[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI512971B - 絕緣閘雙極電晶體及其製造方法 - Google Patents

絕緣閘雙極電晶體及其製造方法 Download PDF

Info

Publication number
TWI512971B
TWI512971B TW102134200A TW102134200A TWI512971B TW I512971 B TWI512971 B TW I512971B TW 102134200 A TW102134200 A TW 102134200A TW 102134200 A TW102134200 A TW 102134200A TW I512971 B TWI512971 B TW I512971B
Authority
TW
Taiwan
Prior art keywords
gan layer
gan
layer
gate
substrate
Prior art date
Application number
TW102134200A
Other languages
English (en)
Other versions
TW201513340A (zh
Inventor
Chih Fang Huang
Tsung Yi Huang
Chien Wei Chiu
Tsung Yu Yang
Ting Fu Chang
Tsung Chieh Hsiao
Ya Hsien Liu
Po Chin Peng
Original Assignee
Richtek Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richtek Technology Corp filed Critical Richtek Technology Corp
Priority to TW102134200A priority Critical patent/TWI512971B/zh
Priority to US14/464,220 priority patent/US9252219B2/en
Publication of TW201513340A publication Critical patent/TW201513340A/zh
Application granted granted Critical
Publication of TWI512971B publication Critical patent/TWI512971B/zh
Priority to US14/971,496 priority patent/US9362381B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/475High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
    • H10D30/4755High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/393Body regions of DMOS transistors or IGBTs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/8503Nitride Group III-V materials, e.g. AlN or GaN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/852Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs being Group III-V materials comprising three or more elements, e.g. AlGaN or InAsSbP
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/40Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00 with at least one component covered by groups H10D10/00 or H10D18/00, e.g. integration of IGFETs with BJTs
    • H10D84/401Combinations of FETs or IGBTs with BJTs
    • H10D84/403Combinations of FETs or IGBTs with BJTs and with one or more of diodes, resistors or capacitors
    • H10D84/409Combinations of FETs or IGBTs with lateral BJTs and with one or more of diodes, resistors or capacitors

