TWI390935B - Enhancements to the positioning pilot channel - Google Patents
Enhancements to the positioning pilot channel Download PDFInfo
- Publication number
- TWI390935B TWI390935B TW098103300A TW98103300A TWI390935B TW I390935 B TWI390935 B TW I390935B TW 098103300 A TW098103300 A TW 098103300A TW 98103300 A TW98103300 A TW 98103300A TW I390935 B TWI390935 B TW I390935B
- Authority
- TW
- Taiwan
- Prior art keywords
- transmitter
- information
- ppc
- interlace
- symbol
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L23/00—Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00
- H04L23/02—Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00 adapted for orthogonal signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/20—Modulator circuits; Transmitter circuits
- H04L27/2032—Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
- H04L27/2053—Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
- H04L27/206—Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
- H04L27/26134—Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/16—Discovering, processing access restriction or access information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Description
本申請案大體而言係關於通信系統之操作,且更特定言之,係關於用於在通信系統中傳輸關於傳輸器之識別資訊的方法及裝置。The present application relates generally to the operation of a communication system and, more particularly, to a method and apparatus for transmitting identification information about a transmitter in a communication system.
本專利申請案主張於2008年2月20日申請之臨時申請案第61/030,178號、於2008年1月28日申請之臨時申請案第61/023,919號,及於2008年1月28日申請之臨時申請案第61/024,143號的優先權,該等臨時申請案讓渡與其受讓人且藉此以引用方式明確併入本文中。This patent application claims Provisional Application No. 61/030,178, filed on February 20, 2008, and Provisional Application No. 61/023,919, filed on January 28, 2008, and filed on January 28, 2008 The priority of Provisional Application No. 61/024, 143, the disclosure of which is hereby incorporated by reference in its entirety in its entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire disclosure
在目前已知之通信系統(諸如,內容遞送/媒體分散系統(例如,僅前向鏈路(FLO)或數位視訊廣播(DVB-T/H)系統)中,通常將即時及非即時服務封裝至傳輸訊框(例如,FLO超訊框)中且遞送至網路上之器件。另外,此等通信系統可利用正交分頻多工(OFDM)以提供網路伺服器與一或多個行動器件之間的通信。此通信提供具有資料槽之傳輸超訊框,將該等資料槽與將作為傳輸波形在分散網路上遞送的內容一起封裝。In currently known communication systems, such as content delivery/media decentralized systems (eg, forward link only (FLO) or digital video broadcast (DVB-T/H) systems), instant and non-instant services are typically packaged to Transmission frames (eg, FLO hyperframes) and delivered to devices on the network. Additionally, such communication systems may utilize orthogonal frequency division multiplexing (OFDM) to provide a network server and one or more mobile devices Inter-communication. This communication provides a transmission hyperframe with data slots that are packaged with content that will be delivered as a transmission waveform over a decentralized network.
已知經由在FLO網路中使用定位用導頻頻道(PPC)來進行對一些無線網路中之行動器件的傳輸器識別及位置判定。詳言之,已知傳輸器識別涉及根據自每一個別傳輸器至一接收器之作用中PPC符號之導頻符號來判定一頻道剖面(channel profile)。雖然傳輸器識別碼可不明確地編碼於PPC符號中,但只要知道傳輸器何時傳輸作用中PPC符號之排程,便可判定一給定區域中之傳輸器的識別碼,諸如以偽分時多重存取(TDMA)方式對作用中傳輸器排序(例如,傳輸器遵照在該給定區域中每次僅一個傳輸器為作用中的作用中傳輸之已知時間順序)。因此,有可能使用作用中PPC符號在一超訊框中之位置來將傳輸器映射至相應PPC符號,但需另外使用該超訊框中之附加項頻道(例如,附加項資訊符號(OIS))。在此方案下,在超訊框方面網路傳輸器之週期性(亦即,排程)必須亦被接收器所知。It is known to perform transmitter identification and position determination for mobile devices in some wireless networks via the use of Positioning Pilot Channels (PPC) in the FLO network. In particular, known transmitter identification involves determining a channel profile based on the pilot symbols of the PPC symbols in each of the individual transmitters to a receiver. Although the transmitter identification code may not be explicitly encoded in the PPC symbol, as long as it knows when the transmitter transmits the schedule of the active PPC symbols, it can determine the identity of the transmitter in a given area, such as multiple times with pseudo-time division. The access (TDMA) mode sorts the active transmitters (e.g., the transmitter follows a known time sequence of transmissions in effect for only one transmitter at a time in the given area). Therefore, it is possible to map the transmitter to the corresponding PPC symbol using the position of the active PPC symbol in a superframe, but additionally use the additional channel in the superframe (for example, the additional information symbol (OIS) ). Under this scheme, the periodicity (ie, scheduling) of the network transmitter in the hyperframe must also be known by the receiver.
根據一態樣,揭示一種用於在通信系統中傳達傳輸器識別的方法。該方法包括在一作用中傳輸器之符號中之複數個副載波之第一部分上編碼導頻資訊,及在該符號之該複數個副載波之第二部分上編碼傳輸器識別資訊。According to one aspect, a method for communicating transmitter identification in a communication system is disclosed. The method includes encoding pilot information on a first portion of a plurality of subcarriers in a symbol of an active transmitter, and encoding transmitter identification information on a second portion of the plurality of subcarriers of the symbol.
根據另一態樣,揭示一種用於在網路中傳達傳輸器識別資訊的裝置。該裝置包括:一第一模組,其經組態以在一作用中傳輸器之符號中之複數個副載波之第一部分上編碼導頻資訊;及一第二模組,其經組態以在該符號之該複數個副載波之第二部分上編碼傳輸器識別資訊。According to another aspect, an apparatus for communicating transmitter identification information in a network is disclosed. The apparatus includes: a first module configured to encode pilot information on a first portion of a plurality of subcarriers in a symbol of an active transmitter; and a second module configured to Transmitter identification information is encoded on a second portion of the plurality of subcarriers of the symbol.
根據又一態樣,揭示用於在通信系統中傳輸傳輸器識別資訊的另一裝置。該裝置之特徵在於用於在一作用中傳輸器之符號中之複數個副載波之第一部分上編碼導頻資訊的構件,及用於在該符號之該複數個副載波之第二部分上編碼傳輸器識別資訊的構件。According to yet another aspect, another apparatus for transmitting transmitter identification information in a communication system is disclosed. The apparatus is characterized by means for encoding pilot information on a first portion of a plurality of subcarriers in a symbol of an active transmitter, and for encoding on a second portion of the plurality of subcarriers of the symbol The component of the transmitter that identifies the information.
根據再一態樣,揭示一種電腦程式產品。該電腦程式產品包括一電腦可讀媒體,該電腦可讀媒體具有用於使一電腦在一作用中傳輸器之符號中之複數個副載波之第一部分上編碼導頻資訊的程式碼,及用於使一電腦在該符號之該複數個副載波之第二部分上編碼傳輸器識別資訊的程式碼。According to yet another aspect, a computer program product is disclosed. The computer program product includes a computer readable medium having code for encoding pilot information on a first portion of a plurality of subcarriers in a symbol of an active transmitter, and And causing a computer to encode the code of the transmitter identification information on the second portion of the plurality of subcarriers of the symbol.
在另一態樣中,揭示至少一處理器,該至少一處理器經組態以執行用於在網路中傳輸傳輸器識別資訊之方法。該方法包括在一作用中傳輸器之符號中之複數個副載波之第一部分上編碼導頻資訊,及在該符號之該複數個副載波之第二部分上編碼傳輸器識別資訊。In another aspect, at least one processor is disclosed, the at least one processor configured to perform a method for transmitting transmitter identification information in a network. The method includes encoding pilot information on a first portion of a plurality of subcarriers in a symbol of an active transmitter, and encoding transmitter identification information on a second portion of the plurality of subcarriers of the symbol.
在又一態樣中,揭示一種用於在一通信系統中之一器件中判定傳輸器識別資訊的方法。該方法包含自一傳輸器接收具有複數個副載波之至少一符號。該方法進一步包括使用該至少一符號中之該複數個副載波之第一部分來判定該至少一符號的一頻道估計及一能量量測,及解碼該至少一符號中之該複數個副載波之一專用第二部分以判定該傳輸器識別資訊。In yet another aspect, a method for determining transmitter identification information in a device in a communication system is disclosed. The method includes receiving at least one symbol having a plurality of subcarriers from a transmitter. The method further includes determining a channel estimate and an energy measurement of the at least one symbol using the first portion of the plurality of subcarriers of the at least one symbol, and decoding one of the plurality of subcarriers in the at least one symbol The second part is dedicated to determine the transmitter identification information.
根據再一態樣,揭示一種用於在一通信系統中之一器件中判定傳輸器識別資訊的裝置。該裝置包括用於自一傳輸器接收具有複數個副載波之至少一符號的構件,及用於使用該至少一符號中之該複數個副載波之第一部分來判定該至少一符號的一頻道估計及一能量量測的構件。該裝置進一步包括用於解碼該至少一符號中之該複數個副載波之一專用第二部分以判定該傳輸器識別資訊的構件。According to still another aspect, an apparatus for determining transmitter identification information in a device in a communication system is disclosed. The apparatus includes means for receiving at least one symbol having a plurality of subcarriers from a transmitter, and for determining a channel estimate of the at least one symbol using a first portion of the plurality of subcarriers in the at least one symbol And an energy measuring component. The apparatus further includes means for decoding a dedicated second portion of the plurality of subcarriers of the at least one symbol to determine the transmitter identification information.
在又一態樣中,揭示一種電腦程式產品。該電腦程式產品之特徵在於一電腦可讀媒體,其具有用於使一電腦自一傳輸器接收具有複數個副載波之至少一符號的程式碼,及用於使一電腦使用該至少一符號中之該複數個副載波之第一部分來判定該至少一符號的一頻道估計及一能量量測的程式碼。該媒體亦包括用於使一電腦解碼該至少一符號中之該複數個副載波之一專用第二部分以判定該傳輸器識別資訊的程式碼。In yet another aspect, a computer program product is disclosed. The computer program product is characterized by a computer readable medium having code for causing a computer to receive at least one symbol having a plurality of subcarriers from a transmitter, and for causing a computer to use the at least one symbol The first portion of the plurality of subcarriers determines a channel estimate of the at least one symbol and an energy measurement code. The medium also includes code for causing a computer to decode a dedicated second portion of the plurality of subcarriers in the at least one symbol to determine the transmitter identification information.
在再一態樣中,假定以傳輸器位置座標(例如,GPS位置座標)之形式來用信號傳輸傳輸器識別資訊,在本文中呈現用於呈現及發送該傳輸器位置資訊的新穎實施例。In yet another aspect, it is assumed that the signal is transmitted in the form of a transmitter location coordinate (e.g., GPS location coordinates), and a novel embodiment for presenting and transmitting the transmitter location information is presented herein.
本揭示案係關於用於在通信系統中傳輸關於傳輸器之識別資訊的方法及裝置。該等方法及裝置供應用於使用PPC頻道進行傳輸器識別及位置判定的方案,該方案不要求在局域網路區中之傳輸器的排程為接收器所知的。詳言之,所揭示之方法及裝置使用包括傳輸器識別資訊之PPC符號,使得接收器僅需要來自一超訊框之時序資訊及該PPC符號來判定作用中傳輸器之識別碼。在一特定實例中,該傳輸器識別碼可明確地編碼於該等PPC符號中。藉由將該傳輸器識別碼明確地編碼於該等PPC符號中,在傳輸器處不需要知道網路傳輸器之較高階排程資訊。然而,傳輸器將必須執行額外處理來以強健方式將傳輸器識別碼資訊嵌入該等PPC符號中,且接收器將必須處理PPC符號以提取該等傳輸器識別碼資訊。然而,傳輸器識別資訊供應接收器識別傳輸器及使用經識別傳輸器之頻道剖面來進行之相應位置定位所需要使用的較少處理資源。另外,可將以該識別來編碼之額外資訊用信號傳輸至接收器,不管一特定傳輸器是否正使用其他符號。The present disclosure relates to a method and apparatus for transmitting identification information about a transmitter in a communication system. The methods and apparatus provide a solution for transmitter identification and location determination using a PPC channel that does not require that the schedule of the transmitters in the LAN area be known to the receiver. In particular, the disclosed method and apparatus use PPC symbols including transmitter identification information such that the receiver only needs timing information from a hyperframe and the PPC symbol to determine the identification code of the active transmitter. In a particular example, the transmitter identification code can be explicitly encoded in the PPC symbols. By explicitly encoding the transmitter identification code in the PPC symbols, there is no need to know the higher order scheduling information of the network transmitter at the transmitter. However, the transmitter will have to perform additional processing to embed the transmitter identification code information in the PPC symbols in a robust manner, and the receiver will have to process the PPC symbols to extract the transmitter identification code information. However, the transmitter identification information supply receiver identifies the transmitter and the less processing resources needed to use the corresponding channel location of the identified transmitter's channel profile. Additionally, additional information encoded with the identification can be signaled to the receiver regardless of whether a particular transmitter is using other symbols.
為達成此描述目的,本文中參考利用正交分頻多工(OFDM)來提供網路傳輸器與一或多個行動器件之間的通信的通信網路(諸如,FLO或DVB-T/H)來描述傳輸器識別方案。在一實例中,所揭示之通信系統可使用單頻網路(SFN)之概念,在其中,來自網路中之多個傳輸器之信號載運相同內容且傳輸同樣之波形。結果,該等波形可被接收器視為其為來自同一源但具有不同傳播延遲的信號。For the purposes of this description, reference is made herein to a communication network (such as FLO or DVB-T/H) that utilizes orthogonal frequency division multiplexing (OFDM) to provide communication between a network transmitter and one or more mobile devices. ) to describe the transmitter identification scheme. In one example, the disclosed communication system may use the concept of a single frequency network (SFN) in which signals from multiple transmitters in the network carry the same content and transmit the same waveform. As a result, the waveforms can be considered by the receiver to be signals from the same source but with different propagation delays.
另外應注意,本文所揭示之例示性OFDM系統可(例如)利用超訊框。該等超訊框包括用於將服務自伺服器輸送至接收器件的資料符號。根據一實例,可將一資料槽界定為在一OFDM符號時間內發生之一組預定數目之資料符號(例如,500個)。另外,該超訊框中之一OFDM符號時間可載運八個資料槽(僅作為實例)。Additionally, it should be noted that the exemplary OFDM systems disclosed herein may, for example, utilize hyperframes. The hyperframes include data symbols for transporting services from the server to the receiving device. According to an example, a data slot can be defined as a predetermined number of data symbols (e.g., 500) occurring within an OFDM symbol time. In addition, one of the OFDM symbol times in the superframe can carry eight data slots (for example only).
根據另一實例,一超訊框中之一PPC包括用於提供用於待判定之網路中之個別傳輸器的頻道估計的傳輸器識別資訊的PPC符號。該等個別頻道估計接著可用於網路最佳化(傳輸器延遲用於網路最佳化及功率剖面量測)及位置定位(經由量測來自所有附近傳輸器之延遲,繼之以三角量測技術)。According to another example, one of the PPCs in a hyperframe includes PPC symbols for providing transmitter identification information for channel estimates for individual transmitters in the network to be determined. These individual channel estimates can then be used for network optimization (transmitter delay for network optimization and power profile measurement) and position location (via measurement of delays from all nearby transmitters, followed by triangulation) Testing technology).
在一例示性系統中,所有傳輸器處之超訊框邊界可同步至一共同時脈參考。舉例而言,該共同時脈參考可自一全球定位系統(GPS)時間參考獲得。一接收器件接著可使用PPC符號來識別一特定傳輸器及來自該接收器件附近之一組傳輸器的頻道估計。In an exemplary system, the hyperframe boundaries at all transmitters can be synchronized to a common clock reference. For example, the common clock reference can be obtained from a Global Positioning System (GPS) time reference. A receiving device can then use the PPC symbols to identify a particular transmitter and channel estimates from a group of transmitters in the vicinity of the receiving device.
圖1說明可使用目前所揭示之方法及裝置的通信網路100。所說明之網路100包括兩個廣域區域102及104。廣域區域102及104中之每一者通常覆蓋大地理區域,諸如一個州、多個州、一個國家之一部分,整個國家,或一個以上國家。又,廣域區102或104可包括局域區域(或子區域)。舉例而言,廣域區域102包括局域區域106及108,且廣域區域104包括局域區域110。應注意,網路100僅說明一網路組態,且可涵蓋具有任何數目之廣域及局域區域的其他網路組態。1 illustrates a communication network 100 in which the presently disclosed methods and apparatus can be used. The illustrated network 100 includes two wide area areas 102 and 104. Each of the wide area regions 102 and 104 typically covers a large geographic area, such as a state, multiple states, a portion of a country, an entire country, or more than one country. Also, the wide area 102 or 104 may include a local area (or sub-area). For example, wide area area 102 includes local area areas 106 and 108, and wide area area 104 includes local area area 110. It should be noted that network 100 illustrates only one network configuration and may cover other network configurations with any number of wide and local areas.
局域區域106、108、110中之每一者包括給行動器件(例如,接收器)提供網路覆蓋的一或多個傳輸器。舉例而言,區域108包括給行動器件118及120提供網路通信之傳輸器112、114及116。類似地,區域106包括給器件128及130提供網路通信之傳輸器122、124及126,且區域110展示為具有給器件138及140提供網路通信之傳輸器132、134及136。Each of the local area 106, 108, 110 includes one or more transmitters that provide network coverage for mobile devices (e.g., receivers). For example, region 108 includes transmitters 112, 114, and 116 that provide network communications to mobile devices 118 and 120. Similarly, region 106 includes transmitters 122, 124, and 126 that provide network communications to devices 128 and 130, and region 110 is shown as transmitters 132, 134, and 136 that provide network communications to devices 138 and 140.
如圖1中所說明,一接收器件可自其局域內之傳輸器、自同一廣域內之另一局域中之傳輸器或自其廣域外之局域中之傳輸器接收包括PPC符號之超訊框傳輸。舉例而言,如由箭頭142及144所說明,器件118可自其局域108內之傳輸器接收超訊框。如由箭頭146所說明,器件118亦可自廣域102內之另一局域106中之傳輸器接收超訊框。如148處所說明,器件118潛在地可進一步自局域110中之傳輸器接收超訊框,局域110係在另一廣域104中。As illustrated in Figure 1, a receiving device may receive PPC symbols from a transmitter within its local area, from a transmitter in another local area within the same wide area, or from a transmitter in a local area outside its wide area. Hyperframe transmission. For example, as illustrated by arrows 142 and 144, device 118 may receive a hyperframe from a transmitter within its local area 108. As illustrated by arrow 146, device 118 may also receive a hyperframe from a transmitter in another local area 106 within wide area 102. As illustrated at 148, device 118 potentially further receives a hyperframe from a transmitter in local area 110, which is in another wide area 104.
如以引用方式明確併入本文中的於2006年9月6日申請之題為「Methods and Apparatus for Position Location in a Wireless Network」之Mukkavilli等人的美國專利申請案第11/517,119號中所揭示的,由作用中傳輸器傳輸之PPC符號經不同地組態,使得彼等傳輸器相對於PPC符號傳輸而同時閒置或待用。在操作期間,每一傳輸器使用網路供應資訊來判定一區域中之哪個傳輸器將成為「作用中傳輸器」。The disclosure of U.S. Patent Application Serial No. 11/517,119, the entire disclosure of which is hereby incorporated by reference in its entirety in its entirety in The PPC symbols transmitted by the active transmitter are configured differently such that their transmitters are idle or inactive while being transmitted relative to the PPC symbols. During operation, each transmitter uses network provisioning information to determine which transmitter in an area will be the "active transmitter."
為達成本申請案之目的,應注意,作用中傳輸器為傳輸一PPC符號之傳輸器,該PPC符號包括使用副載波之至少一部分(例如,一交錯)的識別資訊。雖然僅給作用中傳輸器分配一作用中符號,然而,有可能將任何數目之作用中符號分配給一傳輸器。因此,每一傳輸器與一「作用中符號」相關聯,藉由該作用中符號,該傳輸器傳輸包括識別資訊之資訊。當傳輸器不在作用中狀態時,其在PPC符號之經界定之閒置部分(例如,交錯)上傳輸。網路中之接收器件接著可經組態以不「監聽」該等PPC符號之閒置部分中之資訊。此允許傳輸器在該等PPC符號之閒置部分期間進行傳輸以提供功率(亦即,每符號之能量)穩定性以維持網路效能。在另一實例中,在PPC上傳輸之符號經設計以具有長循環首碼(CP),使得接收器件可利用來自遠處傳輸器之資訊以達成位置判定之目的。此機制允許接收器件在特定傳輸器之相關聯作用中符號期間自該特定傳輸器接收識別資訊,而無來自該區域中之其他傳輸器之干擾,這是因為其他傳輸器係在該符號之閒置部分(交錯)上傳輸。For the purposes of this application, it should be noted that the active transmitter is a transmitter that transmits a PPC symbol that includes identification information that uses at least a portion (eg, an interlace) of the subcarriers. Although only one active symbol is assigned to the active transmitter, it is possible to assign any number of active symbols to a transmitter. Thus, each transmitter is associated with an "active symbol" by which the transmitter transmits information including the identification information. When the transmitter is not in an active state, it is transmitted on a defined idle portion (e.g., interlace) of the PPC symbol. The receiving devices in the network can then be configured to not "listen" for information in the idle portion of the PPC symbols. This allows the transmitter to transmit during the idle portion of the PPC symbols to provide power (i.e., energy per symbol) stability to maintain network performance. In another example, the symbols transmitted on the PPC are designed to have a long cycle first code (CP) such that the receiving device can utilize information from the remote transmitter for location determination purposes. This mechanism allows the receiving device to receive identification information from the particular transmitter during the associated symbol in the particular transmitter without interference from other transmitters in the area, since other transmitters are idle in the symbol. Partial (interlaced) transmission.
圖2展示包括傳輸器識別資訊(本文中被稱作TxID)之傳輸的通信系統200的實例。系統200包括經由無線鏈路204將包括導頻定位用頻道(PPC)202之超訊框傳輸至至少一接收器件206的複數個傳輸器(例如,五個傳輸器T1至T5)。傳輸器T1-T5可表示在器件206附近之彼等傳輸器且可包括在與器件206相同之局域內之傳輸器、不同局域中之傳輸器,或不同廣域中之傳輸器。應注意,傳輸器T1-T5可為同步至單一時間基準(例如,GPS時間)之通信網路的部分,使得自傳輸器T1-T5傳輸之超訊框在時間上對準且同步。應注意,可能允許超訊框之開始相對於該單一時間基準有一固定偏移且在傳播延遲之判定中考量該等各別傳輸器之偏移。因此,所傳輸超訊框之內容對於相同局域內之傳輸器而言可為同樣的,但對於不同局域或廣域中之傳輸器而言可為不同,然而,由於該網路經同步,故該等超訊框經對準,且該器件206可經由PPC 202自附近傳輸器接收符號,且彼等符號亦經對準。2 shows an example of a communication system 200 that includes transmission of transmitter identification information (referred to herein as TxID). System 200 includes a plurality of transmitters (e.g., five transmitters T1 through T5) that transmit a hyperframe including pilot positioning channel (PPC) 202 to at least one receiving device 206 via wireless link 204. Transmitters T1-T5 may represent their transmitters in the vicinity of device 206 and may include transmitters within the same local area as device 206, transmitters in different local areas, or transmitters in different wide areas. It should be noted that the transmitters T1-T5 may be part of a communication network that is synchronized to a single time reference (e.g., GPS time) such that the hyperframes transmitted from the transmitters T1-T5 are aligned and synchronized in time. It should be noted that it may be possible to allow the start of the hyperframe to have a fixed offset relative to the single time reference and to account for the offset of the respective transmitters in the determination of the propagation delay. Therefore, the content of the transmitted hyperframe can be the same for transmitters in the same local area, but can be different for transmitters in different local or wide areas, however, since the network is synchronized Thus, the hyperframes are aligned, and the device 206 can receive symbols from nearby transmitters via the PPC 202, and the symbols are also aligned.
如由例示性傳輸器區塊214所說明,傳輸器T1-T5中之每一者可包含傳輸器邏輯208、PPC產生器邏輯210,及網路邏輯212。如由例示性接收器件222所說明,接收器件206可包括接收器邏輯216、PPC解碼器邏輯218,及傳輸器ID判定邏輯220。As illustrated by the exemplary transmitter block 214, each of the transmitters T1-T5 can include transmitter logic 208, PPC generator logic 210, and network logic 212. As illustrated by the exemplary receiving device 222, the receiving device 206 can include receiver logic 216, PPC decoder logic 218, and transmitter ID decision logic 220.
應注意,傳輸器邏輯208可包含硬體、軟體、韌體,或其任何合適組合。傳輸器邏輯208可操作以使用傳輸超訊框來傳輸音訊、視訊及網路服務。傳輸器邏輯208亦可操作以在一超訊框中傳輸一或多個PPC符號。在一實例中,傳輸器邏輯208經由PPC 202來傳輸在一超訊框內之一或多個PPC符號234以提供傳輸器識別資訊,以供由接收器件222用以識別特定傳輸器以及用於達成諸如定位之其他目的。It should be noted that the transmitter logic 208 can comprise hardware, software, firmware, or any suitable combination thereof. Transmitter logic 208 is operable to transmit audio, video, and network services using a transmission hyperframe. Transmitter logic 208 is also operative to transmit one or more PPC symbols in a superframe. In one example, transmitter logic 208 transmits one or more PPC symbols 234 in a hyperframe via PPC 202 to provide transmitter identification information for use by receiving device 222 to identify a particular transmitter and for Achieve other purposes such as positioning.
PPC產生器邏輯210包含硬體、軟體或其任何組合。PPC產生器邏輯210操作以將傳輸器識別資訊併入至經由PPC 202傳輸之符號234中。在一實例中,每一PPC符號包含分組成選定數目之交錯的複數個副載波。一交錯又可界定為橫跨可用頻帶的均一地間隔之副載波的集合或彙集。應注意,交錯亦可由不均一地間隔之一群副載波組成。PPC generator logic 210 includes hardware, software, or any combination thereof. PPC generator logic 210 operates to incorporate transmitter identification information into symbols 234 transmitted via PPC 202. In one example, each PPC symbol comprises a plurality of subcarriers grouped into a selected number of interlaces. An interlace can be defined as a collection or collection of uniformly spaced subcarriers across the available frequency bands. It should be noted that the interleaving may also consist of a group of subcarriers that are not uniformly spaced apart.
在一實例中,給傳輸器T1-T5中之每一者分配至少一PPC符號,該PPC符號被稱作彼傳輸器之作用中符號。舉例而言,給傳輸器T1分配一超訊框中之PPC符號234內之PPC符號236,且給傳輸器T5分配一超訊框中之PPC符號234內之PPC符號238。In an example, each of the transmitters T1-T5 is assigned at least one PPC symbol, which is referred to as the active symbol of the transmitter. For example, the transmitter T1 is assigned a PPC symbol 236 in the PPC symbol 234 in the superframe and the transmitter T5 is assigned a PPC symbol 238 in the PPC symbol 234 in the superframe.
PPC產生器邏輯210操作以將傳輸器識別資訊編碼入彼傳輸器之作用中符號中。舉例而言,將每一符號之交錯分組至稱作「作用中交錯」及「閒置交錯」之兩個組中。PPC產生器邏輯210操作以在彼傳輸器之作用中符號之專用作用中交錯上編碼傳輸器識別資訊。舉例而言,傳輸器T1識別資訊係在符號236之作用中交錯上傳輸,且傳輸器T5識別資訊係在符號238之專用作用中交錯上傳輸。當一傳輸器不在作用中符號上傳輸其識別時,PPC產生器邏輯210操作以在剩餘符號之閒置交錯上編碼閒置資訊。舉例而言,若PPC 202包含十個符號,則在SFN網路中,將給多達十個傳輸器各自指派一PPC符號以作為其各別作用中符號。每一傳輸器將在其各別作用中符號之作用中交錯上編碼識別資訊,且將在剩餘符號之閒置交錯上編碼閒置資訊。應注意,當一傳輸器在一PPC符號之閒置交錯上傳輸閒置資訊時,傳輸器邏輯212操作以調整所傳輸符號之功率,以維持恆定之每符號之能量功率位準。The PPC generator logic 210 operates to encode the transmitter identification information into the active symbols of the transmitter. For example, the interlace of each symbol is grouped into two groups called "interactive interleaving" and "idle interleaving". The PPC generator logic 210 operates to interleave the encoded transmitter identification information in a dedicated role of the symbols in the role of the transmitter. For example, the transmitter T1 identification information is transmitted interleaved in the role of the symbol 236, and the transmitter T5 identification information is interleaved for transmission in the dedicated role of the symbol 238. When a transmitter does not transmit its identification on the active symbol, PPC generator logic 210 operates to encode idle information on the idle interlaces of the remaining symbols. For example, if PPC 202 contains ten symbols, then in the SFN network, up to ten transmitters will each be assigned a PPC symbol as their respective active symbol. Each transmitter will interleave the identification information in the role of its respective active symbols and will encode the idle information on the idle interlaces of the remaining symbols. It should be noted that when a transmitter transmits idle information on an idle interlace of a PPC symbol, the transmitter logic 212 operates to adjust the power of the transmitted symbol to maintain a constant energy power level per symbol.
可藉由硬體、軟體、韌體或其任何組合來組態網路邏輯212。網路邏輯212可操作以接收網路供應資訊224及系統時間226以供系統使用。使用供應資訊224來為傳輸器T1-T5中之每一者判定一作用中符號,在該作用中符號期間,每一傳輸器將在其作用中符號之作用中交錯上傳輸識別資訊。使用系統時間226來將傳輸同步,使得接收器件能夠判定特定傳輸器之頻道估計,以及輔助傳播延遲量測。Network logic 212 can be configured by hardware, software, firmware, or any combination thereof. Network logic 212 is operable to receive network provisioning information 224 and system time 226 for use by the system. The supply information 224 is used to determine an active symbol for each of the transmitters T1-T5 during which each transmitter will interleave the identification information in the role of its active symbol. System time 226 is used to synchronize the transmissions so that the receiving device can determine the channel estimates for a particular transmitter, as well as the auxiliary propagation delay measurements.
接收器邏輯218包含硬體、軟體或其任何組合。接收器邏輯218操作以在PPC 202上自附近傳輸器接收傳輸超訊框及PPC符號234。接收器邏輯218操作以接收PPC符號234且將其傳遞至PPC解碼器邏輯220。Receiver logic 218 includes hardware, software, or any combination thereof. Receiver logic 218 operates to receive transmission hyperframes and PPC symbols 234 from nearby transmitters on PPC 202. Receiver logic 218 operates to receive PPC symbols 234 and pass them to PPC decoder logic 220.
PPC解碼器邏輯220包含硬體、軟體或其任何組合。PPC解碼器邏輯220操作以解碼PPC符號,以判定與每一符號相關聯之特定傳輸器之識別碼。舉例而言,解碼邏輯220操作以解碼所接收的每一PPC符號之作用中交錯,以判定與彼符號相關聯之特定傳輸器之識別碼。一旦傳輸器識別碼經判定,PPC解碼器邏輯220便操作以判定彼傳輸器之頻道估計。舉例而言,使用與所接收之超訊框相關聯之時間參考,PPC解碼器邏輯220可判定與每一所接收之PPC符號相關聯之作用中傳輸器的一頻道估計。因此,PPC解碼器邏輯220操作以判定多個傳輸器識別符及相關聯頻道估計。接著將此資訊傳遞至位置判定邏輯221。PPC decoder logic 220 includes hardware, software, or any combination thereof. PPC decoder logic 220 operates to decode PPC symbols to determine an identification code for a particular transmitter associated with each symbol. For example, decoding logic 220 operates to decode the interleaving of each received PPC symbol to determine the identification code of the particular transmitter associated with the symbol. Once the transmitter identification code is determined, the PPC decoder logic 220 operates to determine the channel estimate for the transmitter. For example, using the time reference associated with the received hyperframe, PPC decoder logic 220 can determine a channel estimate for the active transmitter associated with each received PPC symbol. Accordingly, PPC decoder logic 220 operates to determine a plurality of transmitter identifiers and associated channel estimates. This information is then passed to location decision logic 221.
位置判定邏輯221包含硬體、軟體或其任何組合。位置判定邏輯221操作以基於自PPC解碼器邏輯220接收到的所解碼之傳輸器識別資訊及相關聯頻道估計來計算器件206之位置。舉例而言,傳輸器T1-T5之位置為網路實體所知。使用該等頻道估計來判定該器件距彼等位置之距離。位置判定邏輯221接著使用三角量測技術對器件206之位置進行三角量測。The location decision logic 221 includes hardware, software, or any combination thereof. The location decision logic 221 operates to calculate the location of the device 206 based on the decoded transmitter identification information and associated channel estimates received from the PPC decoder logic 220. For example, the locations of the transmitters T1-T5 are known to the network entity. These channel estimates are used to determine the distance of the device from its location. The position decision logic 221 then triangulates the position of the device 206 using a triangulation technique.
在操作期間,傳輸器202中之每一者在與彼傳輸器相關聯之作用中PPC符號之作用中交錯中之至少一者上編碼傳輸器識別資訊。PPC產生器邏輯210操作以基於網路供應資訊224來判定哪個符號為一特定傳輸器之作用中符號。當一傳輸器不在其作用中符號之作用中交錯上傳輸其識別資訊時,PPC產生器邏輯210使該傳輸器在剩餘PPC符號之閒置交錯上傳輸閒置資訊。因為每一傳輸器在每一PPC符號中傳輸能量,(亦即,在作用中交錯或閒置交錯上),所以傳輸器功率不經歷將干擾網路效能之波動。During operation, each of the transmitters 202 encodes the transmitter identification information on at least one of the active interlaces of the PPC symbols associated with the transmitter. PPC generator logic 210 operates to determine which symbol is the active symbol for a particular transmitter based on network provisioning information 224. When a transmitter does not interleave its identification information in the role of its active symbol, PPC generator logic 210 causes the transmitter to transmit idle information on the idle interlace of the remaining PPC symbols. Because each transmitter transmits energy in each PPC symbol (i.e., interleaved or idle interleaved), the transmitter power does not experience fluctuations that would interfere with network performance.
當器件206在PPC 202上自傳輸器T1-T5接收PPC符號234時,其解碼來自每一PPC符號之作用中交錯的傳輸器識別符。一旦自每一PPC符號識別了傳輸器,該器件便能夠基於可用系統時序來判定彼傳輸器之頻道估計。該器件繼續判定其所識別之傳輸器的頻道估計,直至獲得多個傳輸器之頻道估計(亦即,較佳四個估計)為止。基於此等估計,位置判定邏輯221操作以使用標準三角量測技術對該器件之位置228進行三角量測。在另一實例中,位置判定邏輯221操作以將該等傳輸器識別符及相關聯頻道估計傳輸至另一網路實體,該另一網路實體執行三角量測或其他定位演算法以判定該器件之位置。When device 206 receives PPC symbol 234 from transmitters T1-T5 on PPC 202, it decodes the interlaced transmitter identifier from each of the PPC symbols. Once the transmitter is identified from each PPC symbol, the device is able to determine the channel estimate of the transmitter based on the available system timing. The device continues to determine the channel estimate of its identified transmitter until a channel estimate (i.e., preferably four estimates) for multiple transmitters is obtained. Based on these estimates, position decision logic 221 operates to triangulate position 228 of the device using standard triangulation techniques. In another example, location decision logic 221 operates to transmit the transmitter identifier and associated channel estimate to another network entity that performs triangulation or other positioning algorithms to determine the The location of the device.
在一實例中,該定位系統包含一具有儲存於電腦可讀媒體上之一或多個程式指令(「指令」)之電腦程式,該電腦程式在由至少一處理器執行時提供本文所述定位系統之功能。舉例而言,可自一電腦可讀媒體(諸如,軟性磁碟、CDROM、記憶卡、快閃記憶體器件、RAM、ROM或任何其他類型之記憶體器件)將指令載入至PPC產生器邏輯210及/或PPC解碼器邏輯218中。在另一實例中,可自一外部器件或網路資源來下載指令。該等指令在由至少一處理器執行時操作以提供如本文所述之定位系統的實例。In one example, the positioning system includes a computer program having one or more program instructions ("commands") stored on a computer readable medium, the computer program providing the positioning described herein when executed by at least one processor The function of the system. For example, instructions can be loaded into PPC generator logic from a computer readable medium such as a floppy disk, CDROM, memory card, flash memory device, RAM, ROM, or any other type of memory device. 210 and/or PPC decoder logic 218. In another example, the instructions can be downloaded from an external device or network resource. The instructions operate when executed by at least one processor to provide an example of a positioning system as described herein.
因此,該定位系統在傳輸器處操作以判定一作用中PPC符號,其中一特定傳輸器在彼符號之作用中交錯上傳輸其識別資訊。該定位系統亦在接收器件處操作以判定在接收之PPC符號中識別之傳輸器之頻道估計,且執行三角量測技術以判定一器件位置。Thus, the positioning system operates at the transmitter to determine an active PPC symbol, wherein a particular transmitter interleaves its identification information as a function of its symbol. The positioning system is also operative at the receiving device to determine a channel estimate for the transmitter identified in the received PPC symbol and to perform a triangulation technique to determine a device position.
圖3展示可用於圖1或圖2之系統中的傳輸超訊框300。如所示,每一超訊框300包括序言資料302、一或多個資料訊框304(例如,在圖3之實例中為4個資料訊框)及PPC/保留符號306,序言資料302包括分時多工(TDM)導頻(例如,TDM1及TDM2)、廣域識別頻道(WIC)、局域識別頻道(LIC)及附加項資訊符號(OIS)302。FIG. 3 shows a transmission hyperframe 300 that can be used in the system of FIG. 1 or 2. As shown, each hyperframe 300 includes a preamble 302, one or more data frames 304 (eg, four data frames in the example of FIG. 3), and a PPC/reserved symbol 306, the preamble 302 including Time division multiplexing (TDM) pilots (eg, TDM1 and TDM2), wide area identification channel (WIC), local area identification channel (LIC), and additional information symbol (OIS) 302.
根據一實例,PPC符號可經組態,使得將循環首碼長度增加至副載波數目之一半,諸如在4096個副載波符號之實例中增加至2048個碼片。舉例而言,經增加之循環首碼允許接收超訊框之接收器件更充分地考量頻道延遲擴展之可變性。因此,根據一實例,每一實體層(PHY)PPC符號將具有6161個碼片之持續時間(2048個碼片之循環首碼+4096個碼片+17個碼片之視窗)。應注意,此所揭示實例假定「4K」(亦即,4096個碼片之視窗)快速傅立葉變換(FFT)模式。另外,根據此實例,如稍後將論述,可將媒體存取控制(MAC)PPC符號界定為等於每符號具有八個交錯的具有6161個碼片之持續時間的一個PHY PPC符號(亦即,用於「4K」FFT之PHY PPC)。然而,該PPC符號結構可經組態,使得其類似於用於相應FFT模式(例如,1K、2K或8K)之資料符號結構。因此,再次假定循環首碼等於FFT視窗之一半及17個視窗碼片,對於1K及2K FFT模式而言,每符號碼片之數目將分別為(例如)1553個碼片(1024個碼片+512循環首碼+17個視窗碼片)及3089個碼片。一超訊框中MAC PPC符號之數目(例如,8個)仍將與4K模式相同。應注意,此數字僅作為實例來提供,且熟習此項技術者應瞭解在本揭示案之範疇內其他PPC符號組態及持續時間為可能的。According to an example, the PPC symbols can be configured such that the cyclic first code length is increased to one-half the number of sub-carriers, such as to 2048 chips in the example of 4096 sub-carrier symbols. For example, the increased loop first code allows the receiving device receiving the hyperframe to more fully account for the variability of channel delay spread. Thus, according to an example, each physical layer (PHY) PPC symbol will have a duration of 6161 chips (a loop of the first code of 2048 chips + a window of 4096 chips + 17 chips). It should be noted that the disclosed example assumes a "4K" (ie, 4096-chip window) Fast Fourier Transform (FFT) mode. Additionally, according to this example, as will be discussed later, the Medium Access Control (MAC) PPC symbol can be defined to be equal to one PHY PPC symbol having a duration of six interlaces with 6161 chips per symbol (ie, PHY PPC for "4K" FFT). However, the PPC symbol structure can be configured such that it is similar to the data symbol structure for the corresponding FFT mode (eg, 1K, 2K, or 8K). Therefore, again assume that the loop first code is equal to one and a half of the FFT window and 17 window chips. For 1K and 2K FFT modes, the number of chips per symbol will be (for example) 1553 chips (1024 chips +) 512 cycles first code + 17 window chips) and 3,089 chips. The number of MAC PPC symbols in a superframe (for example, 8) will still be the same as the 4K mode. It should be noted that this number is provided by way of example only, and those skilled in the art will appreciate that other PPC symbol configurations and durations are possible within the scope of the present disclosure.
如可自上文之論述獲知,在所有FFT模式下PPC符號之循環首碼將與資料符號不同。舉例而言,如上文所提及,用於4K FFT模式之循環首碼將為2048個碼片,而非用於資料符號之更典型的512個碼片。As can be seen from the above discussion, the cycle first code of the PPC symbol will be different from the data symbol in all FFT modes. For example, as mentioned above, the loop first code for the 4K FFT mode will be 2048 chips instead of the more typical 512 chips for the data symbols.
圖4展示用於由作用中傳輸器傳輸之PPC符號之OFDM符號400之交錯結構的功能圖。根據基於上述例示性數字之一實例,符號400將包括經劃分且分組成所示之八個交錯(I0 -I7 )的4096個副載波,使得每一交錯包含512個副載波,該等副載波之頻率或載頻調通常不相鄰。如先前所提及,可需要使用一接收器。第一,一接收器件需要使用該符號中之導頻副載波來判定一頻道估計。第二,一接收器件需要判定該頻道估計所對應之傳輸器的識別碼。4 shows a functional diagram of an interleaved structure of OFDM symbols 400 for PPC symbols transmitted by an active transmitter. According to one example based on the above illustrative numbers, symbol 400 will include 4096 subcarriers divided and grouped into eight interlaces (I 0 -I 7 ) as shown, such that each interlace contains 512 subcarriers, such The frequency or carrier frequency of the subcarriers is usually not adjacent. As mentioned previously, it may be desirable to use a receiver. First, a receiving device needs to use the pilot subcarriers in the symbol to determine a channel estimate. Second, a receiving device needs to determine the identifier of the transmitter corresponding to the channel estimate.
使用作用中符號400中之交錯來傳輸導頻載頻調以及傳輸器識別資訊。在圖4之特定實例中,符號400之副載波的分別標有參考數字402、404、406及408的第一部分(即,交錯I0 、I2 、I4 、I6 )以及標有410的交錯I1 為用於傳輸導頻載頻調之作用中交錯。在交錯I0 、I2 、I4 、I6 之情況中,藉由廣域擾亂器種子(亦即,廣域鑑別者位元(WID))及局域擾亂器種子(亦即,局域鑑別者位元(LID))擾亂導頻以確保跨該(等)網路之最大干擾抑制。此外,交錯I1 由作用中傳輸器用以傳輸導頻,該等導頻僅藉由WID擾亂(例如,將LID設定為零)以便減少接收器必須假定之假設的數目,且因此減少處理之數目,以便共同地判定WID及LID。The interleaving in the active symbol 400 is used to transmit the pilot carrier tone and the transmitter identification information. In the particular example of FIG. 4, the subcarriers of symbol 400 are labeled with a first portion of reference numerals 402, 404, 406, and 408 (ie, interlaced I 0 , I 2 , I 4 , I 6 ) and labeled 410. Interlace I 1 is interleaved for the purpose of transmitting pilot carrier frequency modulation. In the case of interleaving I 0 , I 2 , I 4 , I 6 , by wide-area scrambler seed (ie, wide-area discriminator bit (WID)) and local scrambler seed (ie, local area) The discriminator bit (LID) disturbs the pilot to ensure maximum interference rejection across the (etc.) network. In addition, interlace I 1 is used by the active transmitter to transmit pilots that are only scrambled by WID (eg, set the LID to zero) to reduce the number of hypotheses that the receiver must assume, and thus reduce the number of processing In order to jointly determine the WID and LID.
根據一特定實例,廣域識別符WOI ID及局域識別符LOI ID在較高層處為可用的且實際上在解碼OIS符號時為可用的。在實體層,經由使用不同擾亂器種子(WID及/或LID)來區分跨越各個區域及子區域(亦即,廣域及局域)的傳輸。在一實例中,WID可為4位元欄位且用以分開廣域傳輸,且LID可為另一4位元欄位以用於分開局域傳輸。由於僅存在16個可能的WID值及16個可能的LID值,故在整個網路部署中該等WID及LID值可能並不唯一。舉例而言,WID與LID之一給定組合可潛在地映射至多個WOI ID及LOI ID。儘管如此,但網路規劃可經完成,使得WID及LID之再用將為在地理上分開的。因此,在一給定鄰域中,毫無歧義地將一給定WID及LID映射至一特定WOI及LOI為可能的。因此,在實體層,PPC波形經設計以載運WID及LID資訊(亦即,與交錯I0 、I2 、I4 、I6 , 及I1 擾亂)。According to a particular example, the wide area identifier WOI ID and the local area identifier LOI ID are available at higher layers and are actually available when decoding OIS symbols. At the physical layer, transmissions across various regions and sub-regions (ie, wide and local) are distinguished by using different scrambler seeds (WID and/or LID). In an example, the WID can be a 4-bit field and used to separate wide-area transmissions, and the LID can be another 4-bit field for separate local transmissions. Since there are only 16 possible WID values and 16 possible LID values, these WID and LID values may not be unique throughout the network deployment. For example, a given combination of one of WID and LID can potentially be mapped to multiple WOI IDs and LOI IDs. Despite this, network planning can be done so that the reuse of WID and LID will be geographically separated. Therefore, it is possible to unambiguously map a given WID and LID to a particular WOI and LOI in a given neighborhood. Thus, at the physical level, the PPC waveform is designed to carry WID and LID information (ie, disturbed with interlaces I 0 , I 2 , I 4 , I 6 , and I 1 ).
如上所述,處於作用中狀態下之傳輸器應傳輸至少2048個導頻,以便使接收器能夠以所需延遲擴展來估計頻道。此對應於該作用中傳輸器之四個交錯。接著使用關於該傳輸器所屬於之廣域及局域之WID及LID來擾亂該四個作用中交錯(例如,I0 、I2 、I4 、I6 )。該符號之一接收器將因此首先自一PPC符號之作用中交錯中之導頻提取WID及LID資訊,且接著使用該WID/LID資訊獲得來自彼特定傳輸器之頻道估計。藉由WID及LID進行擾亂亦提供對來自相鄰局域網路中傳輸器之干擾的抑制。As noted above, the transmitter in the active state should transmit at least 2048 pilots to enable the receiver to estimate the channel with the required delay spread. This corresponds to the four interlaces of the active transmitter. The four active interlaces (eg, I 0 , I 2 , I 4 , I 6 ) are then scrambled using the wide and local WIDs and LIDs to which the transmitter belongs. One of the symbols will therefore first extract the WID and LID information from the pilot in the interlace of a PPC symbol, and then use the WID/LID information to obtain the channel estimate from the particular transmitter. The scrambling by WID and LID also provides suppression of interference from transmitters in adjacent local area networks.
然而,在接收器處之相應WID/LID識別步驟可能變得複雜。舉例而言,若使用WID及LID兩者對每一交錯進行擾亂,則接收器將必須共同偵測用於進行擾亂之WID及LID種子。每一種子存在16種可能性,使得接收器為進行共同偵測將必須嘗試256種假設。因此,可藉由允許WID及LID種子之獨立偵測來簡化接收器偵測。因此,在所揭示之實例中,PPC波形包括具有僅用WID值來擾亂之導頻的另一群副載波或交錯(例如,標有參考數字410的交錯I1 ),其中LID位元值被設定為0000。However, the corresponding WID/LID identification step at the receiver may become complicated. For example, if each interlace is scrambled using both WID and LID, the receiver will have to jointly detect the WID and LID seeds used to perform the scrambling. There are 16 possibilities for each seed, so that the receiver will have to try 256 hypotheses for common detection. Therefore, receiver detection can be simplified by allowing independent detection of WID and LID seeds. Thus, in the example of the disclosed, the PPC waveform includes only WID values having to disrupt the pilot subcarriers of another group or interleaved (e.g., interleaved labeled with reference numeral 1, I 410), wherein the LID bit values are set It is 0000.
除了上述內容外,本發明之裝置及方法包括使用副載波之另一部分來傳輸自含於PPC符號400中之特定傳輸器識別資訊。詳言之,副載波之此第二部分包含一PPC符號中之另一非零交錯。根據圖4所說明之實例,標有參考數字412之交錯I3 可包括傳輸器識別資訊,但是可使用任何其他空閒交錯。此自含式傳輸器識別資訊允許接收器獨立於正常超訊框處理來處理一PPC。詳言之,對傳輸器識別之取得可僅自PPC處理來得到,且將僅依賴於PPC處理之TDM1導頻頻道之偵測,此用於粗略時序偵測。此外,此產生傳輸器特定PPC頻道,其可用於支援通信網路中之位置特定應用,因為每一傳輸器本質上具備一無干擾頻道。因此,例如,每一傳輸器可經組態以經由傳輸器特定頻道來給予僅除了傳輸器識別資訊外之關於特定應用之資訊。因此,可利用其他PPC符號內之交錯來將特定應用資料傳送至接收器件。In addition to the above, the apparatus and method of the present invention includes the use of another portion of the subcarrier to transmit specific transmitter identification information contained in the PPC symbol 400. In particular, this second portion of the subcarrier contains another non-zero interlace in a PPC symbol. According to the example illustrated in Figure 4, the interlace is marked with reference numeral 412, I 3 may comprise a transmitter identification information, but any other free interlace. This self-contained transmitter identification information allows the receiver to process a PPC independently of normal hyperframe processing. In particular, the acquisition of the transmitter identification can only be obtained from the PPC processing, and will only rely on the detection of the TDM1 pilot channel processed by the PPC, which is used for coarse timing detection. In addition, this produces a transmitter-specific PPC channel that can be used to support location-specific applications in the communication network, as each transmitter inherently has a non-interfering channel. Thus, for example, each transmitter can be configured to impart information about a particular application, except for transmitter identification information, via a transmitter specific channel. Therefore, interleaving within other PPC symbols can be utilized to communicate specific application data to the receiving device.
傳輸器識別資訊中所包括的特定類型之資訊可首先包括傳輸器識別符位元,其提供用於傳輸器之唯一識別符。在一實例中,所預期之位元數目可為18,但是可利用任何合適之位元數目。又,可在傳輸器識別資訊中分配額外信號傳輸資訊位元以指示關於待傳輸之其他資訊的更多特異性。舉例而言,該信號傳輸資訊可用於向接收器件指示傳輸器是否使用其他符號來傳輸其他資訊及將使用多少其他符號。在一實例中,該信號傳輸資訊包含3個位元。因此,在此實例中,傳輸器識別資訊之有效負載將為21個位元(用於傳輸器ID之18個位元+用於信號傳輸資訊之3個位元),但是可涵蓋更少或更多之數目。The particular type of information included in the transmitter identification information may first include a transmitter identifier bit that provides a unique identifier for the transmitter. In an example, the number of expected bits can be 18, but any suitable number of bits can be utilized. Also, additional signal transmission information bits may be allocated in the transmitter identification information to indicate more specificity with respect to other information to be transmitted. For example, the signal transmission information can be used to indicate to the receiving device whether the transmitter uses other symbols to transmit other information and how many other symbols will be used. In an example, the signal transmission information includes 3 bits. Therefore, in this example, the payload of the transmitter identification information will be 21 bits (18 bits for the transmitter ID + 3 bits for the signal transmission information), but may cover less or More numbers.
傳輸器識別資訊亦可包括一錯誤偵測碼,諸如循環冗餘檢查(CRC)。在一實例中,CRC函數可藉由CRC多項式g(x) =x 7 +x 6 +x 4 +1來界定,其產生7位元之CRC。The transmitter identification information may also include an error detection code, such as a cyclic redundancy check (CRC). In an example, the CRC function can be defined by the CRC polynomial g(x) = x 7 + x 6 + x 4 +1, which produces a 7-bit CRC.
標有412之交錯I3 (雖然可使用任何其他空閒交錯)可包括呈一或多個傳輸器位置座標(例如,GPS經度、緯度及或海拔高度座標)之形式的傳輸器識別資訊。另外,槽3作為可能傳輸器識別指示儲存庫亦可包括網路延遲資訊。應注意,交錯在與傳輸器位置識別一起使用時在本文中亦被稱為槽。因此,在一態樣中,槽3(亦即,交錯I3 )可保持傳輸器(TX)位置資訊。Interlace is marked with 412 I 3 (although any other free interlace) form may comprise one or more transmitter location coordinates (e.g., GPS longitude, latitude and or altitude coordinates) of the form of the transmission identification information. In addition, the slot 3 as a possible transmitter identification indication repository may also include network delay information. It should be noted that interleaving is also referred to herein as a slot when used with transmitter location identification. Accordingly, in one aspect, the groove 3 (i.e., the I interlace 3) can be held transmitter (TX) location information.
在一種方法(方法1)中,不管傳輸器識別資訊或其他參數是否係在PPC封包中用信號傳輸,皆使用例如80個位元之固定位元PPC封包長度。此提供10個各自為8個位元之區塊,每8個位元轉換成100個位元。與較短長度之PPC封包相比,可達成較長之有效負載。在測試及實施中,單一PPC封包大小為有益的。封包類型(欄位分配)為自含式的且允許可擴展性以包括其他參數,諸如傳輸器功率及超訊框數目。實施如何分配PPC位元之兩種方法展示於幻燈片1上所示之選項1及2中。雷德-穆勒編碼可用於該兩種實施。其他變體包括使用相同基數(64,7)之雷德-穆勒碼,但截短至(41,7)。傳輸器ID在選項2中重複兩次而非保留50個位元。在由18個位元之傳輸器ID產生68個位元之過程中,其他編碼方案為可能的。In one method (Method 1), regardless of whether the transmitter identification information or other parameters are signaled in the PPC packet, a fixed bit PPC packet length of, for example, 80 bits is used. This provides 10 blocks of 8 bits each, each of which is converted to 100 bits. A longer payload can be achieved compared to a shorter length PPC package. In testing and implementation, a single PPC packet size is beneficial. The packet type (field assignment) is self-contained and allows for scalability to include other parameters such as transmitter power and number of hyperframes. Two methods of implementing how to allocate PPC bits are shown in options 1 and 2 shown on slide 1. Red-Muller coding can be used for both implementations. Other variants include the Reed-Muller code using the same base (64, 7), but truncated to (41, 7). The Transmitter ID is repeated twice in Option 2 instead of 50 bits. Other coding schemes are possible during the generation of 68 bits from the 18-bit transmitter ID.
在另一種方法(方法2)中,不管傳輸器ID資訊是否係在PPC封包中用信號傳輸,皆使用56個位元之PPC封包。在幻燈片2上說明一位元分配。又,方法2之其他屬性及益處展示於幻燈片3及4上。In another method (Method 2), a 56-bit PPC packet is used regardless of whether the transmitter ID information is signaled in the PPC packet. One bit allocation is illustrated on slide 2. Again, other attributes and benefits of Method 2 are shown on slides 3 and 4.
一第三種方法(方法3)陳述於所附幻燈片5至8上,一樣本格式分配展示於幻燈片17上。由於在每一PPC MAC時間單位內,每一傳輸器可處於三種狀態(亦即,非作用中、識別或保留)中之一者下,故在方法3之情況中,將PPC之保留狀態用作傳輸器特定頻道。除了網路延遲外,資訊包括傳輸器ID資訊以及傳輸器之緯度、經度及海拔高度。此方法允許較大負載使用turbo編碼。如幻燈片6上所示,對於1000個位元之有效負載而言,與雷德-穆勒編碼相比,Turbo編碼供應更強健之編碼。如幻燈片5上所示,一實施例包括4個導頻槽與三個資料槽。可將PPC傳輸器ID資訊及PPC傳輸器位置資訊置放於該等資料槽中之任一者中。另一實施例包括5個資料槽及2個導頻槽。與3個資料槽相比,5個資料槽之情況存在更多冗餘。如可在圖4中進一步看出,兩個交錯或副載波群(例如,圖4之實例中的交錯I5 及I7 ,其由參考數字414及416表示)將在作用中PPC符號400中閒置或變成零。接著,使每一交錯中之能量為總OFDM符號能量之(8/6)倍以便確保每一OFDM PPC符號之本質上恆定的功率位準。然而,應注意,作用中符號400中所用之交錯(例如,交錯I0 -I4 及交錯I6 )之間的功率或能量分配不需要為均一的。更確切地說,在不同交錯中可全異地分派能量。舉例而言,交錯I3 之能量可設為8E/3,而交錯I0 、I2 、I4 、I6 之能量以及交錯I1 之能量可設為2E/3,或換言之,交錯I3 之能量位準為該五個交錯I0 、I1 、I2 、I4 或I6 中之每一者的能量的4倍。A third method (method 3) is set forth on the attached slides 5 through 8, and the same format assignment is shown on slide 17. Since each transmitter can be in one of three states (ie, inactive, identified, or reserved) within each PPC MAC time unit, in the case of method 3, the PPC retention state is used. As a transmitter specific channel. In addition to network latency, the information includes transmitter ID information as well as the latitude, longitude and altitude of the transmitter. This method allows turbo loading to be used for larger loads. As shown on slide 6, for a payload of 1000 bits, Turbo coding supplies a more robust encoding than the Reed-Muller encoding. As shown on slide 5, an embodiment includes four pilot slots and three data slots. The PPC Transmitter ID information and the PPC Transmitter Location Information can be placed in any of the data slots. Another embodiment includes five data slots and two pilot slots. Compared with the three data slots, there are more redundancy in the case of the five data slots. As can be further seen in FIG. 4, two interleaved or subcarrier groups (eg, interlaces I 5 and I 7 in the example of FIG. 4, which are represented by reference numerals 414 and 416) will be in the active PPC symbol 400. Idle or become zero. Next, the energy in each interlace is (8/6) times the total OFDM symbol energy to ensure an essentially constant power level for each OFDM PPC symbol. However, it should be noted that the power or energy distribution between the interlaces used in the active symbol 400 (e.g., interlace I 0 -I 4 and interlace I 6 ) need not be uniform. Rather, energy can be distributed disparately in different interlaces. For example, the energy of the interlaced I 3 can be set to 8E/3, and the energy of the interlaced I 0 , I 2 , I 4 , I 6 and the energy of the interlaced I 1 can be set to 2E/3, or in other words, interleaved I 3 The energy level is four times the energy of each of the five interlaces I 0 , I 1 , I 2 , I 4 or I 6 .
假定上文論述之例示性超訊框結構,使用每超訊框八個可用PPC符號,一超訊框可支援一局域中之八個傳輸器。然而,在某些部署中,一局域中傳輸器之數目可高於八個。另外,僅一特定局域中之傳輸器被約束為在時間上正交。因此,可使用網路規劃以跨不同局域來排程傳輸器,使得網路中之自干擾得以避免或至少得以減輕。Assuming the exemplary hyperframe structure discussed above, using eight available PPC symbols per hyperframe, a hyperframe can support eight transmitters in a local area. However, in some deployments, the number of transmitters in a local area can be higher than eight. In addition, only transmitters in a particular local area are constrained to be orthogonal in time. Thus, network planning can be used to schedule transmitters across different localities such that self-interference in the network is avoided or at least mitigated.
此外,可希望每局域支援8個以上傳輸器。為達成實例之目的,假定一局域中將支援24個傳輸器。為支援此部署,網路可經組態,使得每一傳輸器在每三(3)個超訊框中將傳輸一作用中PPC符號一次。在此種情況下,網路規劃及附加項參數可用於通知傳輸器其各別作用中狀態將在何時發生及其將於何時在經指派之作用中符號上傳輸識別資訊。因此,三個超訊框之週期性可在網路層級處加以程式化,使得系統可充分調整以支援額外傳輸器。網路所使用之週期性在網路部署各處可保持恆定,使得可簡化網路規劃以及用於傳送資訊之附加項資訊。在一實例中,在較高層中將網路中所使用之關於週期性的資訊作為附加項資訊來廣播,以允許此參數之更易程式化性。另外,在每一局域具有30個可用PPC符號之情況下,為緩解兩個不同局域之邊界處之干擾而對網路規劃作出之約束亦得到放鬆。In addition, it is desirable to support more than 8 transmitters per local area. For the purposes of the example, assume that 24 transmitters will be supported in one local area. To support this deployment, the network can be configured such that each transmitter will transmit an active PPC symbol once every three (3) hyperframes. In this case, the network plan and additional parameters can be used to inform the transmitter of when its respective active state will occur and when it will transmit the identification information on the assigned role. Therefore, the periodicity of the three hyperframes can be programmed at the network level so that the system can be fully tuned to support additional transmitters. The periodicity used by the network can be kept constant throughout the network deployment, simplifying network planning and additional information for transmitting information. In one example, periodic information used in the network is broadcast in the higher layers as additional item information to allow for easier programmaticity of this parameter. In addition, in the case where there are 30 available PPC symbols in each local area, the constraints on network planning to ease the interference at the boundary of two different local areas are also relaxed.
圖5展示在諸如圖1及圖2所說明之網路的網路中由被動或非作用中傳輸器傳輸之例示性PPC符號。如可看出,非作用中PPC符號500具有變成零之交錯I0 至16 。交錯I7 (用數字502來提及)為被動傳輸器符號500中具有非零能量之唯一交錯。交錯I7 中傳輸之導頻不含有有意義之資料或資訊,且該交錯可被稱為「虛設」交錯。根據所揭示之實例,亦將交錯I7 中之能量按比例調整為每OFDM符號交錯可用之能量的8倍,以便滿足恆定OFDM符號能量約束。被動或非作用中PPC符號500之傳輸確保其中之傳輸不干擾作用中傳輸器之導頻,如圖4所說明,該等導頻係在交錯I0 、I1 、I2 、I4 及I6 上傳輸的。5 shows an exemplary PPC symbol transmitted by a passive or inactive transmitter in a network such as the network illustrated in FIGS. 1 and 2. As can be seen, an inactive PPC symbol 500 has become zero the I 0 to 16 interlace. Interlace I 7 (mentioned by numeral 502) is the only interlace with non-zero energy in passive transmitter symbol 500. The pilot transmitted in interlace I 7 does not contain meaningful data or information, and the interlace can be referred to as a "dummy" interlace. In accordance with the disclosed examples, the energy in interlace I 7 is also scaled to 8 times the energy available for interleaving per OFDM symbol to satisfy constant OFDM symbol energy constraints. The transmission of the passive or inactive PPC symbol 500 ensures that the transmission therein does not interfere with the pilot of the active transmitter, as illustrated in Figure 4, the pilots are interleaved I 0 , I 1 , I 2 , I 4 and I 6 transmitted on.
圖6說明用於在作用中PPC符號之交錯(諸如,圖4所說明之交錯)中編碼傳輸器識別的裝置600。裝置600首先包括一用於設定或判定傳輸器識別符(TxID)位元及分配位元的模組602。如上文所論述,用於TxID位元及分配位元之位元數目可分別設為18及3。為達成說明之目的而假定此實施例,將21個位元自模組602傳遞至模組604,模組604經組態以將CRC位元(例如,如上文所論述,七個位元)添加至TxID位元及分配位元。模組604接著將總位元(其可被統稱為「傳輸器識別資訊」)傳遞至一交錯器606(例如,區塊交錯器)。假定傳遞了28個位元,區塊交錯器606可組態為4×7矩陣,其中逐行地寫入該等位元且相應地逐列讀出該等位元以達成交錯。然而,應注意,熟習此項技術者可預期與目前揭示之裝置及方法一起使用的各種其他類型之合適交錯。Figure 6 illustrates apparatus 600 for encoding transmitter identification in the interleaving of PPC symbols in effect, such as the interlacing illustrated in Figure 4. Apparatus 600 first includes a module 602 for setting or determining a transmitter identifier (TxID) bit and assigning a bit. As discussed above, the number of bits for the TxID bit and the allocated bit can be set to 18 and 3, respectively. Assuming this embodiment for purposes of illustration, 21 bits are passed from module 602 to module 604, which is configured to convert CRC bits (eg, as described above, seven bits) Add to TxID bit and allocate bit. Module 604 then passes the total bits (which may be collectively referred to as "transmitter identification information") to an interleaver 606 (eg, a block interleaver). Assuming that 28 bits are passed, the block interleaver 606 can be configured as a 4 x 7 matrix in which the bits are written row by row and the bits are read out column by column to achieve interleaving. However, it should be noted that various other types of suitable interleaves that are contemplated for use with the presently disclosed devices and methods are contemplated by those skilled in the art.
將經交錯之位元讀出至編碼器608以根據預定編碼方案對該等位元編碼。在一實例中,編碼器608可使用雷德-穆勒(RM)錯誤校正碼來對該等位元編碼,諸如第一階(64,7)RM碼。在此實例中,交錯器608將28個資訊位元傳遞至編碼器610。藉由一(64,7)RM碼,將由對該28個資訊位元進行編碼來得到四個64位元之碼區塊。然而,在一特定實例中,在需要250個經編碼位元來配合一特定數字時,所得之256個位元將過大。因此,可剔除(puncture)該(64,7)RM碼之2個位元,導致如用編碼器608內之剔除模組610所說明的(62,7)RM碼。在一特定實例中,可剔除對應於雷德穆勒碼字中之位置62及63的位元。因此,當編碼該28個資訊位元時,結果將為248個經編碼位元。如編碼器608內之零插入模組612進一步所說明,可將兩個零附加至該四個碼區塊以達成250個經編碼位元。一接收器又將假定該等位元在解碼期間為零。The interleaved bits are read out to an encoder 608 to encode the bits according to a predetermined coding scheme. In an example, encoder 608 can encode the equal bits using a Reed-Muller (RM) error correction code, such as a first order (64, 7) RM code. In this example, interleaver 608 passes 28 information bits to encoder 610. With a (64, 7) RM code, the 28 information bits will be encoded to obtain four 64-bit code blocks. However, in a particular example, when 250 encoded bits are needed to fit a particular number, the resulting 256 bits will be too large. Thus, the 2 bits of the (64, 7) RM code can be punctured, resulting in a (62, 7) RM code as illustrated by the culling module 610 in the encoder 608. In a particular example, the bits corresponding to locations 62 and 63 in the Red Muller codeword can be eliminated. Therefore, when encoding the 28 information bits, the result will be 248 encoded bits. As further illustrated by zero insertion module 612 within encoder 608, two zeros can be appended to the four code blocks to achieve 250 encoded bits. A receiver will again assume that the bits are zero during decoding.
圖7說明可用在傳輸器中產生RM碼且更特定言之係在編碼器608內的例示性硬體電路700。如所說明,硬體電路700接收一7位元輸入,由接收輸入位元m0 至m6 之輸入702所說明。電路700亦包括一k-1(例如,6)位元計數器704,其接收一時脈輸入以使計數器704增加。藉由各別乘法器706來將計數器704之輸出乘以輸入位元m0 至m5 中之每一者。另外,將最高有效位元m6 乘以一恆定二進位「1」值(區塊708)。藉由求和區塊710來對乘法器之輸出求和且輸出一RM(64,7)碼字,其為一連串64位元值c 63 至c 0 。應注意,在一實例中,可藉由丟棄值c 62 及c 63 來獲得經剔除之碼。FIG. 7 illustrates an exemplary hardware circuit 700 that can be used in an encoder to generate an RM code and, more specifically, in an encoder 608. As illustrated, hardware circuit 700 receives a 7-bit input as illustrated by input 702 that receives input bits m 0 through m 6 . Circuitry 700 also includes a k-1 (e.g., 6) bit counter 704 that receives a clock input to increment counter 704. With the respective multiplier 706 to the output of counter 704 is multiplied by each of input bits m 0 to m 5 in the. In addition, the most significant bit m 6 is multiplied by a constant binary "1" value (block 708). The output of the multiplier is summed by summing block 710 and an RM (64, 7) codeword is output, which is a series of 64 bit values c 63 to c 0 . It should be noted that in an example, the culled code can be obtained by discarding the values c 62 and c 63 .
返回至圖6,一旦藉由編碼器608對傳輸器資訊進行了編碼,便可使用重複器614來確保位元之數目配合通信系統之特定數字。此重複供應在接收器處之處理增益的增加。由上述實例,由編碼器608輸出之250個位元可重複四次共1000個位元,此將導致接收器處的6dB之處理增益。在重複器614重複該等位元後,如由擾亂器616所說明,對該等位元進行擾亂。在一實例中,可基於PPC符號索引(例如,本實例中為0至7)及與交錯索引相同之槽式遮罩來用一種子來對該等位元進行擾亂。在擾亂後,調變器618根據眾多調變方案中之任一者來調變該等經擾亂之位元以供傳輸。在上文使用1000個位元之實例中,可將該等位元映射至QPSK符號,此導致500個QPSK符號。在具有分成各自為512個位元之八個交錯的4096個資料副載波的OFDM實體層符號中,500個QPSK符號將填滿一個交錯,其取決於PHY層符號至具有6475個碼片之持續時間的PPC符號的映射而橫跨一個或多個實體層符號。應注意,重複器614、擾亂器616及調變器618之使用僅為調變方案之一實例,且熟習此項技術者應瞭解,其他合適調變方案可用於所揭示之方法及裝置。Returning to Figure 6, once the transmitter information is encoded by encoder 608, repeater 614 can be used to ensure that the number of bits matches the particular number of the communication system. This repetition supplies an increase in processing gain at the receiver. From the above example, the 250 bits output by encoder 608 can be repeated four times for a total of 1000 bits, which would result in a processing gain of 6 dB at the receiver. After the repeater 614 repeats the bits, the bits are scrambled as illustrated by the scrambler 616. In an example, the bits may be scrambled with a sub-block based on a PPC symbol index (eg, 0 to 7 in this example) and a trough mask that is the same as the interlace index. After the disturbance, the modulator 618 modulates the distracted bits for transmission according to any of a number of modulation schemes. In the example above where 1000 bits are used, the bits can be mapped to QPSK symbols, which results in 500 QPSK symbols. In an OFDM physical layer symbol with eight interleaved 4096 data subcarriers divided into 512 bits each, 500 QPSK symbols will fill an interlace, depending on the PHY layer symbol to have a duration of 6475 chips. The mapping of temporal PPC symbols spans one or more physical layer symbols. It should be noted that the use of repeater 614, scrambler 616, and modulator 618 is only one example of a modulation scheme, and those skilled in the art will appreciate that other suitable modulation schemes can be used with the disclosed methods and apparatus.
此外,在上述實例中,假定接收器之一模式具有一4096個樣本(亦即,「4K」)快速傅立葉變換(FFT)視窗。應注意,涵蓋使用相同方法及裝置之其他FFT模式(例如,1K、2K或8K)。Further, in the above example, it is assumed that one of the receiver modes has a 4096 sample (i.e., "4K") fast Fourier transform (FFT) window. It should be noted that other FFT modes (eg, 1K, 2K, or 8K) using the same methods and devices are contemplated.
在由調變器618調變後,例如,可藉由交錯器620對調變符號進行交錯以減輕可能在傳輸頻道上傳輸期間出現之頻率變化。另外,取決於FFT模式,將經交錯之調變符號映射至一或多個PPC實體層(PHY)符號。在4K FFT模式之上述實例中,對500個經調變符號進行交錯並將其映射至一PHY PPC符號。在2K FFT模式之另一實例中,可對經交錯之符號進行交錯,或更多地可在不同交錯中(交錯內)對經交錯之符號進行交錯。After being modulated by modulator 618, for example, the modulated symbols can be interleaved by interleaver 620 to mitigate frequency variations that may occur during transmission on the transmission channel. Additionally, the interleaved modulation symbols are mapped to one or more PPC Physical Layer (PHY) symbols depending on the FFT mode. In the above example of 4K FFT mode, 500 modulated symbols are interleaved and mapped to a PHY PPC symbol. In another example of a 2K FFT mode, interlaced symbols can be interleaved, or more interlaced symbols can be interleaved in different interlaces (interlaced).
圖8展示用於在無線系統(諸如,圖1及圖2所說明之系統)中提供傳輸器識別的方法800。舉例而言,方法800適合由網路中之傳輸器用於允許接收器件識別傳輸器以及基於該傳輸器識別來判定定位。在一實例中,可藉由如圖2所示之214處所說明般組態的傳輸器來進行方法800。FIG. 8 shows a method 800 for providing transmitter identification in a wireless system, such as the system illustrated in FIGS. 1 and 2. For example, method 800 is suitable for use by a transmitter in a network to allow a receiving device to identify a transmitter and to determine positioning based on the transmitter identification. In one example, method 800 can be performed by a transmitter configured as illustrated at 214 in FIG.
如所示,在方法800開始後,處理流前進至步驟802,在其中,判定傳輸器識別資訊。作為一實例,如由圖2所說明,可自發送至傳輸器214之網路供應資料224來獲知此資訊。或者,傳輸器識別(TxID)資訊可基於一指定網路規劃而為傳輸器所固有的。As shown, after the method 800 begins, the process flow proceeds to step 802 where the transmitter identification information is determined. As an example, as illustrated by FIG. 2, this information can be learned from the network provisioning material 224 sent to the transmitter 214. Alternatively, Transmitter Identification (TxID) information may be inherent to the transmitter based on a specified network plan.
在判定或擷取到TxID資訊後,如由步驟804所說明,藉由傳輸器接收關於為達成PPC符號之目傳輸器是處於作用中狀態還是閒置狀態下的資訊。如先前所解釋,作用中傳輸器在一特定當前PPC符號之作用中交錯上進行傳輸,而當前閒置之傳輸器在一當前PPC符號之閒置或虛設交錯上進行傳輸。在一實例中,一傳輸器(例如,圖2中之傳輸器214)中之網路邏輯(例如,邏輯212)自一合適網路管理實體或器件接收來自網路供應資料224之對當前傳輸器狀態的指示。After the TxID information is determined or retrieved, as explained by step 804, the transmitter receives information about whether the destination transmitter for the PPC symbol is in an active state or an idle state. As previously explained, the active transmitter is interleaved for transmission in the presence of a particular current PPC symbol, while the currently idle transmitter transmits over an idle or dummy interlace of the current PPC symbol. In one example, network logic (e.g., logic 212) in a transmitter (e.g., transmitter 214 in FIG. 2) receives a current transmission from network provisioning material 224 from a suitable network management entity or device. An indication of the status of the device.
在決策步驟806中,作出當前PPC符號之傳輸器是處於作用中模式還是閒置模式的判定。作為一實例,可藉由圖2所示之傳輸器214中之PPC產生器邏輯210來進行此判定。In decision step 806, a determination is made whether the transmitter of the current PPC symbol is in an active mode or an idle mode. As an example, this determination can be made by the PPC generator logic 210 in the transmitter 214 shown in FIG.
若該傳輸器對於當前PPC符號為作用中的,則處理流前進至步驟808,在其中,藉由用WID及LID種子對導頻進行擾亂來在副載波之第一部分(例如,交錯I0 、I2 、I4 、I6 中之副載波)上編碼導頻。另外,如步驟810所示,藉由僅用WID種子對導頻進行擾亂來在副載波之第一部分之另一部分(例如,交錯I1 中之副載波)上編碼導頻。應注意,副載波之指定「第一部分」意味著該複數個可用副載波中用於傳送導頻載頻調的部分,諸如交錯I0 、I2 、I4 、I6 中之彼等副載波以及交錯I1 中之彼等副載波。作為一實例,可藉由圖2所說明之傳輸器邏輯208及PPC產生器邏輯210來進行如由步驟808及810所示的對導頻之編碼。If the transmitter for the current PPC symbol is in effect, then the process flow proceeds to step 808, in which the scrambling performed by the pilot to the first portion of subcarriers (e.g., interlace I 0 with WID and LID seeds, The pilot is encoded on the subcarriers in I 2 , I 4 , and I 6 . Further, as shown in step 810, with only WID seeds scrambling pilots to another in a first portion (e.g., interlace 1 I of subcarriers) subcarrier encoding the part of the pilot. It should be noted that the designation of the "first part" of the subcarrier means the portion of the plurality of available subcarriers for transmitting the pilot carrier tone, such as the subcarriers of the interlaces I 0 , I 2 , I 4 , I 6 . and their interleaving I 1 of subcarriers. As an example, the encoding of the pilots as illustrated by steps 808 and 810 can be performed by transmitter logic 208 and PPC generator logic 210 illustrated in FIG.
如由步驟812所說明,副載波之一第二部分(例如,交錯I3 中之副載波)編碼有傳輸器識別(TxID)資訊。如先前結合圖4、圖6及圖7之實例所論述的,根據一預定編碼方案來完成對TxID資訊之編碼。作為一實例,可藉由圖2所說明之傳輸器邏輯208及PPC產生器邏輯210來進行如由步驟812所示的對TxID之編碼。As illustrated by step 812, one of a second portion of subcarriers (e.g., subcarriers in interlace 3 in the I) encoding transmitter identification (the TxID) information. As discussed previously in connection with the examples of Figures 4, 6, and 7, the encoding of the TxID information is done in accordance with a predetermined coding scheme. As an example, the encoding of the TxID as shown by step 812 can be performed by the transmitter logic 208 and the PPC generator logic 210 illustrated in FIG.
在對TxID編碼後,如由步驟814所說明,傳輸PPC符號。處理流接著可返回至步驟804以對在同一超訊框或後一超訊框中之下一PPC符號進行編碼。作為一實例,可藉由一傳輸器邏輯(諸如,邏輯208)來進行對該符號之傳輸。After encoding the TxID, as explained by step 814, the PPC symbols are transmitted. The process stream may then return to step 804 to encode a PPC symbol below the same or the next hyperframe. As an example, the transmission of the symbol can be performed by a transmitter logic, such as logic 208.
若如決策步驟806處所判定當前PPC符號並非作用中符號,則如圖8所說明,處理流替代地前進至步驟816。在此種情況下,如由步驟816所示,當前PPC符號中之該複數個可用副載波之一群指定之可用副載波(例如,交錯I7 )編碼有閒置資訊。作為一實例,可藉由PPC產生器邏輯210及傳輸器邏輯208來進行此編碼。在步驟816中進行編碼後,處理流前進至步驟814以傳輸該PPC符號。If, as determined at decision step 806, the current PPC symbol is not an active symbol, then as illustrated in FIG. 8, the processing flow instead proceeds to step 816. In this case, as shown by step 816, the current PPC symbol group of the plurality of available subcarriers available subcarriers designated (e.g., interlace I 7) is encoded with idle information. As an example, this encoding can be performed by PPC generator logic 210 and transmitter logic 208. After encoding in step 816, the process flow proceeds to step 814 to transmit the PPC symbol.
另外應注意,作為步驟814處對PPC符號之傳輸的部分,亦可執行該PPC符號之功率位準。如先前所論述,此確保SFN系統之恆定符號功率。作為一實例,可藉由傳輸器邏輯208來進行功率調整。Additionally, it should be noted that the power level of the PPC symbol can also be performed as part of the transmission of the PPC symbol at step 814. As discussed previously, this ensures a constant symbol power of the SFN system. As an example, power adjustment can be performed by transmitter logic 208.
方法800因此操作以提供一系統以經由來自一傳輸器之PPC符號來提供傳輸器識別。應注意,方法800僅表示一實施例,且在本揭示案之範疇內,對方法800之改變、添加、刪除、組合或其他修改為可能的。雖然,為達成易於解釋之目的,將圖8之方法展示且描述為一連串或多個動作,但應理解,本文中所描述之處理不受動作次序之限制,因為一些動作可以不同於本文中展示且描述之次序的次序來發生及/或與其他動作同時發生。舉例而言,熟習此項技術者應瞭解,方法可或者表示為一連串相關狀態或事件,諸如以狀態圖之形式。此外,根據所揭示之本例示性方法,可並不需要所有所說明之動作來實施一方法。Method 800 thus operates to provide a system to provide transmitter identification via PPC symbols from a transmitter. It should be noted that the method 800 is merely illustrative of one embodiment, and variations, additions, deletions, combinations, or other modifications of the method 800 are possible within the scope of the present disclosure. Although the method of FIG. 8 is shown and described as a series or multiple acts for purposes of ease of explanation, it should be understood that the processes described herein are not limited by the order of actions, as some actions may differ from those shown herein. And the order in which the order is described occurs and/or occurs concurrently with other acts. For example, those skilled in the art will appreciate that a method can be either represented as a series of related states or events, such as in the form of a state diagram. Moreover, in accordance with the present exemplary methods disclosed, not all illustrated acts may be required to implement a method.
圖9說明用於傳輸具有傳輸器識別資訊之PPC符號的裝置。裝置900可實施為傳輸器(諸如,圖2中之傳輸器214)或傳輸器之組件。裝置900包括一經組態以接收網路供應資料(例如,傳輸狀態資訊)之模組902。模組902可接收諸如圖2所揭示之供應資料224的資料,或關於傳輸器之狀態的任何其他合適資料傳達資訊,諸如傳輸器對PPC傳輸而言是作用中還是閒置,或傳輸器識別資訊(TxID)。作為模組902之實施例的實例,可利用傳輸器邏輯208、PPC產生器邏輯210及網路邏輯212中之一或多者。Figure 9 illustrates an apparatus for transmitting PPC symbols having transmitter identification information. Device 900 can be implemented as a transmitter (such as transmitter 214 in Figure 2) or as a component of a transmitter. Apparatus 900 includes a module 902 configured to receive network provisioning data (e.g., transmission status information). Module 902 can receive information such as the provisioning material 224 disclosed in FIG. 2, or any other suitable information about the status of the transmitter, such as whether the transmitter is active or idle for PPC transmission, or transmitter identification information. (TxID). As an example of an embodiment of module 902, one or more of transmitter logic 208, PPC generator logic 210, and network logic 212 may be utilized.
裝置900進一步包括用於使用種子WID在一作用中傳輸器之一符號中之複數個副載波之第一部分上編碼導頻資訊的模組904。作為此模組之所實施功能的實例,該複數個副載波之第一部分可為劃分至交錯I1 中且用WID種子(例如,LID設定為0000)來進行擾亂的彼等副載波。圖9中說明用於使用WID及LID種子來在該符號之該複數個副載波之第一部分之另一部分上編碼傳輸器識別資訊的另一模組906。在一特定實施例中,模組906可經組態以使用交錯I0 、I2 、I4 及I6 中之彼等副載波來編碼導頻資訊。Apparatus 900 further includes a module 904 for encoding pilot information on a first portion of a plurality of subcarriers in a symbol of one of the active transmitters using the seed WID. As examples of this embodiment of the function module, the plurality of sub-carriers of the first portion may be staggered is divided to I and treated with 1 WID seed (e.g., the LID set to 0000) to disrupt their subcarrier. Another module 906 for encoding transmitter identification information on another portion of the first portion of the plurality of subcarriers of the symbol using the WID and LID seed is illustrated in FIG. In a particular embodiment, module 906 can be configured to encode pilot information using the subcarriers of interlaces I 0 , I 2 , I 4 , and I 6 .
雖然模組904及906在圖9之實例中展示為分成兩部分的,但此等模組可組態為用於在屬於該複數個副載波之第一部分的副載波(即,交錯I0 、I1 、I2 、I4 及I6 )上編碼導頻資訊的單一模組。應注意,作為模組904及906之實施例之實例,可利用傳輸器邏輯208、PPC產生器邏輯210及網路邏輯212中之一或多者。Although the module 904 and the display 906 is divided into two parts in the example of FIG. 9 but these modules may be configured for a subcarrier belonging to the first portion of the plurality of sub-carriers (i.e., interlace I 0, A single module that encodes pilot information on I 1 , I 2 , I 4 , and I 6 ). It should be noted that as an example of an embodiment of modules 904 and 906, one or more of transmitter logic 208, PPC generator logic 210, and network logic 212 may be utilized.
裝置900進一步包括用於根據一預定編碼方案在該複數個副載波之第二部分(例如,交錯I3 中之副載波)上來編碼傳輸器識別(TxID)資訊的模組908。應注意,作為模組908之實施例之實例,可利用傳輸器邏輯208、PPC產生器邏輯210及網路邏輯212中之一或多者。900 further comprises a means (e.g., interlace 3 in the subcarriers I) up identification code transmission (the TxID) information module in accordance with the plurality of subcarriers of the second portion 908 a predetermined coding scheme. It should be noted that as an example of an embodiment of module 908, one or more of transmitter logic 208, PPC generator logic 210, and network logic 212 may be utilized.
裝置900亦包括經組態以傳輸一PPC符號之模組910,該PPC符號包括在該複數個副載波之第一部分上之經編碼導頻及在該第二部分上之TxID。模組910之實施例可使用傳輸器邏輯208或PPC產生器邏輯210或其組合。Apparatus 900 also includes a module 910 configured to transmit a PPC symbol, the PPC symbol including an encoded pilot on a first portion of the plurality of subcarriers and a TxID on the second portion. Embodiments of module 910 can use transmitter logic 208 or PPC generator logic 210, or a combination thereof.
應注意,模組902、904、906、908、910及912可藉由經組態以執行程式指令或程式碼以提供如本文所描述的包括傳輸器識別及定位的系統之態樣的至少一處理器來實施。另外,可結合該至少一處理器提供一記憶體器件914或等效電腦可讀媒體以用於儲存該等程式指令或程式碼。It should be noted that modules 902, 904, 906, 908, 910, and 912 can be configured to execute program instructions or code to provide at least one aspect of a system including transmitter identification and positioning as described herein. The processor is implemented. Additionally, a memory device 914 or equivalent computer readable medium can be provided in conjunction with the at least one processor for storing the program instructions or code.
圖10展示用於接收一包括傳輸器識別資訊之符號的方法1000。舉例而言,方法1000適合由網路中之接收器件用於接收並解碼由當前作用中之傳輸器傳輸的PPC符號,諸如用於傳輸器識別及位置判定。在一實例中,可藉由如圖2所示之222處所說明般組態的接收器來進行方法1000。另外,使用方法1000。Figure 10 shows a method 1000 for receiving a symbol including transmitter identification information. For example, method 1000 is suitable for use by a receiving device in a network to receive and decode PPC symbols transmitted by a currently active transmitter, such as for transmitter identification and position determination. In one example, method 1000 can be performed by a receiver configured as illustrated at 222 in FIG. In addition, method 1000 is used.
如所示,一旦針對接收到之符號來開始該方法,處理流便前進至步驟1002。在步驟1002處,藉由接收器接收至少一PPC符號。在4K模式下接收器之特定實例中,對該至少一PPC符號之接收涉及收集輸入信號之4096個樣本。如所示,步驟1002亦可包括量測一或多個交錯中之能量,諸如用於設定FFT之比例因數以及用於判定臨限能量值以用於判定WID及LID值,此將在下文中論述。在一特定實例中,可自一第一接收到之PPC PHY符號之時域交錯樣本來量測交錯I1 中之能量。另外,亦可量測未使用之交錯(例如,交錯I5 )之能量以判定PPC頻道上之總干擾(例如,所引入之熱及/或信號)的量測。應注意,在另一實例中,接收器(諸如,接收器222)中之硬體可經組態以中斷一處理器(諸如,數位信號處理器(DSP)),以便程式化將由該硬體使用之FFT比例因數及該等臨限。作為一實例,FFT比例因數之設定用於改良來自弱傳輸器之信號的量化雜訊底限(quantization noise floor)。As shown, once the method is started for the received symbols, the process flow proceeds to step 1002. At step 1002, at least one PPC symbol is received by the receiver. In a particular example of a receiver in 4K mode, receipt of the at least one PPC symbol involves collecting 4096 samples of the input signal. As shown, step 1002 can also include measuring energy in one or more interlaces, such as a scaling factor for setting the FFT and for determining a threshold energy value for determining WID and LID values, as will be discussed below. . In a particular example, the energy in interlace I 1 can be measured from a time domain interleaved sample of a first received PPC PHY symbol. Further, also measuring the unused interlace (e.g., interlace I 5) to determine the total energy of the interference (e.g., by the introduction of heat and / or signals) is measured on the PPC channel. It should be noted that in another example, a hardware in a receiver (such as receiver 222) can be configured to interrupt a processor, such as a digital signal processor (DSP), so that the programming will be performed by the hardware. The FFT scale factor used and the thresholds. As an example, the FFT scaling factor is set to improve the quantization noise floor of the signal from the weak transmitter.
處理流接著前進至步驟1004,自含有僅用WID擾亂之導頻的一群副載波來判定WID;即,如先前所論述之交錯I1 。在一實例中,可藉由如圖2所說明之接收器邏輯216及PPC解碼器邏輯來進行此判定。在4K模式之另一實例中,應注意,可利用一512點FFT,其產生頻域樣本。在一例示性系統中,WID偵測將包括重複解擾亂序列(在使用16個WID種子之一例示性系統中重複16次)、反向FFT以產生時域樣本,及將該等樣本與一能量臨限進行比較(基於對交錯之能量量測)並累加高於該臨限之樣本的能量值以判定哪個假設之WID值產生最大能量。產生最大能量之WID將對應於該WID值。Then the processing flow proceeds to step 1004, from a group of subcarriers comprising only disturb the pilot to determine WID WID; i.e., as previously discussed the interleaving I 1. In an example, this determination can be made by receiver logic 216 and PPC decoder logic as illustrated in FIG. In another example of the 4K mode, it should be noted that a 512 point FFT can be utilized which produces frequency domain samples. In an exemplary system, WID detection will include repeating descrambling sequences (repeated 16 times in an exemplary system using 16 WID seeds), inverse FFT to generate time domain samples, and the samples The energy threshold is compared (based on the energy measurement for the interlace) and the energy values of the samples above the threshold are accumulated to determine which hypothetical WID value produces the maximum energy. The WID that produces the maximum energy will correspond to the WID value.
在判定該WID值後,如由步驟1006所說明,接下來判定LID值。具體而言,自含有用WID及LID擾亂之導頻的一群副載波來判定LID;即,交錯I0 。在一實例中,可藉由如圖2所說明之接收器邏輯216及PPC解碼器邏輯來進行此判定。在4K模式之另一實例中,應注意,可利用一512點FFT來產生頻域樣本。在一例示性系統中,LID偵測將包括使用自步驟1002偵測到之WID來解擾亂的重複序列(在使用16個WID種子及16個LID種子之一例示性系統中重複16次)、執行反向FFT以產生時域樣本,及將彼等樣本與一能量臨限進行比較(基於對諸如交錯I1 之一交錯之能量量測)以判定哪個假設之LID值產生最大能量。產生最大能量之LID將對應於該LID值。After determining the WID value, as explained by step 1006, the LID value is next determined. Specifically, the LID is determined from a group of subcarriers containing pilots scrambled with WID and LID; that is, interlaced I 0 . In an example, this determination can be made by receiver logic 216 and PPC decoder logic as illustrated in FIG. In another example of the 4K mode, it should be noted that a 512 point FFT can be utilized to generate frequency domain samples. In an exemplary system, LID detection will include repetitively repetitive sequences using the WID detected from step 1002 (repeated 16 times in an exemplary system using 16 WID seeds and 16 LID seeds), An inverse FFT is performed to generate time domain samples, and their samples are compared to an energy threshold (based on energy measurements such as interleaving one of the interlaces I 1 ) to determine which hypothetical LID value produces the maximum energy. The LID that produces the maximum energy will correspond to the LID value.
在步驟1008中,接著使用複數個編碼有導頻之副載波來判定一頻道估計。詳言之,可使用交錯I0 、I2 、I4 及I6 來獲得該頻道估計。在4K模式之接收器之實例中,可對該四個交錯中之每一者執行512樣本FFT以獲得頻域樣本。接著用先前獲得之WID及LID種子來對該等樣本進行解擾亂。接著可將頻域中之解擾亂導頻輸入至2048(2K)樣本IFFT以獲得一時域頻道估計。一旦判定該時域頻道估計,便計算及儲存將由處理器(諸如,DSP)讀取的每一抽頭(tap)之能量。另外,可基於未使用之交錯(例如,交錯I5 )之先前量測的能量將計算出之能量與一臨限進行比較以判定當前作用中之傳輸器的信號功率。應注意,作為實例,可藉由如圖2所說明之接收器邏輯216及PPC解碼器邏輯來進行步驟1008之程序。In step 1008, a plurality of subcarriers encoded with pilots are then used to determine a channel estimate. In particular, the channel estimates can be obtained using the interlaces I 0 , I 2 , I 4 , and I 6 . In an example of a 4K mode receiver, a 512 sample FFT can be performed on each of the four interlaces to obtain a frequency domain sample. The samples are then descrambled using the previously obtained WID and LID seeds. The descrambled pilot in the frequency domain can then be input to a 2048 (2K) sample IFFT to obtain a time domain channel estimate. Once the time domain channel estimate is determined, the energy of each tap to be read by a processor, such as a DSP, is calculated and stored. Further energy can be based on the unused interlace (e.g., interlace I 5) of the previously measured amount of the calculated energy is compared with a threshold to determine signal power in the current role of the transmitter. It should be noted that as an example, the process of step 1008 can be performed by receiver logic 216 and PPC decoder logic as illustrated in FIG.
在用於判定頻道估計之程序的又一實例中,假定上述實例,應注意,可將2K時域頻道估計頻疊回至原始512時域點或樣本。一頻疊樣式之實例由以下關係給出:In yet another example of a procedure for determining channel estimation, assuming the above example, it should be noted that the 2K time domain channel estimate may be frequency-staggered back to the original 512 time domain point or sample. An example of a frequency stack pattern is given by the following relationship:
其中為時域頻道估計,s 為資料交錯,且q 為頻道頻率組索引,其中在此特定實例中每一頻道頻率組含有512個頻道抽頭。因此,作為一實例,若相關資料交錯(s)等於3,則上述方程式(1)變成:among them For time domain channel estimation, s is data interleaved and q is a channel frequency group index, where in this particular example each channel frequency group contains 512 channel taps. Therefore, as an example, if the related data interleaving (s) is equal to 3, then the above equation (1) becomes:
在如方程式(2)中給出般判定頻道估計後,可將一相位斜坡應用於時域估計,如由下式給出:Determine the channel estimate as given in equation (2) A phase ramp can then be applied to the time domain estimate as given by:
為達成解碼交錯(含有傳輸器識別資訊之專用資料交錯)之目的,上述實例假定交錯s=3,或換言之,圖4之實例中給出的交錯I3 ,其含有TxID。接著可對進行512樣本FFT以用頻域樣本獲得頻道估計。For the purposes of decoding interleaving (interleaved data interleaving with transmitter identification information), the above example assumes that interlace s = 3, or in other words, the interlace I 3 given in the example of Figure 4, which contains the TxID. Then right A 512 sample FFT is performed to obtain channel estimates from the frequency domain samples.
在步驟1008後,處理流前進至步驟1010,在其中,解碼一具有傳輸器識別資訊(TxID)之專用資料交錯。如圖4所說明,此專用交錯可為交錯I3 。作為用於在4K FFT模式下在接收器中進行解碼之處理的特定實例,如上文所提及,可對經頻疊之專用資料交錯(I3 )執行512樣本FFT以產生頻域樣本。步驟1008之處理可進一步包括使用相應頻道估計來為具有QPSK調變之交錯I3 產生1000個位元之對數似然比(LLR)。接著可類似於對資料符號之解交錯來對LLR進行解交錯。隨後,可在四個週期內對1000個位元之LLR求平均以達到250個位元之LLR。舉例而言,可根據以下關係來完成此求平均:After step 1008, the process flow proceeds to step 1010 where a dedicated material interleave with transmitter identification information (TxID) is decoded. Illustrated in Figure 4, this dedicated interlace may be interlace I 3. As a specific example of a process for decoding in a receiver in a 4K FFT mode, as mentioned above, may be dedicated stack of interleaved data frequency (I 3) 512 performs FFT samples to produce frequency domain samples. The processing of step 1008 may further include using the corresponding channel estimates having the QPSK modulation interlace I 3 bits 1000 generated logarithm likelihood ratio (LLR). The LLRs can then be deinterlaced similar to the deinterlacing of data symbols. The LLRs of 1000 bits can then be averaged over four cycles to achieve an OLR of 250 bits. For example, this averaging can be done based on the following relationships:
其中表示對於kth 值之平均LLR。在對LLR求平均以產生250個位元之LLR後,可藉由一處理器(諸如,DSP)來對其進行處理。應注意,在一實例中,可藉由(例如)由接收器邏輯216及/或PPC解碼器邏輯218實施之硬體來執行該求平均。另外,該處理器可由圖2所示之所說明之接收器邏輯216及/或PPC解碼器邏輯218所包含,此未必意謂僅包含硬體邏輯器件。among them It represents an average LLR for a k th value. After averaging the LLRs to produce 250-bit LLRs, they can be processed by a processor, such as a DSP. It should be noted that in an example, the averaging can be performed by hardware implemented by, for example, receiver logic 216 and/or PPC decoder logic 218. Additionally, the processor may be comprised by the illustrated receiver logic 216 and/or PPC decoder logic 218 illustrated in FIG. 2, which is not necessarily meant to include only hardware logic devices.
在將250個位元之LLR遞送至處理器後,可執行雷德穆勒解碼。舉例而言,可為每一碼區塊計算LLR之64維快速哈德瑪變換(FHT),假定先前論述之例示性編碼使用RM(64,7)編碼。另外,由於在所論述之例示性編碼中藉由剔除而僅傳輸包含(64,7)RM碼的64個位元中之62個位元,故接收器可為達成解碼目的而用零來代替被剔除之位元。因此,變換F 等於H ×L ,其中H 為64×64哈德瑪矩陣,且L 表示對應於一RM碼區塊(亦即,7個位元,假定上述例示性編碼使用28個位元之四個碼區塊)之LLR。在已計算出變換F 後,判定變換F 內之最大量值的條目之位置。歸因於FHT之特徵,最大量值條目之位置的二進位表示將提供RM碼區塊中之七個訊息位元中之六個。最大量值條目之正負號提供第七個訊息位元,其中該訊息位元在正負號為正時為0且在正負號為負時為1。After delivering the 250 bit LLR to the processor, Red Muller decoding can be performed. For example, a 64-dimensional fast Hadamard transform (FHT) of LLR can be computed for each code block, assuming that the previously discussed exemplary encoding uses RM (64, 7) encoding. In addition, since only 62 of the 64 bits containing the (64, 7) RM code are transmitted by culling in the exemplary encoding discussed, the receiver can replace zero for decoding purposes. The bit that was removed. Therefore, the transform F is equal to H × L , where H is a 64×64 Hadamard matrix, and L represents a block corresponding to an RM code (ie, 7 bits, assuming that the above exemplary code uses 28 bits) Four code blocks) LLR. After the transformation F has been calculated, the position of the entry of the maximum magnitude within the transformation F is determined. Due to the characteristics of the FHT, the binary representation of the location of the maximum magnitude entry will provide six of the seven message bits in the RM code block. The sign of the maximum magnitude entry provides a seventh message bit, where the message bit is 0 when the sign is positive and 1 when the sign is negative.
在解碼含有傳輸器識別資訊之所有RM碼區塊(亦即,在本實例中為四個RM碼區塊)後,可檢查循環冗餘檢查(CRC)以確保接收到之訊息位元為(高機率)無錯誤的。在CRC匹配之情況下,傳輸器識別資訊接著可由接收器使用,WID、LID及功率量測值亦可由接收器使用。After decoding all RM code blocks containing transmitter identification information (i.e., four RM code blocks in this example), a Cyclic Redundancy Check (CRC) can be checked to ensure that the received message bit is ( High probability) no error. In the case of CRC matching, the transmitter identification information can then be used by the receiver, and the WID, LID and power measurements can also be used by the receiver.
傳輸器識別資訊內之傳輸器資料接著可由接收器件用於識別發出作用中PPC符號之傳輸器(如由步驟1012所指示)。由於PPC符號包括自含式傳輸器識別資訊,故接收器件無需執行額外處理以識別傳輸器,因此供應快速且作用中之傳輸器識別。另外,應注意,該資訊可與頻道估計、WID、LID及功率量測資訊中之一或多者一起用於判定關於接收器件相對於該(等)傳輸器之定位資訊,諸如經由三角量測或任何其他合適技術。The transmitter data within the transmitter identification information can then be used by the receiving device to identify the transmitter that issued the active PPC symbol (as indicated by step 1012). Since the PPC symbol includes self-contained transmitter identification information, the receiving device does not need to perform additional processing to identify the transmitter, thus providing fast and active transmitter identification. Additionally, it should be noted that this information can be used with one or more of channel estimation, WID, LID, and power measurement information to determine location information about the receiving device relative to the (etc.) transmitter, such as via triangulation. Or any other suitable technology.
在步驟1012之處理後,處理流前進至決策步驟1014。作出是否指示來自傳輸器識別資訊內之信號傳輸資訊的額外或其他PPC符號的判定。若不指示額外符號,則處理1000結束。或者,若指示額外符號,則處理流自步驟1014前進至步驟1016以進一步解碼該等額外符號。應注意,可以與上文結合步驟1002至1008中之一或多者來論述之處理類似之方式來完成該處理。After the process of step 1012, the process flow proceeds to decision step 1014. A determination is made whether to indicate additional or other PPC symbols from the signal transmission information within the transmitter identification information. If no additional symbols are indicated, then process 1000 ends. Alternatively, if additional symbols are indicated, then process flow proceeds from step 1014 to step 1016 to further decode the additional symbols. It should be noted that this process can be accomplished in a manner similar to that discussed above in connection with one or more of steps 1002 through 1008.
應注意,亦涵蓋用於在接收器件處針對其他FFT模式解碼符號的處理。舉例而言,假定2K FFT模式,一接收器件收集來自每一符號之2K個樣本。接著可為該符號中之每一時域交錯樣本執行256點FFT。接著可將來自該256點FFT之頻域交錯樣本與來自跨兩個符號(例如,PHY符號)之樣本串連。作為一實例,若來自一第一符號之該組256交錯樣本表示為Y 0 ={y 0 , 0 ,y 1,0 , y 2,ο ,...,y 255,0 } 且來自一第二符號之該組256交錯樣本表示為Y 1 ={ y 0,1 ,y 1,1 ,y 2,1 ,...,y 255,1 } ,則此等兩組樣本之所得串連可表示為Y={ y 0,0, y 1,0 ,y 2,0 ,...,y 255,o ,y 0,1 ,y 1,1 ,y 2,1 ,...,y 255,1 } 。在來自多個PHY符號之512個樣本串連後,如上文結合步驟1002至1016中之一或多者來論述的,WID及LID偵測、頻道估計及LLR產生可類似於4K FFT操作模式之處理。It should be noted that the process for decoding symbols for other FFT modes at the receiving device is also covered. For example, assuming a 2K FFT mode, a receiving device collects 2K samples from each symbol. A 256 point FFT can then be performed for each time domain interlaced sample in the symbol. The frequency domain interlaced samples from the 256-point FFT can then be concatenated with samples from across two symbols (eg, PHY symbols). As an example, if the set of 256 interlaced samples from a first symbol is represented as Y 0 = {y 0 , 0 , y 1 , 0 , y 2, ο , ..., y 255 , 0 } and from a The set of 256 interlaced samples of the two symbols are represented as Y 1 ={ y 0,1 , y 1,1 , y 2,1 ,...,y 255,1 } , and the resulting series of the two sets of samples can be connected in series Expressed as Y={ y 0,0, y 1,0 ,y 2,0 ,...,y 255,o ,y 0,1 ,y 1,1 ,y 2,1 ,...,y 255 , 1 } . After 512 samples from multiple PHY symbols are concatenated, as discussed above in connection with one or more of steps 1002 through 1016, WID and LID detection, channel estimation, and LLR generation may be similar to the 4K FFT mode of operation. deal with.
在1K FFT模式之另一實例中,對來自每一PHY PPC符號之時域交錯樣本執行128點FFT。類似於上述實例,將來自4個PHY PPC符號之所得頻域樣本串連以形成一交錯。在8K FFT模式之又一實例中,應注意,一交錯包含1000個副載波。因此,藉由接收器件進行之處理將利用1K FFT/IFFT處理以及4K IFFT處理來進行頻道估計。In another example of a 1K FFT mode, a 128 point FFT is performed on time domain interleaved samples from each PHY PPC symbol. Similar to the above example, the resulting frequency domain samples from the 4 PHY PPC symbols are concatenated to form an interlace. In yet another example of an 8K FFT mode, it should be noted that one interlace contains 1000 subcarriers. Therefore, the processing by the receiving device will perform channel estimation using 1K FFT/IFFT processing and 4K IFFT processing.
方法1000因此操作以用於在接收器件處接收及處理包括傳輸器識別資訊之符號。應注意,方法1000僅表示一實施例,且在本揭示案之範疇內,對方法1000之改變、添加、刪除、組合或其他修改為可能。雖然,為達成易於解釋之目的,將圖10之方法展示且描述為一連串或多個動作,但應理解,本文中所描述之處理不受動作次序之限制,因為一些動作可以不同於本文中展示且描述之次序的次序來發生及/或與其他動作同時發生。舉例而言,熟習此項技術者應瞭解,方法可或者表示為一連串相關狀態或事件,諸如以狀態圖之形式。此外,根據所揭示之本例示性方法,可並不需要所有所說明之動作來實施一方法。The method 1000 thus operates for receiving and processing symbols including transmitter identification information at the receiving device. It should be noted that the method 1000 is merely illustrative of one embodiment, and that variations, additions, deletions, combinations, or other modifications of the method 1000 are possible within the scope of the present disclosure. Although the method of FIG. 10 is shown and described as a series or multiple acts for purposes of ease of explanation, it should be understood that the processes described herein are not limited by the order of actions, as some actions may differ from those shown herein. And the order in which the order is described occurs and/or occurs concurrently with other acts. For example, those skilled in the art will appreciate that a method can be either represented as a series of related states or events, such as in the form of a state diagram. Moreover, in accordance with the present exemplary methods disclosed, not all illustrated acts may be required to implement a method.
圖11展示一接收器裝置之另一實例或替代地可用於具有傳輸器識別資訊之系統中的用在接收器中之裝置1100。裝置1100包括用於接收至少一PPC符號且判定一或多個交錯(諸如,已使用之交錯(例如,I1 )及未使用之交錯(例如,I5 ))中之能量的模組1102。如藉由至通信匯流排1104之連接所說明,接著可與裝置1100內之其他模組共用該能量判定。應注意,此匯流排架構僅為例示性的且意欲說明各種通信能夠在裝置1100內之模組之間進行。11 shows another example of a receiver device or alternatively a device 1100 for use in a receiver in a system having transmitter identification information. Apparatus 1100 includes a module 1102 for receiving at least one PPC symbol and determining energy in one or more interlaces, such as interleaved (eg, I 1 ) and unused interlaces (eg, I 5 ). This energy determination can then be shared with other modules within device 1100 as illustrated by the connection to communication bus 1104. It should be noted that this busbar architecture is merely exemplary and is intended to illustrate that various communications can be made between modules within device 1100.
裝置1100亦包括用於自一預定交錯(例如,交錯I1 )判定WID種子的模組1106。如早先所解釋的,對WID之判定可包括基於先前量測之能量(諸如,藉由模組1102)來定臨限。將藉由模組1106判定之WID傳遞至模組1108以供使用WID自預定交錯(例如,交錯I0 )判定LID。又,由模組1108偵測LID可使用所量測之能量,該所量測之能量係由模組1102判定。Since 1100 also includes means for interleaving a predetermined (e.g., interlace I 1) determination module 1106 WID seed. As explained earlier, the determination of the WID can include determining the threshold based on the previously measured energy (such as by the module 1102). Transmitting the WID determined by module 1106 to module 1108 for use WID from a predetermined interlace (e.g., interlace I 0) is determined LID. Moreover, the measured energy is used by the module 1108 to detect the LID, and the measured energy is determined by the module 1102.
裝置1100進一步包括用於自作用中交錯(例如,交錯I0 、I2 、I4 及I6 )判定一頻道估計的模組1110。如先前所解釋,例如,對頻道估計之判定可包括將抽頭之能量計算與能量臨限(諸如,由模組1102判定之能量臨限)進行比較。亦包括用於解碼專用交錯(例如,I3 )以判定傳輸器識別資訊(TxID)的模組1112。作為一實例,如在上文在結合圖10之對步驟1010之描述中詳細描述的,模組1112可進行解碼處理。另外,在裝置1100中提供用於基於TxID判定傳輸器識別碼(及基於傳輸器ID、頻道估計及能量量測之接收器件定位)的模組1114。模組1114可包括以下功能性:執行循環冗餘檢查以確保接收到之訊息位元無錯誤,且若無錯誤,則觸發用供諸如處理器1116之處理器(其可為DSP或其他合適處理器)使用的傳輸器識別、WID、LID及所量測之功率來填充接收裝置1100中之傳輸器ID表。該傳輸器ID表可含於與處理器1116及/或裝置1100中之模組通信的記憶體器件1118內。Further comprising means for self-acting 1100 interleaved (e.g., interleaved I 0, I 2, I 4 and I 6) determining a channel estimation module 1110. As previously explained, for example, the determination of the channel estimate can include comparing the energy calculation of the tap to an energy threshold, such as the energy threshold determined by module 1102. Also includes means for decoding dedicated interlace (e.g., I 3) to determine the transmitter identification information (the TxID) modules 1112. As an example, module 1112 can perform a decoding process as described in detail above in connection with step 1010 of FIG. Additionally, a module 1114 for determining a transmitter identification code based on TxID (and receiving device positioning based on transmitter ID, channel estimation, and energy measurements) is provided in device 1100. Module 1114 can include functionality to perform a cyclic redundancy check to ensure that received message bits are error free, and if there are no errors, trigger for a processor such as processor 1116 (which can be DSP or other suitable processing) The transmitter identification, WID, LID, and measured power used are used to fill the transmitter ID table in the receiving device 1100. The transmitter ID table can be included in the memory device 1118 in communication with the processor 1116 and/or the modules in the device 1100.
應注意,模組1102、1106、1108、1110、1112及1114可藉由經組態以執行程式指令以提供本文所描述的包括傳輸器識別及定位的系統之實例的至少一處理器來實施。在一實例中,模組1102、1106、1108、1110及1112可藉由接收器邏輯216及/或PPC解碼器邏輯218來實施。在一實例中,模組1114藉由位置判定邏輯221來實施。另外,可結合該至少一處理器提供記憶體器件1118或等效電腦可讀媒體以用於儲存程式指令或程式碼。It should be noted that modules 1102, 1106, 1108, 1110, 1112, and 1114 can be implemented by at least one processor configured to execute program instructions to provide an example of a system including transmitter identification and positioning as described herein. In an example, modules 1102, 1106, 1108, 1110, and 1112 can be implemented by receiver logic 216 and/or PPC decoder logic 218. In an example, module 1114 is implemented by position determination logic 221. Additionally, a memory device 1118 or equivalent computer readable medium can be provided in conjunction with the at least one processor for storing program instructions or code.
應注意,可用經設計以執行本文中所描述之功能的通用處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、場可程式化閘陣列(FPGA)或其他可程式化邏輯器件、離散閘或電晶體邏輯、離散硬體組件,或其任何組合來實施或執行結合所揭示之實例描述的各種說明性邏輯、邏輯區塊、模組及電路。通用處理器可為一微處理器,但在替代實施例中,處理器可為任一習知處理器、控制器、微控制器或狀態機。處理器亦可實施為計算器件之組合,例如,一DSP與一微處理器之組合、複數個微處理器、結合一DSP核心之一或多個微處理器,或任何其他此組態。It should be noted that general purpose processors, digital signal processors (DSPs), special application integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable designs designed to perform the functions described herein may be used. Logic devices, discrete gate or transistor logic, discrete hardware components, or any combination thereof, implement or perform the various illustrative logic, logic blocks, modules, and circuits described in connection with the disclosed examples. A general purpose processor may be a microprocessor, but in an alternative embodiment, the processor may be any conventional processor, controller, microcontroller, or state machine. The processor can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more of a DSP core, or any other such configuration.
可以硬體、由處理器執行之軟體模組,或兩者之組合來直接實施結合本文中揭示之實例所描述之方法或演算法的步驟或處理。軟體模組可駐留於RAM記憶體、快閃記憶體、ROM記憶體、EPROM記憶體、EEPROM記憶體、暫存器、硬碟、抽取式碟片、CD-ROM或此項技術中已知的任何其他形式之儲存媒體中。例示性儲存媒體可耦接至處理器,使得處理器可自儲存媒體讀取資訊且將資訊寫入至儲存媒體。在替代實施例中,儲存媒體可整合至處理器。處理器及儲存媒體可駐留於ASIC中。該ASIC可駐留於使用者終端機中。在替代實施例中,處理器及儲存媒體可作為離散組件而駐留於使用者終端機中。The steps or processes of the methods or algorithms described in connection with the examples disclosed herein may be directly implemented in a hardware, a software module executed by a processor, or a combination of both. The software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, scratchpad, hard disk, removable disk, CD-ROM or known in the art. Any other form of storage media. An exemplary storage medium can be coupled to the processor such that the processor can read information from the storage medium and write the information to the storage medium. In an alternate embodiment, the storage medium can be integrated into the processor. The processor and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In an alternate embodiment, the processor and the storage medium may reside as discrete components in the user terminal.
對所揭示實例的描述經提供以使任何熟習此項技術者能夠製造或使用目前所揭示之方法及裝置。熟習此項技術者可易於瞭解對此等所揭示實例之各樣修改,且在不脫離本揭示案之精神或範疇的情況下,可將本文所界定之一般原理應用於其他實例(例如,在即時傳訊服務或任何通用無線資料通信應用中)。因此,本揭示案並不意欲限於本文中所示之實例,而應符合與本文所揭示之原理及新穎特徵一致的最廣泛範疇。詞語「例示性」在本文中專用於意謂The description of the disclosed examples is provided to enable any person skilled in the art to make or use the presently disclosed methods and apparatus. Various modifications to the disclosed examples can be readily appreciated by those skilled in the art, and the general principles defined herein may be applied to other examples without departing from the spirit or scope of the disclosure (eg, in Instant messaging service or any general wireless data communication application). Therefore, the present disclosure is not intended to be limited to the examples shown herein, but should be accorded to the broadest scope of the principles and novel features disclosed herein. The word "exemplary" is used exclusively in this article to mean
「用作一實例、範例或說明」。本文中描述為「例示性」之任何實例並非必須理解為比其他實例較佳或有利。"Use as an example, example or description." Any example described herein as "exemplary" is not necessarily to be construed as preferred or advantageous.
因此,雖然已在本文中說明及描述具有傳輸器識別之通信系統的實例,但應瞭解,在不脫離其精神或本質特徵之情況下,可對該等實例進行各種改變。Accordingly, while an example of a communication system having a transmitter identification has been illustrated and described herein, it will be appreciated that various changes may be made to the examples without departing from the spirit or essential characteristics thereof.
‧TxID或其他參數是否在PPC封包內用信號發送‧TxID or other parameters are signaled in the PPC packet
‧具有一80位元PPC封包‧With an 80-bit PPC packet
幻燈片1Slide 1
‧TxID或其他參數是否在PPC封包內用信號發送‧TxID or other parameters are signaled in the PPC packet
‧具有一56位元PPC封包‧With a 56-bit PPC packet
幻燈片2Slide 2
‧藉由減少重複且將碼區塊之數目自4增加至8來達成較長有效負載‧ Longer payload by reducing duplication and increasing the number of code blocks from 4 to 8
‧R-M碼與QC設計中的完全相同‧R-M code is identical to QC design
幻燈片3Slide 3
+僅碼區塊&重複數目改變,R-M碼相同+ Only code block & repeat number change, R-M code is the same
+關於當前實施例之效能不降級+The performance of the current embodiment is not degraded
+對於實施/測試而言,兩個選項用單一封包大小為簡單的+ For implementation/testing, the two options are simple with a single package size
+封包類型使其為自含式的且允許擴展性以包括其他參數,諸如傳輸器功率及超訊框數目+ Packet type makes it self-contained and allows for scalability to include other parameters such as transmitter power and number of frames
幻燈片4Slide 4
‧PPC之保留狀態意欲為傳輸器特定頻道‧PPC retention status is intended to be a transmitter specific channel
‧槽7未經分配,因為其由非作用中傳輸器使用‧Slot 7 is not assigned because it is used by a non-active transmitter
‧將剩餘槽指派給導頻或資料,且用WID/LID來擾亂‧ Assign the remaining slots to the pilot or data and use WID/LID to disrupt
‧ WID/LID用於來自識別狀態之可用傳輸器 ‧ WID/LID for available transmitters from identification status
‧展示對導頻/資料之兩個可能槽分配‧Show two possible slot assignments for pilot/data
1.2個導頻槽(及3個資料槽),頻道估計與識別狀態中的相同1.2 pilot slots (and 3 data slots), the channel estimation is the same as in the identification status
2.將資料槽增加至5個,且來自識別狀態之路徑位置資訊與僅2個導頻槽結合使用2. Increase the data slot to 5, and the path location information from the recognition state is combined with only 2 pilot slots.
幻燈片5Slide 5
‧使用3個或5個資料槽允許來自資料及OIS頻道之turbo編碼結構的再用‧Use 3 or 5 data slots to allow reuse of turbo coding structures from data and OIS channels
‧在使用3個資料槽的情況下,使用QPSK R 1/3(模0)來發送一實體層封包(PLP)‧When using 3 data slots, use QPSK R 1/3 (modulo 0) to send a physical layer packet (PLP)
‧在使用5個資料槽的情況下,使用QPSK R 1/5(模5)來發送一PLP‧When using 5 data slots, use QPSK R 1/5 (modulo 5) to send a PLP
幻燈片6Slide 6
‧可用於發送傳輸器ID以及其他參數的大有效負載‧ Large payload that can be used to send transmitter IDs and other parameters
‧樣本格式可為如下文所示般‧The sample format can be as shown below
幻燈片7Slide 7
+大封包大小在界定封包格式方面提供很大靈活性+ Large packet size provides great flexibility in defining the packet format
+可發送其他參數,諸如傳輸器功率&超訊框數目+ can send other parameters, such as transmitter power & number of frames
+亦可發送鄰近傳輸器之位置及其他參數+ can also send the location of adjacent transmitters and other parameters
+多個符號可用於一超訊框內或可界定多個封包類型且跨超訊框來發送該多個封包類型以進一步增加有效負載大小+ Multiple symbols can be used in a hyperframe or can define multiple packet types and send the multiple packet types across the hyperframe to further increase the payload size
+亦可僅藉由不分配識別狀態下之傳輸器特定頻道來避免發送位置+ can also avoid sending locations only by not assigning transmitter-specific channels in the recognition state
+與資料/OIS頻道相同的編碼/解碼結構+The same encoding/decoding structure as the data/OIS channel
幻燈片8Slide 8
100...通信網路100. . . Communication network
102...廣域區域102. . . Wide area
104...廣域區域104. . . Wide area
106...局域區域106. . . Local area
108...局域區域108. . . Local area
110...局域區域110. . . Local area
112...傳輸器112. . . Transmitter
114...傳輸器114. . . Transmitter
116...傳輸器116. . . Transmitter
118...行動器件118. . . Mobile device
120...行動器件120. . . Mobile device
122...傳輸器122. . . Transmitter
124...傳輸器124. . . Transmitter
126...傳輸器126. . . Transmitter
128...器件128. . . Device
130...器件130. . . Device
132...傳輸器132. . . Transmitter
134...傳輸器134. . . Transmitter
136...傳輸器136. . . Transmitter
138...器件138. . . Device
140...器件140. . . Device
142...箭頭142. . . arrow
144...箭頭144. . . arrow
146...箭頭146. . . arrow
200...通信系統200. . . Communication Systems
202...導頻定位用頻道202. . . Pilot positioning channel
204...無線鏈路204. . . Wireless link
206...接收器件206. . . Receiving device
208...傳輸器邏輯208. . . Transmitter logic
210...PPC產生器邏輯210. . . PPC generator logic
212...網路邏輯212. . . Network logic
214...傳輸器步驟214. . . Transmitter step
216...接收器邏輯216. . . Receiver logic
218...PPC解碼器邏輯218. . . PPC decoder logic
220...傳輸器ID判定邏輯220. . . Transmitter ID decision logic
221...位置判定邏輯221. . . Location decision logic
222...接收器件222. . . Receiving device
224...網路供應資訊224. . . Network supply information
226...系統時間226. . . system time
234...PPC符號234. . . PPC symbol
236...PPC符號236. . . PPC symbol
238...PPC符號238. . . PPC symbol
300...傳輸超訊框300. . . Transmission hyperframe
302...序言資料302. . . Preamble information
304...資料訊框304. . . Data frame
400...OFDM符號/作用中PPC符號400. . . OFDM symbol/active PPC symbol
402...交錯I0 402. . . Interlaced I 0
404...交錯I2 404. . . Interlaced I 2
406...交錯I4 406. . . Interlaced I 4
408...交錯I6 408. . . Interlaced I 6
410...交錯I1 410. . . Interlaced I 1
412...交錯I3 412. . . Interlaced I 3
414...交錯I5 414. . . Interlaced I 5
416...交錯I7 416. . . Interlaced I 7
500...非作用中PPC符號500. . . Inactive PPC symbol
502...交錯I7 502. . . Interlaced I 7
600...用於在作用中PPC符號之交錯(諸如,圖4所說明之交錯)中編碼傳輸器識別的裝置600. . . Means for encoding transmitter identification in interleaving of PPC symbols in action (such as the interlacing illustrated in Figure 4)
602...用於設定或判定傳輸器識別符(TxID)位元及分配位元的模組602. . . Module for setting or determining a transmitter identifier (TxID) bit and assigning a bit
604...用於將CRC位元添加至TxID位元及分配位元的模組604. . . Module for adding CRC bits to TxID bits and allocating bits
606...交錯器606. . . Interleaver
608...編碼器608. . . Encoder
610...編碼器610. . . Encoder
612...零插入模組612. . . Zero insertion module
614...重複器614. . . Repeater
616...擾亂器616. . . Scrambler
618...調變器618. . . Modulator
620...交錯器620. . . Interleaver
700...硬體電路700. . . Hardware circuit
702...輸入702. . . Input
704...計數器704. . . counter
706...乘法器706. . . Multiplier
708...區塊708. . . Block
710...求和區塊710. . . Summation block
900...用於傳輸具有傳輸器識別資訊之PPC符號的裝置900. . . Device for transmitting PPC symbols with transmitter identification information
902...經組態以接收網路供應資料(例如,傳輸狀態資訊)之模組902. . . Module configured to receive network provisioning data (eg, transmission status information)
904...用於使用種子WID在一作用中傳輸器之一符號中之複數個副載波之第一部分上編碼導頻資訊的模組904. . . Module for encoding pilot information on a first portion of a plurality of subcarriers in a symbol of one of the active transmitters using a seed WID
906...用於使用WID及LID種子來在該符號之該複數個副載波之第一部分之另一部分上編碼傳輸器識別資訊的模組906. . . Membrane for encoding transmitter identification information on another portion of the first portion of the plurality of subcarriers of the symbol using the WID and LID seed
908...用於根據一預定編碼方案在該複數個副載波之第二部分(例如,交錯I3 中之副載波)上來編碼傳輸器識別(TxID)資訊的模組908. . . According to a predetermined coding scheme module information in a second portion of the plurality of subcarriers (e.g., subcarriers in interlace 3 in the I) up identification code transmission (the TxID)
910...經組態以傳輸PPC符號之模組910. . . Module configured to transmit PPC symbols
912...模組912. . . Module
914...記憶體器件914. . . Memory device
1100...用於具有傳輸器識別資訊之系統中的用在接收器中之裝置1100. . . Device for use in a receiver in a system with transmitter identification information
1102...用於接收至少一PPC符號且判定一或多個交錯中之能量的模組1102. . . Module for receiving at least one PPC symbol and determining energy in one or more interlaces
1104...通信匯流排1104. . . Communication bus
1106...用於自一預定交錯(例如,交錯I1 )判定WID種子的模組1106. . . Module for determining WID seeds from a predetermined interleaving (eg, interleaving I 1 )
1108...用於使用WID自預定交錯(例如,交錯I0 )判定LID的模組1108. . . Module for determining LID from a predetermined interleave (eg, interlaced I 0 ) using WID
1110...用於自作用中交錯(例如,交錯I0 、I2 、I4 及I6 )判定一頻道估計的模組1110. . . Module for determining a channel estimate for self-acting interleaving (eg, interleaving I 0 , I 2 , I 4 , and I 6 )
1112...用於解碼專用交錯(例如,I3 )以判定傳輸器識別資訊(TxID)的模組1112. . . Module for decoding dedicated interlaces (eg, I 3 ) to determine transmitter identification information (TxID)
1114...用於基於TxID判定傳輸器識別碼(及基於傳輸器ID、頻道估計及能量量測之接收器件定位)的模組1114. . . Module for determining transmitter identification code based on TxID (and receiving device positioning based on transmitter ID, channel estimation and energy measurement)
1116...處理器1116. . . processor
1118...記憶體器件1118. . . Memory device
T1-T5...傳輸器T1-T5. . . Transmitter
圖1說明可使用所揭示之傳輸器識別方案的通信網路;Figure 1 illustrates a communication network that can be used with the disclosed transmitter identification scheme;
圖2說明特徵在於傳輸器識別資訊之傳輸的通信系統之實例;2 illustrates an example of a communication system characterized by transmission of transmitter identification information;
圖3展示可用於圖1或圖2之系統中的傳輸超訊框;Figure 3 shows a transmission hyperframe that can be used in the system of Figure 1 or Figure 2;
圖4展示用於由作用中傳輸器傳輸之PPC符號之OFDM符號之交錯結構的功能圖;4 shows a functional diagram of an interleaved structure of OFDM symbols for PPC symbols transmitted by an active transmitter;
圖5展示用於由被動或非作用中傳輸器傳輸之PPC符號之OFDM符號之交錯結構的功能圖;5 shows a functional diagram of an interleaved structure of OFDM symbols for PPC symbols transmitted by a passive or inactive transmitter;
圖6說明用於在作用中PPC符號之交錯(諸如,圖4所說明之交錯)中編碼傳輸器識別的裝置;Figure 6 illustrates means for encoding transmitter identification in interleaving of PPC symbols in effect, such as the interlacing illustrated in Figure 4;
圖7說明可用在傳輸器中產生RM碼的例示性硬體電路;Figure 7 illustrates an exemplary hardware circuit that can be used to generate an RM code in a transmitter;
圖8展示用於在無線系統(諸如,圖1及圖2所說明之系統)中提供傳輸器識別的方法;8 shows a method for providing transmitter identification in a wireless system, such as the system illustrated in FIGS. 1 and 2.
圖9說明用於傳輸具有傳輸器識別資訊之PPC符號的裝置;Figure 9 illustrates an apparatus for transmitting PPC symbols having transmitter identification information;
圖10展示用於接收一包括傳輸器識別資訊之符號的方法;及10 shows a method for receiving a symbol including transmitter identification information; and
圖11展示一接收器裝置之另一實例或替代地可用於具有傳輸器識別資訊之系統中的用在接收器中之裝置。Figure 11 shows another example of a receiver device or alternatively a device for use in a receiver in a system having transmitter identification information.
200...通信系統200. . . Communication Systems
202...導頻定位用頻道202. . . Pilot positioning channel
204...無線鏈路204. . . Wireless link
206...接收器件206. . . Receiving device
208...傳輸器邏輯208. . . Transmitter logic
210...PPC產生器邏輯210. . . PPC generator logic
212...網路邏輯212. . . Network logic
214...傳輸器區塊/傳輸器214. . . Transmitter block/transmitter
216...接收器邏輯216. . . Receiver logic
218...PPC解碼器邏輯218. . . PPC decoder logic
220...傳輸器ID判定邏輯220. . . Transmitter ID decision logic
221...位置判定邏輯221. . . Location decision logic
222...接收器件222. . . Receiving device
224...網路供應資訊224. . . Network supply information
226...系統時間226. . . system time
234...PPC符號234. . . PPC symbol
236...PPC符號236. . . PPC symbol
238...符號238. . . symbol
T1-T5...傳輸器T1-T5. . . Transmitter
Claims (43)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2391908P | 2008-01-28 | 2008-01-28 | |
US2414308P | 2008-01-28 | 2008-01-28 | |
US3017808P | 2008-02-20 | 2008-02-20 | |
US12/165,653 US8165064B2 (en) | 2008-01-28 | 2008-07-01 | Enhancements to the positioning pilot channel |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201004252A TW201004252A (en) | 2010-01-16 |
TWI390935B true TWI390935B (en) | 2013-03-21 |
Family
ID=40913486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098103300A TWI390935B (en) | 2008-01-28 | 2009-02-02 | Enhancements to the positioning pilot channel |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2241048A2 (en) |
JP (1) | JP5313267B2 (en) |
KR (1) | KR101281714B1 (en) |
CN (1) | CN101946450A (en) |
TW (1) | TWI390935B (en) |
WO (1) | WO2009097345A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10277439B2 (en) * | 2016-07-18 | 2019-04-30 | Qualcomm Incorporated | Dual stage channel interleaving for data transmission |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7158635B2 (en) * | 2002-05-07 | 2007-01-02 | Interdigital Technology Corporation | Generation of user equipment identification specific scrambling code for the high speed shared control channel |
KR20050075242A (en) * | 2004-01-16 | 2005-07-20 | 삼성전자주식회사 | Pilot channel-based channel estimation method for mc-cdma system using frequency interleaving |
US7706328B2 (en) * | 2006-01-04 | 2010-04-27 | Qualcomm Incorporated | Methods and apparatus for position location in a wireless network |
JP2007251739A (en) * | 2006-03-17 | 2007-09-27 | Hitachi Kokusai Electric Inc | Antenna control method of transmission apparatus |
EP2028808A3 (en) * | 2007-07-25 | 2009-06-03 | Qualcomm Incorporated | Methods and apparatus for transmitter identification in a wireless network |
-
2009
- 2009-01-28 EP EP09705230A patent/EP2241048A2/en not_active Withdrawn
- 2009-01-28 CN CN2009801058789A patent/CN101946450A/en active Pending
- 2009-01-28 KR KR1020107019068A patent/KR101281714B1/en not_active IP Right Cessation
- 2009-01-28 WO PCT/US2009/032257 patent/WO2009097345A2/en active Application Filing
- 2009-01-28 JP JP2010545108A patent/JP5313267B2/en not_active Expired - Fee Related
- 2009-02-02 TW TW098103300A patent/TWI390935B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP5313267B2 (en) | 2013-10-09 |
KR101281714B1 (en) | 2013-07-03 |
KR20100114106A (en) | 2010-10-22 |
JP2011511568A (en) | 2011-04-07 |
TW201004252A (en) | 2010-01-16 |
EP2241048A2 (en) | 2010-10-20 |
WO2009097345A3 (en) | 2009-12-17 |
WO2009097345A2 (en) | 2009-08-06 |
CN101946450A (en) | 2011-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8165064B2 (en) | Enhancements to the positioning pilot channel | |
EP3592056B1 (en) | Method and apparatus for determining the location of a mobile device in an ofdm wireless network | |
ES2751928T3 (en) | Using a field format on a communication device | |
US8509051B2 (en) | Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system | |
US8743815B2 (en) | Method and base station for transmitting SA-preamble and method and user equipment for receiving SA-preamble | |
US20090175210A1 (en) | Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system | |
TW201935878A (en) | Enhanced resource unit allocation schemes for OFDMA transmission in WLAN | |
US20070218915A1 (en) | Wireless communication resource allocation and related signaling | |
US20090028100A1 (en) | Methods and apparatus for transmitter identification in a wireless network | |
US20100158160A1 (en) | Extracting information from positioning pilot channel symbols in forward link only system | |
EP2028808A2 (en) | Methods and apparatus for transmitter identification in a wireless network | |
TWI390935B (en) | Enhancements to the positioning pilot channel | |
US20230283420A1 (en) | Systems and methods for broadband wireless communication for mission critical internet of things (iot) | |
KR20110122959A (en) | Apparatus and method for transmitting/receiving sounding signal in broadband wireless communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |