發明的其他和另外的實施例可經設計而不背離本發明的基本範圍。Although the foregoing relates to embodiments of the present invention, other and additional embodiments of the present invention may be designed without departing from the basic scope of the present invention.

100:處理腔室 100: processing chamber

102:基板 102: substrate

103:下表面 103: lower surface

104:陰極 104: cathode

106:精細金屬光罩 106: Fine metal mask

108:源 108: Source

110:有機材料 110: organic materials

112:框架 112: Frame

130:精細金屬光罩組件 130: Fine metal mask assembly

206:精細金屬光罩 206: Fine metal mask

214:微致動器 214: Micro Actuator

216:光罩開口 216: Mask opening

218:框架開口 218: Frame opening

220:圖案界定特徵 220: pattern defining features

306:光罩單元 306: Mask unit

308:外部支撐件 308: external support

310:開口 310: open

332:孔 332: hole

334:支撐件 334: Support

336:支撐件 336: Support

342:內部部分 342: internal part

344:外周邊 344: Outer Perimeter

352:主體 352: main body

354:殼體 354: Shell

401:矽層 401: Silicon layer

402:矽層 402: Silicon layer

404:種子層 404: Seed layer

406:角度 406: angle

408:底部寬度 408: bottom width

409:部分 409: part

411:底表面 411: bottom surface

422:通孔 422: Through hole

425:側壁 425: Sidewall

432:金屬層 432: Metal layer

472:頂表面 472: top surface

482:深度 482: depth

因此,可詳細了解本發明的以上所述的特徵的方式,可藉由參考實施例(一些實施例顯示在附隨的圖式中)來獲得對以上所簡要概述的本發明的更特定的描述。然而,應注意附隨的圖式僅顯示了本發明的典型實施例,且不因此被認為是本發明的範圍的限制,因為本發明可承認其他同等有效的實施例。Therefore, the way in which the above-mentioned features of the present invention can be understood in detail, and a more specific description of the present invention briefly summarized above can be obtained by referring to the examples (some examples are shown in the accompanying drawings) . However, it should be noted that the accompanying drawings only show typical embodiments of the present invention, and are not therefore considered as limiting the scope of the present invention, because the present invention may recognize other equally effective embodiments.

第1圖描繪了具有光罩組件的處理腔室的部分的示意圖。Figure 1 depicts a schematic view of a portion of a processing chamber with a photomask assembly.

第2圖是習知技術,描繪了設置在適合用於在第1圖的處理腔室中使用的光罩組件中的精細金屬光罩的頂視圖。FIG. 2 is a conventional technology, and depicts a top view of a fine metal mask provided in a mask assembly suitable for use in the processing chamber of FIG. 1.

第3圖顯示了根據一個實施例的低張力精細金屬光罩的頂視圖,類似地設置在適合用於在第1圖的處理腔室中使用的光罩組件中。Figure 3 shows a top view of a low tension fine metal photomask according to one embodiment, similarly provided in a photomask assembly suitable for use in the processing chamber of Figure 1.

第4A和4B圖描繪了用於形成低張力精細金屬光罩的剖面圖。Figures 4A and 4B depict cross-sectional views for forming a low-tension fine metal mask.

為了便於理解,在可能的情況下,使用相同的元件符號來表示與共用於圖式的相同元件。可設想一個實施例的元件和特徵可有利地併入其他實施例中,而無需進一步敘述。For ease of understanding, where possible, the same element symbols are used to denote the same elements that are commonly used in the drawings. It is envisaged that the elements and features of one embodiment can be advantageously incorporated into other embodiments without further description.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic hosting information (please note in the order of hosting organization, date, and number) None

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign hosting information (please note in the order of hosting country, institution, date, and number) None

(請換頁單獨記載) 無(Please change the page to record separately) None

106‧‧‧精細金屬光罩 106‧‧‧Fine metal mask

112‧‧‧框架 112‧‧‧Frame

130‧‧‧精細金屬光罩組件 130‧‧‧Fine metal mask assembly

306‧‧‧光罩單元 306‧‧‧Mask unit

308‧‧‧外部支撐件 308‧‧‧External support

310‧‧‧開口 310‧‧‧Open

332‧‧‧孔 332‧‧‧hole

334‧‧‧支撐件 334‧‧‧Support

336‧‧‧支撐件 336‧‧‧Support

342‧‧‧內部部分 342‧‧‧Internal part

344‧‧‧外周邊 344‧‧‧Outer periphery

352‧‧‧主體 352‧‧‧Main body

354‧‧‧殼體 354‧‧‧Shell

Claims (19)

