[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008288552A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2008288552A
JP2008288552A JP2008026481A JP2008026481A JP2008288552A JP 2008288552 A JP2008288552 A JP 2008288552A JP 2008026481 A JP2008026481 A JP 2008026481A JP 2008026481 A JP2008026481 A JP 2008026481A JP 2008288552 A JP2008288552 A JP 2008288552A
Authority
JP
Japan
Prior art keywords
light emitting
electrode
light
region
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008026481A
Other languages
Japanese (ja)
Other versions
JP5731731B2 (en
Inventor
Akinori Yoneda
章法 米田
Akiyoshi Kiuchi
章喜 木内
Hiroshi Kawaguchi
浩史 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2008026481A priority Critical patent/JP5731731B2/en
Priority to EP08154563.4A priority patent/EP1983571B1/en
Priority to CN2008100919985A priority patent/CN101290928B/en
Priority to US12/105,058 priority patent/US8174033B2/en
Publication of JP2008288552A publication Critical patent/JP2008288552A/en
Application granted granted Critical
Publication of JP5731731B2 publication Critical patent/JP5731731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To elevate a light output efficiency of a light emitting device by reflecting light emitting from an edge of a semiconductor light emitting element efficiently. <P>SOLUTION: The light emitting device includes semiconductor light emitting elements where a first conductive type first semiconductor layer and second conductive type second semiconductor layer are located on a transparent substrate in order and a first electrode is located on the exposed portion of the first semiconductor layer and a second electrode is located on the second semiconductor layer respectively; and a supporting substrate 9 on which the semiconductor light emitting element are mounted. The light emitting element 100 is rectangular in plane view and has at least a first side and a second side different from the first side. The light emitted from the first side is stronger than the light emitted from the second side. Two or more semiconductor light emitting elements are mounted on the supporting substrate like a flip chip in line so that the first sides are faced approximately in parallel each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体発光素子を利用した発光装置に関わり、特に複数の半導体発光素子が実装された発光装置に関わる。   The present invention relates to a light emitting device using a semiconductor light emitting element, and particularly to a light emitting device in which a plurality of semiconductor light emitting elements are mounted.

半導体発光素子は、支持基板やパッケージなどに種々の方法で実装される。同一面側に正負電極が設けられた半導体発光素子は、正負電極側を支持基板などに接合してフリップチップ実装とすることで、素子の基板側から光を取り出すことができる。半導体発光素子をフリップチップ実装する方法としては、例えば、まず、半導体発光素子を載置可能な支持基板の主面に設けられる導体配線にバンプを形成し、次に、同一面側に正負一対の電極が設けられている半導体発光素子の電極面をバンプと対向させ、半導体素子の正負両電極とバンプとを接触させ、導体配線と半導体発光素子の電極とを接合する。このようにして、バンプを介して支持基板の導体配線と半導体発光素子の正負両電極とを接合し、両者の電気的導通が図られる。 The semiconductor light emitting device is mounted on a support substrate, a package, or the like by various methods. A semiconductor light emitting device having positive and negative electrodes provided on the same surface side can take out light from the substrate side of the device by bonding the positive and negative electrodes side to a support substrate or the like for flip chip mounting. As a method of flip-chip mounting the semiconductor light emitting device, for example, first, bumps are formed on the conductor wiring provided on the main surface of the support substrate on which the semiconductor light emitting device can be placed, and then a pair of positive and negative is formed on the same surface side. The electrode surface of the semiconductor light emitting element provided with the electrode is opposed to the bump, both the positive and negative electrodes of the semiconductor element are brought into contact with the bump, and the conductor wiring and the electrode of the semiconductor light emitting element are joined. In this way, the conductor wiring of the support substrate and the positive and negative electrodes of the semiconductor light emitting element are joined via the bumps, and electrical conduction between them is achieved.

1つの発光装置に、複数の半導体発光素子を実装することもできる(例えば、特許文献1〜4)。その一例を図20に示す。図20に示す発光装置は、ガラスを含有するAl基板51の表面に、W、Ni、Auを含有する回路パターン52が形成され、3個×3個の配列で合計9個のGaN系LED素子53がAuバンプを介して回路パターン52にフッリップチップ実装されている。また、GaN系LED素子53の電極構造は省略しているが、回路パターン52に対応して設けられている。 A plurality of semiconductor light emitting elements can be mounted on one light emitting device (for example, Patent Documents 1 to 4). An example is shown in FIG. In the light emitting device shown in FIG. 20, a circuit pattern 52 containing W, Ni and Au is formed on the surface of an Al 2 O 3 substrate 51 containing glass, and a total of 9 GaN in a 3 × 3 array. A system LED element 53 is flip-chip mounted on the circuit pattern 52 via Au bumps. Further, although the electrode structure of the GaN-based LED element 53 is omitted, it is provided corresponding to the circuit pattern 52.

このように発光素子がフリップチップ実装された発光装置では、発光素子内で発生した光のほとんどが素子の基板側の面や側面から出射される。素子側面の端面から出射した光は、通常、発光装置に設けられた反射板などで反射されて発光観測面側に取り出される。 In the light-emitting device in which the light-emitting element is flip-chip mounted in this way, most of the light generated in the light-emitting element is emitted from the substrate-side surface or side surface of the element. The light emitted from the end surface of the element side surface is normally reflected by a reflecting plate or the like provided in the light emitting device and extracted to the light emission observation surface side.

WO2004/082036WO2004 / 082036 特開2005−85548号公報JP 2005-85548 A 特開2005−109434号公報JP 2005-109434 A 特開2006−66700号公報JP 2006-66700 A

しかしながら、素子端面から出射した光は、反射板で反射されるまでに支持基板や封止樹脂などによってその一部が吸収されてしまう。このため、従来の発光装置では、素子端面からの光は発光装置の光として取り出される前に減衰してしまい、発光装置全体の発光に十分に寄与していなかった。   However, a part of the light emitted from the end face of the element is absorbed by the support substrate or the sealing resin before being reflected by the reflecting plate. For this reason, in the conventional light emitting device, the light from the element end face is attenuated before being extracted as the light of the light emitting device, and does not sufficiently contribute to the light emission of the entire light emitting device.

そこで、本発明者は、複数の半導体発光素子を実装する際に半導体発光素子を特定の電極構造として列状に実装することで、素子端面からの光を効率的に取り出せることを見出し、本発明に至ったものである。   Therefore, the present inventor has found that when mounting a plurality of semiconductor light emitting elements, the light from the element end face can be efficiently extracted by mounting the semiconductor light emitting elements in a row as a specific electrode structure. Has been reached.

上述したような問題を解決するために、本発明の発光装置は、透光性基板上に第1導電型の第1半導体層と第2導電型の第2半導体層とが順に設けられ、第1半導体層の露出部に第1電極、第2半導体層に第2電極がそれぞれ設けられた半導体発光素子と、半導体発光素子が載置される支持基板と、を備える発光装置であって、半導体発光素子は、平面視で矩形であり、少なくとも第1の辺と、第1の辺と異なる第2の辺とを有し、第1の辺側の素子端面から出射される光は、前記第2の辺側の素子端面から出射される光よりも強く、前記半導体発光素子が2つ以上、前記第1の辺が互いに略平行に向かい合うように、前記支持基板に列状にフリップチップ実装される。   In order to solve the above-described problem, a light-emitting device of the present invention includes a first conductive type first semiconductor layer and a second conductive type second semiconductor layer provided in order on a light-transmitting substrate. A light-emitting device comprising: a semiconductor light-emitting element in which a first electrode is provided on an exposed portion of one semiconductor layer; a second electrode on a second semiconductor layer; and a support substrate on which the semiconductor light-emitting element is placed. The light emitting element is rectangular in plan view, has at least a first side and a second side different from the first side, and the light emitted from the element end surface on the first side is the first side. Two or more semiconductor light emitting elements are stronger than the light emitted from the element end face on the two sides, and the support substrate is flip-chip mounted in a row so that the first sides face each other substantially parallel to each other. The

また、本発明の発光装置は、上述の構成に加えて、以下の構成を組み合わせることができる。
(1)各半導体発光素子の第1の辺は、該辺の対向辺の方向にみて、第1の辺側の第1半導体層の露出部及び対向辺と向き合っており、その領域の第2電極の面積をR、第1の辺の長さをLとし、第2の辺は、該辺の対向辺の方向にみて、第2の辺側の第1半導体層の露出部及び対向辺と向き合っており、その領域の第2電極の面積をR、第2の辺の長さをLとしたとき、RとLの比R/Lは、RとLの比R/Lよりも小さい。
(2)第1の辺の対向辺は、第1の辺の方向にみて、対向辺側の第1半導体層の露出部及び第1の辺と向き合っており、その領域の第2電極の面積をR1´、第1の辺の長さをL1´としたとき、R1´とL1´の比R1´/L1´は、R/Lと略等しい。
(3)第2の辺は、第1の辺に隣接する辺である。
(4)各半導体発光素子の第2電極は、第1の辺側に、第1の辺と露出部に挟まれた第1挟域部と、該挟域部よりも素子の内側に延びた第1延長部とを有し、第1の辺の長さ方向において、第1挟域部が第1延長部よりも長い。
(5)第2電極は、第2の辺側に第2延長部を有し、第2延長部で第2の辺側の第2電極が構成されてなる。
(6)第2電極は、第2の辺側に、第2挟域部と、該第2挟域部よりも素子の内側に延びた第2延長部とを有し、第1の辺の長さ方向における第1挟域部の長さAと第1の辺の長さLの比A/Lは、第2の辺の長さ方向における第2挟域部の長さAと第2の辺の長さLの比A/Lと、略等しいかそれよりも大きい。
(7)第2の辺の長さ方向において、第2挟域部が第2延長部よりも短い。
(8)平面視で、半導体発光素子の1つの辺と、該辺の対向辺及び第2半導体層と、で挟まれる領域の面積Sと、該辺の長さLとの比S/Lは、第1の辺のS/Lが、第2の辺のS/Lと略等しい。
(9)平面視で、半導体発光素子の1つの辺と、該辺の対向辺及び第2半導体層と、で挟まれる領域の面積Sと、該辺の長さLとの比S/Lは、第1の辺のS/Lが、第2の辺のS/Lよりも小さい。
(10)第2の辺は、第1の辺の対向辺と異なる辺であり、第1の辺及び第1の辺の対向辺は、S/Lが略同一であり、第2の辺及び第2の辺の対向辺もS/Lが略同一である。
(11)第2電極は、第1電極よりも第1の辺側に設けられている。
(12)半導体発光素子は、第1半導体層と第2半導体層との間に発光層を有し、第1半導体層の露出部と第2電極が設けられた第2半導体層との間で、発光層の端面が露出しており、支持基板は、半導体発光素子の第1及び第2電極が接続される配線電極を有し、配線電極は、少なくとも、平面視で発光層の端面露出部の下に設けられる。
In addition to the above-described configuration, the light-emitting device of the present invention can be combined with the following configurations.
(1) The first side of each semiconductor light emitting element faces the exposed portion and the opposite side of the first semiconductor layer on the first side side in the direction of the opposite side of the side, and the second side of the region. The area of the electrode is R 1 , the length of the first side is L 1, and the second side is opposed to the exposed portion of the first semiconductor layer on the second side and the opposite side when viewed in the direction of the opposite side of the side. and opposite the sides, the area of the second electrode of the region R 2, when the length of the second side was L 2, the ratio R 1 / L 1 of R 1 and L 1 is, R 2 and L less than 2 ratio R 2 / L 2.
(2) The opposite side of the first side faces the exposed portion of the first semiconductor layer and the first side on the opposite side when viewed in the direction of the first side, and the area of the second electrode in that region the R 1', when the length of the first side and the L 1', the ratio R 1'/ L 1'of R 1'and L 1'is substantially equal to R 1 / L 1.
(3) The second side is a side adjacent to the first side.
(4) The second electrode of each semiconductor light emitting element extends to the inside of the element from the first area, the first area between the first edge and the exposed area, and the inner area than the area. A first extension portion, and the first narrow portion is longer than the first extension portion in the length direction of the first side.
(5) The second electrode has a second extension on the second side, and the second extension constitutes the second electrode on the second side.
(6) The second electrode includes, on the second side, a second sandwiched area, and a second extension that extends to the inside of the element from the second sandwiched section. The ratio A 1 / L 1 between the length A 1 of the first narrow area in the length direction and the length L 1 of the first side is the length of the second narrow area in the length direction of the second side. The ratio A 2 / L 2 between A 2 and the length L 2 of the second side is substantially equal to or larger than that.
(7) In the length direction of the second side, the second narrow area is shorter than the second extension.
(8) In plan view, the ratio S / L of the area S of the region sandwiched between one side of the semiconductor light emitting element, the opposite side of the side and the second semiconductor layer, and the length L of the side is , S 1 / L 1 of the first side is substantially equal to S 2 / L 2 of the second side.
(9) The ratio S / L between the area S of the region sandwiched between one side of the semiconductor light emitting element, the opposite side of the side, and the second semiconductor layer and the length L of the side in plan view is , S 1 / L 1 of the first side is smaller than S 2 / L 2 of the second side.
(10) The second side is a side different from the opposite side of the first side, and the first side and the opposite side of the first side have substantially the same S / L, and the second side and The opposite side of the second side also has substantially the same S / L.
(11) The second electrode is provided closer to the first side than the first electrode.
(12) The semiconductor light emitting element has a light emitting layer between the first semiconductor layer and the second semiconductor layer, and is between the exposed portion of the first semiconductor layer and the second semiconductor layer provided with the second electrode. The end face of the light emitting layer is exposed, the support substrate has a wiring electrode to which the first and second electrodes of the semiconductor light emitting element are connected, and the wiring electrode is at least the end face exposed portion of the light emitting layer in plan view. Is provided below.

本発明の発光装置によれば、複数の半導体発光素子の向かい合う端面において、各素子の端面から出射した光を効率的に反射することができ、発光装置の光取り出し効率を向上させることができる。   According to the light emitting device of the present invention, the light emitted from the end surface of each element can be efficiently reflected at the facing end surfaces of the plurality of semiconductor light emitting elements, and the light extraction efficiency of the light emitting device can be improved.

〔実施形態1〕
図1、図2A及び図2Bは、本実施形態にかかる半導体発光素子100及び発光装置101を示す模式的な上面図である。
Embodiment 1
1, 2A, and 2B are schematic top views showing the semiconductor light emitting element 100 and the light emitting device 101 according to the present embodiment.

図1に示す半導体発光素子100は、透光性基板上に、第1導電型の第1半導体層と第2導電型の第2半導体層とがこの順に形成され、第1半導体層の一部が第2半導体層から露出されており、平面視で第2半導体層及び第1半導体層の積層構造を含む発光領域1と、第1半導体層が露出した露出領域である露出部2とを有する。発光領域1の第2半導体層表面には第2電極3、露出領域2の第1半導体層表面には第1電極4が、それぞれ設けられており、各辺側の端面から光を出射可能である。半導体発光素子100の第1の辺11側の端面から出射される光は、第2の辺12側の端面から出射される光よりも強い。   In the semiconductor light emitting device 100 shown in FIG. 1, a first conductive type first semiconductor layer and a second conductive type second semiconductor layer are formed in this order on a translucent substrate, and a part of the first semiconductor layer is formed. Is exposed from the second semiconductor layer, and has a light emitting region 1 including a stacked structure of the second semiconductor layer and the first semiconductor layer in a plan view, and an exposed portion 2 that is an exposed region where the first semiconductor layer is exposed. . A second electrode 3 is provided on the surface of the second semiconductor layer in the light emitting region 1, and a first electrode 4 is provided on the surface of the first semiconductor layer in the exposed region 2, so that light can be emitted from the end face on each side. is there. The light emitted from the end surface on the first side 11 side of the semiconductor light emitting element 100 is stronger than the light emitted from the end surface on the second side 12 side.

図1に示す半導体発光素子100は、図2Aに示すように、第1の辺11が互いに略平行且つ対向して列状に配置されて、支持基板9にフリップチップ実装される。図2の発光装置101では、同じ構造の発光素子100を2つ並べて実装しており、各素子はバンプなどの導電部材を介して支持基板9表面の導体配線10a〜10cに接続される。このとき、図2Aに示すように、1つの素子の第2電極の外部接続領域15と第1電極の外部接続領域16は、異なる導体配線に接続される。   As shown in FIG. 2A, the semiconductor light emitting device 100 shown in FIG. 1 is flip-chip mounted on a support substrate 9 with first sides 11 arranged in a row so as to be substantially parallel to and opposite to each other. In the light emitting device 101 of FIG. 2, two light emitting elements 100 having the same structure are mounted side by side, and each element is connected to the conductor wirings 10a to 10c on the surface of the support substrate 9 through conductive members such as bumps. At this time, as shown in FIG. 2A, the external connection region 15 of the second electrode and the external connection region 16 of the first electrode of one element are connected to different conductor wirings.

このような発光装置101とすることにより、2つの発光素子の対向する端面において、各素子の端面から出射した光を効率的に反射することができ、支持基板への吸収などによる光の損失を抑えることができるので、光取り出し効率を向上させることができる。つまり、図4に概念図で示すように、複数の半導体発光素子を、各素子の端面が略平行に向かい合うように隣接してフリップチップ実装すると、一方の発光素子端面から出射した光を他方の素子端面で反射させることができ、これによって発光観測面側、典型的には透光性基板側へ取り出すことができる。本実施形態の発光装置101では、第2の辺12よりも端面から出射される光の強い第1の辺11が互いに向かい合うように2つの素子を配置しているため、向かい合う素子端面で反射されて発光観測面側に取り出される光を、第2の辺12を向かい合わせる場合よりも強くできる。 With such a light emitting device 101, the light emitted from the end faces of the two light emitting elements can be efficiently reflected at the opposing end faces of the two light emitting elements, and light loss due to absorption into the support substrate is reduced. Therefore, the light extraction efficiency can be improved. That is, as shown in a conceptual diagram in FIG. 4, when a plurality of semiconductor light emitting elements are flip-chip mounted adjacent to each other so that the end faces of the elements face substantially parallel, light emitted from one end face of the light emitting element is reflected to the other. The light can be reflected from the end face of the element, and thus can be taken out to the light emission observation surface side, typically the translucent substrate side. In the light emitting device 101 of this embodiment, since the two elements are arranged so that the first side 11 having a stronger light emitted from the end face than the second side 12 faces each other, it is reflected by the facing element end faces. Thus, the light extracted to the emission observation surface side can be made stronger than the case where the second sides 12 face each other.

具体的には、半導体発光素子100は、図2Bに示すように、右下がりの斜線で示す領域の面積Rが、右上がりの斜線で示す領域の面積Rよりも小さい。半導体発光素子100の第1の辺11は、該辺の対向辺13の方向にみて、第1の辺11側の第1半導体層の露出部2及び対向辺13と向き合っており、その領域の第2電極3を、図2Bにおいて左側の素子に右下がりの斜線で示す。また、第2の辺12は、該辺の対向辺14の方向にみて、第2の辺13側の第1半導体層の露出部2及び対向辺14と向き合っており、その領域の第2電極3を、図2Bにおいて右側の素子に右上がりの斜線で示す。ここで、フリップチップ実装用の素子において、典型的には第2電極は発光領域のほぼ全面に設けられ、第2電極と発光領域の形状や面積はほぼ等しいものとなるため、上述したR、R、後述する挟域部、延長部等、第2電極や発光領域に関する記載は、第2電極と発光領域のどちらにでも採用することができる。 Specifically, the semiconductor light emitting element 100, as shown in FIG. 2B, the area R 1 in the region indicated by downward-sloping diagonal lines is smaller than the area R 2 in a region indicated by oblique lines rising to the right. The first side 11 of the semiconductor light emitting device 100 faces the exposed portion 2 and the opposite side 13 of the first semiconductor layer on the first side 11 side in the direction of the opposite side 13 of the side, and The second electrode 3 is indicated by a slanting line on the left side in FIG. 2B. The second side 12 faces the exposed portion 2 and the opposing side 14 of the first semiconductor layer on the second side 13 side in the direction of the opposing side 14 of the side, and the second electrode in the region. 3 is indicated by a diagonal line rising to the right in the element on the right side in FIG. 2B. Here, in the device for flip-chip mounting, typically the second electrode is provided over substantially the entire surface of the light emitting region, the shape and area of the second electrode emitting region becomes substantially equal, R 1 described above , R 2 , description of the second electrode and the light emitting region, such as a narrow portion and an extended portion, which will be described later, can be adopted for either the second electrode or the light emitting region.

図2Bに示す半導体発光素子100のように、右下がりの斜線で示す領域の面積Rが右上がりの斜線で示す領域の面積Rよりも小さい発光素子とすると、後述するように減衰の小さい光を第1の辺11側の端面から出射することができ、各素子の第1の辺11側の端面で反射され取り出される光を強めることができる。半導体発光素子100は、第2電極3が設けられた発光領域1が発光する。このため、図2Bにおいて右下がりの斜線で示す領域の面積Rを小さくすることで、第1の辺11側の端面から出射される光が素子内で伝播する距離を総合的に小さくすることができる。これにより、図4に概念図で示すように、第1の辺11側の端面から出射されるまでに素子内で吸収される光を少なくし、第1の辺11側から出射される光の減衰を抑制することができる。一方、第2の辺12側の端面から出射される光は、第1の辺11側の端面から出射する光よりも、素子内で伝播する距離が総合的に大きいため、第2の辺12側端面から出射されるまでに素子内で吸収されやすく、減衰が大きくなりやすい。したがって、図2Bに示すように、右下がりの斜線で示す領域の面積Rが右上がりの斜線で示す領域の面積Rよりも小さい素子とすることで、第1の辺11側の端面から出射される光の減衰を相対的に抑制することができ、このような端面が向かい合うように複数の発光素子を配置することで光取り出し効率の向上した発光装置とすることができる。 As in the semiconductor light emitting device 100 shown in FIG. 2B, the area R 1 in the region indicated by downward-sloping diagonal lines is smaller light emitting element than the area R 2 in a region indicated by oblique lines rising to the right, small attenuation, as described below Light can be emitted from the end face on the first side 11 side, and the light reflected and extracted by the end face on the first side 11 side of each element can be strengthened. In the semiconductor light emitting device 100, the light emitting region 1 provided with the second electrode 3 emits light. Therefore, by reducing the area R 1 in the region indicated by downward-sloping diagonal lines in FIG. 2B, the light emitted from the end face of the first side 11 is comprehensively reduce the distance that propagate in the device Can do. As a result, as shown in a conceptual diagram in FIG. 4, the amount of light absorbed in the element before being emitted from the end face on the first side 11 side is reduced, and the light emitted from the first side 11 side is reduced. Attenuation can be suppressed. On the other hand, since the light emitted from the end surface on the second side 12 side has a total propagation distance larger than the light emitted from the end surface on the first side 11 side, the second side 12 The light is easily absorbed in the element before being emitted from the side end face, and the attenuation tends to increase. Accordingly, as shown in FIG. 2B, in the area R 1 in the region indicated by downward-sloping diagonal lines is smaller element than the area R 2 in a region indicated by oblique lines rising to the right, from the end face of the first side 11 Attenuation of emitted light can be relatively suppressed, and a light-emitting device with improved light extraction efficiency can be obtained by arranging a plurality of light-emitting elements so that the end faces face each other.

また、半導体発光素子100の第2電極3は、第1の辺11と露出部2に挟まれた挟域部6a及び6bと、挟域部6a及び6bよりも素子の内側に延びた延長部5とを有する。言い換えると、半導体発光素子100の発光領域1は、平面視で、半導体発光素子100の第1の辺11側に配置された線状の独立部6a及び6bと、独立部6a及び6bを素子内部と接続する接続部5とを有する。第1の辺11の辺方向の長さは、挟域部6aの長さAと挟域部6bの長さAとを合わせた長さが、延長部5の長さBよりも長い。また、挟域部6a及び6bと延長部5は、それぞれ表面を第2電極3で覆われている。一方、第1の辺と隣接する第2の辺12側は、発光領域1が延長部7で構成されている。 In addition, the second electrode 3 of the semiconductor light emitting device 100 includes a first region 11 and sandwiched regions 6a and 6b sandwiched between the exposed portion 2 and an extended portion extending more inside the device than the sandwiched regions 6a and 6b. And 5. In other words, the light emitting region 1 of the semiconductor light emitting device 100 includes the linear independent portions 6a and 6b and the independent portions 6a and 6b arranged on the first side 11 side of the semiconductor light emitting device 100 in a planar view. And a connecting portion 5 to be connected. The length of the first side 11 in the side direction is the sum of the length A a of the narrow area 6 a and the length A b of the narrow area 6 b is longer than the length B of the extension 5. . In addition, the surface of each of the narrow areas 6 a and 6 b and the extension 5 is covered with the second electrode 3. On the other hand, on the side of the second side 12 adjacent to the first side, the light emitting region 1 is constituted by the extension portion 7.

図1に示す半導体発光素子100のように、他の素子と向かい合う第1の辺11側に延長部5よりも長い挟域部6a及び6bを設けた発光素子とすると、後述するように減衰の小さい光を第1の辺11側の端面から出射することができ、各素子の第1の辺11側の端面で反射され取り出される光を強めることができる。図1に示す半導体発光素子100は、第2電極3が設けられた発光領域1で発光する。このため、第2電極3の挟域部6a及び6bを第1の辺11に近い位置に設けることで、第1の辺11側の端面から出射されるまでに素子内で吸収される光を少なくし、第1の辺11側から出射される光の減衰を抑制することができる。一方、延長部5は、挟域部6a及び6bよりも素子内部に延在されており、この延長部5で発生した光は第1の辺11側から出射されるまでに素子内で吸収され、減衰が大きくなりやすい。したがって、図1に示すように、第1の辺11側の挟域部6a及び6bの長さを延長部5よりも長くすることで、第1の辺11側の端面から出射される光の減衰を相対的に抑制することができ、このような端面が向かい合うように複数の発光素子を配置することで光取り出し効率の向上した発光装置とすることができる。   As in the semiconductor light emitting device 100 shown in FIG. 1, when the light emitting device is provided with the narrow portions 6a and 6b longer than the extending portion 5 on the first side 11 side facing the other devices, as described later, Small light can be emitted from the end face on the first side 11 side, and the light reflected and extracted by the end face on the first side 11 side of each element can be strengthened. The semiconductor light emitting element 100 shown in FIG. 1 emits light in the light emitting region 1 in which the second electrode 3 is provided. For this reason, by providing the narrow areas 6a and 6b of the second electrode 3 at a position close to the first side 11, the light absorbed in the element until it is emitted from the end surface on the first side 11 side. The attenuation of light emitted from the first side 11 side can be suppressed. On the other hand, the extension part 5 extends inside the element more than the narrow areas 6a and 6b, and the light generated in the extension part 5 is absorbed in the element before being emitted from the first side 11 side. The attenuation tends to be large. Therefore, as shown in FIG. 1, by making the lengths of the narrow areas 6 a and 6 b on the first side 11 side longer than the extension part 5, the light emitted from the end face on the first side 11 side Attenuation can be relatively suppressed, and a light emitting device with improved light extraction efficiency can be obtained by arranging a plurality of light emitting elements so that the end faces face each other.

端面から出射される光の強度は、第1の辺側が、第1の辺と異なる第2の辺側よりも大きいことが好ましく、つまり、発光領域の平面視形状や各辺までの距離を第1の辺側と第2の辺側とで異なるものとすることが好ましい。以下、各辺側の発光領域について詳述する。 The intensity of the light emitted from the end face is preferably larger on the first side than on the second side, which is different from the first side. That is, the planar view shape of the light emitting region and the distance to each side are The first side and the second side are preferably different. Hereinafter, the light emitting area on each side will be described in detail.

〔発光素子とその発光領域〕
本発明の発光素子は、実施形態1で説明したように、支持基板上に相互に隣接して配置される複数の素子において、互いに向かい合う辺、つまり第1の辺における第2電極を特定の構造とすること、また、特に第2の辺が素子間で隣接しない辺である場合に、第2の辺と第1の辺を特定の構造とすることで、発光出力に優れた発光装置とするものである。その主要な構成、下記第1〜3の構成について、以下に説明する。
[Light emitting element and its light emitting area]
As described in Embodiment 1, the light-emitting element of the present invention has a specific structure in which a plurality of elements arranged adjacent to each other on a support substrate are arranged on opposite sides, that is, the second electrode on the first side. In particular, when the second side is a side that is not adjacent between the elements, the second side and the first side have a specific structure, so that a light emitting device with excellent light emission output is obtained. Is. The main configuration, the following first to third configurations, will be described below.

第1の構成は、素子の構造に依っては後述の第1、2の構成をも包含する構成であり、つまりそれは、第1の辺の対向方向において、第1の辺と発光領域又は第2電極の遠距離端部との対向領域の大きさ、具体的には第1の辺側の発光領域又は第2電極における第1の辺側の端部に対向する端部、例えば第1の辺の対向辺側の端部と、第1の辺とで挟まれる領域の面積の大きさを設計して、特定の構造とすることで、素子隣接に好適な発光強度の光を第1の辺から出射させることができる。また、この第1の構成と後述の第3の構成とを組み合わせて、後述する第3の構成における第1の辺と第1の辺側の発光領域端部との領域Sと、第1の構成における第1の辺と第1の辺側端部に対向する第2電極端部との領域と、の差分により、第1の辺側の第2電極の部分領域を所望に設計した特定の構造によって、上記好適な発光装置を得ることもできる。また、各領域の面積は、2つ以上の辺を比較する場合には、各辺の長さで規格化して評価する。   The first configuration includes the first and second configurations described later depending on the structure of the element, that is, the first side and the light emitting region or the first side in the opposing direction of the first side. The size of the region facing the far end of the two electrodes, specifically, the light emitting region on the first side or the end facing the end on the first side of the second electrode, such as the first By designing the size of the area of the region sandwiched between the end on the opposite side of the side and the first side to have a specific structure, light having a light emission intensity suitable for the element adjacent to the first side The light can be emitted from the side. In addition, by combining the first configuration and a third configuration described later, a region S between a first side and a light emitting region end on the first side in a third configuration described later, The specific region in which the partial region of the second electrode on the first side is designed as desired by the difference between the first side in the configuration and the region of the second electrode end facing the first side end Depending on the structure, the above preferred light-emitting device can also be obtained. In addition, when comparing two or more sides, the area of each region is evaluated by standardizing the length of each side.

第2の構成は、素子間で隣接する第1の辺において、第2電極又は発光領域を、特定の構造、すなわち後述する挟域部と延長部を有する構造とすること、特に第1の辺に占める割合を設計することで、素子隣接に好適な発光強度の光を第1の辺から出射させることができる。   In the second configuration, in the first side adjacent between the elements, the second electrode or the light emitting region has a specific structure, that is, a structure having a narrowed portion and an extension portion, which will be described later, particularly the first side. By designing the proportion of the light to the element, light having a light emission intensity suitable for adjacent to the element can be emitted from the first side.

第3の構成は、第1の辺と第2電極又は発光領域との距離を小さくすること、具体的には、第1の辺側の第2電極又は発光領域の端部(第1の辺から近距離の端部)と第1の辺との距離を第2の辺に比して小さくして、素子隣接に好適な発光強度の光を、第1の辺から出射させることができる。   In the third configuration, the distance between the first side and the second electrode or the light emitting region is reduced, specifically, the end of the second electrode or the light emitting region on the first side (the first side). The distance between the first edge and the first edge can be made smaller than that of the second edge, and light having a light emission intensity suitable for adjoining the element can be emitted from the first edge.

上記第1の構成では、図4に示すように、第1の辺側から見て、第1の辺側の発光領域端部(上記近距離端部)に対向する上記遠距離端部である背面側端部、すなわち、第1の辺側の発光領域における第1の辺側端部とは反対側にある発光領域の端部(背面側端部)が第1の辺側の端面に近い距離に配置される。然るに、その発光領域の内部反射面が第1の辺側の近くに配置されることで、そこからの光を強くできる。また、図4に示すように、この第1の辺側の発光領域内部における反射の繰り返しによる内部での光吸収があるため、その発光領域内部の伝搬距離を小さくすることでこれを抑えることができる。すなわち、第1の辺側の発光領域において、上記背面側端部との距離を小さくすることや、その発光領域の幅、上記端部(第1の辺側端部と背面側端部)間距離、上記発光領域の部分領域を小さくすることが好ましく、全てを満たすことがさらに好ましい。具体的には、隣接素子に対向する第1の辺と、隣接素子に対向せずに隣接素子の外側に向いた辺、例えば発光装置の窓部や反射部に向いた辺、例えば第2の辺、との比較で、その隣接素子の対向辺(第1の辺)を、非対向辺に比して、上記幅、距離、領域面積を小さくする。   In the first configuration, as shown in FIG. 4, when viewed from the first side, the long-distance end is opposed to the light emitting region end (the short-distance end) on the first side. The rear side end, that is, the end (back side end) of the light emitting region on the side opposite to the first side end in the first side light emitting region is close to the end surface on the first side. Placed at a distance. However, the internal reflection surface of the light emitting region is arranged near the first side, so that the light from there can be increased. Further, as shown in FIG. 4, since there is internal light absorption due to repeated reflection inside the light emitting region on the first side, this can be suppressed by reducing the propagation distance inside the light emitting region. it can. That is, in the light emitting region on the first side, the distance from the back side end is reduced, the width of the light emitting region, and the distance between the end (first side side end and back side end). It is preferable to reduce the distance and the partial region of the light emitting region, and it is more preferable to satisfy all of them. Specifically, the first side facing the adjacent element, the side facing the outside of the adjacent element without facing the adjacent element, for example, the side facing the window part or the reflecting part of the light emitting device, for example, the second side In comparison with the side, the width, the distance, and the area of the adjacent side of the adjacent element (first side) are made smaller than those of the non-opposite side.

この第1の構成とは別に、上述の第3の構成として、第1の辺側の発光領域端部との距離、つまり第1の辺とその発光領域端部とで挟まれる領域の面積を小さくすることで、素子端部の近くに光出射端面となる発光領域端部を配置することができ、図4に示すように、その素子端部の光を強くして、隣接素子端部における反射に好適な光を出射することができる。また、第1の構成と組み合わせて用いることで、好適な発光出力の光出射や隣接素子による反射を得ることができ、その結果として光出力に優れた発光装置を得ることができる。また、各辺の光の強さは、この挟域部と他の部とを統合したその辺全体における領域面積、背面端部との距離、例えば後述の面積S、Rで評価される。第3の構成や、発光領域と各辺との距離、面積、についても同様である。   Separately from the first configuration, as the third configuration described above, the distance from the light emitting region end on the first side, that is, the area of the region sandwiched between the first side and the light emitting region end is determined. By making it smaller, the light emitting region end serving as the light emitting end face can be arranged near the element end, and as shown in FIG. Light suitable for reflection can be emitted. Further, by using in combination with the first configuration, it is possible to obtain light emission with a suitable light emission output and reflection by an adjacent element, and as a result, a light emitting device excellent in light output can be obtained. In addition, the light intensity of each side is evaluated by the area of the entire side obtained by integrating the sandwiched area and other parts, the distance from the back end, for example, areas S and R described later. The same applies to the third configuration and the distance and area between the light emitting region and each side.

以上の第1の構成、第3の構成、及びそれに係る各形態を実現する構造として、上記実施形態1及び他の実施形態、若しくは後述する挟域部と延長部を第1の辺側に設けた発光領域に設ける構造があり、これにより上記第2の構成がある。具体的には、挟域部は、上記第1の構成に係る発光領域の幅・面積や、背面側端部と第1の辺との距離が、他の部分、例えば延長部に比して小さく、第1の辺側の発光領域内で、その挟域部は、他の部分、例えば延長部に比して、強い光を出射する部分となり、これを好適に用いた発光素子構造、例えばその大きさ、形状、第1の辺との距離等を好適に設計した構造となる。以下、上記各構成の形態に係る構造について説明する。なお、隣接素子に対向する第1の辺、又はそれと異なる若しくは非対向辺の第2の辺について説明したが、素子の他の辺にも適用できる。また、素子が3つ以上配列されるような場合に、2つ以上の隣接素子がある場合には、各対向辺を第1の辺とすることが好ましい。   As the structure for realizing the first configuration, the third configuration, and the respective modes related thereto, the above-described first embodiment and other embodiments, or a narrowing portion and an extension portion described later are provided on the first side. There is a structure provided in the light emitting region, whereby there is the second configuration. Specifically, the narrow area has a width / area of the light emitting area according to the first configuration and a distance between the rear side end and the first side as compared with other parts, for example, an extension. In the light emitting region on the first side, which is small, the sandwiched portion becomes a portion that emits strong light as compared with other portions, for example, the extended portion, and a light emitting element structure using this suitably, for example, The size, shape, distance to the first side, and the like are suitably designed. Hereinafter, the structure which concerns on the form of said each structure is demonstrated. Note that the first side facing the adjacent element or the second side that is different or non-opposing is described, but the present invention can also be applied to other sides of the element. Further, when three or more elements are arranged, and there are two or more adjacent elements, it is preferable that each opposing side is the first side.

(発光領域の面積)
挟域部や延長部の長さの他、上記第1の構成にかかる各辺側の発光領域の面積を、第1の辺側と第2の辺側で異なるものとすることで、端面から出射される光の強度を変えることができる。具体的には、平面視で、素子の1つの辺に最も近い第2電極の端部と、該端部の次に近い第2電極の端部と、で挟まれる領域の面積Rと、該辺の長さLとの比R/Lを、第1の辺のR/Lが第2の辺のR/Lよりも小さくする。これにより、発光領域全体でみて、発光領域で発生した光が素子端面から出射するまでに素子内を通過する距離を、第2の辺側よりも第1の辺側で短くでき、第1の辺側から出射される光の強い素子とすることができる。
(Light emitting area)
In addition to the length of the sandwiched area and the extension, the area of the light emitting area on each side according to the first configuration is different between the first side and the second side, so that from the end face The intensity of the emitted light can be changed. Specifically, in plan view, the area R of the region sandwiched between the end of the second electrode closest to one side of the element and the end of the second electrode closest to the end, The ratio R / L with the side length L is set so that R 1 / L 1 of the first side is smaller than R 2 / L 2 of the second side. As a result, in the entire light emitting region, the distance that the light generated in the light emitting region passes through the device before being emitted from the device end surface can be shorter on the first side than on the second side. It can be set as the element with the strong light radiate | emitted from the side.

(各辺と発光領域との距離)
また、上記第3の構成に係る形態として、第1の辺から発光領域までの距離を近くすることで、発光領域からの光を隣接する他の素子端面に到達する光量を多くできる。発光領域までの距離は、第1の辺と第2の辺とで略等しいか、若しくは第1の辺の方が近いことが好ましく、具体的には、平面視で、1つの辺を基準としてそれに対向する発光領域との間の領域が小さい方が好ましい。例えばその基準辺と、その基準辺の対向辺若しくは対向辺より該辺の近くに配置された発光領域と、で挟まれる領域の面積Sと、辺の長さLとの比S/Lが、第1の辺のS/Lと第2の辺のS/Lとで略等しいか、若しくは第1の辺のS/Lの方が小さいことが好ましい。これにより、第1の辺側の端面から出射される光の減衰を、第2の辺側と略等しいか、若しくは小さくして、光量を大きくすることができる。
(Distance between each side and light emitting area)
Moreover, as a form according to the third configuration, the amount of light reaching the other element end face adjacent to the light from the light emitting region can be increased by reducing the distance from the first side to the light emitting region. It is preferable that the distance to the light emitting region is substantially equal between the first side and the second side, or closer to the first side. Specifically, in plan view, one side is used as a reference. It is preferable that the area between the light-emitting area facing it is small. For example, the ratio S / L between the area S of the region sandwiched between the reference side and the light-emitting region arranged closer to or closer to the opposite side of the reference side and the length L of the side, it is preferably a S 1 / L 1 of the first side substantially equal in the S 2 / L 2 of the second side, or a small first sides towards S 1 / L 1 of. Thereby, attenuation of the light emitted from the end face on the first side can be made substantially equal to or smaller than that on the second side to increase the amount of light.

例えば、第1の辺及びその辺の対向辺からなる第1の組のS/Lを、第1の組とは異なる互いに対向する辺の第2の組のS/Lより小さく、また各組内の辺同士はS/L同一とすることができる。つまり、第2の辺が第1の辺の対向辺と異なる辺である場合、第1の辺及び第1の辺の対向辺におけるS/Lが略同一であり、第2の辺及び第2の辺の対向辺においてもS/Lが略同一である素子とすることができ、さらには第1の辺のS/Lを第2の辺のS/Lより小さくすることができる。この時、各組の辺は、相互に略同一のS/Lとし、このような2組の辺を有する素子としては、平面視で矩形状のものが好ましい。このように、発光領域との距離を、第1の辺及びその対向辺の組で、異なる組よりも近くなるように設けることで、第1の辺側及びその対向辺側の端面から出射される光の減衰の程度を、異なる組の辺側よりも小さくすることができ、端面から出射される光を強くすることができる。   For example, the S / L of the first set composed of the first side and the opposite sides of the first side is smaller than the S / L of the second set of opposite sides different from the first set, and each set The sides inside can be S / L identical. That is, when the second side is a side different from the opposite side of the first side, the S / L in the opposite side of the first side and the first side is substantially the same, and the second side and the second side The elements having S / L substantially the same on the opposite sides of the first side can also be made, and the S / L of the first side can be made smaller than the S / L of the second side. At this time, the sides of each set have substantially the same S / L, and the element having such two sets of sides is preferably rectangular in plan view. Thus, by providing the distance to the light emitting region so that the first side and the opposite side are closer to each other than the different set, the light is emitted from the first side and the end surface on the opposite side. The degree of light attenuation can be made smaller than that of the different sets of sides, and the light emitted from the end face can be strengthened.

例えば、図1の素子において、S/Lは、第1の辺11とその対向辺13とで略等しく、また、第1の辺11に隣接する辺12とその対向辺14とで略等しい。図1に、辺12とそれに対向する発光領域との間の領域、具体的には辺12と、該辺の対向辺14若しくは辺14より該辺12の近くに配置された発光領域1と、で挟まれる領域を斜線で示す。第1の辺11側及びその対向辺13側では発光領域1の端部と各辺とが一致しており、第1の辺11と発光領域1との間の領域が無く、S/Lは0であることから、この例では第1の組のS/Lは、第1の組と第2の組のS/Lより小さい。 For example, in the element of FIG. 1, S / L is substantially equal between the first side 11 and the opposite side 13, and is substantially equal between the side 12 adjacent to the first side 11 and the opposite side 14. In FIG. 1, a region between the side 12 and the light emitting region opposed thereto, specifically, the side 12, and the light emitting region 1 disposed closer to the side 12 than the side 14 or the side 14 opposite to the side, The area sandwiched by is indicated by diagonal lines. On the first side 11 side and the opposite side 13 side, the end of the light emitting region 1 and each side coincide with each other, there is no region between the first side 11 and the light emitting region 1, and S / L is Since it is 0, in this example, the S / L of the first set is smaller than the S / L of the first set and the second set.

一方、第1の組と第2の組のS/Lとを、略等しくすることもできる。これにより、発光領域が各辺からほぼ等しい距離に設けられるため、各辺側の端面から出射される光の強度が、発光領域の平面視形状に依存しやすい素子とすることができる。また、第1の辺のS/Lを第2の辺のS/Lよりも小さい素子とすると、それが略等しい場合と比べて、各素子の第1の辺を向かい合わせることによる効果、すなわち第2の辺を向かい合わせた場合と比較して発光出力が高くなる効果を、大きくできる。 On the other hand, the S / L of the first set and the second set can be made substantially equal. As a result, the light emitting region is provided at an approximately equal distance from each side, and thus the element can be configured such that the intensity of light emitted from the end face on each side tends to depend on the shape of the light emitting region in plan view. Further, when S 1 / L 1 on the first side is an element smaller than S 2 / L 2 on the second side, the first sides of the respective elements face each other as compared with the case where they are substantially equal. That is, the effect of increasing the light emission output as compared with the case where the second sides face each other can be increased.

以下、上記第1の構成に係る挟域部及び又は延長部を有する構造、上記各構成の形態に係る構造について説明する。
(挟域部と延長部の長さ)
上記第2の構成に係る構造は、隣接素子に対向する第1の辺において、その第2電極又は発光領域の内、他の部分より比較的強い光を出射する挟域部の、第1の辺に占める割合を大きくすることで、その素子端部で強い光を出射でき、その隣接素子の対向辺、つまり隣接素子の端部における反射に好適な光を出射することができる。具体的には、上記実施形態1のように、第1の辺における第2電極又は発光領域に占める挟域部の割合を、上記第1の構成に係る発光領域の幅、背面端部との距離、各領域の面積が小さい他の部分、例えば延長部に比して、それよりも大きくする。好適には、挟域部が占める割合として、辺の長さの半分以上、さらに好ましくは2/3以上であると良い。ここで、各辺に占める各部の割合は、各辺の長さLにおける、その辺方向における各部の長さ(挟域部A、延長部B)の比、つまり、挟域部の占める割合[A/L]、延長部の占める割合[B/L]、上記他の部(非挟域部)の占める割合[(L−A)/L]として、評価できる。
Hereinafter, the structure which has the narrow area part and / or extension part which concern on the said 1st structure, and the structure which concerns on the form of each said structure are demonstrated.
(Length of the sandwiched area and extension)
In the structure according to the second configuration, the first side of the first region facing the adjacent element has the first electrode of the narrow region that emits relatively stronger light than the other part of the second electrode or the light emitting region. By increasing the proportion of the side, strong light can be emitted at the end of the element, and light suitable for reflection at the opposite side of the adjacent element, that is, at the end of the adjacent element, can be emitted. Specifically, as in the first embodiment, the ratio of the sandwiching area occupying the second electrode or the light emitting region in the first side is the width of the light emitting region according to the first configuration, and the back end portion. The distance and the area of each region are set to be larger than those of other portions having a small area, for example, an extension portion. Preferably, the proportion of the narrow area is not less than half of the length of the side, more preferably not less than 2/3. Here, the ratio of each part occupying each side is the ratio of the length of each part in the direction of the side (the narrowed area A and the extended part B) to the length L of each side, that is, the ratio occupied by the narrowed area [ A / L], a ratio [B / L] occupied by the extension part, and a ratio [(LA) / L] occupied by the other part (non-clamping part).

また、第2の辺との比較においては、第2の辺は具体的には隣接素子に対向しない辺であるので、対向する第1の辺と異なる辺における挟域部と、第1の辺における挟域部とを比較する。第2の辺側の発光領域は、延長部を有し、かつ、延長部よりも辺の長さ方向に短い挟域部を有するか、または、延長部で第2の辺側の発光領域が構成されてなる。ここで、発光領域の挟域部の長さAと辺の長さLとの比A/Lは、第1の辺のA/Lが第2の辺のA/Lよりも大きいことが好ましい。これにより、第2の辺側から出射される光の減衰の程度が第1の辺側から出射される光よりも大きく、端面から出射される光の強度が第1の辺側で大きい素子とすることができる。ここで、図1に示す素子のように、延長部で第2の辺側の発光領域が構成されてなる場合は、第2の辺の挟域部の長さAは0である。さらには、挟域部の長さAと延長部の長さBとの比A/Bは、第1の辺のA/Bが第2の辺xのA/Bよりも大きいことが好ましい。 Further, in the comparison with the second side, the second side is specifically a side that does not face the adjacent element, and therefore, the sandwiched portion on the side different from the first side facing the first side and the first side Compare with the narrow area. The light emitting region on the second side has an extension and has a narrowed portion that is shorter in the length direction of the side than the extension, or the light emitting region on the second side in the extension is Consists of. Here, the ratio A / L between the length A of the narrow portion of the light emitting region and the length L of the side is such that A 1 / L 1 of the first side is greater than A 2 / L 2 of the second side. Larger is preferred. Thereby, the degree of attenuation of the light emitted from the second side is larger than that of the light emitted from the first side, and the intensity of the light emitted from the end surface is large on the first side. can do. Here, as in the device shown in FIG. 1, when the light-emitting region of the second side is formed by a extension, the length A 2 of the narrow region part of the second side is zero. Further, the ratio A / B between the length A of the narrowed portion and the length B of the extended portion is such that A 1 / B 1 on the first side is larger than A 2 / B 2 on the second side x. It is preferable.

一方、挟域部の長さAと辺の長さLとの比A/Lを、第1の辺のA/Lと第2の辺のA/Lとが略等しくなるように形成することもできる。この場合、第1の辺側の挟域部の幅を第2の辺側の挟域部の幅よりも小さくすることで、挟域部で発生した光が素子内を通過する距離を相対的に短くすることができ、第1の辺側から出射する光の減衰の程度を小さくすることができる。ここで、第2電極又は発光領域の幅の他に、背面側端部と各辺との距離、つまり両者で挟まれる領域の面積Rで比較して、第1の辺を第2の辺より小さくする構造とすることもできる。 On the other hand, the ratio A / L between the length A of the sandwiched area and the length L of the side is set so that A 1 / L 1 of the first side and A 2 / L 2 of the second side are substantially equal. It can also be formed. In this case, by making the width of the narrow area on the first side smaller than the width of the narrow area on the second side, the distance that the light generated in the narrow area passes through the element is relatively And the degree of attenuation of light emitted from the first side can be reduced. Here, in addition to the width of the second electrode or the light emitting region, the distance between the rear side end and each side, that is, the area R of the region sandwiched between the two, compares the first side with the second side. It can also be set as the structure made small.

(第1の辺の対向辺側)
好ましくは、第1の辺の対向辺側は、以下のような構成とする。第1の辺の対向辺は、第1の辺の方向にみて、対向辺側の第1半導体層の露出部及び第1の辺と向き合っており、その領域の第2電極の面積をR1´、第1の辺の長さをL1´としたとき、R1´とL1´の比R1´/L1´は、上述のR/Lと略等しい。また、第1の辺の対向辺側の第2電極は、第1の辺側のように、挟域部と延長部とを有し、挟域部の対向辺方向の長さが延長部よりも長くなるように形成される。これらの構成により、対向辺側の端面においても光の減衰を抑制し、強い光を出射することができ、特に他の素子を対向辺側にも配置する場合に好ましい。さらに、図1に示す素子のように、第1の辺側とその対向辺側とで発光領域の平面視形状を同じにすると、対向辺側の端面から出射する光の強度を第1の辺側と同様なものとできる。
(Opposite side of the first side)
Preferably, the opposite side of the first side is configured as follows. The opposing side of the first side faces the exposed portion of the first semiconductor layer and the first side on the side of the opposing side when viewed in the direction of the first side, and the area of the second electrode in that region is R 1. ′ , Where the length of the first side is L 1 ′ , the ratio R 1 ′ / L 1 between R 1 ′ and L 1 is substantially equal to the above-mentioned R 1 / L 1 . Further, the second electrode on the opposite side of the first side has a narrowed portion and an extended portion like the first side, and the length of the narrowed portion in the opposite side is longer than the extended portion. Is also formed to be long. With these configurations, attenuation of light can be suppressed even at the end face on the opposite side, and strong light can be emitted, which is particularly preferable when other elements are also arranged on the opposite side. Further, as in the element shown in FIG. 1, if the shape of the light emitting region in plan view is the same on the first side and the opposite side, the intensity of light emitted from the end surface on the opposite side is set to the first side. It can be the same as the side.

(各辺側の第2電極若しくは各部及びその配置)
第2電極の挟域部は、各辺側で第1半導体層の露出領域である露出部などによって素子内部、若しくは対向辺側の第2電極と隔たれた部分であり、すなわち、露出領域などによる分離部と各辺とで挟まれた発光領域であり、その分離部の対向辺側にも第2電極が設けられる。第1の辺側の挟域部は、好ましくは露出領域に設けられる第1電極よりも第1の辺側に配置される。これにより、図4に示すように、挟域部を第1の辺側に近づけて設けることができ、また、発光領域の端面からの光を第1電極に遮られずに第1の辺側から取り出すことができる。電極に遮られずに端面から光を取り出すためには、第1の辺側若しくは各辺側の半導体層端面が、光出射可能な露出面を少なくとも一部に有することが好ましく、さらには端面のほぼ全面が光出射面となることが好ましい。具体的には、遮光性の金属から露出している構造、例えば反射膜や電極から露出している構造や、透光性の保護膜で覆われている構造などであることが好ましい。第2半導体層と第1半導体層の間に発光層を有する場合は、少なくとも発光層の端面が露出していることが好ましい。
(Second electrode on each side or each part and its arrangement)
The sandwiched area of the second electrode is a portion separated from the inside of the element or the second electrode on the opposite side by an exposed part that is an exposed area of the first semiconductor layer on each side, that is, depending on the exposed area or the like. The light emitting region is sandwiched between the separation part and each side, and the second electrode is also provided on the opposite side of the separation part. The narrow area on the first side is preferably arranged closer to the first side than the first electrode provided in the exposed area. As a result, as shown in FIG. 4, the narrow area portion can be provided close to the first side, and the light from the end face of the light emitting region is not blocked by the first electrode, and the first side. Can be taken out from. In order to extract light from the end face without being blocked by the electrode, it is preferable that the semiconductor layer end face on the first side or each side has at least a part of an exposed face from which light can be emitted. It is preferable that almost the entire surface is the light exit surface. Specifically, a structure exposed from a light-shielding metal, for example, a structure exposed from a reflective film or an electrode, or a structure covered with a light-transmitting protective film is preferable. When the light emitting layer is provided between the second semiconductor layer and the first semiconductor layer, it is preferable that at least the end face of the light emitting layer is exposed.

発光素子は、その一部に第1電極が設けられる第1電極領域を有する第1半導体層の露出部が設けられ、その残りの領域に発光領域が設けられる。露出部は非発光領域である。このため、上述したように挟域部及び/又は延長部を、第1の辺側やその他の辺側に配置して、上述した第1〜3の構成及びその形態を用いて、好適な発光素子構造を形成する。第1の辺では、上述のように、挟域部を有することでその端面からの光を好適なものとできるが、このとき、延長部を有していなくても良い。しかし、上記第1、3の構成で説明したように、第1の辺側との間の距離若しくは領域面積を小さくすると、発光領域は幅狭の領域や小面積の領域となるため、その上の第2電極に設けられる外部接続用の領域が小さくなるか、若しくは領域形成が困難となる。そのため、挟域部と組み合わせて延長部を設けることで、その問題を解決する。すなわち、延長部により接続される、素子内側の発光領域、若しくは露出領域や第1電極領域を挟んで各辺の対向側に配置された発光領域に、その外部接続用の領域を設けることができる。これにより、所望の辺側、例えば第1の辺側で、上記第1、3の構成による好適な挟域部を、上記第2の構成による辺に占める割合を高くした構造とできる。また、延長部を介して素子内側や対向辺側に発光領域が延設されることで、素子に占める発光面積の割合を大きくでき、また、電流拡散性、均一性、それによる発光均一性、効率向上が図れるため、延長部を有することが好ましい。   The light emitting element is provided with an exposed portion of the first semiconductor layer having a first electrode region in which a first electrode is provided, and a light emitting region is provided in the remaining region. The exposed portion is a non-light emitting area. For this reason, as described above, the narrow portion and / or the extended portion are arranged on the first side or other side, and the suitable light emission is performed using the above-described first to third configurations and forms. An element structure is formed. On the first side, as described above, the light from the end face can be made suitable by having the narrowed portion, but at this time, the extended portion may not be provided. However, as described in the first and third configurations, when the distance from the first side or the area of the first side is reduced, the light emitting area becomes a narrow area or a small area. The region for external connection provided on the second electrode becomes small, or formation of the region becomes difficult. Therefore, the problem is solved by providing the extension part in combination with the narrow area part. That is, a region for external connection can be provided in the light emitting region inside the element connected by the extension, or the light emitting region disposed on the opposite side of each side across the exposed region and the first electrode region. . Thereby, it can be set as the structure which made high the ratio which occupies the suitable area | region part by the said 1st, 3 structure in the side by the said 2nd structure by the desired edge | side side, for example, the 1st edge side. In addition, by extending the light emitting region on the inner side of the element or on the opposite side through the extension, the ratio of the light emitting area in the element can be increased, and the current diffusibility, uniformity, and thereby the light emission uniformity, In order to improve efficiency, it is preferable to have an extension.

上記挟域部の一部において、その他の部分より幅広とすること、また、上記各領域の面積(S、R)の一部分の面積を大きくすることによって、その部分を外部接続用の領域とすることができる。このように、挟域部が、外部接続されず電流拡散や配線の構造を備える配線領域と、外部接続される外部接続領域と、を有する構造としても良い。第1の辺側では少なくとも配線領域を有することが好ましく、素子の寸法等に応じて、非発光・発光領域、その領域内の第1電極領域と露出領域、挟域部及びその各領域と延長部若しくはその他の部分、が形成される。ここで、外部接続領域は、上記配線領域の機能を備えることができ、また延長部に設けることもできる。この時、外部接続領域は、延長部の辺に隣接する隣接辺の挟域部を構成することもできる。非発光領域には、主に、上記下層側の第1導電型の第1半導体層が露出された露出領域や、その一部に設けられる第1電極領域が含まれ、その他、基板上の半導体層が露出した基板露出領域、第2導電型の第2半導体層上で第2電極の非形成領域などの非電流注入部、電流阻止部などを含むこともできる。   A part of the narrow area is made wider than the other part, and a part of the area (S, R) of each area is increased to make the part a region for external connection. be able to. As described above, the sandwiched area may have a wiring region that is not externally connected and has a current diffusion or wiring structure and an external connection region that is externally connected. It is preferable to have at least a wiring region on the first side, and depending on the element dimensions and the like, the non-light emitting / light emitting region, the first electrode region and the exposed region in the region, the sandwiched region, and the respective regions and the extension Or other parts are formed. Here, the external connection region can have the function of the wiring region, and can also be provided in the extension. At this time, the external connection region can also constitute a narrowed portion of an adjacent side adjacent to the side of the extension portion. The non-light emitting region mainly includes an exposed region in which the first conductive type first semiconductor layer on the lower layer side is exposed, and a first electrode region provided in a part thereof. A substrate exposed region where the layer is exposed, a non-current injection portion such as a region where the second electrode is not formed on the second semiconductor layer of the second conductivity type, and a current blocking portion may also be included.

電極が形成されていない半導体層露出領域を介して、各辺の発光領域や、その各部を配置しても良く、上記実施形態1で示すように、各辺の端面を発光領域の半導体層端面とすることで、素子端面と発光領域端面の距離、つまりその領域(後述する面積S)を0とでき好ましい。この素子外周部の露出領域は、後述の各実施形態に示すように、その外周部で分離することで形成されるため、素子のリーク防止ができる。発光領域を素子端面とする場合は、発光領域で素子を分離することで形成する。   The light emitting region of each side and each part thereof may be arranged through the semiconductor layer exposed region where no electrode is formed. As shown in the first embodiment, the end surface of each side is the end surface of the semiconductor layer of the light emitting region. Therefore, the distance between the element end surface and the light emitting region end surface, that is, the region (area S described later) can be set to 0, which is preferable. Since the exposed region of the outer peripheral portion of the element is formed by separation at the outer peripheral portion as shown in each embodiment described later, it is possible to prevent the element from leaking. In the case where the light emitting region is an element end face, the light emitting region is formed by separating the element in the light emitting region.

また、半導体層の露出領域などの非発光領域の内、第1電極が形成される露出領域において、発光領域がその外周を囲むように形成すると、その外周部を構成する発光領域に効率的に電流注入することや発光させることができる。特に、第2半導体層がp型層、第1半導体層がn型層である場合に、第2電極からの電流を第1電極の全周囲から効率的に抽出することができ、好ましい。   In addition, in the exposed region where the first electrode is formed in the non-light emitting region such as the exposed region of the semiconductor layer, if the light emitting region is formed so as to surround the outer periphery thereof, the light emitting region constituting the outer peripheral portion is efficiently formed. Current can be injected or light can be emitted. In particular, when the second semiconductor layer is a p-type layer and the first semiconductor layer is an n-type layer, the current from the second electrode can be efficiently extracted from the entire periphery of the first electrode, which is preferable.

以下、本発明における発光領域の他の例に係る各実施形態について、図5〜図11を用いて説明する。図5〜図11では、図1〜3と同じ部材は同じ符号で示す。いずれの例においても、同じ構造の2つの素子が、第1の辺が互いに向かい合うように支持基板にフリップチップ実装されている。また、支持基板の導体配線は省略しているが、素子の各電極に対応して設けることができる。 Hereinafter, each embodiment according to another example of the light emitting region in the present invention will be described with reference to FIGS. 5 to 11, the same members as those in FIGS. 1 to 3 are denoted by the same reference numerals. In either example, two elements having the same structure are flip-chip mounted on the support substrate so that the first sides face each other. Further, although the conductor wiring of the support substrate is omitted, it can be provided corresponding to each electrode of the element.

〔実施形態2〕
本実施形態2の発光装置に用いられる図5Aに示す発光素子は、素子内部の発光領域と、素子外側の発光領域とを有する構造である。実施形態1に比して、素子外側の発光領域は、その大部分が、第1の辺とその対向辺側にそれぞれ設けられ、第1の辺の隣接辺側には、第1の辺及びその対向辺の延長部が第1の辺の両端部に配置され、その一部が延長部を構成し、さらにそれが延在して挟域部が設けられている。加えて、図5Aに示す発光素子は線対称の構造であり、その中心線は、辺長さの半分超を占める第2電極が設けられた第1辺又はその隣接辺に平行である。尚、第2電極は隣接辺側に外部接続領域が設けられ、そこから素子内側に延在してそれより幅狭の配線領域が設けられており、第1の辺及びその対向辺の発光領域の分離部と、隣接辺の同分離部とを構成している。第2電極は、第1の辺の端部より内側に延長部を有して上記内側発光領域と接続し、両端部の延長部や挟域部に外部接続領域が設けられる。以上の構造により、つまり幅広、大面積の内側の発光領域を有することにより、半導体層表面に垂直な軸状の正面に取り出される光を高くできる。また、内側の発光領域より幅狭、小面積の外側の発光領域を有することにより、素子隣接配置に好適な端面発光を実現する。
[Embodiment 2]
The light-emitting element shown in FIG. 5A used in the light-emitting device of Embodiment 2 has a structure having a light-emitting region inside the element and a light-emitting region outside the element. Compared to Embodiment 1, most of the light emitting region outside the element is provided on the first side and the opposite side, respectively, and the first side and the adjacent side of the first side The extension part of the opposite side is arrange | positioned at the both ends of the 1st side, the one part comprises an extension part, and it is further extended and the clamping part is provided. In addition, the light-emitting element shown in FIG. 5A has a line-symmetric structure, and its center line is parallel to the first side where the second electrode occupying more than half of the side length is provided or its adjacent side. The second electrode is provided with an external connection region on the adjacent side, a wiring region extending from the outer side to the inside of the device and having a narrower width than that, and a light emitting region on the first side and the opposite side. And the same separating portion on the adjacent side. The second electrode has an extension portion on the inner side from the end portion of the first side and is connected to the inner light emitting region, and an external connection region is provided in the extension portion or the sandwiching portion at both end portions. With the above structure, that is, by having a wide, large-area light emitting region, the light extracted to the axial front perpendicular to the surface of the semiconductor layer can be increased. Further, by having an outer light emitting region that is narrower and smaller in area than the inner light emitting region, end surface light emission suitable for element adjacent arrangement is realized.

図5Aに示す発光装置において、各半導体発光素子の第2電極3は、第1の辺11と隣接する第2の辺12側にも挟域部8a及び8bと延長部7a及び7bを有する。第2の辺12の辺方向において、挟域部8aの長さA8a及び挟域部8bの長さA8bの合計は、延長部7aの長さB7a及び延長部7bの長さB7bの合計とほぼ等しい。また、第1の辺11側の挟域部6a及び6bの長さは、第2の辺12側の挟域部8a及び8bの長さよりも長い。ここで、図5Aに示す発光素子は実質的に正方形であることから、第1の辺11側の挟域部6a及び6bの長さAと第1の辺11の長さLの比A/Lは、第2の辺12側の挟域部8a及び8bの長さAと第2の辺12の長さLの比A/Lよりも大きい。また、第1の辺11及び第2の辺12は、各辺の対向辺の方向にみて、各辺側の第1半導体層露出部2及び各対向辺と向き合っており、その領域の第2電極3の面積R、Rをそれぞれ図5Bに示す。左側の素子において右下がりの斜線で示す領域の面積がR、右側の素子において右上がりの斜線で示す領域の面積がRであり、R、Rはそれぞれ、素子全体の面積の約21%、約49%を占めている。ここで、図5Bに示す素子は平面視で実質的に正方形であることから、R/LはR/Lよりも小さい。これにより、第1の辺側の端面から出射される光の強度を、第2の辺側よりも大きくできる。実質的に正方形とは、本発明の効果が得られる程度に正方形であればよい。また、第2の辺12の対向辺側も、第2の辺12側と同様の形状である。 In the light emitting device shown in FIG. 5A, the second electrode 3 of each semiconductor light emitting element also has sandwiched portions 8a and 8b and extended portions 7a and 7b on the second side 12 side adjacent to the first side 11. In the side direction of the second side 12, the sum of the length A 8a of the narrow area 8a and the length A 8b of the narrow area 8b is the length B 7a of the extension 7a and the length B 7b of the extension 7b. Is approximately equal to the sum of The lengths of the narrow areas 6a and 6b on the first side 11 side are longer than the lengths of the narrow areas 8a and 8b on the second side 12 side. Here, since the light-emitting element shown in FIG. 5A is substantially square, the ratio between the length A 1 of the narrow areas 6 a and 6 b on the first side 11 side and the length L 1 of the first side 11. A 1 / L 1 is larger than the ratio A 2 / L 2 of the length A 2 of the narrow areas 8 a and 8 b on the second side 12 side and the length L 2 of the second side 12. Further, the first side 11 and the second side 12 face the first semiconductor layer exposed portion 2 and each opposing side on each side in the direction of the opposing side of each side, and the second side of the region. The areas R 1 and R 2 of the electrode 3 are shown in FIG. 5B, respectively. Area R 1 in the region indicated by downward-sloping diagonal lines in the element on the left side, an area of a region indicated by oblique lines rising to the right in the right element is R 2, respectively R 1, R 2 are about the area of the entire element 21%, about 49%. Here, since the element shown in FIG. 5B is substantially square in plan view, R 1 / L 1 is smaller than R 2 / L 2 . Thereby, the intensity | strength of the light radiate | emitted from the end surface of the 1st edge | side side can be made larger than the 2nd edge | side side. The term “substantially square” may be a square so long as the effects of the present invention can be obtained. Further, the opposite side of the second side 12 has the same shape as the second side 12 side.

〔実施形態3〕
本実施形態3の発光装置に用いられる図6Aに示す発光素子は、実施形態2に比して、内側の第2電極がより幅広、大面積となり、それに対して、外側の第2電極の一部である挟域部の幅、上記各領域の面積が小さくなっている。これにより、第1電極の外部接続領域は、隣接辺の各部に接続する第1の辺及びその対向辺の両端部の延長部に設け、第1の辺及びその対向辺の内側の挟域部及び延長部は配線領域となっている。これにより、外側の発光領域において、端面出射光の輝度を高め、内側の発光領域で正面輝度を高めることができる。
[Embodiment 3]
The light-emitting element shown in FIG. 6A used in the light-emitting device of Embodiment 3 has an inner second electrode that is wider and has a larger area than the second embodiment. The width of the narrow area, which is a portion, and the area of each of the above areas are reduced. Thereby, the external connection region of the first electrode is provided in the extended portion of the first side connected to each part of the adjacent side and both ends of the opposite side, and the first side and the sandwiched area inside the opposite side And the extension is a wiring area. Thereby, the brightness | luminance of end surface emitted light can be raised in an outer side light emission area | region, and front brightness can be raised in an inner side light emission area | region.

図6Aに示す発光装置は、図5Aに示す発光装置と、各半導体発光素子の第2の辺12側の第2電極3及び発光領域1の形状が異なる。図6Aの半導体発光素子は、第2の辺12側の挟域部8a及び8bの長さが延長部7a及び7bよりも長く、かつ、第1の辺11側の挟域部6a及び6bの長さAが、第2の辺12側の挟域部8a及び8bの長さAと略等しく、つまり、第1の辺11のA/Lが第2の辺12のA/Lと略等しい。しかし、第1の辺11側と第2の辺12側とでは、各辺側の挟域部の幅が異なり、第1の辺11側の挟域部6a及び6bの幅が第2の辺12側の挟域部8a及び8bよりも小さい。また、第1の辺11及び第2の辺12は、各辺の対向辺の方向にみて、各辺側の第1半導体層露出部2及び各対向辺と向き合っており、その領域の第2電極3の面積R、Rをそれぞれ図6Bに示す。左側の素子において右下がりの斜線で示す領域の面積がR、右側の素子において右上がりの斜線で示す領域の面積がRであり、R、Rはそれぞれ、素子全体の面積の約20%、約33%を占めている。ここで、図6Bに示す素子は平面視で実質的に正方形であることから、R/LはR/Lよりも小さい。これらのことから、端面から出射される光が、第2の辺側よりも第1の辺側で強い素子とすることができる。 The light emitting device shown in FIG. 6A is different from the light emitting device shown in FIG. 5A in the shapes of the second electrode 3 and the light emitting region 1 on the second side 12 side of each semiconductor light emitting element. In the semiconductor light emitting device of FIG. 6A, the lengths of the narrow areas 8a and 8b on the second side 12 side are longer than the extended parts 7a and 7b, and the narrow areas 6a and 6b on the first side 11 side. the length a 1 is approximately equal to the length a 2 of the second side 12 side narrow region part 8a and 8b, i.e., a 2 of a 1 / L 1 of the first side 11 second side 12 / L is approximately equal to 2 . However, on the first side 11 side and the second side 12 side, the width of the narrow portion on each side is different, and the width of the narrow portions 6a and 6b on the first side 11 side is the second side. It is smaller than the 12-side narrow areas 8a and 8b. Further, the first side 11 and the second side 12 face the first semiconductor layer exposed portion 2 and each opposing side on each side in the direction of the opposing side of each side, and the second side of the region. The areas R 1 and R 2 of the electrode 3 are shown in FIG. 6B. Area R 1 in the region indicated by downward-sloping diagonal lines in the element on the left side, an area of a region indicated by oblique lines rising to the right in the right element is R 2, respectively R 1, R 2 are about the area of the entire element It accounts for 20% and about 33%. Here, since the element shown in FIG. 6B is substantially square in a plan view, R 1 / L 1 is smaller than R 2 / L 2 . For these reasons, the light emitted from the end face can be an element that is stronger on the first side than on the second side.

〔実施形態4〕
本実施形態4の発光装置に用いられる図7Aに示す発光素子は、各辺が挟域部と延長部を各々有する発光領域の構造であり、実施形態2、3に比して、内側の発光領域が、隣接辺を互いに接続する延長部として設けられ、その延長部は、対向方向に幅が異なり、幅広な発光領域は相互に対向する2つの隣接辺側に設けられている。また第1電極は、実施形態2、3が隣接辺の対向方向に分離して各隣接辺側に配置されていたが、この実施形態4では、第1の辺の対向方向に分離した構造となっている。また、第1の辺及びその対向辺側では、その挟域部が辺方向に幅の異なる構造となっており、幅広な端部側には外部接続領域が設けられ、また延長部は、実施形態2、3と異なり、内側のそれが無くなり、端部側の延長部だけが設けられている。この発光素子では、隣接辺側に挟域部が設けられ、その挟域部を介して第1電極が辺から離間されたため、実施形態2、3に比して、その辺からの端面発光が強くなり、隣接辺側と、第1の辺及びその対向辺側との発光強度の分布の差が小さい構造となっている。
[Embodiment 4]
The light-emitting element shown in FIG. 7A used in the light-emitting device of Embodiment 4 has a light-emitting region structure in which each side has a sandwiched portion and an extended portion. The region is provided as an extension that connects adjacent sides to each other, and the extension is different in width in the opposing direction, and the wide light-emitting region is provided on the two adjacent sides facing each other. In addition, the first electrode is separated in the opposing direction of the adjacent sides in the second and third embodiments and arranged on each adjacent side. In the fourth embodiment, the first electrode is separated in the opposing direction of the first side. It has become. In addition, on the first side and the opposite side, the sandwiched area has a structure with different widths in the side direction, an external connection area is provided on the wide end, and the extension is Unlike forms 2 and 3, the inner one is lost and only the extension on the end side is provided. In this light emitting element, a narrowed portion is provided on the adjacent side, and the first electrode is separated from the side through the narrowed portion, so that the end surface light emission from the side is less than in the second and third embodiments. The structure becomes stronger, and the difference in emission intensity distribution between the adjacent side, the first side and the opposite side is small.

図7Aに示す発光装置は、各半導体発光素子の発光領域が、露出領域2及びその表面の第1電極4の周囲を囲むように設けられている。また、第1の辺11及び第2の辺12は、各辺の対向辺の方向にみて、各辺側の第1半導体層露出部2及び各対向辺と向き合っており、その領域の第2電極3の面積R、Rをそれぞれ図7Bに示す。左側の素子において右下がりの斜線で示す領域の面積がR、右側の素子において右上がりの斜線で示す領域の面積がRであり、R、Rはそれぞれ、素子全体の面積の約22%、約35%を占めている。ここで、図7Bに示す素子は平面視で実質的に正方形であることから、R/LはR/Lよりも小さい。これにより、第1の辺側から出射される光の減衰の度合いを、発光領域全体でみて、第2の辺側よりも小さくできる。また、第1の辺11及び第2の辺12の対向辺のR/Lは、それぞれ第1の辺11及び第2の辺12のR/Lとほぼ等しい。 The light emitting device shown in FIG. 7A is provided so that the light emitting region of each semiconductor light emitting element surrounds the exposed region 2 and the first electrode 4 on the surface thereof. Further, the first side 11 and the second side 12 face the first semiconductor layer exposed portion 2 and each opposing side on each side in the direction of the opposing side of each side, and the second side of the region. The areas R 1 and R 2 of the electrode 3 are shown in FIG. 7B. In the left element, the area of the region indicated by the slanting right slant is R 1 , and in the right element, the area of the region indicated by the slanting right slant is R 2 , and R 1 and R 2 are each about the total area of the element. 22%, accounting for about 35%. Here, since the element shown in FIG. 7B is substantially square in a plan view, R 1 / L 1 is smaller than R 2 / L 2 . Thereby, the degree of attenuation of the light emitted from the first side can be made smaller than that of the second side when viewed in the entire light emitting region. Further, the R / L of the opposing sides of the first side 11 and the second side 12 is substantially equal to the R / L of the first side 11 and the second side 12, respectively.

〔実施形態5〕
本実施形態5の発光装置に用いられる図8Aに示す発光素子は、実施形態4に比して、第2電極の外部接続領域が、内側の発光領域に設けられ、第1の辺及びその対向辺における外側の第2電極は幅が狭くなって配線領域とされ、均一幅の挟域部、延長部が配置され、隣接辺側では、その内側の第2電極が延長部を構成する構造となっている。また素子全体では、同一幅の外周部の第2電極と、内側の第2電極とが設けられた構造となっている。均一幅の挟域部により、均一性の高い端面発光が第1の辺及び第2の辺側でなされ、他方、隣接辺において、対向方向に延長部が同一幅であるため、その端面発光が低下し、実施形態4に比して第1の辺及びその対向辺と隣接辺との間の発光差が大きくなるが、実施形態2、3よりは均一性の高い素子となる。
[Embodiment 5]
The light emitting element shown in FIG. 8A used in the light emitting device according to the fifth embodiment has an external connection region of the second electrode provided in the inner light emitting region as compared with the fourth embodiment, and the first side and its opposite side. The outer second electrode on the side is narrowed to be a wiring region, a uniform width sandwiching area and extension are arranged, and on the adjacent side, the inner second electrode constitutes the extension. It has become. Further, the entire element has a structure in which a second electrode on the outer peripheral portion having the same width and a second electrode on the inner side are provided. Due to the uniform width of the narrow area portion, highly uniform end surface light emission is performed on the first side and the second side side, and on the other side, since the extension portion has the same width in the opposite direction, the end surface light emission is As compared with the fourth embodiment, the light emission difference between the first side and the opposite side and the adjacent side becomes larger, but the device is more uniform than the second and third embodiments.

上述のS/Lが全ての辺でほぼ等しい例を、図8Aに示す。図8Aの発光装置において、各半導体発光素子は、素子の外周及び内部に露出部2が設けられており、第1電極4は素子内部の露出部2に形成されている。図8Aに、第1の辺11と、該辺の対向辺若しくは該対向辺より辺11の近くに配置された発光領域1と、で挟まれる領域(その面積S)を左側の素子に右下がりの斜線で示し、第2の辺12と、該辺の対向辺若しくは該対向辺より辺12の近くに配置された発光領域1と、で挟まれる領域(その面積S)を右側の素子に右上がりの斜線で示す。図8Aに示す素子は実質的に正方形であり、図8Aに示すように、第1の辺11のS/Lは第1の辺12のS/Lと略等しい。また、第1の辺11及び第2の辺12は、それぞれの対向辺とS/Lが略等しいことから、全ての辺のS/Lは略等しい。これにより、発光領域の形状が各辺側で異なることによる効果が得られやすい。また、第1の辺11及び第2の辺12は、各辺の対向辺の方向にみて、各辺側の第1半導体層露出部2及び各対向辺と向き合っており、その領域の第2電極3の面積R、Rをそれぞれ図8Bに示す。左側の素子において右下がりの斜線で示す領域の面積がR、右側の素子において右上がりの斜線で示す領域の面積がRであり、R、Rはそれぞれ、素子全体の面積の約20%、約45%を占めている。ここで、図8Bに示す素子は平面視で実質的に正方形であることから、R/LはR/Lよりも小さい。 FIG. 8A shows an example in which the above S / L is substantially equal on all sides. In the light emitting device of FIG. 8A, each semiconductor light emitting element is provided with an exposed portion 2 on the outer periphery and inside of the element, and the first electrode 4 is formed on the exposed portion 2 inside the element. In FIG. 8A, a region (its area S 1 ) sandwiched between the first side 11 and the light-emitting region 1 disposed near the side 11 or the side opposite to the side is shown as a right-hand element. A region (its area S 2 ) sandwiched between the second side 12 and the light emitting region 1 arranged nearer to the side 12 than the opposite side is indicated by a slanting line on the right side. Is shown by a diagonal line rising to the right. The element shown in FIG. 8A is substantially square, and S 1 / L 1 on the first side 11 is substantially equal to S 2 / L 2 on the first side 12 as shown in FIG. 8A. In addition, since the first side 11 and the second side 12 have substantially the same S / L as the opposing sides, the S / L of all the sides is substantially the same. Thereby, it is easy to obtain an effect due to the shape of the light emitting region being different on each side. Further, the first side 11 and the second side 12 face the first semiconductor layer exposed portion 2 and each opposing side on each side in the direction of the opposing side of each side, and the second side of the region. The areas R 1 and R 2 of the electrode 3 are shown in FIG. 8B, respectively. Area R 1 in the region indicated by downward-sloping diagonal lines in the element on the left side, an area of a region indicated by oblique lines rising to the right in the right element is R 2, respectively R 1, R 2 are about the area of the entire element 20%, about 45%. Here, since the element shown in FIG. 8B is substantially square in a plan view, R 1 / L 1 is smaller than R 2 / L 2 .

〔実施形態6〕
本実施形態6の発光装置に用いられる図9に示す発光素子は、実施形態1〜5に比して、隣接辺で左右非対称の構造であり、一方の第1の辺11側に第2電極の挟域部及び延長部が配置され、その対向辺13側には、第1電極が配置され、その第1電極は両端部の配線領域と内側の外部接続領域を有する構造である。実施形態2〜5同様に、隣接辺側に挟域部と延長部が配置され、その延長部は相互に接続して、各隣接辺の一方端部側に配置され、第1の辺側の各部を構成している。この素子では、実施形態1〜5に比して、第1の辺及びその対向辺が異なるため、その発光差が大きく、他方第1の辺とその両端の隣接辺とで、挟域部及び延長部が各辺に占める割合の差が小さく、同様に、上記各領域の面積S、Rの各辺における値(S/L、R/L)の差も小さく、隣接素子を各辺側に配置しても出力差の小さい発光装置とできる。
[Embodiment 6]
The light-emitting element shown in FIG. 9 used in the light-emitting device of Embodiment 6 has an asymmetric structure on the adjacent sides as compared with Embodiments 1 to 5, and the second electrode on one first side 11 side. The first electrode is disposed on the opposite side 13 side, and the first electrode has a wiring region at both ends and an external connection region on the inside. As in the second to fifth embodiments, the narrow portion and the extension portion are arranged on the adjacent side, and the extension portions are connected to each other and arranged on one end side of each adjacent side. Each part is configured. In this element, since the first side and the opposite side thereof are different from those of the first to fifth embodiments, the light emission difference is large. On the other hand, the first side and the adjacent sides at both ends thereof have a narrow portion and The difference in the proportion of the extended portion in each side is small. Similarly, the difference in the values (S / L, R / L) in the respective sides of the areas S and R of the respective regions is small, and the adjacent element is placed on each side. Even if arranged, a light emitting device with a small output difference can be obtained.

図9には、上述のS/Lの値が3種ある例を示す。図9に示す発光装置の各半導体発光素子は、平面視で実質的に正方形である。図9に、第1の辺11の対向辺13と、第1の辺11若しくは辺11より辺13の近くに配置された発光領域1と、で挟まれる領域を左側の素子において右下がりの斜線で示し、第2の辺12と、該辺の対向辺若しくは該対向辺より辺12の近くに配置された発光領域1と、で挟まれる領域を右側の素子において右上がりの斜線で示す。このような領域は第1の辺11側には存在せず、S/Lは、第1の辺11で最も小さく、次いで第2の辺12及びその対向辺、そして第1の辺の対向辺13が最も大きい。このような素子は、図9に示すように、S/Lの最も小さい第1の辺11が互いに向かい合うように配置される。また、辺12側の挟域部を延長部よりも長くして、辺12が向かい合うように配置することもでき、このような構造は特に3以上の素子を配置する場合に好ましい。 FIG. 9 shows an example in which there are three types of S / L values. Each semiconductor light emitting element of the light emitting device shown in FIG. 9 is substantially square in plan view. In FIG. 9, a region sandwiched between the opposite side 13 of the first side 11 and the light emitting region 1 disposed closer to the side 13 than the first side 11 or the side 11 is a slanting line with a lower right side in the left element. A region sandwiched between the second side 12 and the light-emitting region 1 disposed on the opposite side of the side or closer to the side 12 than the opposite side is indicated by a right-upward oblique line in the element on the right side. Such a region does not exist on the first side 11 side, and S / L is the smallest on the first side 11, then the second side 12 and its opposite side, and the opposite side of the first side 13 is the largest. As shown in FIG. 9, such an element is arranged so that the first sides 11 having the smallest S / L face each other. Further, the narrow area on the side 12 side can be made longer than the extended part so that the sides 12 face each other. Such a structure is particularly preferable when three or more elements are arranged.

〔実施形態7〕
本実施形態7の発光装置に用いられる発光素子は、図10Aの例では、実施形態1〜6に比して、長手形状であり、実施形態2、3同様に素子長手方向の隣接辺の対向方向に分離した第1電極が各隣接辺側に配置され、内側の第2電極が第1の辺及びその対向辺の延長部を構成して、実施形態5同様に共通の延長部となっている。また、挟域部は、実施形態1同様に、第1の辺及びその対向辺側に設けられ、隣接辺側に比して、端面発光が強い素子とできる。図11Aの例では、上記図10Aの例において、実施形態6と同様であり、相違点として非対称な方向、隣接辺の対向方向に長手形状として、隣接辺側で相互に異なる構造であり、実施形態4同様に、第1の辺及びその対向辺の辺方向において、幅の異なる挟域部が設けられ、幅広の挟域部に外部接続領域が設けられる構造としている。この長辺を形成する第1の辺により、隣接素子との対向辺が幅広とでき、隣接素子による好適な光反射が実現できる。
[Embodiment 7]
In the example of FIG. 10A, the light-emitting element used in the light-emitting device of Embodiment 7 has a longer shape than those of Embodiments 1 to 6, and is opposed to adjacent sides in the element longitudinal direction as in Embodiments 2 and 3. The first electrode separated in the direction is arranged on each adjacent side, and the inner second electrode constitutes an extension of the first side and its opposite side, and becomes a common extension as in the fifth embodiment. Yes. In addition, as in the first embodiment, the narrow area portion is provided on the first side and the opposite side, and can be an element that emits more end face light than the adjacent side. The example of FIG. 11A is the same as the embodiment of FIG. 10A in the example of FIG. 10A described above. The difference is an asymmetrical direction, a longitudinal shape in the opposite direction of the adjacent side, and different structures on the adjacent side. As in the fourth aspect, in the side direction of the first side and the opposite side, a narrow area portion having a different width is provided, and an external connection area is provided in the wide narrow area portion. With the first side forming the long side, the side facing the adjacent element can be widened, and suitable light reflection by the adjacent element can be realized.

さらに、図10A及び図11Aに示すように、平面視で長方形の半導体発光素子とする場合は、他の素子と向かい合う第1の辺を第2の辺よりも長くすると、より強い光を第1の辺側から出射でき、また、隣の素子と向かい合う端面の面積を広くできるので、より強い光を向かい合う端面で反射して取り出すことができ、好ましい。また、図11Aに示すように、第1の辺11側の挟域部6が、辺11の垂直二等分線を軸としたときに非対称である場合は、一方の素子を180度回転させて配置すると、発光強度の弱い端面と強い端面を向かい合わせることができ、発光分布の偏りを緩和することができる。 Further, as shown in FIGS. 10A and 11A, when a semiconductor light emitting element that is rectangular in plan view is used, if the first side facing the other element is made longer than the second side, stronger light is emitted from the first side. It is possible to emit light from the side of the element, and the area of the end face facing the adjacent element can be increased, so that stronger light can be reflected and taken out from the opposite end face, which is preferable. In addition, as shown in FIG. 11A, when the narrow area 6 on the first side 11 side is asymmetrical with the vertical bisector of the side 11 as an axis, one element is rotated 180 degrees. The end surfaces with weak emission intensity and the strong end surfaces can face each other, and the uneven distribution of light emission can be reduced.

また、図10A及び図11Aの素子において、第1の辺11及び第2の辺12は、各辺の対向辺の方向にみて、各辺側の第1半導体層露出部2及び各対向辺と向き合っており、その領域の第2電極3の面積R、Rをそれぞれ図10B、図11Bに示す。左側の素子において右下がりの斜線で示す領域の面積がR、右側の素子において右上がりの斜線で示す領域の面積がRであり、素子全体の面積に占める各領域の割合は、図10Bにおいては、Rが約51%、Rが約63%、図11Bにおいては、Rが約51%、Rが約58%である。ここで、第1の辺11の長さと第2の辺12の長さの比は、図10Bの素子と図11Bの素子とで等しく、およそ2:1であることから、図10Bの素子はR/Lが約26、R/Lが約63、図11Bの素子はR/Lが約26、R/Lが約58となり、いずれもR/LがR/Lよりも小さい。 In the elements of FIGS. 10A and 11A, the first side 11 and the second side 12 are respectively the first semiconductor layer exposed portion 2 and the opposite sides on the sides when viewed in the direction of the opposite sides of the sides. The areas R 1 and R 2 of the second electrode 3 in the region are shown in FIGS. 10B and 11B, respectively. In the left element, the area of the region indicated by the right-down oblique line is R 1 , and in the right element, the area of the region indicated by the right-up oblique line is R 2 . In FIG. 11, R 1 is about 51% and R 2 is about 63%. In FIG. 11B, R 1 is about 51% and R 2 is about 58%. Here, the ratio of the length of the first side 11 to the length of the second side 12 is equal between the element of FIG. 10B and the element of FIG. 11B, which is approximately 2: 1. Therefore, the element of FIG. R 1 / L 1 is about 26, R 2 / L 2 is about 63, and the element of FIG. 11B has R 1 / L 1 of about 26 and R 2 / L 2 of about 58, both of which R 1 / L 1 is It is smaller than R 2 / L 2 .

〔本発明のその他の構成及び形態〕
以下、本発明、上記各実施形態における各構成について詳述する。
[Other Configurations and Forms of the Present Invention]
Hereinafter, the present invention and each configuration in each of the above embodiments will be described in detail.

(第2半導体層、第1半導体層)
第1及び第1半導体層としては、GaNやその他の半導体を使用したものを挙げることができる。半導体発光素子を蛍光物質で覆う場合には、その蛍光物質を効率良く励起できる短波長が発光可能な窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)が好適に挙げられる。半導体層の構造としては、MIS接合、PIN接合やpn接合などを有するホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。半導体層の材料やその混晶比によって発光波長を種々選択することができる。また、発光領域の第2半導体層と第1半導体層との間に、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造を有する構造とすることもできる。窒化物半導体を使用した場合、半導体層の成長用基板にはサファイア、スピネル、SiC、Si、ZnO等の材料が好適に用いられ、結晶性の良い窒化物半導体を量産性よく形成させるためにはサファイア基板を用いることが好ましい。
(Second semiconductor layer, first semiconductor layer)
Examples of the first and first semiconductor layers include those using GaN and other semiconductors. When the semiconductor light emitting device is covered with a fluorescent material, a nitride semiconductor (In X Al Y Ga 1- XYN, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) is preferable. Examples of the structure of the semiconductor layer include a homostructure having a MIS junction, a PIN junction, a pn junction, etc., a heterostructure, or a double hetero configuration. Various emission wavelengths can be selected depending on the semiconductor layer material and the mixed crystal ratio. In addition, a structure having a single quantum well structure or a multiple quantum well structure in which a semiconductor active layer is formed in a thin film that generates a quantum effect between the second semiconductor layer and the first semiconductor layer in the light emitting region can be used. . In the case of using a nitride semiconductor, a material such as sapphire, spinel, SiC, Si, ZnO or the like is preferably used for the growth substrate of the semiconductor layer, and in order to form a nitride semiconductor with good crystallinity with high productivity. It is preferable to use a sapphire substrate.

また、第1導電型の半導体層は、第2導電型の半導体層の一部を除去して露出されており、発光素子の発光に寄与しない第1導電型の半導体層が露出された領域を減らし第2導電型の半導体層の領域を相対的に増やすことで、発光素子の光取り出し効率を向上させることができる。また、第1及び第1導電型層の半導体層の間に設けられる発光層が第1の辺側で露出していると、第1の辺側から出射される光の減衰を抑制でき、好ましい。 The first conductivity type semiconductor layer is exposed by removing a part of the second conductivity type semiconductor layer, and a region where the first conductivity type semiconductor layer that does not contribute to light emission of the light emitting element is exposed. By reducing and relatively increasing the region of the second conductivity type semiconductor layer, the light extraction efficiency of the light emitting element can be improved. Moreover, when the light emitting layer provided between the semiconductor layers of the first and first conductivity type layers is exposed on the first side, attenuation of light emitted from the first side can be suppressed, which is preferable. .

(第2電極、第1電極)
第2電極は、典型的には、第2導電型の半導体層に、発光素子に投入された電流を第2導電型の半導体層の全面に広げるための電流拡散電極として設けられる。第2電極は、好ましくは第2導電型の半導体層のほぼ全面に設けられる。特に第2導電型の半導体層がp型層である場合には、電流が面内方向に広がりにくいためこのような構造とすることが好ましい。第2電極には、バンプなどの導電部材と接続する第2導電型層側の台座電極を設けることもできる。第1電極は、第1導電型の半導体層表面に、バンプなどの導電部材と接続する台座電極として設けられる。
(Second electrode, first electrode)
The second electrode is typically provided as a current diffusion electrode for spreading the current input to the light emitting element over the entire surface of the second conductivity type semiconductor layer in the second conductivity type semiconductor layer. The second electrode is preferably provided on substantially the entire surface of the second conductivity type semiconductor layer. In particular, when the second conductivity type semiconductor layer is a p-type layer, it is preferable to have such a structure because the current hardly spreads in the in-plane direction. A pedestal electrode on the second conductivity type layer side connected to a conductive member such as a bump can be provided on the second electrode. The first electrode is provided on the surface of the first conductivity type semiconductor layer as a pedestal electrode connected to a conductive member such as a bump.

第2電極及び第1電極の形成は、エッチング等の方法により第1導電型の半導体層を露出させた後、蒸着法やスパッタリング法により行う。本実施形態において、第2電極は、発光素子からの光を発光素子の透光性基板方向へ反射させる材料とすることが好ましい。例えば、Ag、Al、Rh、Rh/Irが挙げられる。その他、p型半導体層の全面にITO(インジウム(In)とスズ(Sn)の複合酸化物)、ZnOのような酸化物導電膜や、Ni/Au等の金属薄膜を透光性電極として形成させることができる。また、第2電極は、挟域部のような幅の狭い部分においても素子を発光させることができる程度の厚みで形成され、例えば100nm〜1μm程度の膜厚が選択される。   The second electrode and the first electrode are formed by an evaporation method or a sputtering method after exposing the first conductive type semiconductor layer by a method such as etching. In the present embodiment, the second electrode is preferably made of a material that reflects light from the light emitting element toward the light transmissive substrate of the light emitting element. For example, Ag, Al, Rh, Rh / Ir can be mentioned. In addition, an oxide conductive film such as ITO (complex oxide of indium (In) and tin (Sn)), ZnO, or a metal thin film such as Ni / Au is formed as a translucent electrode on the entire surface of the p-type semiconductor layer. Can be made. In addition, the second electrode is formed with a thickness that allows the element to emit light even in a narrow portion such as a narrow portion, and a film thickness of, for example, about 100 nm to 1 μm is selected.

(半導体発光素子)
本発明の半導体発光素子としては、少なくとも発光装置に配置され相互に隣接する素子間で相互に対向する第1の辺を有するものであり、例えば、1辺とそれ以外が半円など、一部に曲線を有するような素子とすることもできるが、好適には多角形であり、さらに好ましくは第1の辺とその対向辺の2辺、さらに第1の辺とその隣接辺の3辺、さらに好ましくはそれら4辺を有する多角形、さらには四辺形であり、例えば平行四辺形、台形などとすることもできる。好ましい四辺形として、具体的には、平面視で正方形や長方形など、矩形のものを用いる。他の素子と向かい合う第1の辺は、他の辺、特に隣接辺に比して、同一長さの辺(正方形)や長辺(長方形)であることが好ましく、これにより、隣接素子からの光を反射可能な端面を大きくすることができ、本発明の効果が得られやすい。また、隣接素子間で、各第1の辺の長さが異なる形態、辺の一部だけが対向する形態などとすることもできるが、好適には、同一長さで、辺全体で対向するように正対する形態であることで、隣接素子による好適な反射がなされ好ましい。また、隣接素子の第1の辺を相互に交差する方向に傾斜して対向させることもできるが、傾斜した方向への光反射により、その発光が強くなり、指向性が悪くなる場合があるため、好ましくは相互に略平行とする。
(Semiconductor light emitting device)
The semiconductor light-emitting element of the present invention has a first side that is disposed at least in the light-emitting device and faces each other between elements that are adjacent to each other. However, it is preferably a polygon, more preferably two sides of the first side and its opposite side, further three sides of the first side and its adjacent side, More preferably, they are polygons having these four sides, and further quadrilaterals, for example, parallelograms and trapezoids. As a preferable quadrilateral, specifically, a rectangular shape such as a square or a rectangle in plan view is used. The first side facing the other element is preferably a side (square) or a long side (rectangular) having the same length as compared to the other side, particularly the adjacent side. The end face capable of reflecting light can be enlarged, and the effects of the present invention can be easily obtained. In addition, it is possible to adopt a form in which the lengths of the first sides are different between adjacent elements, a form in which only a part of the sides is opposed, or the like. Thus, it is preferable that it is a form facing directly, so that suitable reflection by an adjacent element is made. In addition, the first sides of the adjacent elements can be inclined to face each other in an intersecting direction, but light emission in the inclined direction may increase the light emission and may deteriorate the directivity. Preferably, they are substantially parallel to each other.

本発明の発光素子の寸法として、第1の辺に挟域部、延長部など、若しくは上記各領域を有する所望の第2電極及び発光領域が設けられるため、その構造部の面積を要し、具体的には、300μm以上とする。また、第1の辺とその対向辺側、若しくは隣接辺にも、所望の第2電極及び発光領域の構造、例えば上記延長部、挟域部、第1電極領域や、上記素子外側及び内側の第2電極を設けるには、さらに大きな面積を要する。具体的には600μm以上とすることが好ましく、上限は、通常、数mm程度が選択される。複数の半導体発光素子間の距離は、小さくすることで、向かい合う端面間で効率よく反射させることができ、具体的には約200μm以下とすることが好ましい。また、第1の辺の長さ以下や、第1の辺の長さの20%以下とすることもできる。また、下限は素子の実装精度によって決定され、例えば数十μm以上とすることができる。   As the dimensions of the light emitting element of the present invention, since the desired second electrode and the light emitting region having the above-mentioned respective regions or the sandwiched portion, the extended portion, or the like are provided on the first side, the area of the structure portion is required. Specifically, the thickness is 300 μm or more. In addition, the first side and the opposite side or adjacent side also have a desired second electrode and light emitting region structure, for example, the extension portion, the narrow portion, the first electrode region, the outer side and the inner side of the element. An even larger area is required to provide the second electrode. Specifically, the thickness is preferably 600 μm or more, and the upper limit is usually selected to be about several mm. By reducing the distance between the plurality of semiconductor light emitting elements, it can be efficiently reflected between the end faces facing each other. Specifically, it is preferably about 200 μm or less. Moreover, it is also possible to make it the length of the first side or less, or 20% or less of the length of the first side. The lower limit is determined by the mounting accuracy of the element, and can be, for example, several tens of μm or more.

成長用基板として、サファイア等の透光性基板を用いることで、成長用基板からも光を取り出すことができ、また、成長用基板の厚みを研磨などにより薄くして、発光素子の成長用基板面から光を取り出しやすくすることができる。このとき、成長用基板に積層された半導体層の厚みは通常数μm程度と薄いため、成長用基板は少なくとも半導体層以上の厚みで残しておくことが好ましく、例えば10μm〜500μm程度、さらには50μm〜200μm程度の範囲とすることができる。   By using a light-transmitting substrate such as sapphire as the growth substrate, light can be extracted from the growth substrate, and the growth substrate is thinned by polishing, etc. Light can be easily extracted from the surface. At this time, since the thickness of the semiconductor layer laminated on the growth substrate is usually as thin as about several μm, it is preferable to leave the growth substrate at least as thick as the semiconductor layer, for example, about 10 μm to 500 μm, and further 50 μm. It can be set to a range of about ~ 200 μm.

(支持基板)
本実施形態における支持基板としては、発光素子の電極に対向する面に導体配線が施され、フリップチップ実装された発光素子を固定・支持するための部材を用いることができる。さらに、支持基板をリード電極に導通させるときには、発光素子に対向する面からリード電極に対向する面にかけて導電部材により導体配線が施される。支持基板の材料は、発光素子と熱膨張係数がほぼ等しいもの、例えば窒化物半導体発光素子に対しては窒化アルミニウムが好ましく、これにより支持基板と発光素子との間に発生する熱応力の影響を緩和することができる。あるいは、静電保護素子の機能を備えさせることもでき安価でもあるシリコンを用いることもできる。その他に、複数の素子が接続される回路が設けられたプリント基板、発光装置の窓部、凹部などにある実装基体などを用いても良い。
(Support substrate)
As the support substrate in the present embodiment, a member for fixing and supporting a flip-chip mounted light-emitting element having a conductor wiring on a surface facing the electrode of the light-emitting element can be used. Furthermore, when the support substrate is electrically connected to the lead electrode, the conductor wiring is provided by the conductive member from the surface facing the light emitting element to the surface facing the lead electrode. The material of the support substrate is preferably the same as that of the light-emitting element, for example, aluminum nitride for nitride semiconductor light-emitting elements, and thereby the influence of the thermal stress generated between the support substrate and the light-emitting element is reduced. Can be relaxed. Alternatively, silicon that can be provided with the function of an electrostatic protection element and is inexpensive can be used. In addition, a printed circuit board provided with a circuit to which a plurality of elements are connected, a mounting substrate in a window portion, a recess portion, or the like of the light emitting device may be used.

(導体配線)
導体配線の材料とする金属は、Auや銀白色の金属であるAlなどが用いられる。反射率の高い銀白色の金属とすることにより、発光素子からの光が支持基板と反対側の方向に反射され、発光装置の光取り出し効率が向上するため好ましい。ここで、導体配線の材料とする金属は、金属相互間の接着性の良さ、いわゆる濡れ性等を考慮して選択されることが好ましい。例えば、Auバンプを介して、Auを含むLEDチップの電極とを超音波ダイボンドにより接合するとき、導体配線は、AuまたはAuを含む合金とする。
(Conductor wiring)
As the metal used as the material of the conductor wiring, Au, silver which is a white metal, or the like is used. A silver-white metal having a high reflectance is preferable because light from the light-emitting element is reflected in a direction opposite to the support substrate and the light extraction efficiency of the light-emitting device is improved. Here, the metal used as the material of the conductor wiring is preferably selected in consideration of good adhesion between the metals, so-called wettability. For example, when an electrode of an LED chip containing Au is bonded by ultrasonic die bonding via an Au bump, the conductor wiring is made of Au or an alloy containing Au.

図3に、図2Aの発光装置にかかる導体配線10a〜10cのパターンを示す。図2A及び図3に示される支持基板9には、第1の導体配線10aが、一方の発光素子の第2電極3に対向する位置に設けられ、同様に、第2の導体配線10bが、他方の発光素子の第2電極4に対向する領域に設けられている。さらに、一方の発光素子の第1電極4と他方の発光素子の第2電極3とを電気的に接続させ、両素子を直列接続とさせる第3の導体配線10cが設けられている。ここで、各素子は、半導体層の端部が電極などの遮光性部材から露出されて光出射可能であり、この端部に対向する支持基板の表面には、各素子の第1電極4に接合する第2の導体配線10b及び第3の導体配線10cの一部が延伸して設けられている。これにより、図4に示すように、平面視で第1、2電極間領域において、そこから漏れる光を導体配線で反射させることができ、特に図2Aに示すように素子外縁部において素子外側に延伸する配線部により、発光装置の光束をさらに高めることができる。特に、支持基板の材料として窒化アルミニウムなど発光素子からの光を吸収しやすいものを用いる場合に、高い効果が得られる。また、導体配線は2つの素子の間を覆うように設けることが好ましい。 FIG. 3 shows patterns of conductor wirings 10a to 10c according to the light emitting device of FIG. 2A. In the support substrate 9 shown in FIGS. 2A and 3, the first conductor wiring 10 a is provided at a position facing the second electrode 3 of one light emitting element. Similarly, the second conductor wiring 10 b is It is provided in a region facing the second electrode 4 of the other light emitting element. Furthermore, a third conductor wiring 10c is provided that electrically connects the first electrode 4 of one light emitting element and the second electrode 3 of the other light emitting element, and connects both elements in series. Here, each element has an end portion of the semiconductor layer exposed from a light-shielding member such as an electrode so that light can be emitted, and the surface of the support substrate facing the end portion is provided with the first electrode 4 of each element. A part of the second conductor wiring 10b and the third conductor wiring 10c to be joined is extended and provided. As a result, as shown in FIG. 4, light leaking from the first and second electrodes can be reflected by the conductor wiring in the first and second electrodes in a plan view. In particular, as shown in FIG. The light flux of the light emitting device can be further increased by the extending wiring portion. In particular, when a material that easily absorbs light from a light emitting element such as aluminum nitride is used as the material of the support substrate, a high effect can be obtained. The conductor wiring is preferably provided so as to cover between the two elements.

また、第1電極4と接続する導体配線のパターンは、図2Aに示すように、第2電極3のパターンと一致するように設けること、具体的には平面視で主に素子の内側における第1電極に隣接する第2電極において、第2電極がその導体配線に重なり合い、各端部が略一致するように構成することが好ましい。また、第1半導体層の露出部と第2電極が設けられた第2半導体層との間で、発光層の端面が露出している素子を用いるときに、配線電極は、少なくとも、平面視で発光層の端面露出部の下に設けられることが好ましい。これにより、図4に示すように、上記第1電極端部から延設される配線部により、第2電極3と第1電極4との間から漏れる光を第1電極4と接続する導体配線で反射できるとともに、第2電極3と接続する導体配線の面積を大きくすることができる。このとき、平面視で、第1電極端部より隣接する第2電極方向外側に延在して、その導体配線が設けられることが好ましい。   In addition, as shown in FIG. 2A, the pattern of the conductor wiring connected to the first electrode 4 is provided so as to coincide with the pattern of the second electrode 3, specifically, the first pattern mainly inside the element in a plan view. In the second electrode adjacent to one electrode, it is preferable that the second electrode overlaps with the conductor wiring and the respective end portions substantially coincide with each other. Further, when using an element in which the end face of the light emitting layer is exposed between the exposed portion of the first semiconductor layer and the second semiconductor layer provided with the second electrode, the wiring electrode is at least in plan view. It is preferable to be provided under the end face exposed portion of the light emitting layer. Accordingly, as shown in FIG. 4, the conductor wiring that connects the light leaking from between the second electrode 3 and the first electrode 4 to the first electrode 4 by the wiring portion extending from the end portion of the first electrode. And the area of the conductor wiring connected to the second electrode 3 can be increased. At this time, it is preferable that the conductor wiring is provided extending in the second electrode direction outside adjacent to the first electrode end portion in plan view.

なお、図2Aでは、各素子の半導体層露出部分に対応して設けられる導体配線を、第1電極と接続する導体配線としたが、第2電極と接続する導体配線としてもよい。図1に示す素子のように第1電極が第2電極よりも面積が小さい場合は、第2電極と接続する導体配線を半導体層露出部分に対応する位置まで延在させると、第1電極と接続する導体配線の面積が小さくなり、電極と導体配線との接続にさらに高い精度が必要となり、また、図4に示すように発光領域端部から外方向、第1電極の導体配線、に多くの光が到達するため、図2Aに示すようなパターンとすることが好ましい。 In FIG. 2A, the conductor wiring provided corresponding to the exposed portion of the semiconductor layer of each element is a conductor wiring connected to the first electrode, but may be a conductor wiring connected to the second electrode. When the area of the first electrode is smaller than that of the second electrode as in the element shown in FIG. 1, if the conductor wiring connected to the second electrode is extended to a position corresponding to the exposed portion of the semiconductor layer, the first electrode The area of the conductor wiring to be connected is reduced, and a higher accuracy is required for the connection between the electrode and the conductor wiring. Also, as shown in FIG. In order to reach this light, a pattern as shown in FIG. 2A is preferable.

(発光装置)
本実施形態の発光装置では、半導体発光素子が複数、支持基板に実装され、各素子は第1の辺が互いに略平行に向かい合うように配置される。これにより、複数の素子の向かい合う端面間で効率よく反射でき、発光装置の光取り出し効率を向上させることができる。また、図2Aに示す発光装置は2つの発光素子を直列接続としているが、並列接続とすることもできる。並列接続とすると、直列接続とした場合と比較して、導体配線が簡略化され、放熱性を向上させることができる。本発明の発光装置は、各素子を、電極形成面側を発光面側として、その対向面側を実装面側とするフェースアップ実装やフリップチップ実装とすることができる。特にフリップチップ実装とすることが好ましく、光を成長用基板側から取り出すフリップチップ実装とすることで、フェースアップ実装における発光領域上面の発光で反射された光が基板と素子の端面から出射する光の割合をフェースアップ実装よりも大きく、上記隣接素子による反射を好適に利用できるためである。
(Light emitting device)
In the light-emitting device of this embodiment, a plurality of semiconductor light-emitting elements are mounted on a support substrate, and each element is disposed so that the first sides face each other substantially in parallel. Thereby, it can reflect efficiently between the end surfaces which a some element faces, and the light extraction efficiency of a light-emitting device can be improved. In the light emitting device shown in FIG. 2A, two light emitting elements are connected in series, but may be connected in parallel. When parallel connection is used, conductor wiring is simplified and heat dissipation can be improved as compared to the case of serial connection. In the light-emitting device of the present invention, each element can be face-up mounted or flip-chip mounted with the electrode forming surface side as the light emitting surface side and the opposite surface side as the mounting surface side. It is particularly preferable to use flip chip mounting, and by using flip chip mounting that extracts light from the growth substrate side, light reflected by light emission from the upper surface of the light emitting region in face-up mounting is emitted from the end surfaces of the substrate and the element. This is because the ratio of the above is larger than that of face-up mounting, and reflection by the adjacent element can be preferably used.

上述の各例では、発光領域の形状が同一の半導体発光素子を複数配置する場合について示した。これにより、出射される光の強度が同程度の部分を向かい合わせることができ、また、第1の辺の長さが同じであるので、向かい合う端面間において効率よく反射できる。一方、第2電極の形状や素子のサイズなどが異なる発光素子を並べて配置することもでき、この場合も同様に、各素子の第1の辺が略平行に互いに向かい合うように列状に配置する。 In each of the above-described examples, a case where a plurality of semiconductor light-emitting elements having the same light-emitting region shape is arranged is shown. As a result, portions having the same intensity of emitted light can face each other, and since the lengths of the first sides are the same, the light can be efficiently reflected between the facing end surfaces. On the other hand, light emitting elements having different second electrode shapes, element sizes, and the like can be arranged side by side. Similarly, in this case, the elements are arranged in a row so that the first sides of the elements face each other substantially in parallel. .

本実施形態において、半導体発光素子の電極と支持基板の導体配線とを接合する導電部材としては、バンプと呼ばれる金属材料を用いることができる。実装された発光素子と発光素子との間に生じた間隙は、透光性の樹脂層により封止することができる。樹脂層の材料としては、例えばシリコン樹脂やエポキシ樹脂等が挙げられる。また、素子間を封止する樹脂層は、素子間を架設するように連続して、光学的に接続されていることが好ましい。樹脂層と別の部材との界面が素子間にあると、一方の素子の端面から出射した光が樹脂層の界面で屈折または反射されてしまい、隣接する他方の素子端面まで到達しにくいためである。また、素子間や素子の上面を封止する樹脂層に蛍光体を含有させて波長変換部材とすることもできる。波長変換部材は、該発光素子からの光の少なくとも一部を吸収し異なる波長を有する光を発する蛍光体を含有する。   In the present embodiment, a metal material called a bump can be used as the conductive member that joins the electrode of the semiconductor light emitting element and the conductor wiring of the support substrate. A gap generated between the mounted light-emitting elements can be sealed with a light-transmitting resin layer. Examples of the material for the resin layer include silicon resin and epoxy resin. Moreover, it is preferable that the resin layer which seals between elements is optically connected continuously so that between elements may be constructed. If the interface between the resin layer and another member is between the elements, the light emitted from the end face of one element will be refracted or reflected at the interface of the resin layer, making it difficult to reach the other end face of the adjacent element. is there. Moreover, a phosphor can be contained in a resin layer that seals between elements and the upper surface of the element to form a wavelength conversion member. The wavelength conversion member contains a phosphor that absorbs at least a part of light from the light emitting element and emits light having a different wavelength.

本実施例にかかる発光装置について、図12Aに示す。本実施例における発光装置201は、同構造の2つの半導体発光素子が同一の支持基板29にバンプにより、列状にフリップチップ実装されてなる。各素子は第1の辺211が互いに略平行に向かい合うように、支持基板29表面の導体配線210a〜210cに接続される。このとき、図12Aに示すように、1つの素子の第2電極の外部接続領域215と第1電極の外部接続領域216は、異なる導体配線に接続される。 The light emitting device according to this example is shown in FIG. 12A. The light-emitting device 201 in this embodiment is formed by flip-chip mounting two semiconductor light-emitting elements having the same structure on the same support substrate 29 by bumps. Each element is connected to the conductor wirings 210a to 210c on the surface of the support substrate 29 so that the first sides 211 face each other substantially in parallel. At this time, as shown in FIG. 12A, the external connection region 215 of the second electrode and the external connection region 216 of the first electrode of one element are connected to different conductor wirings.

本実施例における発光素子は、各辺が約1mmの平面視で実質的に正方形の素子であり、半導体層成長用の透光性基板220上に、n型半導体層とp型半導体層との積層構造を含む発光領域21を有し、p型半導体層表面に第2電極としてp電極23、p型半導体層から露出されたn型半導体層を含む露出領域22の表面に第1電極としてn電極24が、それぞれ設けられている。p電極23は、素子の第1の辺211側に挟域部26a及び26bと延長部25とを有しており、第1の辺211の辺方向の長さは、挟域部26a及び26bが約330μmずつで合計約660μm、延長部25が約244μmであり、挟域部26a及び26bの長さが延長部25よりも長い。また、図12Bに示すように、右側の素子において右上がりの斜線で示すRは発光領域全体の面積と等しくなるため、左側の素子において右下がりの斜線で示すRの方がRよりも小さい。具体的には、第1の辺211及びその対向辺213におけるR/Lがそれぞれ約0.29mm/mmであり、第2の辺212及びその対向辺214におけるR/Lがそれぞれ約0.41mm/mmである。 The light-emitting element in this example is an element that is substantially square in a plan view with each side of about 1 mm, and an n-type semiconductor layer and a p-type semiconductor layer are formed on a translucent substrate 220 for semiconductor layer growth. A light emitting region 21 including a stacked structure is provided, and a p electrode 23 is provided as a second electrode on the surface of the p type semiconductor layer, and n is provided as a first electrode on the surface of the exposed region 22 including the n type semiconductor layer exposed from the p type semiconductor layer. Electrodes 24 are provided respectively. The p-electrode 23 has narrow portions 26a and 26b and an extension 25 on the first side 211 side of the element, and the length of the first side 211 in the side direction is the narrow portions 26a and 26b. Is about 330 μm in total and about 660 μm in total, and the extension portion 25 is about 244 μm, and the lengths of the sandwiched portions 26 a and 26 b are longer than the extension portion 25. Further, as shown in FIG. 12B, in the right element, R 2 indicated by a diagonal line rising to the right is equal to the entire area of the light emitting region, and therefore, R 1 indicated by a diagonal line falling right in the left element is more than R 2 . Is also small. Specifically, the R / L at the first side 211 and the opposite side 213 is about 0.29 mm 2 / mm, respectively, and the R / L at the second side 212 and the opposite side 214 is about 0. 41 mm 2 / mm.

一方、第1の辺211と隣接する第2の辺212側には、延長部27のみが配置されている。また、1つの辺と、該1つの辺の対向辺若しくは対向辺より該1つの辺の近くに配置された発光領域と、で挟まれる領域の面積Sと、該辺の長さLとの比S/Lは、第1の辺211及びその対向辺213がそれぞれ約0.12mm/mm、第2の辺212及びその対向辺214がそれぞれ約0.24mm/mmと、第1の辺211と対向辺213の組が第2の辺212と対向辺214の組よりも小さく、つまり発光領域21は、第1の辺211の組の方が、第2の辺212の組よりも近い。本実施例の各半導体層及び電極の平面視形状は、素子の正方形中心を軸とする180度回転対称であり、第1の辺又は第2の辺に平行な中心線を対称軸とする線対称である。また、2つの素子間の距離は100μm程度である。 On the other hand, only the extension 27 is disposed on the second side 212 adjacent to the first side 211. Further, the ratio of the area S of the region sandwiched between one side and the light-emitting region disposed closer to the one side or the opposite side of the one side and the length L of the side S / L is about 0.12 mm 2 / mm first side 211 and the opposing side 213, respectively, and about 0.24 mm 2 / mm second side 212 and the opposing side 214, respectively, a first side 211 and the opposite side 213 are smaller than the second side 212 and the opposite side 214, that is, in the light emitting region 21, the first side 211 is closer to the second side 212. . The planar view shape of each semiconductor layer and electrode in this example is 180-degree rotationally symmetric with respect to the square center of the element, and is a line with the center line parallel to the first side or the second side as the axis of symmetry. Symmetric. The distance between the two elements is about 100 μm.

本実施例における発光素子は、活性層としてIn0.3Ga0.7N半導体を有し、ドミナント波長が455nmの窒化物半導体発光素子を用いる。発光素子は、サファイア基板上にMOCVD法で窒化物半導体を成膜させることにより形成させることができ、サファイア基板上に、バッファ層を介して、Siがドープされたn型の窒化物半導体層、バリア層としてGaN層、井戸層としてInGaN層を1セットとして複数層積層された多重量子井戸構造の活性層、Mgがドープされたp型の窒化物半導体層が順次積層される。 The light emitting element in this example uses a nitride semiconductor light emitting element having an In 0.3 Ga 0.7 N semiconductor as an active layer and a dominant wavelength of 455 nm. The light-emitting element can be formed by forming a nitride semiconductor on the sapphire substrate by MOCVD, and an n-type nitride semiconductor layer doped with Si on the sapphire substrate via a buffer layer, An active layer having a multiple quantum well structure in which a plurality of GaN layers as a barrier layer and a set of InGaN layers as a well layer are stacked, and a p-type nitride semiconductor layer doped with Mg are sequentially stacked.

本実施例の発光素子は、エッチングにより、p型窒化物半導体層、活性層、及びn型窒化物半導体層の一部を除去して、n型窒化物半導体層の表面を露出させ、窒化物半導体の同一面側でp型窒化物半導体層およびn型窒化物半導体層の各表面を露出させている。また、素子外周部分は、各半導体層が除去され、透光性基板の表面を露出させている。p型窒化物半導体層表面のほぼ全面には、Ni、Ag、Ti、Ptを材料とするp電極23が設けられている。このような電極とすることにより、p電極23を流れる電流がp型コンタクト層の広範囲に広がるようにし、半導体発光素子の発光効率を向上させることができる。また、p電極を反射性の電極とすることで、発光素子からの光がp電極23で反射されサファイア基板側から出射することができ、フリップチップ実装された発光素子からの光取り出し効率を向上させることができる。さらに、p電極23表面には、Au、Rh、Pt、Niを材料とするp側台座電極が設けられており、また、n型窒化物半導体層層22の表面には、Al-Si-Cu合金、W、Pt、Au、Niを材料とするn電極24が設けられている。ここで、p側台座電極とn電極を同一材料とし、同時に形成させることで、電極を形成するための工程数を減らすこともできる。さらに、各電極と半導体層の表面を覆うように、ケイ素酸化物からなる絶縁性の保護膜が形成されている。保護膜は、p電極及びn電極のバンプ接合位置に開口部を有する。   In the light emitting device of this example, the p-type nitride semiconductor layer, the active layer, and a part of the n-type nitride semiconductor layer are removed by etching to expose the surface of the n-type nitride semiconductor layer. Each surface of the p-type nitride semiconductor layer and the n-type nitride semiconductor layer is exposed on the same surface side of the semiconductor. Further, in the outer peripheral portion of the element, each semiconductor layer is removed to expose the surface of the translucent substrate. A p-electrode 23 made of Ni, Ag, Ti, or Pt is provided on almost the entire surface of the p-type nitride semiconductor layer. By setting it as such an electrode, the electric current which flows through the p electrode 23 spreads over the wide range of a p-type contact layer, and the luminous efficiency of a semiconductor light-emitting device can be improved. Also, by making the p electrode a reflective electrode, the light from the light emitting element can be reflected by the p electrode 23 and emitted from the sapphire substrate side, improving the light extraction efficiency from the flip chip mounted light emitting element. Can be made. Further, a p-side pedestal electrode made of Au, Rh, Pt, and Ni is provided on the surface of the p electrode 23, and Al—Si—Cu is formed on the surface of the n-type nitride semiconductor layer layer 22. An n-electrode 24 made of an alloy, W, Pt, Au, or Ni is provided. Here, the number of steps for forming the electrode can be reduced by forming the p-side pedestal electrode and the n-electrode at the same time and forming them at the same time. Furthermore, an insulating protective film made of silicon oxide is formed so as to cover the surface of each electrode and the semiconductor layer. The protective film has an opening at the bump bonding position of the p electrode and the n electrode.

図12Aに示すように、本実施例に使用される支持基板29は、窒化アルミニウムのプレートにAuを材料とする導体配線210a〜210cが施され、Auバンプを介して発光素子のp電極23およびn電極24側が接合される。さらに、導体配線の、発光素子のp電極23に対向する領域の面積は、n電極24に対向する領域の面積より大きい。また、本実施例における発光素子は、2つの素子が直列接続とされたものである。導体配線のうち発光素子の正電極と対向する領域の面積は、発光素子の負電極と対向する領域より大きく、載置されるバンプの数も多くされる。図12Aに示す導体配線は、一方の発光素子のp電極23に対応する第1の導体配線210aと、他方の発光素子のn電極24に対応する第2の導体配線210bと、一方の素子のn電極24と他方の素子のp電極23とを電気的に接続させ両素子を直列接続とさせる第3の導体配線210cとが設けられている。また、発光素子を覆うように、波長変換部材として、YAG系蛍光体を含有するシリコン樹脂がスクリーン印刷されている。波長変換部材は、発光素子の上面や側面を覆っており、2つの素子の間にも充填される。支持基板は、パッケージに搭載して導電性ワイヤを介して外部電極と接続させ、発光装置とすることができる。   As shown in FIG. 12A, the support substrate 29 used in the present embodiment is provided with conductor wirings 210a to 210c made of Au on an aluminum nitride plate, and the p-electrode 23 of the light-emitting element and Au via Au bumps. The n electrode 24 side is joined. Furthermore, the area of the conductor wiring in the region facing the p-electrode 23 of the light-emitting element is larger than the area of the region facing the n-electrode 24. In addition, the light emitting element in this example is one in which two elements are connected in series. Of the conductor wiring, the area of the region facing the positive electrode of the light emitting element is larger than the region facing the negative electrode of the light emitting element, and the number of bumps to be mounted is also increased. The conductor wiring shown in FIG. 12A includes a first conductor wiring 210a corresponding to the p-electrode 23 of one light-emitting element, a second conductor wiring 210b corresponding to the n-electrode 24 of the other light-emitting element, There is provided a third conductor wiring 210c that electrically connects the n-electrode 24 and the p-electrode 23 of the other element and connects both elements in series. Further, a silicon resin containing a YAG phosphor is screen-printed as a wavelength conversion member so as to cover the light emitting element. The wavelength conversion member covers the upper surface and the side surface of the light emitting element, and is filled between the two elements. The support substrate can be mounted on a package and connected to an external electrode through a conductive wire to form a light emitting device.

ここで、比較例1として、図13に示すように、半導体発光素子の第2の辺212が互いに向かい合うように配置する以外は、実施例1と同様の発光装置を作製する。実施例1と比較例1にかかる発光装置の光束は、それぞれ電流約700mAで、実施例1が228.2lm、比較例1が220.7lmであり、実施例1の発光装置とすることで光束が約3.4%向上する。また、発光強度分布については、発光素子の向かい合う端面間の発光強度は、実施例1で比較例1よりも強く、本実施例の発光装置とすることで、素子端面から出射した光を隣接する素子間で効率的に反射でき、発光装置の光束を向上させることができる。   Here, as Comparative Example 1, as shown in FIG. 13, a light emitting device similar to that of Example 1 is manufactured except that the second sides 212 of the semiconductor light emitting elements are arranged to face each other. The luminous fluxes of the light emitting devices according to Example 1 and Comparative Example 1 are each about 700 mA current, 228.2 lm in Example 1, 220.7 lm in Comparative Example 1, and the luminous flux of the light emitting device of Example 1 is obtained. Is improved by about 3.4%. Regarding the light emission intensity distribution, the light emission intensity between the end faces facing each other of the light emitting elements is stronger in Example 1 than in Comparative Example 1, and the light emitted from the element end faces is adjacent to the light emitting device of this example. The light can be efficiently reflected between the elements, and the luminous flux of the light emitting device can be improved.

図14は、実施例2にかかる半導体発光素子を示す模式的な上面図であり、図15Aは、実施例2にかかる発光装置の上面外観を模式的に示す上面図である。本実施例における発光装置301は、同構造の2つの半導体発光素子が同一の支持基板39の導体配線310a〜310cに列状にフリップチップ実装されてなり、実施例1の発光装置とは実装される半導体発光素子の発光領域の形状が異なる。また、導体配線310a〜310cの負電極と接続する部分は発光素子の正負電極間の発光層端部に対向する位置まで延伸して設けられており、このような導体配線の端部はp電極33のn電極34側の端部とほぼ一致している。また、図15Aに示すように、1つの素子の第2電極の外部接続領域315と第1電極の外部接続領域316は、異なる導体配線に接続される。 FIG. 14 is a schematic top view showing a semiconductor light emitting element according to Example 2, and FIG. 15A is a top view schematically showing an upper surface appearance of the light emitting device according to Example 2. In the light emitting device 301 in this embodiment, two semiconductor light emitting elements having the same structure are flip-chip mounted in a row on the conductor wirings 310a to 310c of the same support substrate 39, and the light emitting device in Embodiment 1 is mounted. The shape of the light emitting region of the semiconductor light emitting element is different. Further, the portion of the conductor wirings 310a to 310c that is connected to the negative electrode is provided to extend to a position facing the end of the light emitting layer between the positive and negative electrodes of the light emitting element. 33 substantially coincides with the end portion on the n-electrode 34 side. Further, as shown in FIG. 15A, the external connection region 315 of the second electrode and the external connection region 316 of the first electrode of one element are connected to different conductor wirings.

図14に示す本実施例の発光素子は、各辺が約1mmの平面視で実質的に正方形の素子であり、半導体層成長用の透光性基板320上に、n型半導体層とp型半導体層との積層構造を含む発光領域31を有し、p型半導体層表面に第2電極としてp電極33、p型半導体層から露出されたn型半導体層を含む露出領域32の表面に第1電極としてn電極34が、それぞれ設けられている。p電極33は、素子の第1の辺311側に挟域部36と延長部35a及び35bとを有しており、第1の辺311の辺方向の長さは、挟域部36が約704μm、延長部35a及び35bが約111μmずつで合計約222μmであり、挟域部36の長さが延長部35a及び35bよりも長い。また、発光領域31は開口部を有し、開口部内に露出された露出領域32表面にn電極34が設けられている。 The light-emitting element of this example shown in FIG. 14 is an element that is substantially square in a plan view with each side of about 1 mm. An n-type semiconductor layer and a p-type are formed on a translucent substrate 320 for semiconductor layer growth. It has a light emitting region 31 including a stacked structure with a semiconductor layer, a p electrode 33 as a second electrode on the surface of the p type semiconductor layer, and a first electrode on the surface of the exposed region 32 including the n type semiconductor layer exposed from the p type semiconductor layer. An n-electrode 34 is provided as one electrode. The p-electrode 33 has a narrowed portion 36 and extensions 35a and 35b on the first side 311 side of the element. The length of the first side 311 in the side direction is approximately equal to that of the narrowed portion 36. 704 μm and the extension portions 35 a and 35 b are about 111 μm each, which is about 222 μm in total, and the length of the narrow area portion 36 is longer than the extension portions 35 a and 35 b. The light emitting region 31 has an opening, and an n-electrode 34 is provided on the surface of the exposed region 32 exposed in the opening.

一方、第1の辺311と隣接する第2の辺312側には、延長部37a〜37dのほかに、挟域部38a〜38cが配置されている。第2の辺312の辺方向において、延長部37a及び37dの長さはそれぞれ約80μm、延長部37b及び37cの長さはそれぞれ228μm、挟域部38a及び38cの長さはそれぞれ約58μm、挟域部38bの長さは約194μmである。よって、挟域部38a〜38cの長さは合計約310μmとなり、延長部37a〜37dの長さの合計約616μmよりも小さい。また、図15Bに示すように、右側の素子において右上がりの斜線で示すRは発光領域全体の面積と等しくなるため、左側の素子において右下がりの斜線で示すRの方がRよりも小さい。具体的には、第1の辺311及びその対向辺313におけるR/Lがそれぞれ約0.26mm/mmであり、第2の辺312及びその対向辺314におけるR/Lがそれぞれ約0.43mm/mmである。また、S/Lは、いずれの辺も約0.082mm/mmで、ほぼ等しい。 On the other hand, on the side of the second side 312 adjacent to the first side 311, in addition to the extension portions 37 a to 37 d, sandwiching portions 38 a to 38 c are arranged. In the side direction of the second side 312, the lengths of the extensions 37 a and 37 d are about 80 μm, the lengths of the extensions 37 b and 37 c are 228 μm, and the lengths of the narrow areas 38 a and 38 c are about 58 μm, respectively. The length of the region 38b is about 194 μm. Therefore, the total length of the narrow portions 38a to 38c is about 310 μm, which is smaller than the total length of about 616 μm of the extension portions 37a to 37d. Further, as shown in FIG. 15B, in the right element, R 2 indicated by a diagonal line rising to the right is equal to the entire area of the light emitting region, and therefore R 1 indicated by a diagonal line falling right in the left element is more than R 2 . Is also small. Specifically, the R / L at the first side 311 and the opposite side 313 is about 0.26 mm 2 / mm, respectively, and the R / L at the second side 312 and the opposite side 314 is about 0.1. 43 mm 2 / mm. Moreover, S / L is about 0.082 mm < 2 > / mm in any side, and is substantially equal.

比較例2として、図16に示すように、半導体発光素子を第2の辺312が向かい合うように配置する以外は実施例2と同様の発光装置を作製する。実施例2及び比較例2にかかる発光装置の光束は、電流約700mAにおいて、それぞれ、実施例2が240.4lm、比較例2が235.6lmであり、実施例2の発光装置とすることで光束が約2%向上する。このように、本実施例の発光装置とすることによって、発光装置の光束を向上させることができる。   As Comparative Example 2, as shown in FIG. 16, a light emitting device similar to that of Example 2 is manufactured except that the semiconductor light emitting elements are arranged so that the second sides 312 face each other. The luminous fluxes of the light emitting devices according to Example 2 and Comparative Example 2 are 240.4 lm in Example 2 and 235.6 lm in Comparative Example 2 at a current of about 700 mA, respectively. The luminous flux is improved by about 2%. Thus, by using the light emitting device of this embodiment, the luminous flux of the light emitting device can be improved.

図17は、実施例3にかかる半導体発光素子を示す模式的な上面図であり、図18Aは、実施例3にかかる発光装置の上面外観を模式的に示す上面図である。本実施例における発光装置401は、同構造の2つの半導体発光素子が同一の支持基板49の導体配線410a〜410cに列状にフリップチップ実装されてなり、実施例1及び2の発光装置とは実装される半導体発光素子の発光領域の形状が異なる。また、実施例2と同様に、導体配線410a〜410cの負電極と接続する部分は発光素子の正負電極間の発光層端部に対向する位置まで延伸して設けられており、導体配線の端部はp電極43のn電極44側の端部とほぼ一致している。また、図18Aに示すように、1つの素子の第2電極の外部接続領域415と第1電極の外部接続領域416は、異なる導体配線に接続される。 FIG. 17 is a schematic top view showing a semiconductor light emitting element according to Example 3, and FIG. 18A is a top view schematically showing an upper surface appearance of the light emitting device according to Example 3. The light emitting device 401 in this embodiment is formed by flip-chip mounting two semiconductor light emitting elements having the same structure on the conductor wirings 410a to 410c of the same support substrate 49 in a row. The shape of the light emitting region of the semiconductor light emitting element to be mounted is different. Similarly to Example 2, the portions of the conductor wirings 410a to 410c that are connected to the negative electrodes are provided to extend to positions facing the light emitting layer end portions between the positive and negative electrodes of the light emitting elements. The portion substantially coincides with the end portion of the p-electrode 43 on the n-electrode 44 side. Further, as shown in FIG. 18A, the external connection region 415 of the second electrode and the external connection region 416 of the first electrode of one element are connected to different conductor wirings.

図17に示す本実施例の発光素子は、各辺が約1mmの平面視で実質的に正方形の素子であり、半導体層成長用の透光性基板420上に、n型半導体層とp型半導体層との積層構造を含む発光領域41を有し、p型半導体層表面に第2電極としてp電極43、p型半導体層から露出されたn型半導体層を含む露出領域42の表面に第1電極としてn電極44が、それぞれ設けられている。p電極43は、素子の第1の辺411側に挟域部46a〜46cと延長部45a〜45dとを有しており、第1の辺411の辺方向の長さは、挟域部46a〜46cの合計が約552μm、延長部45a〜45dの合計が約372μmであり、挟域部46a〜46cの長さが延長部45a〜45dよりも長い。また、発光領域41は開口部を有し、開口部内に露出された露出領域42表面にn電極44が設けられている。 The light-emitting element of this example shown in FIG. 17 is an element that is substantially square in a plan view with sides of about 1 mm, and an n-type semiconductor layer and a p-type are formed on a translucent substrate 420 for semiconductor layer growth. A light emitting region 41 having a stacked structure with a semiconductor layer is provided. A p electrode 43 is formed as a second electrode on the surface of the p type semiconductor layer, and a surface of the exposed region 42 including the n type semiconductor layer exposed from the p type semiconductor layer is formed. An n-electrode 44 is provided as one electrode. The p-electrode 43 has narrow portions 46a to 46c and extended portions 45a to 45d on the first side 411 side of the element, and the length of the first side 411 in the side direction is the narrow portion 46a. The total of .about.46c is about 552 .mu.m, and the total of the extension portions 45a to 45d is about 372 .mu.m, and the length of the narrow zone portions 46a to 46c is longer than the extension portions 45a to 45d. The light emitting region 41 has an opening, and an n-electrode 44 is provided on the surface of the exposed region 42 exposed in the opening.

一方、第2の辺412側には、延長部47a〜47cと、挟域部48a及び48bが配置されている。第2の辺412の辺方向において、挟域部48a及び48bの長さの合計は約408μmとなり、延長部47a〜47cの長さの合計約516μmよりも小さい。また、図18Bに示すように、右側の素子において右上がりの斜線で示すRは発光領域全体の面積と等しくなるため、左側の素子において右下がりの斜線で示すRの方がRよりも小さい。具体的には、第1の辺411及びその対向辺413におけるR/Lがそれぞれ約0.42mm/mmであり、第2の辺412及びその対向辺413におけるR/Lがそれぞれ約0.51mm/mmである。また、S/Lは、いずれの辺も約0.071mm/mmで、ほぼ等しい。このような実施例3にかかる発光装置を2つ並べて配置したとき、つまり、4つの発光素子が一列に並ぶように配置したときの光束は、電流約650mAにおいて約476.8lmであった。 On the other hand, on the second side 412 side, extension portions 47a to 47c and sandwiching portions 48a and 48b are arranged. In the side direction of the second side 412, the total length of the sandwiched areas 48 a and 48 b is about 408 μm, which is smaller than the total length of about 516 μm of the extension parts 47 a to 47 c. Further, as shown in FIG. 18B, in the right element, R 2 indicated by a diagonal line rising to the right is equal to the entire area of the light emitting region, and therefore, R 1 indicated by a diagonal line falling right in the left element is more than R 2 . Is also small. Specifically, the R / L at the first side 411 and its opposite side 413 is about 0.42 mm 2 / mm, respectively, and the R / L at the second side 412 and its opposite side 413 is about 0.00. 51 mm 2 / mm. Moreover, S / L is about 0.071 mm < 2 > / mm in any side, and is substantially equal. When two such light emitting devices according to Example 3 were arranged side by side, that is, when the four light emitting elements were arranged in a line, the luminous flux was about 476.8 lm at a current of about 650 mA.

比較例3として、図19に示すように、半導体発光素子を第2の辺412が向かい合うように配置する以外は実施例3と同様の発光装置を作製する。実施例3と比較例3の発光装置で光束を比較すると、実施例3の方が光束が高くなる。   As Comparative Example 3, as shown in FIG. 19, a light emitting device similar to that of Example 3 is manufactured except that the semiconductor light emitting elements are arranged so that the second sides 412 face each other. When the light flux is compared between the light emitting devices of Example 3 and Comparative Example 3, the light flux is higher in Example 3.

図1は、本発明の実施形態にかかる半導体発光素子を示す模式的な平面図である。FIG. 1 is a schematic plan view showing a semiconductor light emitting device according to an embodiment of the present invention. 図2Aは、本発明の実施形態にかかる発光装置の上面外観を模式的に示す平面図である。FIG. 2A is a plan view schematically showing an upper surface appearance of the light emitting device according to the embodiment of the present invention. 図2Bは、本発明の実施形態にかかる発光素子の領域(その面積RとR)を模式的に示す平面図である。FIG. 2B is a plan view schematically showing a region (its areas R 1 and R 2 ) of the light emitting device according to the embodiment of the present invention. 図3は、本発明の実施形態にかかる支持基板を示す模式的な平面図である。FIG. 3 is a schematic plan view showing the support substrate according to the embodiment of the present invention. 図4は、本発明を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining the present invention. 図5Aは、本発明の実施形態にかかる発光装置を示す模式的な平面図である。FIG. 5A is a schematic plan view showing a light emitting device according to an embodiment of the present invention. 図5Bは、本発明の実施形態にかかる発光素子の領域(その面積RとR)を模式的に示す平面図である。FIG. 5B is a plan view schematically showing a region (its areas R 1 and R 2 ) of the light emitting element according to the embodiment of the present invention. 図6Aは、本発明の実施形態にかかる発光装置を示す模式的な平面図である。FIG. 6A is a schematic plan view showing the light emitting device according to the embodiment of the present invention. 図6Bは、本発明の実施形態にかかる発光素子の領域(その面積RとR)を模式的に示す平面図である。FIG. 6B is a plan view schematically showing a region (its areas R 1 and R 2 ) of the light emitting element according to the embodiment of the present invention. 図7Aは、本発明の実施形態にかかる発光装置を示す模式的な平面図である。FIG. 7A is a schematic plan view showing the light emitting device according to the embodiment of the present invention. 図7Bは、本発明の実施形態にかかる発光素子の領域(その面積RとR)を模式的に示す平面図である。FIG. 7B is a plan view schematically showing a region (its areas R 1 and R 2 ) of the light emitting element according to the embodiment of the present invention. 図8Aは、本発明の実施形態にかかる発光装置を示す模式的な平面図である。FIG. 8A is a schematic plan view showing the light emitting device according to the embodiment of the present invention. 図8Bは、本発明の実施形態にかかる発光素子の領域(その面積RとR)を模式的に示す平面図である。FIG. 8B is a plan view schematically showing a region (its areas R 1 and R 2 ) of the light emitting device according to the embodiment of the present invention. 図9は、本発明の実施形態にかかる発光装置を示す模式的な平面図である。FIG. 9 is a schematic plan view showing a light emitting device according to an embodiment of the present invention. 図10Aは、本発明の実施形態にかかる発光装置を示す模式的な平面図である。FIG. 10A is a schematic plan view showing the light emitting device according to the embodiment of the present invention. 図10Bは、本発明の実施形態にかかる発光素子の領域(その面積RとR)を模式的に示す平面図である。FIG. 10B is a plan view schematically showing a region (its areas R 1 and R 2 ) of the light emitting element according to the embodiment of the present invention. 図11Aは、本発明の実施形態にかかる発光装置を示す模式的な平面図である。FIG. 11A is a schematic plan view showing a light emitting device according to an embodiment of the present invention. 図11Bは、本発明の実施形態にかかる発光素子の領域(その面積RとR)を模式的に示す平面図である。FIG. 11B is a plan view schematically showing a region (its areas R 1 and R 2 ) of the light emitting device according to the embodiment of the present invention. 図12Aは、本発明の実施例1にかかる発光装置の上面外観を模式的に示す平面図である。FIG. 12A is a plan view schematically showing the upper surface appearance of the light emitting device according to Example 1 of the invention. 図12Bは、本発明の実施形態にかかる発光素子の領域(その面積RとR)を模式的に示す平面図である。FIG. 12B is a plan view schematically showing a region (its areas R 1 and R 2 ) of the light emitting element according to the embodiment of the present invention. 図13は、本発明の比較例1にかかる発光装置の上面外観を模式的に示す平面図である。FIG. 13 is a plan view schematically showing the upper surface appearance of the light emitting device according to Comparative Example 1 of the present invention. 図14は、本発明の実施例2にかかる半導体発光素子を示す模式的な平面図である。FIG. 14 is a schematic plan view showing a semiconductor light emitting element according to Example 2 of the present invention. 図15Aは、本発明の実施例2にかかる発光装置の上面外観を模式的に示す平面図である。FIG. 15A is a plan view schematically showing the upper surface appearance of the light emitting device according to Example 2 of the invention. 図15Bは、本発明の実施形態にかかる発光素子の領域(その面積RとR)を模式的に示す平面図である。FIG. 15B is a plan view schematically showing a region (its areas R 1 and R 2 ) of the light emitting element according to the embodiment of the present invention. 図16は、本発明の比較例2にかかる発光装置の上面外観を模式的に示す平面図である。FIG. 16 is a plan view schematically showing the upper surface appearance of the light emitting device according to Comparative Example 2 of the present invention. 図17は、本発明の実施例3にかかる半導体発光素子を示す模式的な平面図である。FIG. 17 is a schematic plan view showing a semiconductor light emitting element according to Example 3 of the invention. 図18Aは、本発明の実施例3にかかる発光装置の上面外観を模式的に示す平面図である。FIG. 18A is a plan view schematically showing the upper surface appearance of the light emitting device according to Example 3 of the invention. 図18Bは、本発明の実施形態にかかる発光素子の領域(その面積RとR)を模式的に示す平面図である。FIG. 18B is a plan view schematically showing a region (its areas R 1 and R 2 ) of the light emitting device according to the embodiment of the present invention. 図19は、本発明の比較例3にかかる発光装置の上面外観を模式的に示す平面図である。FIG. 19 is a plan view schematically showing the upper surface appearance of the light emitting device according to Comparative Example 3 of the present invention. 図20は、従来の発光装置の上面外観を模式的に示す平面図である。FIG. 20 is a plan view schematically showing the upper surface appearance of a conventional light emitting device.

符号の説明Explanation of symbols

1、21、31、41 発光領域
2、22、32、42 露出部
3 第2電極
4 第1電極
5、5a、5b、25、35a、35b、45a〜45d 延長部
6、6a、6b、6c、6d、26a、26b、36、46a〜46c 挟域部
7、7a、7b、7c、27、37a〜37d、47a〜47c 第2の辺側の延長部
8、8a、8b、8c、38a〜38c、481、48b 第2の辺側の挟域部
9、29、39、49 支持基板
10a〜10c、210a〜210c、310a〜310c、410a〜410c 導体配線
11、211、311、411 第1の辺
12、212、312、412 第2の辺
13、213、313、413 第1の辺の対向辺
14、214、314、414 第2の辺の対向辺
15、215、315、415 第2電極の外部接続領域
16、216、316、416 第1電極の外部接続領域
100 半導体発光素子
101、201、301、401 発光装置
23、33、43 p電極
24、34、44 n電極
220、320、420 透光性基板
51 Al基板
52 回路パターン
53 GaN系LED素子
1, 2, 31, 41 Light-emitting region 2, 22, 32, 42 Exposed part 3 Second electrode 4 First electrode 5, 5a, 5b, 25, 35a, 35b, 45a to 45d Extension part 6, 6a, 6b, 6c , 6d, 26a, 26b, 36, 46a to 46c Narrow part 7, 7a, 7b, 7c, 27, 37a to 37d, 47a to 47c Second side extension parts 8, 8a, 8b, 8c, 38a to 38c, 481, 48b Second side-side sandwiched areas 9, 29, 39, 49 Support substrates 10a-10c, 210a-210c, 310a-310c, 410a-410c Conductor wiring 11, 211, 311, 411 First Sides 12, 212, 312, 412 Second side 13, 213, 313, 413 First side opposing sides 14, 214, 314, 414 Second side opposing sides 15, 215, 315, 415 Second electrode of Part connection region 16, 216, 316, 416 First electrode external connection region 100 Semiconductor light emitting device 101, 201, 301, 401 Light emitting device 23, 33, 43 P electrode 24, 34, 44 N electrode 220, 320, 420 Transparent Optical substrate 51 Al 2 O 3 substrate 52 Circuit pattern 53 GaN-based LED element

Claims (13)

透光性基板上に第1導電型の第1半導体層と第2導電型の第2半導体層とが順に設けられ、前記第1半導体層の露出部に第1電極、前記第2半導体層に第2電極がそれぞれ設けられた半導体発光素子と、前記半導体発光素子が載置される支持基板と、を備える発光装置であって、
前記半導体発光素子は、平面視で矩形であり、少なくとも第1の辺と、前記第1の辺と異なる第2の辺とを有し、
前記第1の辺側の素子端面から出射される光は、前記第2の辺側の素子端面から出射される光よりも強く、
前記半導体発光素子が2つ以上、前記第1の辺が互いに略平行に向かい合うように、前記支持基板に列状にフリップチップ実装された発光装置。
A first conductive type first semiconductor layer and a second conductive type second semiconductor layer are provided in this order on a translucent substrate, and a first electrode is formed on the exposed portion of the first semiconductor layer, and a second semiconductor layer is formed on the second semiconductor layer. A light-emitting device comprising: a semiconductor light-emitting element provided with a second electrode; and a support substrate on which the semiconductor light-emitting element is placed,
The semiconductor light emitting element is rectangular in a plan view, and has at least a first side and a second side different from the first side,
The light emitted from the element end face on the first side is stronger than the light emitted from the element end face on the second side,
A light-emitting device that is flip-chip mounted in rows on the support substrate such that two or more semiconductor light-emitting elements and the first sides face each other substantially in parallel.
前記各半導体発光素子の前記第1の辺は、該辺の対向辺の方向にみて、前記第1の辺側の前記第1半導体層の露出部及び前記対向辺と向き合っており、その領域の前記第2電極の面積をR、前記第1の辺の長さをLとし、
前記第2の辺は、該辺の対向辺の方向にみて、前記第2の辺側の前記第1半導体層の露出部及び前記対向辺と向き合っており、その領域の前記第2電極の面積をR、前記第2の辺の長さをLとしたとき、
とLの比R/Lは、RとLの比R/Lよりも小さい請求項1に記載の発光装置。
The first side of each semiconductor light emitting element faces the exposed portion of the first semiconductor layer and the opposing side on the first side side in the direction of the opposing side of the side, and the area of the second electrode and R 1, the length of the first side and L 1,
The second side faces the exposed portion of the first semiconductor layer on the second side and the opposing side when viewed in the direction of the opposing side of the side, and the area of the second electrode in the region Is R 2 and the length of the second side is L 2 ,
2. The light emitting device according to claim 1, wherein a ratio R 1 / L 1 of R 1 and L 1 is smaller than a ratio R 2 / L 2 of R 2 and L 2 .
前記第1の辺の対向辺は、前記第1の辺の方向にみて、前記対向辺側の前記第1半導体層の露出部及び前記第1の辺と向き合っており、その領域の前記第2電極の面積をR1´、前記第1の辺の長さをL1´としたとき、
1´とL1´の比R1´/L1´は、前記R/Lと略等しい請求項2に記載の発光装置。
The opposite side of the first side faces the exposed portion of the first semiconductor layer and the first side on the opposite side when viewed in the direction of the first side, and the second side of the region is the second side. When the area of the electrode is R 1 ′ and the length of the first side is L 1 ′ ,
The light emitting device according to claim 2, wherein a ratio R 1 ′ / L 1 between R 1 ′ and L 1 is substantially equal to the R 1 / L 1 .
前記第2の辺は、前記第1の辺に隣接する辺である請求項1〜3のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein the second side is a side adjacent to the first side. 前記各半導体発光素子の前記第2電極は、前記第1の辺側に、前記第1の辺と前記露出部に挟まれた第1挟域部と、該挟域部よりも素子の内側に延びた第1延長部とを有し、
前記第1の辺の長さ方向において、前記第1挟域部が前記第1延長部よりも長い請求項1〜4のいずれか1項に記載の発光装置。
The second electrode of each of the semiconductor light emitting elements is on the first side, on a first sandwiched portion sandwiched between the first side and the exposed portion, and on the inner side of the device than the sandwiched portion. An extended first extension,
5. The light-emitting device according to claim 1, wherein in the length direction of the first side, the first narrow portion is longer than the first extension portion.
前記第2電極は、前記第2の辺側に第2延長部を有し、前記第2延長部で前記第2の辺側の第2電極が構成されてなる請求項5に記載の発光装置。   The light emitting device according to claim 5, wherein the second electrode has a second extension portion on the second side, and the second electrode on the second side is configured by the second extension portion. . 前記第2電極は、前記第2の辺側に、第2挟域部と、該第2挟域部よりも素子の内側に延びた第2延長部とを有し、
前記第1の辺の長さ方向における前記第1挟域部の長さAと前記第1の辺の長さLの比A/Lは、前記第2の辺の長さ方向における前記第2挟域部の長さAと前記第2の辺の長さLの比A/Lと、略等しいかそれよりも大きい請求項5に記載の発光装置。
The second electrode has, on the second side, a second sandwich portion, and a second extension portion that extends to the inside of the element from the second sandwich portion,
The ratio A 1 / L 1 between the length A 1 of the first narrow portion and the length L 1 of the first side in the length direction of the first side is the length direction of the second side The light-emitting device according to claim 5, wherein a ratio A 2 / L 2 of a length A 2 of the second sandwiched area and a length L 2 of the second side is substantially equal to or larger than the ratio A 2 / L 2 .
前記第2の辺の長さ方向において、前記第2挟域部が前記第2延長部よりも短い請求項7に記載の発光装置。   The light-emitting device according to claim 7, wherein the second narrow portion is shorter than the second extension portion in the length direction of the second side. 平面視で、前記半導体発光素子の1つの辺と、該辺の対向辺及び前記第2半導体層と、で挟まれる領域の面積Sと、該辺の長さLとの比S/Lは、
前記第1の辺のS/Lが、前記第2の辺のS/Lと略等しい請求項1〜8のいずれか1項に記載の発光装置。
In a plan view, the ratio S / L of the area S of the region sandwiched between one side of the semiconductor light emitting element, the opposite side of the side and the second semiconductor layer, and the length L of the side is:
The light emitting device according to claim 1, wherein S 1 / L 1 of the first side is substantially equal to S 2 / L 2 of the second side.
平面視で、前記半導体発光素子の1つの辺と、該辺の対向辺及び前記第2半導体層と、で挟まれる領域の面積Sと、該辺の長さLとの比S/Lは、
前記第1の辺のS/Lが、前記第2の辺のS/Lよりも小さい請求項1〜8のいずれか1項に記載の発光装置。
In a plan view, the ratio S / L of the area S of the region sandwiched between one side of the semiconductor light emitting element, the opposite side of the side and the second semiconductor layer, and the length L of the side is:
The light emitting device according to claim 1, wherein S 1 / L 1 of the first side is smaller than S 2 / L 2 of the second side.
前記第2の辺は、前記第1の辺の対向辺と異なる辺であり、
前記第1の辺及び前記第1の辺の対向辺は、前記S/Lが略同一であり、前記第2の辺及び前記第2の辺の対向辺も前記S/Lが略同一である請求項9又は10に記載の発光装置。
The second side is a side different from the opposite side of the first side,
The opposite sides of the first side and the first side have substantially the same S / L, and the opposite sides of the second side and the second side also have the same S / L. The light emitting device according to claim 9 or 10.
前記第2電極は、前記第1電極よりも前記第1の辺側に設けられている請求項1〜11のいずれか1項に記載の発光装置。 The light emitting device according to claim 1, wherein the second electrode is provided closer to the first side than the first electrode. 前記半導体発光素子は、前記第1半導体層と前記第2半導体層との間に発光層を有し、前記第1半導体層の露出部と前記第2電極が設けられた前記第2半導体層との間で、前記発光層の端面が露出しており、
前記支持基板は、前記半導体発光素子の前記第1及び第2電極が接続される配線電極を有し、
前記配線電極は、少なくとも、平面視で前記発光層の端面露出部の下に設けられる請求項1〜12のいずれか1項に記載の発光装置。
The semiconductor light emitting device includes a light emitting layer between the first semiconductor layer and the second semiconductor layer, and the second semiconductor layer provided with the exposed portion of the first semiconductor layer and the second electrode; Between, the end face of the light emitting layer is exposed,
The support substrate has a wiring electrode to which the first and second electrodes of the semiconductor light emitting element are connected;
The light emitting device according to any one of claims 1 to 12, wherein the wiring electrode is provided at least under an end surface exposed portion of the light emitting layer in a plan view.
JP2008026481A 2007-04-18 2008-02-06 Light emitting device Active JP5731731B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008026481A JP5731731B2 (en) 2007-04-18 2008-02-06 Light emitting device
EP08154563.4A EP1983571B1 (en) 2007-04-18 2008-04-15 Light emission device
CN2008100919985A CN101290928B (en) 2007-04-18 2008-04-15 Light emission device
US12/105,058 US8174033B2 (en) 2007-04-18 2008-04-17 Light emission device including semiconductor light emitting elements

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007108827 2007-04-18
JP2007108827 2007-04-18
JP2008026481A JP5731731B2 (en) 2007-04-18 2008-02-06 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013259704A Division JP5850036B2 (en) 2007-04-18 2013-12-17 Light emitting device

Publications (2)

Publication Number Publication Date
JP2008288552A true JP2008288552A (en) 2008-11-27
JP5731731B2 JP5731731B2 (en) 2015-06-10

Family

ID=40035099

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008026481A Active JP5731731B2 (en) 2007-04-18 2008-02-06 Light emitting device
JP2013259704A Active JP5850036B2 (en) 2007-04-18 2013-12-17 Light emitting device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013259704A Active JP5850036B2 (en) 2007-04-18 2013-12-17 Light emitting device

Country Status (2)

Country Link
JP (2) JP5731731B2 (en)
CN (1) CN101290928B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071443A (en) * 2009-09-28 2011-04-07 Toyoda Gosei Co Ltd Method of manufacturing light emitting device
JP2012134194A (en) * 2010-12-20 2012-07-12 Nichia Chem Ind Ltd Mounting board for semiconductor element, semiconductor light-emitting device using the mounting board, and method of manufacturing semiconductor light-emitting device
JP2013110179A (en) * 2011-11-18 2013-06-06 Citizen Holdings Co Ltd Semiconductor light-emitting device
JP2014225588A (en) * 2013-05-17 2014-12-04 スタンレー電気株式会社 Semiconductor light-emitting element array
JP2014229626A (en) * 2013-05-17 2014-12-08 スタンレー電気株式会社 Semiconductor light emitting element array
JP2016086166A (en) * 2014-10-28 2016-05-19 日亜化学工業株式会社 Light emitting device
US9722160B2 (en) 2014-10-31 2017-08-01 Nichia Corporation Light emitting device and adaptive driving beam headlamp system
JP2018032796A (en) * 2016-08-25 2018-03-01 京セラ株式会社 Package for light-emitting element housing and light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022098026A (en) * 2020-12-21 2022-07-01 スタンレー電気株式会社 Light-emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164574A (en) * 2000-11-24 2002-06-07 Mitsubishi Cable Ind Ltd Semiconductor light emitting element
JP2002319705A (en) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Led device
JP2004165308A (en) * 2002-11-11 2004-06-10 Nichia Chem Ind Ltd Light emitting device
JP2005109434A (en) * 2003-09-11 2005-04-21 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method
JP2005328080A (en) * 2002-05-27 2005-11-24 Nichia Chem Ind Ltd Nitride semiconductor luminous element, luminous element, element laminated body, and luminous device using those
WO2006043422A1 (en) * 2004-10-19 2006-04-27 Nichia Corporation Semiconductor element
JP2006210730A (en) * 2005-01-28 2006-08-10 Toyoda Gosei Co Ltd Light emitting element
JP2007048773A (en) * 2005-08-05 2007-02-22 Matsushita Electric Ind Co Ltd Light emitting module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4369668B2 (en) * 2003-02-13 2009-11-25 株式会社小糸製作所 Vehicle headlamp
EP1515368B1 (en) * 2003-09-05 2019-12-25 Nichia Corporation Light equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164574A (en) * 2000-11-24 2002-06-07 Mitsubishi Cable Ind Ltd Semiconductor light emitting element
JP2002319705A (en) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Led device
JP2005328080A (en) * 2002-05-27 2005-11-24 Nichia Chem Ind Ltd Nitride semiconductor luminous element, luminous element, element laminated body, and luminous device using those
JP2004165308A (en) * 2002-11-11 2004-06-10 Nichia Chem Ind Ltd Light emitting device
JP2005109434A (en) * 2003-09-11 2005-04-21 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method
WO2006043422A1 (en) * 2004-10-19 2006-04-27 Nichia Corporation Semiconductor element
JP2006210730A (en) * 2005-01-28 2006-08-10 Toyoda Gosei Co Ltd Light emitting element
JP2007048773A (en) * 2005-08-05 2007-02-22 Matsushita Electric Ind Co Ltd Light emitting module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071443A (en) * 2009-09-28 2011-04-07 Toyoda Gosei Co Ltd Method of manufacturing light emitting device
JP2012134194A (en) * 2010-12-20 2012-07-12 Nichia Chem Ind Ltd Mounting board for semiconductor element, semiconductor light-emitting device using the mounting board, and method of manufacturing semiconductor light-emitting device
JP2013110179A (en) * 2011-11-18 2013-06-06 Citizen Holdings Co Ltd Semiconductor light-emitting device
JP2014225588A (en) * 2013-05-17 2014-12-04 スタンレー電気株式会社 Semiconductor light-emitting element array
JP2014229626A (en) * 2013-05-17 2014-12-08 スタンレー電気株式会社 Semiconductor light emitting element array
JP2016086166A (en) * 2014-10-28 2016-05-19 日亜化学工業株式会社 Light emitting device
US9722160B2 (en) 2014-10-31 2017-08-01 Nichia Corporation Light emitting device and adaptive driving beam headlamp system
US10256386B2 (en) 2014-10-31 2019-04-09 Nichia Corporation Light emitting device and adaptive driving beam headlamp system
US10468571B2 (en) 2014-10-31 2019-11-05 Nichia Corporation Light distribution method for adaptive driving beam headlamp system, and adaptive driving beam headlamp system
JP2018032796A (en) * 2016-08-25 2018-03-01 京セラ株式会社 Package for light-emitting element housing and light-emitting device

Also Published As

Publication number Publication date
JP2014090191A (en) 2014-05-15
CN101290928B (en) 2012-05-23
JP5850036B2 (en) 2016-02-03
CN101290928A (en) 2008-10-22
JP5731731B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5850036B2 (en) Light emitting device
US11398464B2 (en) Micro light emitting element and image display device
US8314431B2 (en) LED semiconductor element having increased luminance
JP6133040B2 (en) Light emitting device and light emitting device package
JP4123830B2 (en) LED chip
JP4899825B2 (en) Semiconductor light emitting device, light emitting device
KR100887139B1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
JP5992179B2 (en) Light emitting element
TWI543399B (en) Semiconductor light emitting device
JP5210327B2 (en) Light emitting chip provided with at least one semiconductor substrate
JP2014093532A (en) Light-emitting element
JP2007287849A (en) Semiconductor luminous element
TW201611339A (en) Semiconductor light emitting device
KR101707532B1 (en) Light Emitting Device
EP1983571B1 (en) Light emission device
JP5141086B2 (en) Semiconductor light emitting device
KR20130052944A (en) A light emitting device and a light emitting device package
JP5266349B2 (en) Light emitting device
JP2006210730A (en) Light emitting element
US12021172B2 (en) Light-emitting element and image displaying apparatus
KR101762325B1 (en) A light emitting device
KR101904323B1 (en) A light emitting device and a light emitting device package
KR102426873B1 (en) A light emitting device package
KR20220148995A (en) Display device
KR101751909B1 (en) A light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140207

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150410

R150 Certificate of patent or registration of utility model

Ref document number: 5731731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250