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

絕緣閘雙極電晶體及其製造方法
本發明係有關一種絕緣閘雙極電晶體(insulated gate bipolar transistor,IGBT)及其製造方法;特別是指一種包含氮化鎵(gallium nitride,GaN)基板的IGBT其製造方法。
第1圖顯示一種習知IGBT 100的剖視示意圖。如第1圖所示,於一矽基板或碳化矽基板中形成IGBT 100,其包含P型陽極11、N型區12、P型區13、N型陰極14、閘極15、與N型緩衝層16。IGBT 100為一種垂直型的雙擴散金屬氧化物半導體(double diffusion metal oxide semiconductor,DMOS)IGBT,其中,由閘極15、並以N型緩衝層16作為汲極(drain)、N型區12作為漂移區(drift region)、P型區13作為井區(well)、N型陰極14作為源極(source)而形成於一垂直型的DMOS元件。另一方面,由P型區13作為射極(emitter)、N型緩衝層16作為基極(base)、P型陽極11做為集極(collector)而形成一雙極接面電晶體(bipolar junction transistor,BJT)。其中,當IGBT 100操作時,由垂直型的DMOS元件控制,使BJT導通或不導通,以實現由DMOS元件快速切換高功率元件BJT的功能。
當IGBT 100操作時,如第1圖所示,閘極15兩邊的N型陰極14與P型區13會形成寄生接面場效電晶體(junction field effect transistor,JFET),N型陰極14與P型區13所形成的空乏區會使導通電流受限,限制了應用範圍。
有鑑於此,本發明即針對上述先前技術之改善,提出一種IGBT及其製造方法,可提高操作的速度並降低導通阻值。
就其中一觀點言,本發明提供了一種絕緣閘雙極電晶體 (insulated gate bipolar transistor,IGBT)包含:一氮化鎵(gallium nitride,GaN)基板,具有一上表面;一第一GaN層,具有第一導電型,形成於該上表面上,且該第一GaN層具有一側壁,垂直於該上表面;一第二GaN層,具有第一導電型,形成於該上表面上;一第三GaN層,具有與第一導電型相反之第二導電型或純質導電型,形成於該第一GaN層上,且該第三GaN層與該GaN基板間,由該第一GaN層隔開;以及一閘極,形成於該GaN基板上,且該閘極具有一側板,於一橫向上,鄰近或鄰接於該側壁,以控制一通道;其中,該第二GaN層與該第一GaN層之間,由該閘極隔開。
就另一觀點言,本發明提供了一種絕緣閘雙極電晶體(insulated gate bipolar transistor,IGBT)製造方法,包含:提供一氮化鎵(gallium nitride,GaN)基板,具有一上表面;形成一第一GaN層於該上表面上,具有第一導電型,且該第一GaN層具有一側壁,垂直於該上表面;形成一第二GaN層於該上表面上,具有第一導電型;形成一第三GaN層於該第一GaN層上,具有與第一導電型相反之第二導電型或純質導電型,且該第三GaN層與該GaN基板間,由該第一GaN層隔開;以及形成一閘極於該GaN基板上,且該閘極具有一側板,於一橫向上,鄰近或鄰接於該側壁,以控制一通道;其中,該第二GaN層與該第一GaN層之間,由該閘極隔開。
在其中一種較佳的實施型態中,該IGBT更包含一氮化鋁鎵(aluminum gallium nitride,AlGaN)阻障層,形成於該上表面上,並覆蓋該側壁,且該閘極與該GaN基板及該第一GaN層間,由該AlGaN阻障層隔開。
前述的實施例中,該GaN基板、該第一GaN層、該第三GaN層、該AlGaN層、與該閘極可形成一金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor,MOSFET),且該第三GaN層、該第一GaN層、該第二GaN層與該GaN基板可形成一雙極接面電晶體(bipolar junction transistor,BJT),其中,該MOSFET與該BJT並聯。
在其中一種較佳的實施型態中,該GaN基板、該第一GaN層、該第三GaN層與該閘極形成一接面場效電晶體(junction field effect transistor,JFET),且該第一GaN層、該第二GaN層與該GaN基板形成一雙極接面電晶體(bipolar junction transistor,BJT),其中,該JFET與該BJT並聯。
11‧‧‧P型陽極
12‧‧‧N型區
13‧‧‧P型區
14‧‧‧N型陰極
15,24,34‧‧‧閘極
16‧‧‧N型緩衝層
21,31‧‧‧GaN基板
22a,22b,32a,32b‧‧‧GaN層
25,26,27‧‧‧導電層
38‧‧‧二維電子雲(2-D electron gas,2DEG)
39‧‧‧AlGaN阻障層
100,200,300‧‧‧IGBT
211,311‧‧‧上表面
221,321‧‧‧側壁
241,341‧‧‧側板
第1圖顯示一種習知IGBT 100的剖視示意圖。
第2A-2E圖顯示本發明的第一個實施例。
第3A-3D圖顯示本發明的第二個實施例。
本發明中的圖式均屬示意,主要意在表示製程步驟以及各層之間之上下次序關係,至於形狀、厚度與寬度則並未依照比例繪製。