一種低張力精細金屬光罩,包含:一框架,具有複數個孔;及複數個精細金屬光罩單元,每一精細金屬光罩單元設置在該等孔的個別一者中,每一精細金屬光罩單元具有複數個開口,其中每一精細金屬光罩單元以保持跨過該光罩單元具有小於約0.4kgf/cm的一張力的方式而耦接到該框架。 A low-tension fine metal mask, comprising: a frame with a plurality of holes; and a plurality of fine metal mask units, each fine metal mask unit is arranged in a separate one of the holes, each fine metal light The mask unit has a plurality of openings, and each fine metal mask unit is coupled to the frame in a manner to maintain a sheet force of less than about 0.4 kgf/cm across the mask unit. 如請求項1所述之低張力精細金屬光罩,其中該等開口具有在每英寸約250個和每英寸1200個之間的一密度。 The low-tension fine metal mask according to claim 1, wherein the openings have a density between about 250 per inch and 1200 per inch. 如請求項1所述之低張力精細金屬光罩,其中在該光罩單元中的該等開口具有與該基板約1微米的一對準準確度。 The low-tension fine metal mask according to claim 1, wherein the openings in the mask unit have an alignment accuracy of about 1 micrometer with the substrate. 如請求項1所述之低張力精細金屬光罩,其中該等開口具有在約40度和約60度之間成角度的多個側壁。 The low-tension fine metal mask according to claim 1, wherein the openings have a plurality of side walls angled between about 40 degrees and about 60 degrees. 如請求項1所述之低張力精細金屬光罩,其中跨越該光罩單元的該張力為約0.1kgf/cm。 The low-tension fine metal mask according to claim 1, wherein the tension across the mask unit is about 0.1 kgf/cm. 一種光罩組件,包含:一主體,具有一框架和複數個支撐件,在該框架的至少一側上形成多個孔;及 複數個光罩單元,經調整尺寸以適合於該孔,其中該光罩單元包含:一精細金屬光罩,具有複數個開口,其中每一光罩單元以保持跨過該精細金屬光罩具有小於約0.4kgf/cm的一張力的方式而接合到該等孔的個別一者。 A photomask assembly includes: a main body with a frame and a plurality of supporting members, and a plurality of holes are formed on at least one side of the frame; and A plurality of photomask units are adjusted in size to fit the hole, wherein the photomask unit includes: a fine metal photomask with a plurality of openings, and each photomask unit keeps the fine metal photomask having a size smaller than It is joined to each of the holes with a force of about 0.4kgf/cm. 如請求項6所述之光罩組件,其中該等開口具有在每英寸600個和每英寸900個之間的一密度。 The photomask assembly according to claim 6, wherein the openings have a density between 600 per inch and 900 per inch. 如請求項6所述之光罩組件,其中該等開口具有每英寸約800個的一密度。 The photomask assembly according to claim 6, wherein the openings have a density of about 800 per inch. 如請求項6所述之光罩組件,其中該精細金屬光罩藉由環氧樹脂而接合到該框架。 The photomask assembly according to claim 6, wherein the fine metal photomask is bonded to the frame by epoxy resin. 如請求項6所述之光罩組件,其中該等開口具有約54.7度的多個側壁。 The photomask assembly according to claim 6, wherein the openings have a plurality of side walls of about 54.7 degrees. 如請求項6所述之光罩組件,其中該精細金屬光罩由一矽-鎳混合材料所形成。 The photomask assembly according to claim 6, wherein the fine metal photomask is formed of a silicon-nickel mixed material. 一種用於形成一精細金屬光罩組件的方法,包含以下步驟:製備由一矽-金屬混合材料所形成的一基板;經由該矽-金屬混合材料的一矽層在一金屬層的多個空隙中形成一通孔,其中該通孔具有以一第一角度所形成的多個側壁; 在該金屬層的一側壁上形成一第二角度;將該基板切割成適以形成一光罩單元的一形狀;及將該光罩單元耦接到該精細金屬光罩組件中,其中跨過該光罩單元的一張力小於約0.4kgf/cm。 A method for forming a fine metal mask assembly includes the following steps: preparing a substrate formed of a silicon-metal hybrid material; multiple gaps in a metal layer through a silicon layer of the silicon-metal hybrid material A through hole is formed therein, wherein the through hole has a plurality of sidewalls formed at a first angle; Forming a second angle on a side wall of the metal layer; cutting the substrate into a shape suitable for forming a photomask unit; and coupling the photomask unit to the fine metal photomask assembly, which spans The sheet force of the mask unit is less than about 0.4kgf/cm. 如請求項12所述之方法,其中該金屬層是鎳(Ni)、鎳鈷合金(NiCo)、不銹鋼或鎳-鐵合金的一種。 The method according to claim 12, wherein the metal layer is one of nickel (Ni), nickel-cobalt alloy (NiCo), stainless steel, or nickel-iron alloy. 如請求項12所述之方法,其中製備該基板進一步包含以下步驟:對該矽金屬混合材料進行各向異性蝕刻至約30微米的一厚度,其中該矽層中的該等側壁的該第一角度為約54.7度。 The method of claim 12, wherein preparing the substrate further comprises the step of: performing anisotropic etching on the silicon-metal mixed material to a thickness of about 30 microns, wherein the first sidewalls of the silicon layer The angle is about 54.7 degrees. 如請求項12所述之方法,其中將該光罩單元耦接到該精細金屬光罩組件中在約攝氏25度的一溫度下用一環氧樹脂而執行。 The method according to claim 12, wherein the coupling of the photomask unit to the fine metal photomask assembly is performed with an epoxy resin at a temperature of about 25 degrees Celsius. 如請求項1所述之低張力精細金屬光罩,其中該等開口具有在每英寸600個和每英寸900個之間的一密度。 The low-tension fine metal mask according to claim 1, wherein the openings have a density between 600 per inch and 900 per inch. 如請求項1所述之低張力精細金屬光罩,其中該等開口具有每英寸約800個的一密度。 The low-tension fine metal mask according to claim 1, wherein the openings have a density of about 800 per inch. 如請求項1所述之低張力精細金屬光罩,其中該精細金屬光罩藉由環氧樹脂而接合到該框架。 The low-tension fine metal mask according to claim 1, wherein the fine metal mask is joined to the frame by epoxy resin. 如請求項1所述之低張力精細金屬光罩,其中該精細金屬光罩由一矽-鎳混合材料所形成。The low-tension fine metal mask according to claim 1, wherein the fine metal mask is formed of a silicon-nickel mixed material.
TW106111997A 2016-04-29 2017-04-11 Fine metal mask for producing organic light-emitting diodes TWI720178B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/CN2016/080756 2016-04-29
??PCT/CN2016/080756 2016-04-29
PCT/CN2016/080756 WO2017185350A1 (en) 2016-04-29 2016-04-29 Fine metal mask for producing organic light-emitting diodes

Publications (2)

Publication Number Publication Date
TW201802268A TW201802268A (en) 2018-01-16
TWI720178B true TWI720178B (en) 2021-03-01

Family

ID=60161683

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106111997A TWI720178B (en) 2016-04-29 2017-04-11 Fine metal mask for producing organic light-emitting diodes

Country Status (2)

Country Link
TW (1) TWI720178B (en)
WO (1) WO2017185350A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048521B (en) * 2016-06-12 2018-09-18 鄂尔多斯市源盛光电有限责任公司 A kind of preparation method and metal mask plate of metal mask plate
WO2020045900A1 (en) * 2018-08-29 2020-03-05 주식회사 티지오테크 Method for making mask, mask, and frame-integrated mask

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140290574A1 (en) * 2013-03-29 2014-10-02 Samsung Display Co., Ltd. Fine metal mask and method of manufacturing the same
CN104404446A (en) * 2014-11-18 2015-03-11 上海工程技术大学 Fine metal mask plate for ultrahigh-resolution evaporation and manufacturing method thereof
CN105144421A (en) * 2013-04-22 2015-12-09 应用材料公司 Actively-aligned fine metal mask

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140290574A1 (en) * 2013-03-29 2014-10-02 Samsung Display Co., Ltd. Fine metal mask and method of manufacturing the same
CN105144421A (en) * 2013-04-22 2015-12-09 应用材料公司 Actively-aligned fine metal mask
CN104404446A (en) * 2014-11-18 2015-03-11 上海工程技术大学 Fine metal mask plate for ultrahigh-resolution evaporation and manufacturing method thereof

Also Published As

Publication number Publication date
TW201802268A (en) 2018-01-16
WO2017185350A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP4971723B2 (en) Manufacturing method of organic light emitting display device
TWI463022B (en) Mask assembly and manufacturing methods thereof
US8701592B2 (en) Mask frame assembly, method of manufacturing the same, and method of manufacturing organic light-emitting display device using the mask frame assembly
TWI244354B (en) Deposition mask, manufacturing method thereof, display unit, manufacturing method thereof, and electronic apparatus including display unit
US8151729B2 (en) Mask assembly and method of fabricating the same
US9142779B2 (en) Patterning of OLED materials
JP4534011B2 (en) Display manufacturing method using mask alignment method
CN113675357B (en) Shadow mask for patterned vapor deposition of organic light emitting diode material, shadow mask module including the same, and method of manufacturing shadow mask module
JP3197439U (en) Ceramic mask for organic light emitting diode (OLED) manufacturing
US20160141498A1 (en) High precision, high resolution collimating shadow mask and method for fabricating a micro-display
TWI720178B (en) Fine metal mask for producing organic light-emitting diodes
JP2007234248A (en) Deposition mask and manufacturing method of organic el display using it
JP4616667B2 (en) Mask structure, vapor deposition method using the same, and method for manufacturing organic light emitting device
JP2008198500A (en) Manufacturing method and apparatus of organic el display
TW200539741A (en) Mask, method of manufacturing the same, method of forming thin film pattern, method of manufacturing electro-optical device and electronic equipment
CN103966548B (en) Mask plate, manufacturing method of mask plate and mask assembly with mask plate
US20220364217A1 (en) Deposition mask and manufacturing method of organic electronic device
CN109300967A (en) A kind of production method and display base plate, display device of display base plate
TW202016987A (en) Mask frame and mask assembly
KR102075064B1 (en) Multi array electrode arrayed extrusion electrode and method for manufacturing the same
JP5084112B2 (en) Formation method of vapor deposition film
JP2006077297A (en) Mask, film deposition method and method for producing organic el system
JP2008208460A (en) Precision mask for deposition and its manufacturing method, electroluminescent display device and its manufacturing method, and electronic apparatus
KR20170038551A (en) Evaporation mask and method for manufacturing the same