TWI578581B - Light emitting device - Google Patents
Light emitting device Download PDFInfo
- Publication number
- TWI578581B TWI578581B TW104114438A TW104114438A TWI578581B TW I578581 B TWI578581 B TW I578581B TW 104114438 A TW104114438 A TW 104114438A TW 104114438 A TW104114438 A TW 104114438A TW I578581 B TWI578581 B TW I578581B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- light
- wavelength conversion
- emitting element
- electrode
- Prior art date
Links
Landscapes
- Led Device Packages (AREA)
- Led Devices (AREA)
Description
本發明是有關於一種半導體元件,且特別是有關於一種發光元件。 The present invention relates to a semiconductor component, and more particularly to a light emitting component.
一般來說,發光晶片是由基板、磊晶結構、N型電極以及P型電極所組成,其中N型電極與P型電極會分別接觸N型半導體層與P型半導體層。為了增加發光晶片的應用,通常會將製作好的發光元件配置於一載體上,且透過封裝膠體來封裝發光晶片而形成一發光元件。其中,載體例如是印刷電路板或陶瓷基板等,且此載體上具有對應發光晶片的N型電極與P型電極的接墊。此時,載體的面積大於發光晶片於載體上的正投影面積,也就是說,載體的邊緣大於發光晶片的邊緣。再者,由於封裝膠體是透過例如點膠等方式形成於發光晶片上,因此封裝膠體於封裝發光晶片時會在載體上呈現弧狀的外形(如半圓形或半橢圓形)。如此一來,所形成的發光元件會具有較大的寬度(即載板的寬度)以及較大的高度(即弧狀的封裝膠體),也就是說,發光元件具有較大的體積,無法符合現今元件薄型化與微小化的需求。 Generally, the light-emitting chip is composed of a substrate, an epitaxial structure, an N-type electrode, and a P-type electrode, wherein the N-type electrode and the P-type electrode respectively contact the N-type semiconductor layer and the P-type semiconductor layer. In order to increase the application of the illuminating wafer, the illuminating element is usually disposed on a carrier, and the illuminating wafer is encapsulated by the encapsulant to form a illuminating element. The carrier is, for example, a printed circuit board or a ceramic substrate, and the carrier has a pad corresponding to the N-type electrode and the P-type electrode of the light-emitting chip. At this time, the area of the carrier is larger than the orthographic projection area of the illuminating wafer on the carrier, that is, the edge of the carrier is larger than the edge of the luminescent wafer. Moreover, since the encapsulant is formed on the illuminating wafer by, for example, dispensing, the encapsulant exhibits an arc-like shape (such as a semicircular or semi-elliptical shape) on the carrier when the illuminating wafer is packaged. In this way, the formed light-emitting element has a larger width (ie, the width of the carrier) and a larger height (ie, an arc-shaped encapsulant), that is, the light-emitting element has a larger volume and cannot conform to The need for thinner and smaller components today.
本發明提供一種發光元件,具有較小體積。 The present invention provides a light-emitting element having a small volume.
本發明的發光元件,其包括一基板、一電極連接層、一磊晶結構及多個接墊。基板具有彼此相對的一上表面與一下表面以及多個貫穿基板且連接上表面與下表面的導電通孔。電極連接層配置於基板的上表面且連接導電通孔。其中電極連接層的邊緣與基板的邊緣切齊。磊晶結構配置於電極連接層上並與電極連接層電性連接。接墊配置於基板的下表面且連接導電通孔。 The light-emitting device of the present invention comprises a substrate, an electrode connection layer, an epitaxial structure and a plurality of pads. The substrate has an upper surface and a lower surface opposite to each other and a plurality of conductive vias penetrating the substrate and connecting the upper surface and the lower surface. The electrode connection layer is disposed on the upper surface of the substrate and is connected to the conductive via. Wherein the edge of the electrode connection layer is aligned with the edge of the substrate. The epitaxial structure is disposed on the electrode connection layer and electrically connected to the electrode connection layer. The pad is disposed on the lower surface of the substrate and is connected to the conductive via.
在本發明的一實施例中,上述電極連接層具有至少一第電極、至少一第二電極以及一配置於基板與第一電極之間和基板與第二電極之間的連接層。其中連接層的邊緣與基板的邊緣切齊。 In an embodiment of the invention, the electrode connection layer has at least one first electrode, at least one second electrode, and a connection layer disposed between the substrate and the first electrode and between the substrate and the second electrode. Wherein the edge of the connection layer is aligned with the edge of the substrate.
在本發明的一實施例中,上述發光元件更包括一絕緣層,配置於電極連接層上且絕緣第一電極與第二電極。 In an embodiment of the invention, the light-emitting element further includes an insulating layer disposed on the electrode connection layer and insulating the first electrode and the second electrode.
在本發明的一實施例中,上述磊晶結構包括一第一型半導體層、一發光層以及一第二型半導體層。第一型半導體層配置於絕緣層上,其中第一電極穿過絕緣層而與第一型半導體層電性連接。發光層配置於第一型半導體層上。第二型半導體層配置於發光層上,其中第二電極穿過絕緣層、第一型半導體層以及發光層而與第二型半導體層電性連接。 In an embodiment of the invention, the epitaxial structure includes a first type semiconductor layer, a light emitting layer, and a second type semiconductor layer. The first type semiconductor layer is disposed on the insulating layer, wherein the first electrode is electrically connected to the first type semiconductor layer through the insulating layer. The light emitting layer is disposed on the first type semiconductor layer. The second type semiconductor layer is disposed on the light emitting layer, wherein the second electrode is electrically connected to the second type semiconductor layer through the insulating layer, the first type semiconductor layer, and the light emitting layer.
在本發明的一實施例中,上述發光元件更包括一歐姆接觸層,配置於第一型半導體層與絕緣層之間。 In an embodiment of the invention, the light emitting device further includes an ohmic contact layer disposed between the first type semiconductor layer and the insulating layer.
在本發明的一實施例中,上述歐姆接觸層為一圖案化結構。 In an embodiment of the invention, the ohmic contact layer is a patterned structure.
在本發明的一實施例中,上述發光元件更包括一反射層,配置於歐姆接觸層與絕緣層之間。 In an embodiment of the invention, the light-emitting element further includes a reflective layer disposed between the ohmic contact layer and the insulating layer.
在本發明的一實施例中,上述發光元件更包括一絕緣保護層,配置於第一型半導體層的邊緣、發光層的邊緣及第二型半導體層的邊緣,其中絕緣保護層的邊緣與絕緣層的邊緣切齊。 In an embodiment of the invention, the light-emitting element further includes an insulating protective layer disposed on an edge of the first-type semiconductor layer, an edge of the light-emitting layer, and an edge of the second-type semiconductor layer, wherein the edge of the insulating protective layer is insulated The edges of the layers are aligned.
在本發明的一實施例中,上述發光元件更包括一片狀波長轉換層,配置於磊晶結構上,其中片狀波長轉換層的邊緣與基板的邊緣切齊。 In an embodiment of the invention, the light-emitting element further includes a one-piece wavelength conversion layer disposed on the epitaxial structure, wherein an edge of the sheet-like wavelength conversion layer is aligned with an edge of the substrate.
在本發明的一實施例中,上述磊晶結構具有一粗糙表面,且粗糙表面與片狀波長轉換層之間具有微米級的空洞。 In an embodiment of the invention, the epitaxial structure has a rough surface, and the rough surface and the sheet-like wavelength conversion layer have micron-sized voids.
在本發明的一實施例中,上述發光元件更包括一光耦合層(light coupling layer),配置於片狀波長轉換層與磊晶結構之間。 In an embodiment of the invention, the light-emitting element further includes a light coupling layer disposed between the sheet-like wavelength conversion layer and the epitaxial structure.
在本發明的一實施例中,上述光耦合層具有一粗糙表面,且粗糙表面與片狀波長轉換層或磊晶結構之間具有微米級的空洞。 In an embodiment of the invention, the light coupling layer has a rough surface, and the rough surface has a micron-sized void between the sheet-like wavelength conversion layer or the epitaxial structure.
在本發明的一實施例中,上述片狀波長轉換層包括至少兩片狀波長轉換單元層,且這些片狀波長轉換單元層的主要發光波長朝遠離磊晶結構的方向漸減。 In an embodiment of the invention, the sheet-like wavelength conversion layer includes at least two sheet-like wavelength conversion unit layers, and a main emission wavelength of the sheet-like wavelength conversion unit layers is gradually decreased toward a direction away from the epitaxial structure.
在本發明的一實施例中,上述這些片狀波長轉換單元層的厚度皆不相同。 In an embodiment of the invention, the thicknesses of the chip-like wavelength conversion unit layers are different.
在本發明的一實施例中,上述這些片狀波長轉換單元層的厚度朝遠離磊晶結構的方向漸增。 In an embodiment of the invention, the thickness of the sheet-like wavelength conversion unit layers is gradually increased toward a direction away from the epitaxial structure.
在本發明的一實施例中,上述發光元件更包括一色彩混合層,配置於片狀波長轉換層上,其中色彩混合層的邊緣與片狀波長轉換層的邊緣切齊。 In an embodiment of the invention, the light-emitting element further includes a color mixing layer disposed on the sheet-like wavelength conversion layer, wherein an edge of the color mixing layer is aligned with an edge of the sheet-like wavelength conversion layer.
在本發明的一實施例中,上述片狀波長轉換層的厚度為磊晶結構的厚度的1.5倍至25倍之間。 In an embodiment of the invention, the thickness of the sheet-like wavelength conversion layer is between 1.5 and 25 times the thickness of the epitaxial structure.
在本發明的一實施例中,上述磊晶結構於基板上的正投影面積為基板的上表面的面積的0.8倍至1倍之間。 In an embodiment of the invention, the orthographic structure of the epitaxial structure on the substrate is between 0.8 and 1 times the area of the upper surface of the substrate.
在本發明的一實施例中,上述磊晶結構的厚度介於3微米至15微米之間。 In an embodiment of the invention, the epitaxial structure has a thickness between 3 microns and 15 microns.
在本發明的一實施例中,上述每一導電通孔與電極連接層之間具有至少一空間。 In an embodiment of the invention, each of the conductive vias and the electrode connection layer has at least one space.
在本發明的一實施例中,上述至少一第一電極為多個第一電極,至少一第二電極為多個第二電極,每一第一電極的俯視輪廓為點狀,而每一第二電極的俯視輪廓為點狀與線狀之組合。 In an embodiment of the invention, the at least one first electrode is a plurality of first electrodes, and the at least one second electrode is a plurality of second electrodes, and each of the first electrodes has a point-like profile in a plan view, and each of the first electrodes The top view of the two electrodes is a combination of a dot and a line.
基於上述,由於本發明的發光元件,其電極連接層的邊緣與基板的邊緣實質上切齊,再透過外接電路於接墊的供電即可使用。相較於習知的發光元件是將其發光元件的電性連接至一較大載板的接墊上,再於接墊上透過外接電路的供電才能使用而言,本發明的發光元件可具有較小的體積。 Based on the above, according to the light-emitting element of the present invention, the edge of the electrode connection layer is substantially aligned with the edge of the substrate, and the power supply to the pad through the external circuit can be used. Compared with the conventional light-emitting element, the light-emitting element is electrically connected to the pad of a larger carrier, and the light-emitting element of the present invention can be used in comparison to the power supply of the external circuit through the pad. volume of.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉 實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more apparent, the following is a special The embodiments are described in detail below in conjunction with the drawings.
100a、100b1、100b2、100c1、100c2、100c3、100d、100e、100f、100g、100h、100i1、100i2、100j、100k‧‧‧發光元件 100a, 100b1, 100b2, 100c1, 100c2, 100c3, 100d, 100e, 100f, 100g, 100h, 100i1, 100i2, 100j, 100k‧ ‧ light-emitting elements
110a、110g‧‧‧基板 110a, 110g‧‧‧ substrate
111‧‧‧邊緣 111‧‧‧ edge
112‧‧‧上表面 112‧‧‧ upper surface
114‧‧‧下表面 114‧‧‧ lower surface
116a、116g‧‧‧導電通孔 116a, 116g‧‧‧ conductive through holes
117‧‧‧空間 117‧‧‧ space
120a、120h‧‧‧電極連接層 120a, 120h‧‧‧electrode connection layer
121‧‧‧邊緣 121‧‧‧ edge
122a、122h‧‧‧第一電極 122a, 122h‧‧‧ first electrode
124a、124h‧‧‧第二電極 124a, 124h‧‧‧ second electrode
126a‧‧‧連接層 126a‧‧‧Connection layer
130‧‧‧絕緣層 130‧‧‧Insulation
140‧‧‧第一型半導體層 140‧‧‧First type semiconductor layer
150‧‧‧發光層 150‧‧‧Lighting layer
160‧‧‧第二型半導體層 160‧‧‧Second type semiconductor layer
170‧‧‧接墊 170‧‧‧ pads
180a、180e、180f‧‧‧片狀波長轉換層 180a, 180e, 180f‧‧‧ chip wavelength conversion layer
181‧‧‧邊緣 181‧‧‧ edge
182e、182f‧‧‧第一片狀波長轉換單元層 182e, 182f‧‧‧ first chip wavelength conversion unit layer
184e、184f‧‧‧第二片狀波長轉換單元層 184e, 184f‧‧‧ second chip wavelength conversion unit layer
186e、186f‧‧‧第三片狀波長轉換單元層 186e, 186f‧‧‧ third chip wavelength conversion unit layer
190c1、190c3、190d‧‧‧光耦合層 190c1, 190c3, 190d‧‧‧ optical coupling layer
191‧‧‧粗糙表面 191‧‧‧Rough surface
210a、210b‧‧‧歐姆接觸層 210a, 210b‧‧‧ ohmic contact layer
220‧‧‧反射層 220‧‧‧reflective layer
230‧‧‧絕緣保護層 230‧‧‧Insulation protective layer
231‧‧‧邊緣 231‧‧‧ edge
240‧‧‧色彩混合層 240‧‧‧Color mixing layer
B‧‧‧空隙 B‧‧‧ gap
E‧‧‧磊晶結構 E‧‧‧ epitaxial structure
E1‧‧‧粗糙表面 E1‧‧‧Rough surface
S1、S2‧‧‧平坦表面 S1, S2‧‧‧ flat surface
圖1繪示為本發明的一實施例的一種發光元件的剖面示意圖。 1 is a cross-sectional view of a light emitting device according to an embodiment of the invention.
圖2A以及圖2B繪示為本發明的另二實施例的發光元件的剖面示意圖。 2A and 2B are schematic cross-sectional views showing a light emitting device according to another embodiment of the present invention.
圖3A、圖3B以及圖3C繪示為本發明的另三實施例的發光元件的剖面示意圖。 3A, 3B, and 3C are schematic cross-sectional views showing a light-emitting element according to another embodiment of the present invention.
圖4繪示為本發明的另一實施例的一種發光元件的剖面示意圖。 4 is a cross-sectional view showing a light emitting device according to another embodiment of the present invention.
圖5繪示為本發明的另一實施例的一種發光元件的剖面示意圖。 FIG. 5 is a cross-sectional view showing a light emitting device according to another embodiment of the present invention.
圖6繪示為本發明的另一實施例的一種發光元件的剖面示意圖。 6 is a cross-sectional view showing a light emitting device according to another embodiment of the present invention.
圖7繪示為本發明的另一實施例的一種發光元件的剖面示意圖。 FIG. 7 is a cross-sectional view showing a light emitting device according to another embodiment of the present invention.
圖8繪示為本發明的另一實施例的一種發光元件的電極連接層的俯視示意圖。 FIG. 8 is a schematic top plan view showing an electrode connection layer of a light-emitting element according to another embodiment of the present invention.
圖9A以及圖9B繪示為本發明的另二實施例的一種發光元件的剖面示意圖。 9A and 9B are schematic cross-sectional views showing a light-emitting element according to another embodiment of the present invention.
圖10繪示為本發明的另一實施例的一種發光元件的剖面示意圖。 FIG. 10 is a cross-sectional view showing a light emitting device according to another embodiment of the present invention.
圖11繪示為本發明的另一實施例的一種發光元件的剖面示意圖。 FIG. 11 is a cross-sectional view showing a light emitting device according to another embodiment of the present invention.
圖1繪示為本發明的一實施例的一種發光元件的剖面示意圖。請參考圖1,在本實施例中,發光元件100a包括一基板110a、一電極連接層120a、一磊晶結構E以及多個接墊170。詳細來說,基板110a具有彼此相對的一上表面112與一下表面114以及多個貫穿基板110a且連接上表面112與下表面114的導電通孔116a。電極連接層120a配置於基板110a的上表面112上且連接導電通孔116a。電極連接層120a的邊緣121與基板110a的邊緣111實質上切齊,其中電極連接層120a包括至少一第一電極122a、至少一第二電極124a與一配置於基板110a與第一電極122a和基板110a與第二電極124a之間的連接層126a。磊晶結構E配置於電極連接層120a上並與電極連接層120a電性連接。接墊170配置於基板110a的下表面114且連接導電通孔116a。 1 is a cross-sectional view of a light emitting device according to an embodiment of the invention. Referring to FIG. 1 , in the embodiment, the light emitting device 100 a includes a substrate 110 a , an electrode connection layer 120 a , an epitaxial structure E , and a plurality of pads 170 . In detail, the substrate 110a has an upper surface 112 and a lower surface 114 opposed to each other and a plurality of conductive vias 116a penetrating the substrate 110a and connecting the upper surface 112 and the lower surface 114. The electrode connection layer 120a is disposed on the upper surface 112 of the substrate 110a and is connected to the conductive via 116a. The edge 121 of the electrode connection layer 120a is substantially aligned with the edge 111 of the substrate 110a. The electrode connection layer 120a includes at least one first electrode 122a, at least one second electrode 124a, and a substrate 110a and a first electrode 122a and a substrate. A connection layer 126a between the 110a and the second electrode 124a. The epitaxial structure E is disposed on the electrode connection layer 120a and electrically connected to the electrode connection layer 120a. The pad 170 is disposed on the lower surface 114 of the substrate 110a and is connected to the conductive via 116a.
詳細來說,本實施例的的發光元件100a更包括一絕緣層130,配置於電極連接層120a上且絕緣第一電極122a與第二電極124a。如圖1所示,本實施例的磊晶結構E包括一第一型半導體層140、一發光層150、一第二型半導體層160。第一型半導體層 140配置於絕緣層130上,其中第一電極122a穿過絕緣層130而與第一型半導體層140電性連接。發光層150配置於第一型半導體層140上。第二型半導體層160配置於發光層150上,其中第二電極124a穿過絕緣層130、第一型半導體層140以及發光層150而與第二型半導體層160電性連接。 In detail, the light-emitting element 100a of the present embodiment further includes an insulating layer 130 disposed on the electrode connection layer 120a and insulating the first electrode 122a and the second electrode 124a. As shown in FIG. 1 , the epitaxial structure E of the present embodiment includes a first type semiconductor layer 140 , a light emitting layer 150 , and a second type semiconductor layer 160 . First type semiconductor layer The first electrode 122 a is electrically connected to the first type semiconductor layer 140 through the insulating layer 130 . The light emitting layer 150 is disposed on the first type semiconductor layer 140. The second type semiconductor layer 160 is disposed on the light emitting layer 150 , wherein the second electrode 124 a is electrically connected to the second type semiconductor layer 160 through the insulating layer 130 , the first type semiconductor layer 140 , and the light emitting layer 150 .
更具體來說,本實施例的基板110a可為有較佳的散熱效果,其熱傳導係數大於10W/m-K的基板。基板110a亦可為一電阻率大於1010Ω.m的絕緣基板。此處,基板110a例如是陶瓷基板或藍寶石基板。較佳地,基板110a為散熱、絕緣效果兼具的陶瓷基板。其中基板110a的厚度例如是介於100微米至700微米之間,較佳地,介於100微米至300微米之間。如圖1所示,本實施例的導電通孔116a是於基板110a的貫孔中填入導電材料所形成,例如是銅、金等金屬材料。基板110a的導電通孔116a的相對兩端分別直接連接至電極連接層120a與接墊170,其中導電通孔116a的剖面輪廓可依據其製作方式而有不同的形狀。舉例來說,若採用機械鑽孔法,則所呈現的導電通孔的剖面輪廓為長方形(未繪示);若採用雷射鑽孔法,則所呈現在的導電通孔116a的剖面輪廓則呈現梯形,如圖1所示。而若採用雷射鑽孔法,雷射光燒蝕的方向也會影響導電通孔的剖面輪廓。舉例來說,若是由基板110a的上表面112來照射雷射光,則導電通孔的剖面輪廓會呈現上寬下窄的倒梯形(未繪示);若是由基板110a的下表面114來照射雷射光,則導電通孔116a的剖面輪廓會呈現上窄下寬的正梯形, 如圖1所示。上述所述的導電通孔的剖面輪廓皆屬於本發明所欲保護之範圍,並不以本實施例所繪示的導電通孔116a的剖面輪廓為限。 More specifically, the substrate 110a of the present embodiment may be a substrate having a better heat dissipation effect and a heat transfer coefficient greater than 10 W/mK. The substrate 110a may also have a resistivity greater than 10 10 Ω. m insulating substrate. Here, the substrate 110a is, for example, a ceramic substrate or a sapphire substrate. Preferably, the substrate 110a is a ceramic substrate having both heat dissipation and insulation effects. The thickness of the substrate 110a is, for example, between 100 micrometers and 700 micrometers, preferably between 100 micrometers and 300 micrometers. As shown in FIG. 1, the conductive via 116a of the present embodiment is formed by filling a conductive material in the through hole of the substrate 110a, for example, a metal material such as copper or gold. The opposite ends of the conductive via 116a of the substrate 110a are directly connected to the electrode connection layer 120a and the pad 170, respectively, wherein the cross-sectional profile of the conductive via 116a may have different shapes depending on the manner in which it is fabricated. For example, if the mechanical drilling method is used, the profile of the conductive via hole is rectangular (not shown); if the laser drilling method is used, the profile of the conductive via 116a presented is Trapezoidal, as shown in Figure 1. If the laser drilling method is used, the direction of the laser ablation will also affect the cross-sectional profile of the conductive via. For example, if the laser beam is irradiated by the upper surface 112 of the substrate 110a, the cross-sectional profile of the conductive via will be an inverted trapezoid (not shown) which is narrower and wider than the upper surface; if the lower surface 114 of the substrate 110a is used to illuminate the laser When the light is emitted, the cross-sectional profile of the conductive via 116a will be a narrow trapezoidal width, as shown in FIG. The cross-sectional profile of the conductive vias described above is within the scope of the present invention and is not limited by the cross-sectional profile of the conductive vias 116a.
再者,本實施例的電極連接層120a的第一電極122a例如是一P型電極,而第二電極124a例如是一N型電極,但並不以此為限。其中第一電極122a與第二電極124a的材料可選自鉻、鉑、金、上述材料的合金及上述材料的組合。而連接層126a配置於基板110a與第一電極122a和基板110a與第二電極124a間,部分連接層126a連接第一電極122a且部分連接層126a連接第二電極124。連接層126a的材料可選自鈦、金、銦、錫、鉻、鉑、上述材料的合金及上述材料的組合。需說明的是,第一電極122a、第二電極124a及連接層126a可為同一材料,亦可為不同材料,可一體成型製作,亦可分開製作,於此並不為限。如圖1所示,本實施例的與第二電極124a連接的部分連接層126a於基板110a上的正投影面積大於與第一電極122a連接的部分連接層126a於基板110a上的正投影面積。也就是說,本實施例中,與第二電極124a連接的部分連接層126a的面積大於與第一電極122a連接的部分連接層126a的面積。特別是,本實施例的第一電極122a與第二電極124a是位於同一側,即皆位於第一型半導體層140的一側上。此外,本實施例的磊晶結構E的第一型半導體層140例如是一P型半導體層,而第二型半導體層160例如是一N型半導體層,但並不以為限。此磊晶結構E的邊緣可小於或等於基板110a 的邊緣,較佳地,磊晶結構E的表面積於基板110a上的正投影面積為基板110a的上表面112的面積的0.8倍至1倍之間,於後續保護製程上的製作不影響整體體積,且不因此而減少過多的出光面積。而,磊晶結構E的厚度介於3微米至15微米之間,較佳地,厚度介於4微米至8微米之間,相較於習知發光元件的磊晶結構的厚度,本發明的磊晶結構E的厚度較薄,可具有較小的整體厚度。另外,由於本實施例的接墊170是位於基板110a的下表面114上,因此發光元件100a可透過這些接墊170與外部電路(未繪示)電性連接,並可透過這些接墊170來將發光元件100a所產生的熱快速地傳遞至外界。特別說明的是,接墊170的邊緣可切齊基板110a的邊緣。亦即,電極連接層120a、基板110a與接墊170的邊緣位於同一側面上。 The first electrode 122a of the electrode connection layer 120a of the present embodiment is, for example, a P-type electrode, and the second electrode 124a is, for example, an N-type electrode, but is not limited thereto. The material of the first electrode 122a and the second electrode 124a may be selected from the group consisting of chromium, platinum, gold, an alloy of the above materials, and a combination of the above materials. The connection layer 126a is disposed between the substrate 110a and the first electrode 122a and between the substrate 110a and the second electrode 124a. The partial connection layer 126a is connected to the first electrode 122a and the partial connection layer 126a is connected to the second electrode 124. The material of the connection layer 126a may be selected from the group consisting of titanium, gold, indium, tin, chromium, platinum, alloys of the above materials, and combinations of the foregoing. It should be noted that the first electrode 122a, the second electrode 124a, and the connecting layer 126a may be the same material or different materials, may be integrally formed, or may be separately manufactured, and are not limited thereto. As shown in FIG. 1, the front projection area of the partial connection layer 126a connected to the second electrode 124a of the present embodiment on the substrate 110a is larger than the orthographic projection area of the partial connection layer 126a connected to the first electrode 122a on the substrate 110a. That is, in the present embodiment, the area of the partial connection layer 126a connected to the second electrode 124a is larger than the area of the partial connection layer 126a connected to the first electrode 122a. In particular, the first electrode 122a and the second electrode 124a of the present embodiment are located on the same side, that is, on one side of the first type semiconductor layer 140. In addition, the first type semiconductor layer 140 of the epitaxial structure E of the present embodiment is, for example, a P type semiconductor layer, and the second type semiconductor layer 160 is, for example, an N type semiconductor layer, but is not limited thereto. The edge of the epitaxial structure E may be less than or equal to the substrate 110a Preferably, the surface area of the epitaxial structure E on the substrate 110a is between 0.8 times and 1 times the area of the upper surface 112 of the substrate 110a, and the fabrication on the subsequent protection process does not affect the overall volume. And does not reduce the excessive light-emitting area. Whereas, the thickness of the epitaxial structure E is between 3 micrometers and 15 micrometers, preferably between 4 micrometers and 8 micrometers, compared to the thickness of the epitaxial structure of the conventional light-emitting element, the present invention The epitaxial structure E has a thin thickness and can have a small overall thickness. In addition, since the pads 170 of the present embodiment are located on the lower surface 114 of the substrate 110a, the light-emitting elements 100a can be electrically connected to external circuits (not shown) through the pads 170, and can pass through the pads 170. The heat generated by the light-emitting element 100a is quickly transmitted to the outside. In particular, the edge of the pad 170 can be aligned with the edge of the substrate 110a. That is, the electrode connection layer 120a, the substrate 110a and the edge of the pad 170 are on the same side.
由於本實施例的發光元件100a,其電極連接層120a的邊緣121與基板110a的邊緣111實質上切齊。因此,相較於習知的發光元件是將其發光晶片的電極連接至一較大載板的接墊上,再於接墊上透過外接電路的供電才能使用而言,本實施例的發光元件100a的整體寬度較小,可具有較小的體積。 Due to the light-emitting element 100a of the present embodiment, the edge 121 of the electrode connection layer 120a is substantially aligned with the edge 111 of the substrate 110a. Therefore, compared with the conventional light-emitting element, the electrode of the light-emitting chip is connected to the pad of a larger carrier, and then the power supply through the external circuit is used on the pad, and the light-emitting element 100a of the embodiment is used. The overall width is small and can have a small volume.
在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。 It is to be noted that the following embodiments use the same reference numerals and parts of the above-mentioned embodiments, and the same reference numerals are used to refer to the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted portions, reference may be made to the foregoing embodiments, and the following embodiments are not repeated.
圖2A繪示為本發明的另一實施例的一種發光元件的剖 面示意圖。請同時參考圖1與圖2A,本實施例的發光元件100b1與圖1中的發光元件100a相似,惟二者主要差異之處在於:本實施例的發光元件100b1更包括一片狀波長轉換層180a,其中片狀波長轉換層180a配置於磊晶結構E上,且片狀波長轉換層180a的邊緣181與基板110a的邊緣111切齊,且片狀波長轉換層180a延伸方向與基板110a的延伸方向相同。如圖2A所示,本實施例的片狀波長轉換層180a與基板110a皆橫向延伸,且此處片狀波長轉換層180a具有二彼此相對的平坦表面S1、S2。也就是說,本實施例的片狀波長轉換層180a實質上為一平面結構。再者,本實施例的片狀波長轉換層180a的厚度例如是磊晶結構E的厚度的1.5倍至25倍之間,若片狀波長轉換層180a的厚度小於磊晶結構E的厚度的1.5倍,則磊晶結構E的出光容易直接穿透片狀波長轉換層180a,造成轉換效率不佳,若片狀波長轉換層180a的厚度大於磊晶結構E的厚度的25倍,則會阻礙磊晶結構E的出光。於本實施例中,片狀波長轉換層180a的較佳厚度介於20微米至80微米之間,特別說明的是,片狀波長轉換層180a的厚度加上磊晶結構E的厚度,較佳地,小於90微米,可使發光元件100a具有較小的體積。 2A is a cross-sectional view of a light emitting device according to another embodiment of the present invention. Schematic diagram. Referring to FIG. 1 and FIG. 2A simultaneously, the light-emitting element 100b1 of the present embodiment is similar to the light-emitting element 100a of FIG. 1, but the main difference is that the light-emitting element 100b1 of the present embodiment further includes a one-piece wavelength conversion layer. 180a, wherein the sheet-like wavelength conversion layer 180a is disposed on the epitaxial structure E, and the edge 181 of the sheet-like wavelength conversion layer 180a is aligned with the edge 111 of the substrate 110a, and the extension direction of the sheet-like wavelength conversion layer 180a and the extension of the substrate 110a The same direction. As shown in FIG. 2A, the sheet-like wavelength conversion layer 180a of the present embodiment and the substrate 110a both extend laterally, and here the sheet-like wavelength conversion layer 180a has two flat surfaces S1, S2 opposed to each other. That is, the sheet-like wavelength conversion layer 180a of the present embodiment is substantially a planar structure. Furthermore, the thickness of the sheet-like wavelength conversion layer 180a of the present embodiment is, for example, between 1.5 and 25 times the thickness of the epitaxial structure E, and the thickness of the sheet-like wavelength conversion layer 180a is less than 1.5 of the thickness of the epitaxial structure E. If the thickness of the epitaxial structure E is easily penetrated directly through the sheet-like wavelength conversion layer 180a, the conversion efficiency is poor. If the thickness of the sheet-like wavelength conversion layer 180a is greater than 25 times the thickness of the epitaxial structure E, the deflection is hindered. The exit of the crystal structure E. In the present embodiment, the preferred thickness of the sheet-like wavelength conversion layer 180a is between 20 micrometers and 80 micrometers. Specifically, the thickness of the sheet-like wavelength conversion layer 180a plus the thickness of the epitaxial structure E is preferably. Ground, less than 90 microns, allows the light-emitting element 100a to have a small volume.
由於本實施例的片狀波長轉換層180a為一平面結構,且片狀波長轉換層180a的邊緣181與基板110a的邊緣111實質上切齊。因此,相較於習知透過封裝膠體來封裝發光晶片,而形成具有弧狀外形的封裝膠體的發光元件而言,本實施例的發光元件 100b1可具有較小的體積。再者,為了提高整體發光元件100b1的發光效率,亦可透過於片狀波長轉換層180a內添加擴散粒子或是反射粒子,來使得光線產生散射與反射的效果,此仍屬於本發明所欲保護之範圍。此外,由於本實施例的片狀波長轉換層180a為一平面結構,因此整體發光元件100b1的發光角度例如是小於140度,能具有較佳的光源準直性,於後續光學設計的應用上可具有較佳的彈性。 Since the sheet-like wavelength conversion layer 180a of the present embodiment has a planar structure, the edge 181 of the sheet-like wavelength conversion layer 180a is substantially aligned with the edge 111 of the substrate 110a. Therefore, the light-emitting element of the present embodiment is compared to a conventional light-emitting element that encapsulates a light-emitting wafer through an encapsulant to form an encapsulant having an arc-shaped outer shape. 100b1 can have a smaller volume. Furthermore, in order to improve the luminous efficiency of the overall light-emitting element 100b1, it is also possible to transmit the scattering and reflection of the light through the diffusion of the diffusing particles or the reflective particles in the sheet-like wavelength conversion layer 180a, which is still to be protected by the present invention. The scope. In addition, since the sheet-like wavelength conversion layer 180a of the present embodiment has a planar structure, the illumination angle of the entire light-emitting element 100b1 is, for example, less than 140 degrees, which can have better light source collimation, and can be applied to subsequent optical design. It has better elasticity.
圖2B繪示為本發明的另一實施例的一種發光元件的剖面示意圖。請同時參考圖2A與圖2B,本實施例的發光元件100b2與圖2A中的發光元件100b1相似,惟二者主要差異之處在於:本實施例的發光元件100b2的磊晶結構E具有一粗糙表面E1,且粗糙表面E1與片狀波長轉換層180a之間具有微米級的空洞。意即,磊晶結構E與片狀波長轉換層180a所接觸的表面並非平整表面,磊晶結構E所發出的光透過微米級的空洞會產生散射效果,會使光線更均勻的進入片狀波長轉換層180a,因此透過此結構設計可使得磊晶結構E所產生的光產生更佳的散射效果,可有效提高整體發光元件100b2的出光均勻性。 2B is a cross-sectional view showing a light emitting device according to another embodiment of the present invention. Referring to FIG. 2A and FIG. 2B simultaneously, the light-emitting element 100b2 of the present embodiment is similar to the light-emitting element 100b1 of FIG. 2A, but the main difference between the two is that the epitaxial structure E of the light-emitting element 100b2 of the present embodiment has a roughness. The surface E1 has a micron-sized void between the rough surface E1 and the sheet-like wavelength conversion layer 180a. That is, the surface of the epitaxial structure E that is in contact with the sheet-like wavelength conversion layer 180a is not a flat surface, and the light emitted by the epitaxial structure E transmits a micron-sized cavity to cause a scattering effect, which causes the light to enter the sheet wavelength more uniformly. The conversion layer 180a is thus designed to make the light generated by the epitaxial structure E produce a better scattering effect, and the light uniformity of the overall light-emitting element 100b2 can be effectively improved.
此外,磊晶結構E與片狀波長轉換層180a之間的微米級的空洞亦可作為此兩個不同元件層之間的緩衝空間且增加兩者間的接合能力,提高發光元件100b2的可靠性,更值得一提,磊晶結構E與片狀波長轉換層180a之間的空洞,若小於微米等級,如小於0.1微米,則空洞太小,散射效果不佳,若大於微米等級,如 大於10微米,則空洞太大,磊晶結構E與片狀波長轉換層180a的接合面積過小,接合效果反而不佳。 In addition, the micron-sized void between the epitaxial structure E and the sheet-like wavelength conversion layer 180a can also serve as a buffer space between the two different element layers and increase the bonding ability between the two, thereby improving the reliability of the light-emitting element 100b2. It is more worth mentioning that if the cavity between the epitaxial structure E and the sheet-like wavelength conversion layer 180a is smaller than a micron level, such as less than 0.1 micrometer, the void is too small, and the scattering effect is not good, if it is larger than the micron level, such as If it is larger than 10 μm, the void is too large, and the bonding area of the epitaxial structure E and the sheet-like wavelength conversion layer 180a is too small, and the bonding effect is not good.
圖3A繪示為本發明的另一實施例的一種發光元件的剖面示意圖。請同時參考圖2A與圖3A,本實施例的發光元件100c1與圖2A中的發光元件100b1相似,惟二者主要差異之處在於:本實施例的發光元件100c1更包括一光耦合層190c1,其中光耦合層190c1配置於片狀波長轉換層180a與磊晶結構E的第二型半導體層160之間,用以增加發光元件100c1的出光效率與增加磊晶結構E與片狀波長轉換層180a之間的接合。此處,光耦合層190c1的厚度小於10微米,可做為磊晶結構E與片狀波長轉換層180a之間的緩衝,且可使得磊晶結構E與片狀波長轉換層180a之間具有較佳的接合效果。此處,光耦合層190c1的邊緣與磊晶結構E的第二型半導體層160的邊緣切齊。 3A is a cross-sectional view of a light emitting device according to another embodiment of the present invention. Referring to FIG. 2A and FIG. 3A, the light-emitting element 100c1 of the present embodiment is similar to the light-emitting element 100b1 of FIG. 2A, but the main difference is that the light-emitting element 100c1 of the present embodiment further includes an optical coupling layer 190c1. The optical coupling layer 190c1 is disposed between the chip-shaped wavelength conversion layer 180a and the second-type semiconductor layer 160 of the epitaxial structure E for increasing the light-emitting efficiency of the light-emitting element 100c1 and increasing the epitaxial structure E and the chip-like wavelength conversion layer 180a. The joint between. Here, the thickness of the light coupling layer 190c1 is less than 10 micrometers, and can be used as a buffer between the epitaxial structure E and the sheet-like wavelength conversion layer 180a, and the epitaxial structure E and the sheet-like wavelength conversion layer 180a can be compared. Good bonding effect. Here, the edge of the light coupling layer 190c1 is aligned with the edge of the second type semiconductor layer 160 of the epitaxial structure E.
更具體來說,本實施例的光耦合層190c1的材質為氮化物材料,例如是氮化鎵;或者是,光耦合層190c1的材質與第二型半導體層160的材質實質上相同,將可具有較佳的接合效果,但於此並不加以限制。此外,為了提高整體發光元件100c1的發光效率,光耦合層190c1可使用與第二型半導體層160具相近折射率的材質,並透過於光耦合層190c1內添加擴散粒子、反射粒子、散射粒子或上述至少其中之二,來使磊晶結構E所產生的光線可產生散射、反射及擴散的效果,亦可改變光耦合層190c1的折射率,使光耦合層190c1的折射率小於第二型半導體層160的 折射率,且大於片狀波長轉換層180a的折射率,以增加出光效率,此仍屬於本發明所欲保護之範圍。 More specifically, the material of the light coupling layer 190c1 of the present embodiment is a nitride material, such as gallium nitride; or the material of the light coupling layer 190c1 is substantially the same as the material of the second type semiconductor layer 160, and It has a better bonding effect, but is not limited thereto. In addition, in order to improve the luminous efficiency of the overall light-emitting element 100c1, the light-coupling layer 190c1 may be made of a material having a refractive index close to that of the second-type semiconductor layer 160, and may be diffused, reflected, or scattered in the light-coupling layer 190c1. At least two of the above, the light generated by the epitaxial structure E can be scattered, reflected and diffused, and the refractive index of the optical coupling layer 190c1 can be changed to make the refractive index of the optical coupling layer 190c1 smaller than that of the second semiconductor. Layer 160 The refractive index is greater than the refractive index of the sheet-like wavelength conversion layer 180a to increase the light extraction efficiency, which is still within the scope of the present invention.
圖3B繪示為本發明的另一實施例的一種發光元件的剖面示意圖。請同時參考圖3A與圖3B,本實施例的發光元件100c2與圖3A中的發光元件100c1相似,惟二者主要差異之處在於:本實施例的發光元件100c2的磊晶結構層E具有一粗糙表面E1,且粗糙表面E1與光耦合層190c1之間具有微米級的空洞。意即,磊晶結構E與光耦合層190c1所接觸的表面並非平整表面,磊晶結構E所發出的光透過微米級的空洞會產生散射效果,會使光線更均勻的進入光耦合層190c1,因此透過此結構設計可使磊晶結構E所產生的光產生更佳的散射效果,可有效提高整體發光元件100c2的出光均勻性。此外,磊晶結構E與光耦合層190c1之間的微米級的空洞亦可作為此兩元件層之間的緩衝,可使得磊晶結構E與光耦合層190c1之間具有較佳的接合效果,更值得一提,磊晶結構E與光耦合層190c1之間的空洞,若小於微米等級,如小於0.1微米,則空洞太小,散射效果不佳,若大於微米等級,如大於10微米,則空洞太大,磊晶結構E與光耦合層190c1的接合面積過小,接合效果反而不佳。 3B is a cross-sectional view of a light emitting device according to another embodiment of the present invention. 3A and FIG. 3B, the light-emitting element 100c2 of the present embodiment is similar to the light-emitting element 100c1 of FIG. 3A, but the main difference is that the epitaxial structure layer E of the light-emitting element 100c2 of the present embodiment has a The rough surface E1 has a micron-sized void between the rough surface E1 and the light coupling layer 190c1. That is, the surface of the epitaxial structure E and the light coupling layer 190c1 is not a flat surface, and the light emitted by the epitaxial structure E transmits a micron-sized cavity to cause a scattering effect, which causes the light to enter the light coupling layer 190c1 more uniformly. Therefore, through the structural design, the light generated by the epitaxial structure E can produce a better scattering effect, and the light uniformity of the overall light-emitting element 100c2 can be effectively improved. In addition, a micron-sized cavity between the epitaxial structure E and the light coupling layer 190c1 can also serve as a buffer between the two element layers, so that a better bonding effect between the epitaxial structure E and the light coupling layer 190c1 is achieved. It is worth mentioning that if the cavity between the epitaxial structure E and the light coupling layer 190c1 is less than a micron level, such as less than 0.1 micrometer, the cavity is too small, and the scattering effect is not good. If it is larger than the micron level, such as greater than 10 micrometers, The void is too large, and the bonding area of the epitaxial structure E and the light coupling layer 190c1 is too small, and the bonding effect is rather poor.
圖3C繪示為本發明的另一實施例的一種發光元件的剖面示意圖。請同時參考圖3C與圖3A,本實施例的發光元件100c3與圖3A中的發光元件100c1相似,惟二者主要差異之處在於:本實施例的發光元件100c3的光耦合層190c3具有一粗糙表面191, 且粗糙表面191與片狀波長轉換層180a之間具有微米級的空洞。意即,光耦合層190c3與片狀波長轉換層180a所接觸的表面並非平整表面,透過此結構設計可使磊晶結構E所產生的光產生更佳的散射效果,可有效提高整體發光元件100c3的出光均勻性。需說明的是,空洞的孔徑需大於0.1微米,特別是需大於發光元件100c3的出光波長,藉此才有較佳的散射效果,但其孔徑需小於10微米以避免產生全反射效應,進而影響出光量。此外,光耦合層190c3與片狀波長轉換層180a之間的微米級的空洞亦可作為兩不同元件層之間的緩衝空間,且可使得光耦合層190c3與片狀波長轉換層180a之間具有較佳的接合效果,以提高發光元件100c3的可靠性。當然,於其他未繪示的實施例中,亦可以是粗糙表面與磊晶結構之間具有微米級的空洞,此仍屬於本發明所欲保護之範圍。特別說明的是,亦可光耦合層190c3具有兩粗糙表面,亦即與同時與片狀波長轉換層180a和磊晶結構E之間皆具有微米級的空洞(圖未示),可使得光耦合層190c3與片狀波長轉換層180a和光耦合層190c3磊晶結構E之間與皆具有較佳的接合效果,以提高發光元件100c3的可靠性,於此並不加以限制。 3C is a cross-sectional view showing a light emitting device according to another embodiment of the present invention. Referring to FIG. 3C and FIG. 3A simultaneously, the light-emitting element 100c3 of the present embodiment is similar to the light-emitting element 100c1 of FIG. 3A, but the main difference is that the light-coupling layer 190c3 of the light-emitting element 100c3 of the present embodiment has a roughness. Surface 191, And there is a micron-order void between the rough surface 191 and the sheet-like wavelength conversion layer 180a. That is, the surface of the optical coupling layer 190c3 and the sheet-like wavelength conversion layer 180a is not a flat surface. The structure design can make the light generated by the epitaxial structure E produce a better scattering effect, and the overall light-emitting element 100c3 can be effectively improved. The uniformity of light output. It should be noted that the pore size of the cavity needs to be larger than 0.1 micrometer, especially larger than the light-emitting wavelength of the light-emitting element 100c3, so that the scattering effect is better, but the pore diameter needs to be less than 10 micrometers to avoid the total reflection effect, thereby affecting The amount of light emitted. In addition, the micron-scale void between the light coupling layer 190c3 and the sheet-like wavelength conversion layer 180a can also serve as a buffer space between the two different element layers, and can have a relationship between the light coupling layer 190c3 and the sheet-like wavelength conversion layer 180a. A preferred bonding effect is to improve the reliability of the light-emitting element 100c3. Of course, in other embodiments not shown, a micron-sized cavity between the rough surface and the epitaxial structure may also be included, which is still within the scope of the present invention. In particular, the optical coupling layer 190c3 may have two rough surfaces, that is, a micron-sized cavity (not shown) between the chip-wavelength conversion layer 180a and the epitaxial structure E, which may cause optical coupling. The layer 190c3 and the epitaxial structure E of the sheet-like wavelength conversion layer 180a and the light-coupling layer 190c3 have a better bonding effect to improve the reliability of the light-emitting element 100c3, which is not limited thereto.
圖4繪示為本發明的另一實施例的一種發光元件的剖面示意圖。請同時參考圖4與圖2A,本實施例的發光元件100d與圖2A中的發光元件100b1相似,惟二者主要差異之處在於:本實施例的發光元件100d更包括一光耦合層190d,其中光耦合層190d配置於片狀波長轉換層180a與磊晶結構E之間且具有一圖案化粗 糙表面191,光耦合層190d與片狀波長轉換層180a之間具有至少一空隙B。如圖4所示,本實施例的光耦合層190d例如由一剖面圖案為週期性的三角形圖案所構成的結構,且相鄰兩三角形圖案之間即存在空隙B;當然,於其他未繪示的實施例中,光耦合層的剖面圖案亦可為其他圖形且亦可為非週期性的排列,此仍屬於本發明所欲保護的範圍。由於本實施例的光耦合層190d與片狀波長轉換層180a之間為非平整接觸,透過此結構設計可使磊晶結構E所產生的光產生散射效果,可有效提高整體發光元件100d的出光均勻性。此外,光耦合層190d與片狀波長轉換層180a之間的空隙亦可作為此兩不同元件層之間的緩衝空間,且可使得磊晶結構E與片狀波長轉換層180a之間具有較佳的接合效果,以提高發光元件100d的可靠性。 4 is a cross-sectional view showing a light emitting device according to another embodiment of the present invention. Referring to FIG. 4 and FIG. 2A, the light-emitting element 100d of the present embodiment is similar to the light-emitting element 100b1 of FIG. 2A, but the main difference is that the light-emitting element 100d of the present embodiment further includes an optical coupling layer 190d. The light coupling layer 190d is disposed between the sheet-like wavelength conversion layer 180a and the epitaxial structure E and has a patterned coarse The rough surface 191, the light coupling layer 190d and the sheet-like wavelength conversion layer 180a have at least one gap B therebetween. As shown in FIG. 4, the optical coupling layer 190d of the present embodiment has a structure in which a cross-sectional pattern is a periodic triangular pattern, and a gap B exists between two adjacent triangular patterns; of course, other not shown In the embodiment, the cross-sectional pattern of the optical coupling layer may also be other patterns and may also be a non-periodic arrangement, which still falls within the scope of the present invention. Since the light coupling layer 190d of the present embodiment and the sheet-like wavelength conversion layer 180a are non-flat contact, the structure design can make the light generated by the epitaxial structure E have a scattering effect, and the light emission of the entire light-emitting element 100d can be effectively improved. Uniformity. In addition, the gap between the optical coupling layer 190d and the sheet-like wavelength conversion layer 180a can also serve as a buffer space between the two different element layers, and can better between the epitaxial structure E and the sheet-like wavelength conversion layer 180a. The bonding effect is to improve the reliability of the light emitting element 100d.
圖5繪示為本發明的另一實施例的一種發光元件的剖面示意圖。請同時參考圖5與圖2A,本實施例的發光元件100e與圖2A中的發光元件100b1相似,惟二者主要差異之處在於:本實施例的發光元件100e的片狀波長轉換層180e包括至少兩片狀波長轉換單元層,這些片狀波長轉換單元層的主要發光波長朝遠離該磊晶結構E的方向漸減。於本實施例中,至少兩片狀波長轉換單元層為三個片狀波長轉換單元層,這些片狀波長轉換單元包括依序堆疊的一第一片狀波長轉換單元層182e、一第二片狀波長轉換單元層184e以及一第三片狀波長轉換單元層186e。其中,第一片狀波長轉換單元層182e的主要發光波長大於第二片狀波長轉換 單元層184e的主要發光波長,且第二片狀波長轉換單元層184e的主要發光波長大於第三片狀波長轉換單元層186e的主要發光波長。此種排列可使得經具有較長的主要發光波長的第一片狀波長轉換層182e轉換後的光,不會被具有較短的主要發光波長的第二、三片狀波長轉換層184e、186e所吸收,以此類推。舉例來說,當磊晶結構E發出藍光時,第一片狀波長轉換單元層182e可例如是紅光片狀波長轉換單元層,而第二片狀波長轉換單元層184e可例如是黃光片狀波長轉換單元層,且第三片狀波長轉換單元層186e可例如是綠光片狀波長轉換單元層,可有效提高整體發光元件100e的發光均勻度與演色性。當然,於其他實施例中,第一片狀波長轉換單元層182e、第二片狀波長轉換單元層184e以及第三片狀波長轉換單元層186e也可以是其他顏色的片狀波長轉換單元層,於此並不加以限制其顏色。特別是,第一片狀波長轉換單元層182e、第二片狀波長轉換單元層184e以及第三片狀波長轉換單元層186e的延伸方向與基板110a的延伸方向相同,此處,第一片狀波長轉換單元層182e、第二片狀波長轉換單元層184e以及第三片狀波長轉換單元層186e與基板110a的延伸方向相同,皆是橫向延伸的平面結構,因此可使得整體發光元件100e具有較小的體積。較佳的,各該片狀波長轉換單元層的厚度介於5微米至30微米之間。 FIG. 5 is a cross-sectional view showing a light emitting device according to another embodiment of the present invention. Referring to FIG. 5 and FIG. 2A simultaneously, the light-emitting element 100e of the present embodiment is similar to the light-emitting element 100b1 of FIG. 2A, but the main difference is that the sheet-like wavelength conversion layer 180e of the light-emitting element 100e of the present embodiment includes At least two chip-shaped wavelength conversion unit layers, the main light-emitting wavelengths of the chip-like wavelength conversion unit layers are gradually decreased in a direction away from the epitaxial structure E. In this embodiment, the at least two chip wavelength conversion unit layers are three chip wavelength conversion unit layers, and the chip wavelength conversion units include a first chip wavelength conversion unit layer 182e and a second film sequentially stacked. The wavelength conversion unit layer 184e and a third sheet-like wavelength conversion unit layer 186e. Wherein, the main illuminating wavelength of the first flaky wavelength conversion unit layer 182e is greater than the second flaky wavelength conversion The main emission wavelength of the unit layer 184e, and the main emission wavelength of the second sheet-like wavelength conversion unit layer 184e is larger than the main emission wavelength of the third sheet-like wavelength conversion unit layer 186e. Such an arrangement allows light converted by the first sheet-like wavelength conversion layer 182e having a longer main emission wavelength to be not affected by the second and third sheet-like wavelength conversion layers 184e, 186e having a shorter main emission wavelength. Absorbed, and so on. For example, when the epitaxial structure E emits blue light, the first sheet-like wavelength conversion unit layer 182e may be, for example, a red sheet-like wavelength conversion unit layer, and the second sheet-like wavelength conversion unit layer 184e may be, for example, a yellow sheet. The wavelength conversion unit layer, and the third sheet-like wavelength conversion unit layer 186e can be, for example, a green sheet-like wavelength conversion unit layer, which can effectively improve the uniformity and color rendering of the overall light-emitting element 100e. Of course, in other embodiments, the first chiplet wavelength conversion unit layer 182e, the second chip wavelength conversion unit layer 184e, and the third chip wavelength conversion unit layer 186e may also be other color chip wavelength conversion unit layers. This does not limit its color. In particular, the extending directions of the first sheet-like wavelength conversion unit layer 182e, the second sheet-like wavelength conversion unit layer 184e, and the third sheet-like wavelength conversion unit layer 186e are the same as the extending direction of the substrate 110a, here, the first sheet shape The wavelength conversion unit layer 182e, the second sheet-like wavelength conversion unit layer 184e, and the third sheet-like wavelength conversion unit layer 186e are the same as the extending direction of the substrate 110a, and both are laterally extending planar structures, so that the overall light-emitting element 100e can be made Small size. Preferably, each of the sheet-like wavelength conversion unit layers has a thickness of between 5 micrometers and 30 micrometers.
圖6繪示為本發明的另一實施例的一種發光元件的剖面示意圖。請同時參考圖6與圖5,本實施例的發光元件100f與圖 5中的發光元件100e相似,惟二者主要差異之處在於:本實施例的片狀波長轉換層180f的第一片狀波長轉換單元層182f的厚度、第二片狀波長轉換單元層184f的厚度以及第三片狀波長轉換單元層186f的厚度皆不相同。較佳地,這些片狀波長轉換單元層的厚度朝遠離磊晶結構E的方向漸增。此種排列可使得經具有較長的主要發光波長的第一片狀波長轉換層182f轉換後的光,不會被具有較短的主要發光波長的第二、三片狀波長轉換層184f、186f所吸收,因此不需每層都要有相同厚度就可以得到高演色性與出光均勻的效果。舉例來說,當第一片狀波長轉換單元層182e為紅光片狀波長轉換單元層,而第二片狀波長轉換單元層184e為綠光片狀波長轉換單元層,其中第一片狀波長轉換單元層182f的厚度可為第二片狀波長轉換單元層184f的厚度的0.2倍至0.4倍,因此能減少成本較高的紅色螢光粉用量,可有效降低整體發光元件100f的製作成本。 6 is a cross-sectional view showing a light emitting device according to another embodiment of the present invention. Please refer to FIG. 6 and FIG. 5 simultaneously, the light-emitting element 100f and the diagram of the embodiment. The light-emitting elements 100e of 5 are similar, but the main difference between them is that the thickness of the first sheet-like wavelength conversion unit layer 182f of the sheet-like wavelength conversion layer 180f of the present embodiment, and the thickness of the second sheet-like wavelength conversion unit layer 184f The thickness and the thickness of the third sheet-like wavelength conversion unit layer 186f are all different. Preferably, the thickness of the sheet-like wavelength conversion unit layers is gradually increased in a direction away from the epitaxial structure E. Such an arrangement can be such that the light converted by the first sheet-like wavelength conversion layer 182f having a longer main emission wavelength is not affected by the second and third sheet-like wavelength conversion layers 184f, 186f having a shorter main emission wavelength. It is absorbed, so it is not necessary to have the same thickness for each layer to obtain high color rendering and uniform light output. For example, when the first sheet-like wavelength conversion unit layer 182e is a red sheet-like wavelength conversion unit layer, and the second sheet-like wavelength conversion unit layer 184e is a green sheet-like wavelength conversion unit layer, wherein the first sheet-like wavelength The thickness of the conversion unit layer 182f may be 0.2 to 0.4 times the thickness of the second sheet-like wavelength conversion unit layer 184f, so that the cost of the red phosphor powder can be reduced, and the manufacturing cost of the overall light-emitting element 100f can be effectively reduced.
圖7繪示為本發明的另一實施例的一種發光元件的剖面示意圖。請同時參考圖7與圖2A,本實施例的發光元件100g與圖2A中的發光元件100b1相似,惟二者主要差異之處在於:本實施例的基板110g的每一導電通孔116g與電極連接層120a之間具有至少一空間117,其中此空間117可作為熱膨脹係數不同的導電通孔116g與電極連接層120a之間以及導電通孔116g與接墊170之間,在不同溫度操作下的緩衝空間,增加發光元件100g的可靠性。此處,圖7中的空間117可靠近或連接基板110g的上表面112 或下表面114,但並不以此為限。 FIG. 7 is a cross-sectional view showing a light emitting device according to another embodiment of the present invention. Referring to FIG. 7 and FIG. 2A simultaneously, the light-emitting element 100g of the present embodiment is similar to the light-emitting element 100b1 of FIG. 2A, but the main difference is that each conductive via 116g and the electrode of the substrate 110g of the present embodiment There is at least one space 117 between the connection layers 120a, wherein the space 117 can be used between the conductive vias 116g and the electrode connection layer 120a having different thermal expansion coefficients and between the conductive vias 116g and the pads 170 at different temperatures. The buffer space increases the reliability of the light-emitting element 100g. Here, the space 117 in FIG. 7 can be close to or connected to the upper surface 112 of the substrate 110g. Or the lower surface 114, but not limited thereto.
圖8繪示為本發明的一實施例的一種發光元件的電極連接層的俯視示意圖。請參考圖8,本實施例的發光元件100h的電極連接層120h具有多個第一電極122h以及多個第二電極124h,其中每一第一電極122h的俯視輪廓為點狀。而,每一第二電極124h的俯視輪廓例如為點狀與線狀的組合。也就是說,本實施例的第二電極124h同時具有點狀輪廓的電極以及線狀輪廓的電極,其中如圖8所示,這些電極圖案皆呈現彼此分離的狀態。由於本實施例的發光元件100h中的第二電極124h具有點狀與線狀輪廓的電極圖案,因此可有效使電流分佈更為均勻且可有效降低正向電壓。 FIG. 8 is a schematic top plan view of an electrode connection layer of a light-emitting element according to an embodiment of the invention. Referring to FIG. 8, the electrode connection layer 120h of the light-emitting element 100h of the present embodiment has a plurality of first electrodes 122h and a plurality of second electrodes 124h, wherein each of the first electrodes 122h has a dot-like profile. However, the top profile of each of the second electrodes 124h is, for example, a combination of a dot shape and a line shape. That is to say, the second electrode 124h of the present embodiment has both a dot-shaped electrode and a line-shaped electrode, wherein as shown in FIG. 8, these electrode patterns are in a state of being separated from each other. Since the second electrode 124h in the light-emitting element 100h of the present embodiment has an electrode pattern having a dot shape and a line profile, the current distribution can be made more uniform and the forward voltage can be effectively reduced.
圖9A繪示為本發明的另一實施例的一種發光元件的剖面示意圖。請同時參考圖9A與圖3A,本實施例的發光元件100i1與圖3A中的發光元件100c1相似,惟二者主要差異之處在於:本實施例的發光元件100i1更包括一歐姆接觸層210a,配置於第一型半導體層140與絕緣層130之間。此外,本實施例的發光元件100i1可更包括一反射層220,配置於歐姆接觸層210a與絕緣層130之間。此處,歐姆接觸層210a的設置可有效增進第一型半導體層140與第一電極122a之間的電性連接,其中歐姆接觸層210a的材質例如是鎳或氧化鎳。而,反射層220的材質例如是銀,可反射發光層150的發光,使出光效率更佳。此外,本實施例的歐姆接觸層210a的厚度與反射層220的厚度例如是介於1000埃至 7000埃之間,較佳地,介於1000埃至3500埃之間。 FIG. 9A is a cross-sectional view showing a light emitting device according to another embodiment of the present invention. Referring to FIG. 9A and FIG. 3A, the light-emitting element 100i1 of the present embodiment is similar to the light-emitting element 100c1 of FIG. 3A, but the main difference is that the light-emitting element 100i1 of the present embodiment further includes an ohmic contact layer 210a. The first semiconductor layer 140 is disposed between the first semiconductor layer 140 and the insulating layer 130. In addition, the light emitting device 100i1 of the present embodiment may further include a reflective layer 220 disposed between the ohmic contact layer 210a and the insulating layer 130. Here, the arrangement of the ohmic contact layer 210a can effectively improve the electrical connection between the first type semiconductor layer 140 and the first electrode 122a, wherein the material of the ohmic contact layer 210a is, for example, nickel or nickel oxide. On the other hand, the material of the reflective layer 220 is, for example, silver, which can reflect the light emission of the light-emitting layer 150, so that the light-emitting efficiency is better. In addition, the thickness of the ohmic contact layer 210a of the present embodiment and the thickness of the reflective layer 220 are, for example, 1000 angstroms to Between 7000 angstroms, preferably between 1000 angstroms and 3,500 angstroms.
圖9B繪示為本發明的另一實施例的一種發光元件的剖面示意圖。請同時參考圖9B與圖9A,本實施例的發光元件100i2與圖9A中的發光元件100i1相似,惟二者主要差異之處在於:歐姆接觸層210b為一圖案化結構,如圖9B所示的發光元件100i2,歐姆接觸層210b剖面圖案具體化是由一剖面圖案為週期性的島形圖案所構成,因此第一型半導體層140與第一電極122a與反射層220間具有較大的接觸表面積,使可增加進歐姆接觸層210b、第一型半導體層140與第一電極122a與反射層220間的電性連接與接合。但歐姆接觸層210b剖面圖案亦可為其他週期性或非週期性的圖案構成,於此並不限制。 FIG. 9B is a cross-sectional view of a light emitting device according to another embodiment of the present invention. Referring to FIG. 9B and FIG. 9A simultaneously, the light-emitting element 100i2 of the present embodiment is similar to the light-emitting element 100i1 of FIG. 9A, but the main difference is that the ohmic contact layer 210b is a patterned structure, as shown in FIG. 9B. The light-emitting element 100i2, the ohmic contact layer 210b cross-sectional pattern is embodied by a periodic pattern of island patterns, so that the first type semiconductor layer 140 has a large contact with the first electrode 122a and the reflective layer 220. The surface area is such that electrical connection and bonding between the ohmic contact layer 210b, the first type semiconductor layer 140, and the first electrode 122a and the reflective layer 220 can be increased. However, the cross-sectional pattern of the ohmic contact layer 210b may also be formed by other periodic or non-periodic patterns, and is not limited thereto.
圖10繪示為本發明的另一實施例的一種發光元件的剖面示意圖。請同時參考圖10與圖9A,本實施例的發光元件100j與圖9A中的發光元件100i1相似,惟二者主要差異之處在於:本實施例的發光元件100j更包括一絕緣保護層230,覆蓋第一型半導體層140的邊緣、發光層150的邊緣及第二型半導體層160的邊緣,其中絕緣保護層230的邊緣231與絕緣層130的邊緣切齊。此處,絕緣保護層的材料可為二氧化矽、矽化氮及上述材料之組合。絕緣保護層230的設置目的在於有效保護磊晶結構E的邊緣,以避免水氣及氧氣侵襲,可有效提高整體發光元件100j的產品可靠度。特別說明的是,本實施例中的絕緣保護層230進一步覆蓋歐姆接觸層210a與反射層220的邊緣,可使發光元件100j的可靠 度更佳。 FIG. 10 is a cross-sectional view showing a light emitting device according to another embodiment of the present invention. Referring to FIG. 10 and FIG. 9A, the light-emitting element 100j of the present embodiment is similar to the light-emitting element 100i1 of FIG. 9A, but the main difference is that the light-emitting element 100j of the embodiment further includes an insulating protective layer 230. The edge of the first type semiconductor layer 140, the edge of the light emitting layer 150, and the edge of the second type semiconductor layer 160 are covered, wherein the edge 231 of the insulating protective layer 230 is aligned with the edge of the insulating layer 130. Here, the material of the insulating protective layer may be ceria, bismuth nitride, and a combination thereof. The insulating protective layer 230 is disposed to effectively protect the edge of the epitaxial structure E to avoid moisture and oxygen attack, and can effectively improve the product reliability of the overall light emitting device 100j. In particular, the insulating protective layer 230 in the present embodiment further covers the edges of the ohmic contact layer 210a and the reflective layer 220, so that the light-emitting element 100j can be reliably Better.
圖11繪示為本發明的另一實施例的一種發光元件的剖面示意圖。請同時參考圖11與圖10,本實施例的發光元件100k與圖11中的發光元件100j相似,惟二者主要差異之處在於:本實施例的發光元件100k更包括一色彩混合層240,配置於片狀波長轉換層180a上。在本實施例中,色彩混合層240由一透明材料組成,例如是玻璃、藍寶石、環氧樹脂或矽,而色彩混合層240的厚度大於100微米。也就是說,色彩混合層240的厚度大於磊晶結構E的厚度加上片狀波長轉換層180a的厚度。此處,且有較厚厚度色彩混合層240的設置可視為一導光層,可均勻混合磊晶結構E的出光與被波長轉換層180a轉換的光,有效提高發光元件100k整體的出光均勻度。 FIG. 11 is a cross-sectional view showing a light emitting device according to another embodiment of the present invention. Referring to FIG. 11 and FIG. 10, the light-emitting element 100k of the present embodiment is similar to the light-emitting element 100j of FIG. 11, but the main difference is that the light-emitting element 100k of the present embodiment further includes a color mixing layer 240. It is disposed on the sheet-like wavelength conversion layer 180a. In the present embodiment, the color mixing layer 240 is composed of a transparent material such as glass, sapphire, epoxy or germanium, and the color mixing layer 240 has a thickness greater than 100 micrometers. That is, the thickness of the color mixture layer 240 is larger than the thickness of the epitaxial structure E plus the thickness of the sheet-like wavelength conversion layer 180a. Here, the arrangement of the thicker color mixing layer 240 can be regarded as a light guiding layer, and the light emitted by the epitaxial structure E and the light converted by the wavelength conversion layer 180a can be uniformly mixed, thereby effectively improving the uniformity of light emission of the entire light emitting element 100k. .
需說明的是,於其他未繪示的實施例中,亦可選用於如前述實施例所提及的光耦合層190c1、190c2、190c3、190d、片狀波長轉換層180a、180e、180f、基板110g、電極連接層120h、歐姆接觸層210b、反射層220、絕緣保護層230以及色彩混合層240,本領域的技術人員當可參照前述實施例的說明,依據實際需求,而選用前述構件,以達到所需的技術效果。 It should be noted that, in other embodiments not shown, the optical coupling layers 190c1, 190c2, 190c3, 190d, the chip-like wavelength conversion layers 180a, 180e, 180f, and the substrate may be selected as mentioned in the foregoing embodiments. 110g, the electrode connection layer 120h, the ohmic contact layer 210b, the reflective layer 220, the insulating protective layer 230, and the color mixing layer 240. Those skilled in the art can refer to the description of the foregoing embodiments, and select the foregoing components according to actual needs. Achieve the desired technical effect.
綜上所述,由於本發明的發光元件,其電極連接層的邊緣與基板的邊緣實質上切齊。因此,相較於習知的發光元件是將其發光元件的電極電性連接至一較大載板的接墊上而言,本發明的發光元件可具有較小的體積。 In summary, due to the light-emitting element of the present invention, the edge of the electrode connection layer is substantially aligned with the edge of the substrate. Therefore, the light-emitting element of the present invention can have a small volume as compared with the conventional light-emitting element in that the electrode of the light-emitting element is electrically connected to the pad of a larger carrier.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100a‧‧‧發光元件 100a‧‧‧Lighting elements
110a‧‧‧基板 110a‧‧‧Substrate
111‧‧‧邊緣 111‧‧‧ edge
112‧‧‧上表面 112‧‧‧ upper surface
114‧‧‧下表面 114‧‧‧ lower surface
116a‧‧‧導電通孔 116a‧‧‧ conductive vias
120a‧‧‧電極連接層 120a‧‧‧electrode connection layer
121‧‧‧邊緣 121‧‧‧ edge
122a‧‧‧第一電極 122a‧‧‧first electrode
124a‧‧‧第二電極 124a‧‧‧second electrode
126a‧‧‧連接層 126a‧‧‧Connection layer
130‧‧‧絕緣層 130‧‧‧Insulation
140‧‧‧第一型半導體層 140‧‧‧First type semiconductor layer
150‧‧‧發光層 150‧‧‧Lighting layer
160‧‧‧第二型半導體層 160‧‧‧Second type semiconductor layer
170‧‧‧接墊 170‧‧‧ pads
E‧‧‧磊晶結構 E‧‧‧ epitaxial structure
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/924,728 US9634202B2 (en) | 2014-11-18 | 2015-10-28 | Light emitting device |
US15/461,507 US9899585B2 (en) | 2014-11-18 | 2017-03-17 | Light emitting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462081503P | 2014-11-18 | 2014-11-18 | |
US201462092265P | 2014-12-16 | 2014-12-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201620165A TW201620165A (en) | 2016-06-01 |
TWI578581B true TWI578581B (en) | 2017-04-11 |
Family
ID=56755072
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104114438A TWI578581B (en) | 2014-11-18 | 2015-05-06 | Light emitting device |
TW104114440A TWI622190B (en) | 2014-11-18 | 2015-05-06 | Light emitting device |
TW104114435A TWI557943B (en) | 2014-11-18 | 2015-05-06 | Electrode structure of light emitting device |
TW104114433A TWI612694B (en) | 2014-11-18 | 2015-05-06 | Method for manufacturing light emitting device |
TW104114838A TWI577055B (en) | 2014-11-18 | 2015-05-11 | Wavelength converting film and manufacturing method thereof |
TW104114841A TWI569479B (en) | 2014-11-18 | 2015-05-11 | Light emitting device |
TW104134510A TWI580082B (en) | 2014-11-18 | 2015-10-21 | Light emitting device |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104114440A TWI622190B (en) | 2014-11-18 | 2015-05-06 | Light emitting device |
TW104114435A TWI557943B (en) | 2014-11-18 | 2015-05-06 | Electrode structure of light emitting device |
TW104114433A TWI612694B (en) | 2014-11-18 | 2015-05-06 | Method for manufacturing light emitting device |
TW104114838A TWI577055B (en) | 2014-11-18 | 2015-05-11 | Wavelength converting film and manufacturing method thereof |
TW104114841A TWI569479B (en) | 2014-11-18 | 2015-05-11 | Light emitting device |
TW104134510A TWI580082B (en) | 2014-11-18 | 2015-10-21 | Light emitting device |
Country Status (1)
Country | Link |
---|---|
TW (7) | TWI578581B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106531859B (en) * | 2016-12-16 | 2018-12-14 | 上海芯元基半导体科技有限公司 | Exempt to encapsulate high brightness LED chip structure and preparation method thereof |
TWI607559B (en) * | 2017-01-10 | 2017-12-01 | 錼創科技股份有限公司 | Display panel |
CN108288629B (en) * | 2017-01-10 | 2022-01-11 | 英属开曼群岛商錼创科技股份有限公司 | Display panel |
TWI632673B (en) * | 2017-07-11 | 2018-08-11 | 錼創科技股份有限公司 | Micro light-emitting device and display apparatus |
US10804130B2 (en) | 2017-12-19 | 2020-10-13 | PlayNitride Inc. | Structure with micro device |
US10748804B2 (en) | 2017-12-19 | 2020-08-18 | PlayNitride Inc. | Structure with micro device having holding structure |
US10797029B2 (en) | 2017-12-19 | 2020-10-06 | PlayNitride Inc. | Structure with micro device |
CN109935610B (en) * | 2017-12-19 | 2023-04-07 | 英属开曼群岛商錼创科技股份有限公司 | Micro-device structure |
CN110579933B (en) * | 2018-06-11 | 2022-06-14 | 中强光电股份有限公司 | Wavelength conversion element, projection device and manufacturing method of wavelength conversion element |
CN110579932B (en) | 2018-06-11 | 2023-12-05 | 中强光电股份有限公司 | Wavelength conversion element, projection device, and method for manufacturing wavelength conversion element |
CN113228316A (en) * | 2018-12-27 | 2021-08-06 | 电化株式会社 | Phosphor substrate, light-emitting substrate, and lighting device |
TWI792283B (en) * | 2021-04-27 | 2023-02-11 | 錼創顯示科技股份有限公司 | Micro light-emitting diode structure and micro light-emitting diode display panel using the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201031033A (en) * | 2008-12-12 | 2010-08-16 | Toshiba Kk | Light emitting device and method for manufacturing same |
TW201417339A (en) * | 2012-10-22 | 2014-05-01 | Ritedia Corp | Flip-chip light emitting diode and application thereof |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW576554U (en) * | 2003-06-12 | 2004-02-11 | Lambda Opto Technology Co Ltd | Surface mount light emitting diode |
WO2005071039A1 (en) * | 2004-01-26 | 2005-08-04 | Kyocera Corporation | Wavelength converter, light-emitting device, wavelength converter manufacturing method, and light-emitting device manufacturing method |
US7256483B2 (en) * | 2004-10-28 | 2007-08-14 | Philips Lumileds Lighting Company, Llc | Package-integrated thin film LED |
EP2304780A1 (en) * | 2008-05-21 | 2011-04-06 | Lumenz, Inc. | Zinc-oxide based epitaxial layers and devices |
JP5276959B2 (en) * | 2008-11-19 | 2013-08-28 | 昭和電工株式会社 | LIGHT EMITTING DIODE, ITS MANUFACTURING METHOD, AND LAMP |
TWI473246B (en) * | 2008-12-30 | 2015-02-11 | Epistar Corp | A chip level package of light-emitting diode |
US20100289044A1 (en) * | 2009-05-12 | 2010-11-18 | Koninklijke Philips Electronics N.V. | Wavelength conversion for producing white light from high power blue led |
JP2011035198A (en) * | 2009-08-03 | 2011-02-17 | Ccs Inc | Method of manufacturing led light-emitting device |
TWI476959B (en) * | 2010-04-11 | 2015-03-11 | Achrolux Inc | Method for transferring a uniform phosphor layer on an article and light-emitting structure fabricated by the method |
EP2378576A2 (en) * | 2010-04-15 | 2011-10-19 | Samsung LED Co., Ltd. | Light emitting diode package, lighting apparatus having the same, and method for manufacturing light emitting diode package |
KR20130139938A (en) * | 2010-10-05 | 2013-12-23 | 인터매틱스 코포레이션 | Solid-state light emitting devices and signage with photoluminescence wavelength conversion |
US8299488B2 (en) * | 2010-12-16 | 2012-10-30 | King Dragon International Inc. | LED chip |
JP5887638B2 (en) * | 2011-05-30 | 2016-03-16 | 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. | Light emitting diode |
US8664679B2 (en) * | 2011-09-29 | 2014-03-04 | Toshiba Techno Center Inc. | Light emitting devices having light coupling layers with recessed electrodes |
TWI449141B (en) * | 2011-10-19 | 2014-08-11 | Richtek Technology Corp | Wafer level chip scale package device and manufacturing method thereof |
KR101873503B1 (en) * | 2011-10-24 | 2018-07-02 | 서울바이오시스 주식회사 | Wafer level led package and method of fabricating the same |
KR20130077208A (en) * | 2011-12-29 | 2013-07-09 | 삼성전자주식회사 | Semiconductor light emitting device and led module |
US8907362B2 (en) * | 2012-01-24 | 2014-12-09 | Cooledge Lighting Inc. | Light-emitting dies incorporating wavelength-conversion materials and related methods |
TW201340407A (en) * | 2012-03-26 | 2013-10-01 | Delta Electronics Inc | Package structure of light emitting diode and method for fabricating the same |
CN103383986A (en) * | 2012-05-04 | 2013-11-06 | 旭明光电股份有限公司 | Light-emitting diode dice with wavelength conversion layer and manufacturing method thereof |
KR102264072B1 (en) * | 2012-06-01 | 2021-06-14 | 루미리즈 홀딩 비.브이. | Improved light extraction using feature size and shape control in led surface roughening |
KR101552670B1 (en) * | 2012-10-18 | 2015-09-11 | 일진엘이디(주) | Semiconductor Light Emitting Diode with Improved Current Spreading Performance and High Brightness Comprising Trench Isolating Light Emitting Region |
JP5581427B2 (en) * | 2013-07-10 | 2014-08-27 | 株式会社東芝 | Semiconductor light emitting diode element and semiconductor light emitting device |
-
2015
- 2015-05-06 TW TW104114438A patent/TWI578581B/en active
- 2015-05-06 TW TW104114440A patent/TWI622190B/en active
- 2015-05-06 TW TW104114435A patent/TWI557943B/en active
- 2015-05-06 TW TW104114433A patent/TWI612694B/en active
- 2015-05-11 TW TW104114838A patent/TWI577055B/en active
- 2015-05-11 TW TW104114841A patent/TWI569479B/en active
- 2015-10-21 TW TW104134510A patent/TWI580082B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201031033A (en) * | 2008-12-12 | 2010-08-16 | Toshiba Kk | Light emitting device and method for manufacturing same |
TW201417339A (en) * | 2012-10-22 | 2014-05-01 | Ritedia Corp | Flip-chip light emitting diode and application thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI577055B (en) | 2017-04-01 |
TW201620166A (en) | 2016-06-01 |
TW201620165A (en) | 2016-06-01 |
TW201620153A (en) | 2016-06-01 |
TW201620160A (en) | 2016-06-01 |
TWI557943B (en) | 2016-11-11 |
TW201620164A (en) | 2016-06-01 |
TW201620161A (en) | 2016-06-01 |
TW201620167A (en) | 2016-06-01 |
TWI612694B (en) | 2018-01-21 |
TWI569479B (en) | 2017-02-01 |
TWI580082B (en) | 2017-04-21 |
TWI622190B (en) | 2018-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI578581B (en) | Light emitting device | |
US10608144B2 (en) | Electrode pad structure of a light emitting diode | |
TWI766356B (en) | Light emitting diode chip | |
US8314431B2 (en) | LED semiconductor element having increased luminance | |
TWI606618B (en) | Light emitting device | |
CN107450228B (en) | Light emitting device | |
TWI760622B (en) | Flip chip type light emitting diode chip and light emitting device including the same | |
JP5967269B2 (en) | Light emitting device | |
JP2016058689A (en) | Semiconductor light-emitting device | |
WO2016093325A1 (en) | Light emitting device | |
TW201312797A (en) | Plate | |
US9793438B2 (en) | Light emitting device | |
US10090449B2 (en) | Light emitting device | |
JP2011114240A (en) | Semiconductor light emitting element | |
JP2008288552A (en) | Light emitting device | |
US9899585B2 (en) | Light emitting device | |
US20160141446A1 (en) | Method for manufacturing light emitting device | |
JP5761391B2 (en) | Light emitting device | |
JP6318495B2 (en) | Light emitting device | |
JP2018190771A (en) | Light-emitting device and method for manufacturing the same | |
TWI556471B (en) | Optoelectronic semiconductor chip and optoelectronic semiconductor component | |
US9634202B2 (en) | Light emitting device | |
JP2016115745A (en) | Substrate for light-emitting device and light-emitting device | |
JP5736930B2 (en) | Semiconductor light emitting device | |
CN112823427A (en) | Semiconductor light-emitting element |