第2A-2E圖顯示本發明的第一個實施例。第2A-2E圖顯示根據本發明之絕緣閘雙極電晶體(insulated gate bipolar transistor,IGBT)200的製造流程剖視示意圖。如第2A圖所示,首先,提供氮化鎵(gallium nitride,GaN)基板21,具有上表面211。GaN基板21例如但不限於為N型或純質導電型。接下來如第2B圖所示,於上表面上211上,形成GaN層22a與GaN層22b,例如但不限於為P型,且GaN層22a具有側壁221垂直於上表面211。接下來如第2C圖所示,於GaN層22a上形成GaN層23,其例如但不限於為導電型與P型相反的N型或純質導電型,且GaN層23與GaN基板21間,由GaN層22a隔開。接下來如第2D圖所示,於GaN基板21上形成閘極24,且閘極24具有側板241(如圖中虛框線所示意),其於橫向上(如圖中實線箭號所示意),鄰接於側壁221,以控制通道。接下來如第2E圖所示,形成導電層25、26、27,分別與GaN層22b、GaN層23、與GaN層22電連接,較佳地形成歐姆接觸,以作為GaN層22b、GaN層23、與GaN層22的電性接點。其中,GaN基板21、GaN層22a、GaN層23與閘極24形成接面場效電晶體(junction field effect transistor,JFET),且GaN層22a、GaN層22b與GaN基板21形成雙極接面電晶體(bipolar junction transistor,BJT),其中,JFET與BJT並聯。需說明的是,前述側板241所控制之通道係指當IGBT 200中之JFET於導通操作時,所形成的主要電流路徑。本實施例根據本發明,在JFET於導通操作時,會在前述通道中,形成二維電子雲(2-D electron gas,2DEG)(如圖中虛線所示意),其中之電流即為前述BJT之基極電流,用以控制BJT之射極-集極電流。BJT之基極電流與射極-集極電流為本領域中具有通常知識者所熟知,在此不予贅述。
本發明主要的概念在於,第一,不同於先前技術IGBT是垂直結構,本發明IGBT為橫向結構。相較於垂直結構的IGBT,根據本發明,橫向結構的IGBT可整合於其他半導體元件製程,例如但不限於為蕭特基位障二極體(Schottky-barrier diode,SBD)或高電子遷移率電晶體(high electron mobility transistor,HEMT)等元件之製程中。因此,可節省製造成本並降低產品的尺寸。第二。不同於先前技術IGBT所具有之矽基板或碳化矽基板,根據本發明之IGBT包括GaN基板,可大幅改善操作速度,使得根據本發明之IGBT相較於先前技術,可以更快速切換,而可適用於高頻元件,增加IGBT的應用範圍。
第3A-3D圖顯示本發明的第二個實施例。本實施例旨在說明根據本發明,IGBT 300相較於第一個實施例IGBT 200,可更包含氮化鋁鎵(aluminum gallium nitride,AlGaN)阻障層39,形成於上表面311上,並覆蓋側壁321,且閘極34與GaN基板31及GaN層32a間,由AlGaN阻障層39隔開。第3A-3D圖顯示根據本發明之IGBT 300的製造流程剖視示意圖。如第3A圖所示,首先,提供氮化鎵(gallium nitride,GaN)基板31,具有上表面311。GaN基板31例如但不限於為N型或純質導電型。接下來如第3B圖所示,於上表面上311上,形成GaN層32a與32b,例如但不限於為P型,且GaN層32a具有側壁321垂直於上表面311。接下來如第3C圖所示,於GaN層32a上形成GaN層33,其例如但不限於為導電型與P型相反的N型或純質導電型,且GaN層33與GaN基板31間,由GaN層32a隔開。接下來如第3D圖所示,於GaN基板31上形成AlGaN阻障層39與閘極34,且閘極34具有側板341(如圖中虛框線所示意),其於橫向上(如圖中實線箭號所示意),鄰近於側壁321,以控制通道。如圖所示,在橫向上,側板341鄰接AlGaN阻障層39,且AlGaN阻障層39鄰接於GaN層32之側壁321。其中,GaN基板31、GaN層32a、GaN層33、AlGaN阻障層39與閘極34形成金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor,MOSFET),且GaN層32a、GaN層32b與GaN基板31形成BJT,其中,MOSFETFET與BJT並聯。
需說明的是,前述側板341所控制之通道係指當IGBT 200中之MOSFET於導通操作時,所形成的主要電流路徑。本實施例根據本發明,在MOSFET於導通操作時,會在前述通道中,形成二維電子雲(2-D electron gas,2DEG)38(如圖中虛線所示意),其中之電流即為前述BJT之基極電流,用以控制BJT之射極-集極電流。2DEG 38可大幅改善操作速度,使得IGBT 300相較於先前技術,可以更快速切換;此外,2DEG 38亦可以降低導通阻值,使得IGBT 300操作時有更佳的電子特性
以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。在本發明之相同精神下,熟悉本技術者可以思及各種等效變化。例如,本發明所稱「側壁221垂直於上表面211」,並不表示必須絕對無誤差地恰好垂直,而應視為可容許有微幅的偏離;又如,在不影響元件主要的特性下,可加入其他製程步驟或結構,如深井區等。本發明的範圍應涵蓋上述及其他所有等效變化。
21‧‧‧GaN基板
22a,22b‧‧‧P型GaN層
23‧‧‧N型GaN層
24‧‧‧閘極
25,26,27‧‧‧導電層
200‧‧‧IGBT
211‧‧‧上表面

Claims (8)

  1. 一種絕緣閘雙極電晶體(insulated gate bipolar transistor,IGBT)包含:一氮化鎵(gallium nitride,GaN)基板,具有一上表面;一第一GaN層,具有第一導電型,形成於該上表面上,且該第一GaN層具有一側壁,垂直於該上表面;一第二GaN層,具有第一導電型,形成於該上表面上;一第三GaN層,具有與第一導電型相反之第二導電型或純質導電型,形成於該第一GaN層上,且該第三GaN層與該GaN基板間,由該第一GaN層隔開;以及一閘極,形成於該GaN基板上,且該閘極具有一側板,於一橫向上,鄰近或鄰接於該側壁,以控制一通道;其中,該第二GaN層與該第一GaN層之間,由該閘極隔開。
  2. 如申請專利範圍第1項所述之IGBT,更包含一氮化鋁鎵(aluminum gallium nitride,AlGaN)阻障層,形成於該上表面上,並覆蓋該側壁,且該閘極與該GaN基板及該第一GaN層間,由該AlGaN阻障層隔開。
  3. 如申請專利範圍第1項所述之IGBT,其中該GaN基板、該第一GaN層、該第三GaN層與該閘極形成一接面場效電晶體(junction field effect transistor,JFET),且該第一GaN層、該第二GaN層與該GaN基板形成一雙極接面電晶體(bipolar junction transistor,BJT),其中,該JFET與該BJT並聯。
  4. 如申請專利範圍第2項所述之IGBT,其中該GaN基板、該第一GaN層、該第三GaN層、該AlGaN層、與該閘極形成一金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor,MOSFET),且該第一GaN層、該第二GaN層與該GaN基板形成一雙極接面電晶體(bipolar junction transistor,BJT),其中,該MOSFET與該BJT並聯。
  5. 一種絕緣閘雙極電晶體(insulated gate bipolar transistor,IGBT)製造方法,包含:提供一氮化鎵(gallium nitride,GaN)基板,具有一上表面;形成一第一GaN層於該上表面上,具有第一導電型,且該第一GaN層具有一側壁,垂直於該上表面; 形成一第二GaN層於該上表面上,具有第一導電型;形成一第三GaN層於該第一GaN層上,具有與第一導電型相反之第二導電型或純質導電型,且該第三GaN層與該GaN基板間,由該第一GaN層隔開;以及形成一閘極於該GaN基板上,且該閘極具有一側板,於一橫向上,鄰近或鄰接於該側壁,以控制一通道;其中,該第二GaN層與該第一GaN層之間,由該閘極隔開。
  6. 如申請專利範圍第5項所述之IGBT製造方法,更包含:形成一氮化鋁鎵(aluminum gallium nitride,AlGaN)阻障層於該上表面上,並覆蓋該側壁,且該閘極與該GaN基板及該第一GaN層間,由該AlGaN阻障層隔開。
  7. 如申請專利範圍第5項所述之IGBT製造方法,其中該GaN基板、該第一GaN層、該第三GaN層與該閘極形成一接面場效電晶體(junction field effect transistor,JFET),且該第一GaN層、該第二GaN層與該GaN基板形成一雙極接面電晶體(bipolar junction transistor,BJT),其中,該JFET與該BJT並聯。
  8. 如申請專利範圍第6項所述之IGBT製造方法,其中該GaN基板、該第一GaN層、該第三GaN層、該AlGaN層、與該閘極形成一金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor,MOSFET),且該第一GaN層、該第二GaN層與該GaN基板形成一雙極接面電晶體(bipolar junction transistor,BJT),其中,該MOSFET與該BJT並聯。
TW102134200A 2013-09-24 2013-09-24 絕緣閘雙極電晶體及其製造方法 TWI512971B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW102134200A TWI512971B (zh) 2013-09-24 2013-09-24 絕緣閘雙極電晶體及其製造方法
US14/464,220 US9252219B2 (en) 2013-09-24 2014-08-20 Insulated gate bipolar transistor with a lateral gate structure and gallium nitride substrate
US14/971,496 US9362381B2 (en) 2013-09-24 2015-12-16 Insulated gate bipolar transistor with a lateral gate structure and gallium nitride substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102134200A TWI512971B (zh) 2013-09-24 2013-09-24 絕緣閘雙極電晶體及其製造方法

Publications (2)

Publication Number Publication Date
TW201513340A TW201513340A (zh) 2015-04-01
TWI512971B true TWI512971B (zh) 2015-12-11

Family

ID=52690178

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102134200A TWI512971B (zh) 2013-09-24 2013-09-24 絕緣閘雙極電晶體及其製造方法

Country Status (2)

Country Link
US (2) US9252219B2 (zh)
TW (1) TWI512971B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170070801A (ko) * 2015-12-14 2017-06-22 주식회사 엘지화학 내파쇄성 고흡수성 수지, 그의 제조 방법 및 제조용 조성물
US11876093B2 (en) * 2020-03-24 2024-01-16 Richtek Technology Corporation Power device including lateral insulated gate bipolar transistor (LIGBT) and manufacturing method thereof
CN113540224B (zh) * 2021-07-19 2023-03-24 重庆邮电大学 一种N衬底沟槽型GaN绝缘栅双极型晶体管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580101B2 (en) * 2000-04-25 2003-06-17 The Furukawa Electric Co., Ltd. GaN-based compound semiconductor device
TW201312746A (zh) * 2011-09-01 2013-03-16 Fujitsu Ltd 半導體裝置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571071B1 (ko) * 1996-12-04 2006-06-21 소니 가부시끼 가이샤 전계효과트랜지스터및그제조방법
JP4134575B2 (ja) * 2002-02-28 2008-08-20 松下電器産業株式会社 半導体装置およびその製造方法
GB2392169A (en) * 2002-08-23 2004-02-25 Sharp Kk MBE growth of an AlgaN layer or AlGaN multilayer structure
US7872285B2 (en) * 2005-03-04 2011-01-18 Sumitomo Electric Industries, Ltd. Vertical gallium nitride semiconductor device and epitaxial substrate
JP5433214B2 (ja) * 2007-12-07 2014-03-05 パナソニック株式会社 モータ駆動回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580101B2 (en) * 2000-04-25 2003-06-17 The Furukawa Electric Co., Ltd. GaN-based compound semiconductor device
TW201312746A (zh) * 2011-09-01 2013-03-16 Fujitsu Ltd 半導體裝置

Also Published As

Publication number Publication date
US9252219B2 (en) 2016-02-02
US9362381B2 (en) 2016-06-07
US20150084060A1 (en) 2015-03-26
TW201513340A (zh) 2015-04-01
US20160111519A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP7466938B2 (ja) ボディ領域拡張部を用いた炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド
CN208336235U (zh) 半导体器件
US9431527B1 (en) Enhancement mode high electron mobility transistor
US10276666B2 (en) Semiconductor device
US20160240614A1 (en) Semiconductor device and semiconductor package
CN108028273A (zh) 半导体装置和制造半导体装置的方法
US10586862B2 (en) Semiconductor device
CN102201442B (zh) 基于沟道阵列结构的异质结场效应晶体管
Seo et al. Al (In) N/GaN Fin-Type HEMT With Very-Low Leakage Current and Enhanced $ I $–$ V $ Characteristic for Switching Applications
CN106057868A (zh) 一种纵向超结增强型mis hemt器件
CN106409915A (zh) 一种垂直双扩散金属氧化物半导体场效应晶体管
CN108807524A (zh) 半导体器件及其制造方法
KR20170107396A (ko) 반도체 트랜지스터 및 그 제조 방법
TWI512971B (zh) 絕緣閘雙極電晶體及其製造方法
CN104241351B (zh) 具有体内复合场板结构的氮化镓基异质结场效应管
Huang et al. Enhancement-mode InAlN/GaN power MOSHEMT on silicon with Schottky tri-drain extension
CN113675270B (zh) 一种具有逆向导通能力的GaN RC-HEMT
CN113690311B (zh) 一种集成续流二极管的GaN HEMT器件
US20130146888A1 (en) Monolithic semiconductor device and method for manufacturing the same
CN104518014A (zh) 绝缘栅双极晶体管及其制造方法
CN111009575A (zh) 半导体器件及其制造方法
CN104319284A (zh) 一种半导体器件结构及其制造方法
CN113611742B (zh) 一种集成肖特基管的GaN功率器件
CN104167440A (zh) 一种增强型AlGaN/GaN异质结场效应晶体管
CN106486546B (zh) 横向双扩散金属氧化物半导体元件及其制造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees