TW201004252A - Enhancements to the positioning pilot channel - Google Patents
Enhancements to the positioning pilot channel Download PDFInfo
- Publication number
- TW201004252A TW201004252A TW098103300A TW98103300A TW201004252A TW 201004252 A TW201004252 A TW 201004252A TW 098103300 A TW098103300 A TW 098103300A TW 98103300 A TW98103300 A TW 98103300A TW 201004252 A TW201004252 A TW 201004252A
- Authority
- TW
- Taiwan
- Prior art keywords
- transmitter
- bits
- interlace
- symbol
- information
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L23/00—Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00
- H04L23/02—Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00 adapted for orthogonal signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/20—Modulator circuits; Transmitter circuits
- H04L27/2032—Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
- H04L27/2053—Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
- H04L27/206—Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
- H04L27/26134—Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/16—Discovering, processing access restriction or access information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
201004252 六、發明說明: 【發明所屬之技術領域】 本申请案大體而言係關於通信系鲚夕从 ^ 系、'先之知作,且更特定言 之’係關於用於在通信系統中傳輪關 寺铴關於傳輸器之識別資訊 的方法及裝置。 本專利申請案主張於2〇〇8年2月2〇日申請之臨時申請案 第61/請,178號、於讀年⑴以中請之臨時中請案第 6 1/023,919號,及於2008年1月28日由咬 月曰申請之臨時申請案第 61 /024,143號的優先權,該等臨時申 ^ 了 T明案讓渡與其受讓人 且藉此以引用方式明確併入本文中。 【先前技術】 在目前已知之通信系統(諸如’ 1谷遞运/媒體分散系統 (例如,僅前向鏈路(FLO)或數仿泪叶命, 数位視汛廣播(DVB_T/H)系統) 中,通常將即時及非即時服務钮驻 、义至傳輸訊框(例如,F L Ο 超訊框)中且遞送至網路上之哭杜 之益件。另外,此等通信系統 可利用正交分頻多工(OFDM)以趄也, &供網路伺服器與一或多 個行動器件之間的通信。此捐产植ω 匕通^ &供具有資料槽之傳輸超 §fl框,將該等資料槽與將作為值私、士 马傳輸波形在分散網路上遞送 的内容一起封裝。 已知經由在FLO網路中你田— 使用疋位用導頻頻道(PPC)來進 行對一些無線網路中之行動哭杜μ μ 丁勃益件的傳輸器識別及位置判 定。詳言之,已知傳輸哭缉2丨、也 °°識別々及根據自每一個別傳輸器 至一接收器之作用中PPC签缺+、# 付就之V頻符號來判定一頻道剖 面(channel profile)。雖麸值趴 _ …、1寻輸裔識別碼可不明確地編碼於 138133.doc 201004252201004252 VI. Description of the invention: [Technical field to which the invention pertains] The present application is generally related to the communication system, which is known from the prior art, and more specifically, is used for transmission in a communication system. Method and device for identifying information of the transmitter in the wheel gate temple. This patent application claims to apply for the provisional application No. 61/, No. 178, No. 178, and the interim (1) in the interim year (1), please refer to No. 6 1/023,919, and The priority of the provisional application No. 61 / 024, 143, which was filed on January 28, 2008 by Biting Yue, and the provisional application for the transfer of the case to the assignee and the expressly incorporated herein by reference. . [Prior Art] Communication systems currently known (such as '1 Valley Delivery/Media Decentralized System (for example, forward link only (FLO) or digital teardrop, digital video broadcast (DVB_T/H) system) In the meantime, the instant and non-instant service buttons are usually placed in the transmission frame (for example, the FL Ο hyperframe) and delivered to the network on the network. In addition, these communication systems can utilize orthogonal points. Frequency multiplex (OFDM) is used to communicate between the network server and one or more mobile devices. This donation is used to transmit data over the §fl box. These data slots are packaged with content that will be delivered as a value private, Sema transmission waveform over a decentralized network. It is known to use the pilot channel (PPC) in the FLO network to perform some The action of the wireless network is crying, and the transmitter identification and position determination. In other words, it is known that the transmission is crying, and the identification is based on the transmission from each individual transmitter to one. In the role of the device, PPC sign-off +, # pay the V-frequency symbol to determine a channel profile (channel profile). Although the bran value _ _ ..., 1 输 输 identification code can not be explicitly coded in 138133.doc 201004252
PPC符號中’但只要知道傳輸器何時傳輪作用中符號 之排程’便可判m區域中之傳輸器的識別碼,諸如u 以偽分時多重存取(TDMA)方式對作料傳輪器排序(例 如,傳輸器遵照在該給定區域中每次僅—個傳輸器為作用 中的作用中傳輸之已知時間順序)。目此,有可能使用作 用中PPC符號在—超訊框中之位置來將傳輪器映射至相應 PPC符號,但需另外使用該超訊框中之附加項㈣(例如了 附加項資訊符號剛)。在此方案下,在超訊框方面網路 傳輸器之週期性(亦即,排程)必須亦被接收器所知。 【發明内容】 根據-態樣,揭示-種用於在通信系統中傳達傳輸器識 別的方法。該方法包括在一作用中傳輪器之符號中之:: 個副载波之第一部分上編碼導頻資訊,及在該符號之該複 數個剡载波之第二部分上編碼傳輸器識別資訊。 根據另-態樣,揭示一種用於在網路中傳達傳輸器識別 貧訊的裝置。該裝置包括:一第一模組,其經組態以在一 作用中傳輸器之符號中之複數個副載波之第一部分上編碼 導頻資訊;及一第二模組’其經組態以在該符號之該複數 個甽載波之第二部分上編碼傳輸器識別資訊。In the PPC symbol, 'but as long as the transmitter knows the schedule of the symbol in the relay', the identifier of the transmitter in the m area can be judged, such as u in the pseudo-time division multiple access (TDMA) mode. Sorting (for example, the transmitter follows a known time sequence in which only one transmitter is active in the active zone in the given zone). Therefore, it is possible to use the position of the active PPC symbol in the superframe to map the wheeler to the corresponding PPC symbol, but additionally use the additional item (4) in the superframe (for example, the additional information symbol just ). Under this scheme, the periodicity (i.e., scheduling) of the network transmitter in the hyperframe must also be known by the receiver. SUMMARY OF THE INVENTION According to an aspect, a method for communicating transmitter identification in a communication system is disclosed. The method includes encoding pilot information on a first portion of the subcarriers in a symbol of the active carrier, and encoding the transmitter identification information on a second portion of the plurality of chirps of the symbol. According to another aspect, a device for communicating a transmitter to identify a poor message in a network is disclosed. The apparatus includes: a first module configured to encode pilot information on a first portion of a plurality of subcarriers in a symbol of an active transmitter; and a second module configured to Transmitter identification information is encoded on a second portion of the plurality of chirp carriers of the symbol.
次根據又-態樣’揭示用於在通信系統中傳輸傳輸器識別 貧訊的另一裝置。該裝置之特徵在於用於在一作用中傳輸 器之符號中之複數個副載波之第一部分上編碼導頻資訊Z 構件,及用於在該符號之該複數個副载波之第二部分上編 碼傳輪器識別資訊的構件。 138133.doc 201004252 根據再一態樣,揭示一種電腦程式產品。該電腦程式產 品包括一電腦可讀媒體,該電腦可讀媒體具有肖於使一電 腦在-作用中傳輸n之符號中之複數個副載波之第一部分 上編碼導頻資訊的程式碼,及用於使一電腦在該符號之該 複數個副載波之第二部分上編碼傳輸器識別資訊的程式 碼。 在另-態樣中,揭示至少—處理器,該至少—處理器經 組態以執行用於在網路中傳輸傳輸器識別資訊之方法。該 方法包括在一作用中傳輸器之符號中之複數個副載波之第 一部分上編碼導頻資訊,及在該符號之該複數個副载波之 第二部分上編碼傳輸器識別資訊。 在又一態樣中,揭示一種用於在一通信系統中之一器件 中判定傳輸器識別資訊的方法。該方法包含自—傳輸器接 收具有複數個副載波之至少一符號。該方法進—步包括使 用該至少一符號中之該複數個副載波之第一部分來判定該 至少一符號的一頻道估計及一能量量測,及解碼該至少一 符號中之該複數個副載波之一專用第二部分以判定該傳輸 器識別資訊。 根據再一態樣,揭示一種用於在一通信系統中之—器件 中判定傳輸器識別資訊的裝置。該裝置包括用於自—傳輸 器接收具有複數個副載波之至少一符號的構件,及用於使 用該至少一符號中之該複數個副載波之第一部分來判定該 至少一符號的一頻道估計及一能量量測的構件。該裝置進 一步包括用於解碼該至少一符號中之該複數個副載波之一 138133.doc -6 - 201004252 專用第二部分以判定該傳輸器識別資訊的構件。 在又-態樣中’揭示-種電腦程式產品。該電腦程 品之特徵在於-電腦可讀媒體,其具有用於使—電腦二一 傳輸器接收具有複數個副載波之至少—符號的程式= 用於使-電腦使用該至少—符號中之該複數個副載波 一部分來狀該至少-符號的—頻道估計及—能量量測的 Γ %式碼。制體亦包㈣於使—電腦解碼該至少—符 之該複數個副載波之一專用第二部 a 資訊的程式碼。 卩以心轉輸器識別 在再一態樣中,假定以傳輸器位置座標(例如,⑽位置 座標)之形式來用信號傳輸傳輸器識別資訊,在本文中呈 現用於呈現及發送該傳輸器位置資訊的新穎實 【實施方式】 本揭示案係關於用於在 线中傳㈣於傳輸器之識 =的=及裳置。該等方法及裝置供應用於使用π。 =心傳輸器識別及位置批的方案,該方案不要 局域網路區中之傳輸器的排程為接收器所知的。詳令之, :揭二:法及裝置使用包括傳輸器識別資訊之m:符 僅需要來自—超訊框之時序資訊及該ppc 傳^器識中傳輸器之識別碼。在一特定實例中,該 傳二二:碼可明確地編碼於該等PPC符號中。藉由將該 不需明確地編碼於該等ppc符號中,在傳輸器處 將==輸器之較高階排程資訊。然而,傳輸器 处理來以強健方式將傳輸器識別碼資訊嵌 138133.doc 201004252 入該等PPC符號中,且接收哭 料值於1 —收將必須處理P P C符號以提取 考η別傳二碼“。然而’傳輪器識別資訊供應接收 =輸'及使用經識別傳輸器之頻道剖面來進行之相 應位置疋位所需要使用的較少 础口丨七沾* 貝,原。另外,可將以該 識別來、扁碼之額外資訊用信號傳輸至接收器,不管一特定 傳輸器是否正使用其他符號。 、 為達成此描述目的,本文中參考利用正交分頻多工 (OFDM)來提供網路傳輸器 ^ 個仃動器件之間的通 二1 ...轉(諸如’ FL〇或dvb_t/h)來描述傳輸器識別 =:二實例中,所揭示之通信系統可使用單頻網路 載一在其中’來自網路中之多個傳輸器之信號 收器視為其為來自同-朴呈右/。果该寻波形可被接 J源但具有不同傳播延遲的信號。 另外應注意,太立所J·息— _ 4_ 文斤揭不之例示性OFDM系統可(例如) ,。餘。該等超訊框包括用於將服務自伺服 ^收器件的資料符號。根據-實例,可將-資料槽界定為 在一 〇聰符號時間内發生之—組預定數目之f料符號(例 口 ’ 500個)。另夕卜,該超訊框中之一〇FDM符號時間可載 運八個資料槽(僅作為實例)。 根心—實H訊框中之—PPC包括用於提供用於 」一疋之、罔路中之個別傳輪器的頻道估計的傳輸器識別資 π的PPC符號。該等個別頻道估計接著可用於網路最佳化 (傳輸器延遲用於網路最佳化及功率剖面量測)及位置定位 (經由量測來自所有附近傳輸器之延遲,繼之以三角量測 138133.doc 201004252 技術)。 在一例示性系統中,所有傳輸器處之超訊框邊界可同步 至一共同時脈參考。舉例而言’該共同時脈參考可自—全 球定位系統(GPS)時間參考獲得。一接收器件接著可使用 PPC符號來識別—特定傳輸器及來自該接收器件附近之一 - 組傳輸器的頻道估計。 • 圖1說明可使用目前所揭示之方法及裝置的通信網路 f, 100。所說明之網路100包括兩個廣域區域102及104。廣域 區域102及1〇4中之每一者通常覆蓋大地理區域,諸如—個 州、多個州、一個國家之一部分,整個國家,或一個以上 國豕。又’廣域區1〇2或1〇4可包括局域區域(或子區域)。 舉例而言,廣域區域102包括局域區域1〇6及1〇8,且廣域 區域1 04包括局域區域丨丨〇。應注意,網路1 〇〇僅說明—網 路組態,且可涵蓋具有任何數目之廣域及局域區域的其他 網路組態。 ί; 局域區域106、108、110中之每一者包括給行動器件(例 如,接收器)提供網路覆蓋的一或多個傳輸器。舉例而 吕’區域1 08包括給行動器件i i 8及120提供網路通信之傳 輸窃112、114及116。類似地,區域106包括給器件128及 • 130提供網路通信之傳輸器122、124及126,且區域11〇展 示為具有給器件138及140提供網路通信之傳輸器132、134 及 1 3 6 〇 如圖1中所說明,一接收器件可自其局域内之傳輸器、 自同一廣域内之另一局域中之傳輸器或自其廣域外之局域 138133.doc 201004252 中之傳輸器接收包括PPC符號之超訊框傳輸。舉例而言, 如由箭頭142及144所說明,器件11 8可自其局域1〇8内之傳 輸器接收超訊框。如由箭頭146所說明,器件丨丨8亦可自廣 域102内之另一局域1 〇6中之傳輸器接收超訊框。如工48處 所說明,器件118潛在地可進一步自局域11〇中之傳輸器接 收超訊框’局域110係在另一廣域1〇4中。 如以引用方式明確併入本文中的於2〇〇6年9月6日申靖之 題為「Methods and Apparatus f0r Positi〇n L〇cati〇n 比 gIn turn, another device for transmitting a transmitter identification poor message in a communication system is disclosed. The apparatus is characterized by encoding a pilot information Z component on a first portion of a plurality of subcarriers in a symbol of an active transmitter, and for encoding on a second portion of the plurality of subcarriers of the symbol The member of the wheel finder to identify information. 138133.doc 201004252 According to yet another aspect, a computer program product is disclosed. The computer program product includes a computer readable medium having a code for encoding pilot information on a first portion of a plurality of subcarriers in a symbol for transmitting a signal by a computer, and And causing a computer to encode the code of the transmitter identification information on the second portion of the plurality of subcarriers of the symbol. In another aspect, at least a processor is disclosed that is configured to perform a method for transmitting transmitter identification information in a network. The method includes encoding pilot information on a first portion of a plurality of subcarriers in a symbol of an active transmitter, and encoding transmitter identification information on a second portion of the plurality of subcarriers of the symbol. In yet another aspect, a method for determining transmitter identification information in a device in a communication system is disclosed. The method includes receiving, by a transmitter, at least one symbol having a plurality of subcarriers. The method further includes determining a channel estimate and an energy measurement of the at least one symbol using the first portion of the plurality of subcarriers in the at least one symbol, and decoding the plurality of subcarriers in the at least one symbol A dedicated second part is used to determine the transmitter identification information. According to still another aspect, a device for determining transmitter identification information in a device in a communication system is disclosed. The apparatus includes means for receiving, by a transmitter, at least one symbol having a plurality of subcarriers, and for determining a channel estimate of the at least one symbol using a first portion of the plurality of subcarriers in the at least one symbol And an energy measuring component. The apparatus further includes means for decoding one of the plurality of subcarriers in the at least one symbol 138133.doc -6 - 201004252 dedicated second portion to determine the transmitter identification information. In the re-existence, it reveals a kind of computer program product. The computer program is characterized by a computer readable medium having a program for causing a computer to transmit at least a symbol of a plurality of subcarriers = for causing a computer to use the plurality of symbols Part of the subcarriers is the Γ% code of the at least-symbol-channel estimate and the energy measurement. The body is also packaged (4) for the computer to decode the at least one of the plurality of subcarriers dedicated to the code of the second part a information.卩Cartoon Transmitter Identification In yet another aspect, it is assumed that the transmitter transmits the transmitter identification information in the form of a transmitter position coordinate (eg, (10) position coordinate), which is presented herein for presenting and transmitting the transmitter. The novelty of the location information [Embodiment] This disclosure relates to the use of the online transmission (four) in the transmitter = = and the skirt. The methods and apparatus are supplied for the use of π. = Heart transmitter identification and location batch scheme. This scheme does not require the transmitter schedule in the LAN area to be known to the receiver. For details, : Jie 2: The method and device use the m: character including the transmitter identification information. Only the timing information from the super frame and the identification code of the transmitter in the ppc transmission device are needed. In a particular example, the pass two: code can be explicitly encoded in the PPC symbols. By not explicitly encoding the ppc symbols, the higher order scheduling information of the == transmitter is transmitted at the transmitter. However, the transmitter processes to embed the transmitter identification code information into the PPC symbols in a robust manner, and receives the crying value at 1 - the PPC symbol will have to be processed to extract the second code. However, the 'passer identification information supply reception=transmission' and the use of the channel profile of the identified transmitter for the corresponding position of the position required to use the lesser base, the original. In addition, can be used Additional information identifying and flattening is signaled to the receiver, regardless of whether a particular transmitter is using other symbols. For the purposes of this description, reference is made to the use of orthogonal frequency division multiplexing (OFDM) to provide the network. Transmitter ^ 仃 器件 之间 ( ( ( ( ( ( ( ( ( ( ( ( ( 传输 传输 传输 传输 传输 传输 传输 传输 传输 传输 : : : : : : : : : : : : : : : : : : : : : : A signal receiver in which 'a plurality of transmitters from the network is regarded as being from the same-Pak Right./ The signal can be connected to the J source but has different propagation delays.太立所J·息— _ 4_文An exemplary OFDM system that can not be detonated can be, for example, .. The superframes include data symbols for servicing the device from the servo. According to the example, the data slot can be defined as a The symbol time occurs—the predetermined number of f-symbols (cases '500). In addition, one of the super-frames 〇FDM symbol time can carry eight data slots (only as an example). - The real H-frame - the PPC includes a PPC symbol for providing a transmitter identification π for the channel estimation of the individual wheelers in the tunnel. These individual channel estimates can then be used for network optimization (transmitter delay for network optimization and power profile measurement) and position location (via measurement of delays from all nearby transmitters, followed by triangulation) Test 138133.doc 201004252 Technology). In an exemplary system, the hyperframe boundaries at all transmitters can be synchronized to a common clock reference. For example, the common clock reference can be obtained from a Global Positioning System (GPS) time reference. A receiving device can then use the PPC symbol to identify the channel estimate for the particular transmitter and one of the group transmitters from the vicinity of the receiving device. • Figure 1 illustrates a communication network f, 100 that can be used with the methods and apparatus disclosed herein. The illustrated network 100 includes two wide area areas 102 and 104. Each of the wide area areas 102 and 1.4 typically covers a large geographic area, such as a state, a plurality of states, a part of a country, an entire country, or more than one country. Further, the wide area 1 〇 2 or 1 〇 4 may include a local area (or sub-area). For example, wide area area 102 includes local area areas 1〇6 and 1〇8, and wide area area 104 includes local area area丨丨〇. It should be noted that Network 1 only describes the network configuration and can cover other network configurations with any number of wide and local areas. Each of the local area 106, 108, 110 includes one or more transmitters that provide network coverage for mobile devices (e.g., receivers). For example, Lu's area 108 includes transmission stealers 112, 114, and 116 that provide network communications to mobile devices ii 8 and 120. Similarly, region 106 includes transmitters 122, 124, and 126 that provide network communications to devices 128 and 130, and region 11A is shown as having transmitters 132, 134, and 13 that provide network communications to devices 138 and 140. 6 〇 As illustrated in Figure 1, a receiving device may be a transmitter in its local area, a transmitter in another local area within the same wide area, or a transmitter in its local area 138133.doc 201004252 Receive hyperframe transmissions including PPC symbols. For example, as illustrated by arrows 142 and 144, device 118 can receive a hyperframe from a transmitter within its local area 1-8. As illustrated by arrow 146, device 丨丨8 may also receive a hyperframe from a transmitter in another local area 1 〇6 within wide area 102. As illustrated at job 48, device 118 can potentially further receive a hyperframe from the transmitter in local area 11 'local area 110 in another wide area 1〇4. As stated in the citation of this article, on September 6, 2002, Shen Jing's title is "Methods and Apparatus f0r Positi〇n L〇cati〇n than g
Wireless Network」之Mukkavilli等人的美國專利申請案第 U/517,l 19號中所揭示的’由作用中傳輸器傳輸之符 號經不同地組態,使得彼等傳輸器相對於p 同時閒置或待用。在操綱,每一傳輸器使二= :机來判定-區域中之哪個傳輸器將成為「作用中傳輸 一…本申請案之㈣’應注意’作用中傳輪器為傳輸 符號之傳輸器,該PPC符號包括使用副載波之至少 一部分(例如’―交錯)的識別資訊。雖Μ給作用中奸 符號分配給—=m將任何數目之作用中 得輸盗。因此,每—傳輪器與一 聯由該作用中符號,該傳輪器傳輸包括識:: 之經界疋之閒置部分(例如,交錯)上傳輸。订波 器件接著可經組態以不「g 之接收 ,^ +瓜1。」该專ppc符號之閒詈邹八 中之資訊。此允許傳輸器在1置π刀 付娩之閒置部分期間 138133.doc •10- 201004252 進行傳輪以提供功率(亦 網路效能。在另一實例 付^之能量)穩定性以維持 , 1中,在ppc上傳輸之符號經設計以 具有長循環首碼1 ^ 写之次1每 )使侍接收器件可利用來自遠處傳輸 益之貝訊以達成位置判 特定 之目的。此機制允許接收器件在 、 專輸盗之相關聯作用中篇狀细ώ ^ Ζι] 中付唬期間自该特定傳輸器接收 識別貝讯,而無來自該區 因為其他傳輸器传在f # 、 “之干擾’廷是 乎顆“。係在δ亥们虎之間置部分(交錯)上傳輸。 圖2展示包括傳輸器識 貝Λ (本文中被稱作TxID)之傳 輸的通仏糸統2〇〇的實 糸、充00 I括經由無線鏈路204 將匕括¥頻定位用頻道(ppc)2Q2之超訊框 收器件裏的複數個傳輸器(例如,五個傳輸器^τ5) = ^Τ1_Τ5可表示在器件_附近之彼等傳輪器且可包括在 與益件206相同之局域内傳 _ 得褕态不同局域中之傳輸 11 ’或不同廣域中之傳輸器°應注意’傳輸UTi-丁5可為 同/至,一時間基準(例如,㈣時間)之通信網路的部 刀,使付自傳輸器丁⑺傳輸之超訊框在時間上對準且同 步。應注意,可能允許超訊框之開始相對於該單一時門美 準有-固定偏移且在傳播延遲之判定中考量該等各別料 器之偏移。因此,所傳輸超訊框之内容對於相同局域内^ ,輸^而言可為同樣的’但對於不同局域或廣域中之傳輸 器而έ可為不同,然而,由於該網路經同步,故节等赶訊 ㈣對準,且該器件2〇6可經由PPC加自附近傳 符號,且彼等符號亦經對準。 如由例示性傳輸器區塊所說明,傳輪器丁丨-乃中之每 138133.doc 11 201004252 一者可包含傳輸器邏輯208、pPC產生器邏輯21〇,及網路 邏輯212。如由例示性接收器件222所說明,接收器件2〇6 可包括接收器邏輯216、PPC解碼器邏輯218,及傳輸器1£) 判定邏輯220。 應注意’傳輸器邏輯208可包含硬體、軟體、韌體,或 其任何合適組合。傳輸器邏輯208可操作以使用傳輸超訊 框來傳輸音訊、視訊及網路服務。傳輸器邏輯2〇8亦可操 作以在一超訊框中傳輸一或多個ppc符號。在一實例中, 傳輸器邏輯208經由PPC 202來傳輸在一超訊框内之一或多 個PPC符號234以提供傳輸器識別資訊,以供由接收器件 222用以識別特定傳輸器以及用於達成諸如定位之其他目 的。 PPC產生器邏輯210包含硬體、軟體或其任何組合。ppc 產生器邏輯21 0操作以將傳輸器識別資訊併入至經由ppc 202傳輸之符號234中。在—實例中,每—ppc符號包含分 組成選定數目之交錯的複數個副載波。一交錯又可界定為 橫跨可用頻帶的均-地間隔之副載波的集合或彙集。應注 意’交錯亦可由不均-地間隔之一群副載波組成。 在一實例中,給傳輸器T1_T5中之每一者分配至少一 PPC符號’該PPC符號被稱作彼傳輸器之作用中符號。舉 例而。給傳輸器T1分配一超訊框中之PPC符號234内之 PPC符唬236,且給傳輸器Ts分配一超訊框中之符號 234内之PPC符號238。 PPC產生器邏輯21〇操作以將傳輸器識別資訊編碼入彼 138133.doc 201004252 傳輸器之作用中符號中。舉例而言,將每―符號 組至稱作二作。用中交錯」⑨「閒置交錯」之兩個二 PPC產生為邏輯210操作以在彼傳輸器之作用中 t, . 之專用 中父錯上編碼傳輸器識別資訊。舉士 丁 J J 5 ,傳輕哭Τ 1 訊^符號236之作用中交錯上傳輸,且傳輸“5 4別貝Λ係在符號238之專用作用中交錯上傳輪。告 輸益不在作用中符號上傳輸其識科,ppc產生器邏輯加 _在剩餘符號之閒置交錯上編碼閒置資訊。舉例而 言’若PPC2G2包含十個符號,則在卿網路中,將給夕 達十個傳輸器各自指派_ppc符號以作為其各別作用= 號。每一傳輸器將在其各別作时符號之作用中交錯上: 碼識別資訊,且將在剩餘符號之間置交錯上編碼閒曰置資 二一傳輸器在一 ppc符號之閒置交錯上傳輸 貝-T #輸裔邏輯212操作以調整所傳輸符號之功 率,以維持恆定之每符號之能量功率位準。 可猎由硬、軟體、韌體或其任何組合來組態網路邏輯 212 °網路邏輯212可操作以接收網路供應資訊224及系統 乂 i、系統使用。使用供應資訊224來為傳輸器τ卜 Γ中之每—者判定—作用中符號,在該作时符號期間, 傳輸器將在其作用中符號之作用中交錯上傳輸識別資 ―使用系統日守間226來將傳輸同步,使得接收器件能夠 判疋特疋傳輸器之頻道估計,以及輔助傳播延遲量測。 、接收器邏輯218包含硬體、軟體或其任何組合。接收器 U耳218 “作以在ppc 2{)2上自附近傳輸器接收傳輸超訊框 138133.doc -13· 201004252 及ppc符細。接收器邏輯21δ操作以接收ppc符號…且 將其傳遞至PPC解碼器邏輯220。 ⑽碼器邏輯220包含硬體、敕體或其任何組合。ppC 解碼器邏_操作以解碼㈣符號,以判定與每―_目 :聯之特定傳輸k制碼。舉心言,解碼邏輯-操 作以解碼所接收的每-PPC符號之作用中交錯,以判定盘 ,^相關聯之特定傳輸碼一旦傳輸ϋ識別碼 ^判疋,㈣解碼器邏輯2騎操作以敎彼傳輸器之頻道 1計。舉例而言,使用與所接收之超訊框相關聯之律 碼n邏輯22G可判定與每_所接收之ppc符號相 作用中傳輸器的一頻道估計。因此,ppc解碼器邏 =咖操作以判定多個傳輸器識別符及相關聯頻道估計。 接者將此資訊傳遞至位置判定邏輯2 2 i。 位置判定邏輯221包含硬體、軟體或其任何 =定邏輯⑵操作以基於自㈣料_輯2轉收到的戶^ 之::亀識職訊及相關聯頻道估計來計算器件裏 …。舉例而言’傳輸器Τ1_Τ5之位置為網路實體所 :置=等頻道估計來判定該器件距彼等位置之距離。 2 2丨接著使用三角量測技術對器件咖之位 進行二角量測。 在操作期間,傳輸器202中之每_者 聯之作用中-符號之作用中交錯中之至少== 輸器識別資訊。PPC產生器邏輯21。操作以基於網路= …24來判定哪個符號為_特定傳輸器之作用中符號二 138133.doc -14- 201004252 :輸以在其作用中符號之作用中交錯上傳輸其識別資 置:=產生器邏輯21。使該傳輸器在剩餘ppc符號之閒 曰上傳輸閒置資訊。因為每 ::輸能量’(亦即,在作用中交錯或閒置交錯上): 傳輸器功率不經歷將干擾網路效能之波動。 時當=206在PPC 202上自傳輪器™接收m:符號出 符。二旦1:每—PPC符號之作用中交錯的傳輸器識別 於可用^r—ppc符號識別了傳輸器,該器件便能夠基 判定1所^序來心㈣輸器之頻道料。該11件繼續 二計,直至獲得多個傳輸器 位置判定二為::基於此等估計, 之位置228進行三二=奉二角!測技術對該器件 如操作以將兮:,里二 實例中,位置判定邏輯 、…傳輪器識別符及相關聯頻道估計傳輸至 另—網路實體’該另一網路實 演算法以判定該器件之位置。 肖里象戈其他疋位 體上之Si:该定位系統包含-具有儲存於電腦可讀媒 程式:由:個::指令(「指令…腦程式,該電腦 能。舉例執行時提供本文所述定位系統之功 CDR〇M、記;J自一電腦可讀媒體(諸如,軟性磁碟、 * ^ ^ ^ ^ ^ ^ # ' RAM ' R〇M ^ ^ ^ 及/或。pc解碼器邏輯2::生器邏輯m 器件或網路資源來下載指令。丄:::至 138133.doc 15 201004252 執行時操作以提供如本文所述之定位系統的實例。 因此’該^位系統在傳輸器處操作以判作用中啊 符號’其中一特定傳輸器在彼符號之作用中交錯上傳輸豆 識別貢訊。該定位系統亦在接收器件處操作以敎在接收 之PPC符號中識別之傳輸器之頻道估計,且執行三角量測 技術以判定一器件位置。 的傳輸超訊框3〇〇。如 圖3展示可用於圖1或圖2之系統中 所示,每-超訊框3〇〇包括彳言資料3〇2、—或多個資料訊 ^〇4(例如’在圖3之實例中為4個資料訊框)及㈣/保留 付波306 ’序言資料3〇2包括分時多卫(tdm)導頻(例如, TDM1及TDM2)、廣域識別頻道(WIC)、局域識別頻道 (LIC)及附加項資訊符號(〇IS)3〇2。 根據一實例,ppc符號可經組態,使得將循環首碼長度 增加至副載波數目之一半,諸如在4〇96個副載波符號之實 例中增加至2048個碼片。舉例而言,經增加之循環首碼允 。中接收起。K框之接收器件更充分地考量頻道延遲擴展之可 •交性。因此,根據一實例,每一實體層(ΡΗγ)ρρ(:符號將 具有6161個碼片之持續時間(2〇48個碼片之循環首碼+4〇96 们碼片+1 7個碼片之視窗)。應注意,此所揭示實例假定 「4K」(亦即,4〇96個碼片之視窗)快速傅立葉變換 模式另外,根據此實例,如賴後將論述,可將媒體存取 制(MAC)PPc符號界定為等於每符號具有八個交錯的具 有61 61個碼片之持續時間的一個PHY PPC符號(亦即,用 於「4K」FFT之ΡΗγ ppc)。然而,該ppc符號結構可經組 138133.doc 16 201004252 態,使得其類似於用於相應FFT模式(例如,ικ、2K或8Κ) 之資料符號結構。因此,再次假定循環首碼等於FFT視窗 之一半及17個視窗碼片,對於1K&2K FFT模式而言,每 符號碼片之數目將分別為(例如)1553個碼片(1〇24個碼片 + 512循環首碼+ 17個視窗碼片)及3〇89個碼片。一超訊框中 MAC PPC符號之數目(例如,8個)仍將與化模式相同。應 注意,此數字僅作為實例來提供,且熟習此項技術者應瞭The symbols transmitted by the active transmitter are configured differently such that their transmitters are idle relative to p or are disclosed in U.S. Patent Application Serial No. U.S. Pat. stand-by. In the program, each transmitter makes two =: machine to determine which transmitter in the area will become "acting transmission one... (4) in this application 'should note' the role of the transmitter in the transmission symbol The PPC symbol includes identification information that uses at least a portion of the subcarriers (e.g., 'interlace'). Although assigning a symbol to the -=m will cause any number of effects to be stolen. Therefore, each passer Associated with the active symbol, the transmitter transmits over the idle portion (eg, interleaved) of the boundary: the predetermined device can then be configured to not receive, g + Melon 1." The information of the special ppc symbol of the leisure of Zou Bazhong. This allows the transmitter to carry the transmission during the idle part of the 1 π knife delivery 138133.doc •10- 201004252 to provide power (also network performance. Energy in another example) stability to maintain, 1 The symbol transmitted on the ppc is designed to have a long cycle first code 1^ write the first one. Each) allows the receiving device to utilize the remote transmission to achieve the purpose of location specificity. This mechanism allows the receiving device to receive the identification of the beacon from the specific transmitter during the payment in the associated role of the sneak peek, without any from the region because the other transmitter is transmitted at f#, "The interference of the court is a "." It is transmitted on the part (interlaced) between the δHaihu tigers. 2 shows an implementation of a communication system including a transmission of a transmitter (referred to herein as TxID), and a charging channel including a frequency band (ppc) via a wireless link 204. A plurality of transmitters in the 2Q2 superframe frame receiving device (for example, five transmitters ^τ5) = ^Τ1_Τ5 may represent their passers in the vicinity of the device_ and may be included in the same game as the benefit 206 Intra-domain transmission _ can be transmitted in different local areas 11 ' or different wide-area transmitters ° should pay attention to 'transport UTi-Ding 5 can be the same / to, a time base (for example, (four) time) communication network The knives of the knives allow the superframes transmitted from the transmitter (7) to be aligned and synchronized in time. It should be noted that it may be possible to allow the start of the hyperframe to have a fixed offset relative to the single time gate and to account for the offset of the individual hoppers in the determination of the propagation delay. Therefore, the content of the transmitted hyperframe can be the same for the same local area, but can be different for different local or wide-area transmitters. However, since the network is synchronized , the festival, etc. (4) alignment, and the device 2〇6 can be added from nearby symbols via PPC, and their symbols are also aligned. As illustrated by the exemplary transmitter block, each of the 138133.doc 11 201004252 may include transmitter logic 208, pPC generator logic 21, and network logic 212. Receiver device 〇6 may include receiver logic 216, PPC decoder logic 218, and transmitter 1) decision logic 220, as illustrated by exemplary receiving device 222. It should be noted that the transmitter logic 208 can comprise hardware, software, firmware, or any suitable combination thereof. Transmitter logic 208 is operable to transmit audio, video, and network services using a transmission hyperframe. Transmitter Logic 2〇8 can also operate to transmit one or more ppc symbols in a superframe. In one example, transmitter logic 208 transmits one or more PPC symbols 234 in a hyperframe via PPC 202 to provide transmitter identification information for use by receiving device 222 to identify a particular transmitter and for Achieve other purposes such as positioning. PPC generator logic 210 includes hardware, software, or any combination thereof. The ppc generator logic 210 operates to incorporate the transmitter identification information into the symbols 234 transmitted via the ppc 202. In the example, each -ppc symbol contains a plurality of subcarriers that are grouped into a selected number of interlaces. An interlace can be defined as a set or collection of equally spaced subcarriers across the available frequency bands. It should be noted that 'interlacing' may also consist of a group of subcarriers that are unevenly spaced apart. In an example, each of the transmitters T1_T5 is assigned at least one PPC symbol. The PPC symbol is referred to as the active symbol of the transmitter. For example. The transmitter T1 is assigned a PPC symbol 236 in the PPC symbol 234 in the superframe and the transmitter Ts is assigned a PPC symbol 238 in the symbol 234 in the superframe. The PPC generator logic 21 operates to encode the transmitter identification information into the active symbols of the 138133.doc 201004252 transmitter. For example, each "symbol group" is referred to as two. The two PPCs in the interleaved "9" idle interleaving are generated as logic 210 operations to encode the transmitter identification information in the dedicated mediator of the t,.士士丁JJ 5, pass the light to cry Τ 1 message ^ symbol 236 in the role of interlaced transmission, and transmission "5 4 Bebe system in the special role of the symbol 238 interlaced upload wheel. The loss is not in the role of the symbol Transmit its knowledge, the ppc generator logic adds _ idle information on the idle interlace of the remaining symbols. For example, if PPC2G2 contains ten symbols, in the Qing network, ten transmitters will be assigned to each other. The _ppc symbol is used as its individual action = number. Each transmitter will be interleaved in its role as a symbol: code identification information, and will be interleaved between the remaining symbols. A transmitter transmits a Bay-T #input logic 212 operation on an idle interlace of a ppc symbol to adjust the power of the transmitted symbol to maintain a constant energy power level per symbol. Huntable by hard, soft, firmware Or any combination thereof to configure the network logic 212 ° network logic 212 is operable to receive network provisioning information 224 and system 乂i, system usage. Use provisioning information 224 to determine for each of the transmitters - the active symbol, in the During the time symbol, the transmitter will interleave the identification in its active symbol--use system day-to-day 226 to synchronize the transmission so that the receiving device can determine the channel estimate of the transmitter and the auxiliary propagation delay. The receiver logic 218 comprises hardware, software or any combination thereof. The receiver U 218 "sends the transmission of the transmission frame 138133.doc -13· 201004252 from the nearby transmitter on ppc 2{) 2 and Ppc is fine. Receiver logic 21δ operates to receive the ppc symbol... and pass it to PPC decoder logic 220. (10) The coder logic 220 includes hardware, a body, or any combination thereof. The ppC decoder logically operates to decode the (four) symbols to determine the specific transmission k code associated with each. In a nutshell, the decoding logic-operations are used to decode the interleaving of the received per-PPC symbols to determine the disc, the associated specific transmission code is transmitted, the identification code is determined, and (4) the decoder logic 2 is operated by The channel of the transmitter is 1 meter. For example, the use of the code n logic 22G associated with the received hyperframe can determine a channel estimate for the transmitter in response to each received ppc symbol. Thus, the ppc decoder logic operates to determine multiple transmitter identifiers and associated channel estimates. The receiver passes this information to the location decision logic 2 2 i. The location decision logic 221 includes hardware, software, or any of its = logic (2) operations to calculate the device based on the information received from (4) _ _ 2:: 亀 职 及 and associated channel estimates. For example, the location of the transmitter Τ1_Τ5 is determined by the network entity to determine the distance of the device from the locations. 2 2丨 Then use the triangulation technique to measure the position of the device. During operation, each of the transmitters 202 is in the middle of the action-symbol at least == the transmitter identification information. PPC generator logic 21. The operation is based on the network = ... 24 to determine which symbol is the role of the _ specific transmitter in the symbol two 138133.doc -14- 201004252: the input is interleaved to transmit its identification in the role of the symbol in its role: = generate Logic 21. The transmitter is allowed to transmit idle information on the idle of the remaining ppc symbols. Because each :: energy input (i.e., interleaved or idle interleaved): Transmitter power does not experience fluctuations that would interfere with network performance. When =206 receives the m: symbol outlier on the PPC 202. Bind 1: The interlaced transmitter in each PPC symbol recognizes that the transmitter can be identified by the ^r-ppc symbol, and the device can determine the channel of the heart (four) transmitter. The 11 pieces continue to count until the multiple transmitters are obtained. The position determination 2 is: based on these estimates, the position 228 is performed on the third two = two corners! The measurement technique operates to determine, in the second instance, the position determination logic, the ... the wheel identifier and the associated channel estimate are transmitted to the other network entity to determine the other network implementation algorithm. The location of the device. Shaw's other Si on the body: The positioning system contains - has a computer-readable medium: by: a:: command ("instruction... brain program, the computer can. Locating system CDR 〇 M, remember; J from a computer readable medium (such as a flexible disk, * ^ ^ ^ ^ ^ ^ # ' RAM ' R〇M ^ ^ ^ and / or .pc decoder logic 2 :: The processor logic m device or network resource to download the instruction. 丄::: to 138133.doc 15 201004252 Operational operation to provide an example of a positioning system as described herein. Therefore 'the system is at the transmitter Operation to determine the role of the symbol 'one of the specific transmitters in the role of the symbol to interleave the bean identification message. The positioning system is also operated at the receiving device to identify the channel of the transmitter in the received PPC symbol Estimating, and performing a triangulation technique to determine the location of a device. The transmission frame 3 is shown in Figure 3, which can be used in the system of Figure 1 or Figure 2, each of which includes 彳Words 3 〇 2, - or multiple data messages ^ 〇 4 (for example 'in the example of Figure 3 is 4 Data frame) and (4)/reservation of Fubo 306 'Preamble data 3〇2 includes time-division (tdm) pilots (eg, TDM1 and TDM2), wide area identification channel (WIC), local area identification channel (LIC) And an additional information symbol (〇IS) 3〇2. According to an example, the ppc symbol can be configured such that the loop first code length is increased to one-half the number of sub-carriers, such as an instance of 4 〇 96 sub-carrier symbols. The number is increased to 2048 chips. For example, the received loop first code is received. The receiving device of the K box takes full account of the interchangeability of the channel delay spread. Therefore, according to an example, each The physical layer (ΡΗγ)ρρ(: symbol will have a duration of 6161 chips (the loop first code of 2〇48 chips +4〇96 chips +1 7 chips window). It should be noted that this The disclosed example assumes a "4K" (ie, a window of 4 〇 96 chips) Fast Fourier Transform mode. Further, according to this example, as will be discussed later, the Media Access System (MAC) PPc symbol can be defined as equal to Each symbol has eight interlaced PHYs with a duration of 61 61 chips PPC symbol (ie, ΡΗ γ ppc for "4K" FFT). However, the ppc symbol structure can be grouped 138133.doc 16 201004252, making it similar to the corresponding FFT mode (eg, ικ, 2K or 8Κ) The data symbol structure. Therefore, again assume that the loop first code is equal to one and a half of the FFT window and 17 window chips. For the 1K & 2K FFT mode, the number of chips per symbol will be, for example, 1553 chips. (1〇24 chips + 512 cycles first code + 17 window chips) and 3〇89 chips. The number of MAC PPC symbols (for example, 8) in a superframe will still be the same as the mode. It should be noted that this number is provided as an example only, and those skilled in the art should
解在本揭示案之範疇内其他PPC符號組態及持續時間為可 能的。 如可自上文之論述獲知,在所有FFT模式下ppc符號之 循環首碼將與資料符號不同。舉例而言,如上文所提及, 用於4K FFT模式之循環首碼將為2〇48個碼片,而非用於資 料付號之更典型的512個碼片。 。圖4展不用於由作用中傳輸器傳輸之符號之⑽DM符 谠400之交錯結構的功能圖。根據基於上述例示性數字之 實例,符號400將包括經劃分且分組成所示之八個交錯 ⑴山)的編個副载波,使得每—交錯包含$ i 2個副载波, 該等副載波之頻率或載頻調通常不相鄰。如先前所提及, 可需要使用一接收哭。资 要收盗第一,一接收器件需要使用該符號 H導頻副載波來判定—頻道估計。第二,—接收器件需 頻輕計所對應之傳輸器的識別碼。 、作用中付號400中之交錯來傳輸導頻載頻調以及傳 識別資訊。在圖4之特定實例中,符號之副載波的 分別標有參考數字術、例、傷及彻的第一部分(即, 138133.doc 201004252 乂錯12、“、I6)以及標有410的交錯1為用於傳輸導頻 載頻調之作用中交錯。在交錯10、12、14、16之情況中,藉 由廣域擾亂器種子(亦即’廣域鑑別者位元(WID))及局域 擾亂盗種子(亦即’局域鑑別者位元(LID))擾亂導頻以確保 跨"亥(等)網路之最大干擾抑制。&外,交錯I,由作用中傳 輸益用以傳輪導頻,該等導頻僅藉由wid擾亂⑼如,將 LID設定為零)以便減少接收器必須假定之假設的數目,且 因此減少處理之數目,以便共同地判定WID及LIE)。 根據一特定實例,廣域識別符WOI ID及局域識別符[〇1 ID在較兩層處為可用的且實際上在解碼〇is符號時為可用 的。在實體層,經由使用不同擾亂器種子(WID及/或^⑺ 來區分跨越各個區域及子區域(亦即,廣域及局域)的傳 輸。在一實例中,WID可為4位元攔位且用以分開廣域傳 輸,且LID可為另一 4位元攔位以用於分開局域傳輸。由於 僅存在16個可能的WID值及16個可能的LID值,故在整個 網路部署中該等WID及LID值可能並不唯一。舉例而言’ WID與LID之一給定組合可潛在地映射至多個w〇i ι〇及 LOI ID。儘管如此,但網路規劃可經完成,使得wid及 LID之再用將為在地理上分開的。因此,在一給定鄰域 中’毫無歧義地將一給定WID及LID映射至—特定w〇I及 LOI為可能的。因此,在實體層,PPC波形經設計以載運 WID及LID資訊(亦即,與交錯、i2、i4、l6,及^丨擾i)。 如上所述’處於作用中狀態下之傳輸器應傳輸至少2〇48 個導頻’以便使接收器能夠以所需延遲擴展來估計頻道 138l33.doc ,18- 201004252 此,應於该作用中傳輸器之四個交錯。接著使用關於該傳 輸:所屬於之廣域及局域之WID及lid來擾亂該四個作用 ,又錯(例如,I()、l2、l4、Ie)。該符號之一接收器將因此 I先自—PPC符號之作时交錯巾之導頻提取WID及LID ’、,接著使用5亥WID/LID資訊獲得來自彼特定傳輸器 之須逞估汁。藉由WID及LID進行擾亂亦提供對來自相鄰 局域網路中傳輸器之干擾的抑制。 , 然而,在接收器處之相應WID/LID識別步驟可能變得複 ' +例而σ,若使用WID及LID兩者對每一交錯進行擾 亂,則接收益將必須共同偵測用於進行擾亂之wid及 種子。每一種子存在丨6種可能性,使得接收器為進行共同 偵測將必須嘗試256種假設。因此’可藉由允許wm及UD 種子之獨立偵測來簡化接收器偵測。因此,在所揭示之實 例中,ppc波形包括具有僅用WID值來擾亂之導頻的另一 群副載波或交錯(例如,標有參考數字41〇的交錯1〇,其中 lid位元值被設定為0000。 除了上述内容外’本發明之裝置及方法包括使用副載波 之另一部分來傳輸自含於PPC符號400中之特定傳輸器識別 資訊。詳言之’副載波之此第二部分包含一 PPC符號中之 另一非零交錯。根據圖4所說明之實例,標有參考數字412 之交錯I3可包括傳輸器識別資訊,但是可使用任何其他空 閒交錯。此自含式傳輸器識別資訊允許接收器獨立於正常 超訊框處理來處理一 PPC。詳言之,對傳輪器識別之取得 可僅自PPC處理來得到,且將僅依賴於ppc處理之TDM1導 138133.doc •19· 201004252 =二伯測、:此用於粗略時序價測。此外,此產生傳輸 疋c頻逼’其可用於支援通信網路中之位置特定應 用,因為每-傳輸器本質上具備一無干擾頻道。因此,例 如’每—傳輸器可經組態以經由傳輸ϋ特定頻道來給予僅 除了傳輪器識別資訊外之關於特定應用之資訊。因此,可 训其他交錯來將料應用諸傳送至接收 斋件。 傳輸器識別資訊中所包括的特定類型之f訊可首先包括 =輸器識別符位元,其提供用於傳輸器之唯—識別符。在 一實例中,所預期之位元數目可為18,但是可利用任何合 、—位元數目。又’可在傳輪器識別資訊中分配額外信號 傳輸資訊位元以指示關於待傳輸之其他資訊的更多特異 佳。舉例而言’該信號傳輸資訊可用於向接收器件指示傳 輸為疋否使用其他符號來傳輸其他資訊及將使用多少其他 符號。在一實例中’該信號傳輸資訊包含3個位元。因 在此貫例中,傳輪益識別資訊之有效負載將為21個位 兀(用於傳輸器出之18個位元+用於信號傳輸資訊之3個位 凡)’但是可涵蓋更少或更多之數目。 八傳輸器識別資訊亦可包括一錯誤偵測碼’諸如循環冗餘 榀查(CRC)。在一實例中,CRc函數可藉由cRc多項式 4 +/+x4+l來界定,其產生7位元之Crc。 心有4 1 2之父錯μ雖然可使用任何其他空閒交錯)可包括 呈—或多個傳輸器位置座標(例如,GPS經度、緯度及或海 拔高度座標)之形式的傳輸器識別資訊。另外,槽3作為可 138133.doc -20. 201004252 能傳輸器識別指示儲存庫亦可包括網路延遲資訊。應注 思,父錯在與傳輸器位置識別一起使用時在本文中亦被稱 為槽。111此’在—態樣中,槽3(亦即,交錯13)可保持傳輸 器(TX)位置資訊。 在一種方法(方法1}中,不管傳輸器識別資訊或其他參 數是否係在PPC封包中用信號傳輸,皆使用例如80個位元 之固定位元PPC封包長度。此提供1〇個各自為8個位元之區It is possible to configure other PPC symbol configurations and durations within the scope of this disclosure. As can be seen from the above discussion, the cycle first code of the ppc symbol will be different from the data symbol in all FFT modes. For example, as mentioned above, the loop first code for the 4K FFT mode will be 2 〇 48 chips instead of the more typical 512 chips for the data note. . Figure 4 shows a functional diagram of the interleaved structure of the (10) DM symbol 谠400 not used for symbols transmitted by the active transmitter. According to an example based on the above illustrative numbers, symbol 400 will include the sub-carriers that are divided and grouped into eight interleaved (1) mountains as shown, such that each interlace contains $i 2 subcarriers, the subcarriers The frequency or carrier frequency is usually not adjacent. As mentioned previously, it may be desirable to use a receiving cry. In order to collect the first, a receiving device needs to use the symbol H pilot subcarrier to determine the channel estimate. Second, the receiving device needs the identification code of the transmitter corresponding to the frequency meter. The interleaving in the payment number 400 transmits the pilot carrier frequency and transmits the identification information. In the particular example of FIG. 4, the subcarriers of the symbols are labeled with reference numerals, examples, and the first part of the damage (ie, 138133.doc 201004252 error 12, ", I6" and interlace 1 labeled 410. Interleaved for the purpose of transmitting pilot carrier frequency modulation. In the case of interlace 10, 12, 14, 16 by wide-area scrambler seed (ie, 'wide-area discriminator bit (WID)) and bureau The domain disturbs the pirate seed (ie, the 'localized identifiable bit (LID)) to disturb the pilot to ensure maximum interference suppression across the "Hai (etc.) network. & external, interleaved I, by active transmission With the pilot pilots, the pilots are only disturbed by wid (9), for example, the LID is set to zero) in order to reduce the number of hypotheses that the receiver must assume, and thus reduce the number of processing in order to jointly determine WID and LIE) According to a specific example, the wide area identifier WOI ID and the local area identifier [〇1 ID are available at two more layers and are actually available when decoding the 〇is symbol. At the physical layer, different disturbances are used Seeds (WID and / or ^(7) to distinguish across regions and sub-regions (ie, Transmission of domain and local area. In one example, the WID can be a 4-bit intercept and used to separate wide-area transmissions, and the LID can be another 4-bit intercept for separate local transmissions. There are 16 possible WID values and 16 possible LID values, so the WID and LID values may not be unique throughout the network deployment. For example, a given combination of one of WID and LID can potentially map to at most W〇i ι〇 and LOI ID. However, network planning can be done so that the reuse of wid and LID will be geographically separated. Therefore, 'unambiguously in a given neighborhood' It is possible to map a given WID and LID to a specific w〇I and LOI. Therefore, at the physical layer, the PPC waveform is designed to carry WID and LID information (ie, with interlace, i2, i4, l6, and ^ 丨 i i). As mentioned above, 'the transmitter in the active state should transmit at least 2 〇 48 pilots' to enable the receiver to estimate the channel with the required delay spread 138l33.doc, 18-201004252 The four interlaces of the transmitter should be used in this role. Then use the transmission: the wide area and The WID and lid of the domain disturb the four roles, and are wrong (for example, I(), l2, l4, Ie). One of the symbols of the receiver will therefore be the pilot of the interleaving towel from the first PPC symbol. Extract WID and LID ', and then use 5 hai WID/LID information to obtain the juice from the specific transmitter. The disturbance by WID and LID also provides suppression of interference from the transmitter in the adjacent LAN. However, the corresponding WID/LID identification step at the receiver may become complex and σ. If each interlace is scrambled using both WID and LID, the receiving benefit will have to be jointly detected for scrambling. Wid and seeds. There are six possibilities for each seed, so that the receiver will have to try 256 hypotheses for common detection. Therefore, receiver detection can be simplified by allowing independent detection of wm and UD seeds. Thus, in the disclosed example, the ppc waveform includes another group of subcarriers or interlaces having pilots that are only scrambled with WID values (eg, interlace 1〇 labeled with reference numeral 41〇, where the value of the lid bit is set 0000. In addition to the above, the apparatus and method of the present invention includes the use of another portion of the subcarrier to transmit specific transmitter identification information contained in the PPC symbol 400. In detail, the second portion of the subcarrier includes one Another non-zero interlace in the PPC symbol. According to the example illustrated in Figure 4, the interlace I3 labeled with reference numeral 412 may include transmitter identification information, but any other idle interlace may be used. This self-contained transmitter identification information allows The receiver processes a PPC independently of the normal frame processing. In detail, the acquisition of the wheeler identification can be obtained only from the PPC process, and will only rely on the TDM1 of the ppc process. 138133.doc •19· 201004252 = Second test, this is used for coarse timing measurements. In addition, this generates a transmission 频c which can be used to support location-specific applications in the communication network because each transmitter is essentially There is no interference channel. Thus, for example, the 'per-transmitter can be configured to give information about a particular application other than the transmitter identification information via the transmission-specific channel. Therefore, other interlaces can be applied to apply the material. The specific type of information included in the transmitter identification information may first include a = transport identifier bit, which provides a unique identifier for the transmitter. In an example, it is expected The number of bits can be 18, but any number of bins can be utilized. Also, additional signal transmission information bits can be allocated in the wheeler identification information to indicate more specific information about other information to be transmitted. For example, the signal transmission information can be used to indicate to the receiving device whether the transmission is to use other symbols to transmit other information and how many other symbols will be used. In an example, the signal transmission information contains 3 bits. In the example, the payload of the transmission benefit identification information will be 21 bits (for the 18 bits of the transmitter + 3 bits for the signal transmission information) The number of fewer or more. The eight transmitter identification information may also include an error detection code such as a cyclic redundancy check (CRC). In one example, the CRc function can be obtained by the cRc polynomial 4 +/+x4+ To define, it produces a 7-bit Crc. The heart has a parental error of 41, although any other idle interlace can be used, which can include - or multiple transmitter position coordinates (eg, GPS longitude, latitude, and or altitude). Transmitter identification information in the form of a height coordinate). In addition, slot 3 can be used as a 138133.doc -20. 201004252 transmitter identification indication repository can also include network delay information. It should be noted that the parent error is also referred to herein as a slot when used with transmitter position recognition. In this 'on-the-spot, slot 3 (i.e., interlace 13) maintains transmitter (TX) position information. In one method (method 1), regardless of whether the transmitter identification information or other parameters are signaled in the PPC packet, a fixed bit PPC packet length of, for example, 80 bits is used. This provides 1 each of 8 bits. District of bits
塊,母8個位元轉換成100個位元。與較短長度之PPC封包 相匕了達成較長之有效負載。在測試及實施中,單一 PPC封包大小為有益的。封包類型(欄位分配)為自含式的 允許可擴展n以包括其他參數,諸如傳輸^功率及超訊 框數目。實施如何分配ppC位元之兩種方法展示於幻燈片i 上所示之選項1及2中。雷德-穆勒編碼可用於該兩種實 鉍/、他文體包括使用相同基數(64,乃之雷德-穆勒碼,但 截短至⑷,7)。傳輪㈣在選項2中重複兩次而非保留5〇個 位兀。在由18個位元之傳輸器ID產生68個位元之過程中, 其他編碼方案為可能的。 在另一種方法(方法2)中,不管傳輸It ID資訊是否係在 ppc封包中用信號傳輸,皆使用㈣位元之封包。在 幻燈片2上說明—位元分配。又’方法2之其他屬性及益處 展不於幻燈片3及4上。 一第三種方法(方法3)陳述於所附幻燈片5至8上,—樣 本格式分配展示於幻糌Η】7 ’ βο 且片17上。由於在每— PPC MAC時間 早位内,母—傳輪器可處於三種狀態(亦gP,非作用中、 138133.doc 201004252 識別或保留)中之— 保留狀態用作傳於以±下’故在方法3之情況中’將ppc之 括傳、 貞道。除了網路延料,資訊包 括傳輸器ID負訊以及 方法允钟士,、 緯度、經度及海拔高度。此 〇 乂 、载使用turbo編碼。如幻燈片6上所干,對 於1000個位元之有 上所不對 油編碼供應更與雷德-穆勒編碼相比, 更強健之編碼。如幻燈片5上所示,一實施 例包括4個導頻槽與= 、 及-傳輸器位置資槽 傳輸器iD資訊 一 —A 直貝δίι置放於該等資料槽中之任一者中。 Ζ 5:::包括5個資料槽及2個導頻槽。與3個資料槽相 貝料槽之情況存在更多冗餘。如可在圖4中進-步 ^ H錯或副載波群(例如’圖4之實例中的交錯【5 了考數子414及416表示)將在作用中ppc符號 二Γ變成零。接著,使每-交錯中之能量為總 本所上^能量之(8/6)倍以便確保每一咖M PPC符號之 二亙疋的功率位準。然而,應注意,作用中符號彻 =用之交錯(例如’交錯1〇山及交錯16)之間的功率或能 里刀配不需要為均-的。更確切地說,在不同交錯中可全 異地分派能晋。叛也丨&士 ^ 5 ’父錯13之能量可設為8Ε/3,而 交錯ml6之能量以及交之能量可設為2ε/3, 或換言之,交錯l3之能量位準為該五個交錯m、i4 或16中之每—者的能量的4倍。 假定上文論述之例示性超訊框結構,使用每超訊框八個 可用ppc符號,一超訊框可支援—局域中之八個傳輸器。 然而,在某些部署中,一局域中傳輸器之數目可高於八 J38133.doc -22· 201004252 =外,僅一特定局域中之傳輸器被約束為在時間上正 Γ,可使用網路規劃以跨不同局域來排程傳輸器, 使付,料中之自干擾得以避免或至少得以減輕。 二卜’可希望每局域支援8個以上傳輸器。為達成實例The block, the mother 8 bits are converted into 100 bits. Along with the shorter length of the PPC package, a longer payload is achieved. In testing and implementation, a single PPC packet size is beneficial. The packet type (field assignment) is self-contained to allow scalability n to include other parameters such as transmission power and number of hyperframes. Two methods of implementing how to allocate ppC bits are shown in options 1 and 2 shown on slide i. The Red-Muller code can be used for both types of real/, including the use of the same cardinality (64, but the Reed-Muller code, but truncated to (4), 7). The pass (4) is repeated twice in Option 2 instead of 5 兀. Other coding schemes are possible during the generation of 68 bits from the 18-bit transmitter ID. In another method (method 2), the (four) bit packet is used regardless of whether the transmission It ID information is signaled in the ppc packet. Explain on slide 2 - bit allocation. Also, the other attributes and benefits of Method 2 are not shown in slides 3 and 4. A third method (method 3) is set forth in attached slides 5 through 8, and the sample format assignment is shown on the slide 7 7 'βο and on the sheet 17. Since the mother-transmitter can be in three states (also gP, inactive, 138133.doc 201004252 identified or reserved) in the early position of each PPC MAC time - the reserved state is used to pass the ± down In the case of Method 3, 'pass the ppc and swear. In addition to network extensions, the information includes transmitter ID and methods, clocks, latitude, longitude and altitude. This 〇 、, using turbo coding. As shown on slide 6, there is a more robust coding for the 1000-bit oil supply than the Reed-Muller code. As shown on slide 5, an embodiment includes four pilot slots and =, and - transmitter position slot transmitter iD information - A direct δ ί ί 置 placed in any of the data slots . Ζ 5::: Includes 5 data slots and 2 pilot slots. There is more redundancy in the case of the feed trough with the three data slots. As can be done in Figure 4, the error or the subcarrier group (e.g., the interleaving in the example of Figure 4 [5 indicates the values of 414 and 416) will cause the ppc symbol to become zero in effect. Next, the energy in each interlace is (8/6) times the total energy of the total to ensure the power level of each of the M PPC symbols. However, it should be noted that the power between the symbols in the action = the interleaving (e.g., 'interlaced 1 及 and interlaced 16') does not need to be uniform. Rather, in different interlaces, it can be assigned differently. Rebellion & 士^ 5 'The energy of the father's fault 13 can be set to 8Ε/3, and the energy of the interlaced ml6 and the energy of the intersection can be set to 2ε/3, or in other words, the energy level of the interlaced l3 is the five Interleaving four times the energy of each of m, i4 or 16. Assuming the exemplary hyperframe structure discussed above, using eight available ppc symbols per hyperframe, a hyperframe can support eight transmitters in the local area. However, in some deployments, the number of transmitters in a local area can be higher than eight J38133.doc -22· 201004252 =, only the transmitters in a particular local area are constrained to be positive in time, can be used Network planning is to schedule transmitters across different localities so that self-interference in the payment can be avoided or at least mitigated. Two Bu's can hope to support more than 8 transmitters per local area. To reach an example
署“…f域中將支援24個傳輸器。為支援此部 、.罔路可經組態,使得每一傳輸器在每三⑺個超訊框中 將傳輸-作用tPPC符號—次。在此種情況下,網路規劃 及附加項參數可用於通知傳輪器其各別作用中狀態將在何 時發生及其將於何時在經指派之作用中符號上傳輸識別資 λ。因此,三個超訊框之週期性可在網路層級處加以程式 化,使得系統可充分調整以支援額外傳輸器。網路所使用 之週期性在網路部署各處可保持恆定,使得可簡化網路規 劃以及用於傳送資訊之附加項資訊。在一實例 ^中將網路中所使用之關於週期性的資訊作為附加項= 來廣播,以允許此參數之更易程式化性。另外,在每—局 域具有30個可用PPC符號之情況τ,為緩解兩個不同局域 之邊界處之干擾而對網路規劃作出之約束亦得到放鬆。 '圖5展示在諸如圖】及圖2所說明之網路的網路中由被動 或非作用中傳輸器傳輸之例示性ppc符號。如可看出,非 作用中PPC符號500具有變成零之交錯1〇至16。冑錯κ用數 字502來提及)為被動傳輸器符號5〇〇中具有非零能量之唯 —交錯。交錯I?中傳輸之導頻不含有有意義之資料或資 訊,且該交錯可被稱為「虛設」交錯。根據所揭示之實 例,亦將交錯L中之能量按比例調整為每〇FDM符號交錯 I38I33.doc -23 - 201004252 可用之能置的8倍,以得、、其^、 ^ 便滿足恆定〇ί①Μ符號能量約束。被 或非作用中PPC符號5〇〇之傳輪確保其中之傳輸不干擾作 用中傳輸器之導頻’如圖4所說明,該等導頻係在交錯 I】' 12、14及16上傳輪的。 圖6 „兄月用於在作用中ppc符號之交錯(諸如,圖4所說明 之交錯)中編碼傳輸器識別的裝置6〇〇。裝i6〇〇首先包括 :用於設定❹!定傳輸_別符(TxID)位元及分配位元的 模組602。如上文所論述’用於Txm位元及分配位元之位 元數目可分別設為18及3。為達成說明之目的而假定此實 施例’將個位元自模組6()2傳遞至模組6()4,模組_經 組悲以將CRC位元(❹’如上文所料,七個位元)添加 至Tx.ID位元及分配位元。模組6〇4接著將總位元(其可被统 稱為「傳輸器識別資訊」)傳遞至一交錯器6〇6(例如,區塊 乂錯器)。叙定傳遞了 28個位元,區塊交錯器6〇6可組態為 4 X 7矩陣’其中逐行地寫人該等位元幼應地逐列讀出該 等位元以達成交錯。然而,應注意,熟習此項技術者可預 期與目前揭示之裝置及方法一起使用的各種其他類型之合 適交錯。 α 將經交錯之位元讀出至編碼器608以根據預定編碼方案 對该等位元編碼。在一實例中,編碼器6〇8可使用雷德-穆 勒(RM)錯誤校正碼來對該等位元編碼,諸如第—巧 (64,7)RM碼。在此實例中,交錯器6〇8將μ個資訊位元傳 遞至編碼器610。藉由一(64,7)R]VU^,將由對該28個資訊 位元進行編碼來得到四個64位元之碼區塊。缺而,| — …、 牡一特 138133.doc •24· 201004252 定實例中,在需要250個經編碼位元來配合一特定數字 時,所得之2S6個位元將過大。因此,可剔除(puncture)該 (64,7)RM碼之2個位元,導致如用編碼器6〇8内之剔除模組 61〇所說明的(62’7_碼。在—特定實例中,可剔除對應 於雷德穆勒碼字中之位置62及63的位元。因此,當編碼該 28個資訊位元時,結果將為州個經編碼位元。如編碼器 6〇8内之零插入模組612進一步所說明,可將兩個零附加:The "...f domain will support 24 transmitters. To support this, the 罔路 can be configured so that each transmitter will transmit every three (7) super-frames - the tPPC symbol - times. In this case, the network plan and additional parameters can be used to inform the poller when its respective active state will occur and when it will transmit the identification λ on the assigned role. The periodicity of the hyperframe can be programmed at the network level so that the system can be fully tuned to support additional transmitters. The periodicity used by the network can be kept constant throughout the network deployment, simplifying network planning. And additional information for transmitting information. In an example, the periodic information used in the network is broadcast as an additional item = to allow for more stylizedness of the parameter. In addition, in each The domain has 30 available PPC symbols. The constraints on network planning to mitigate interference at the boundary of two different localities are also relaxed. 'Figure 5 shows the network as illustrated in Figure 2 and Figure 2. Road network Or an exemplary ppc symbol transmitted by the inactive transmitter. As can be seen, the inactive PPC symbol 500 has an interlace 1 to 16 that becomes zero. The error κ is referred to by the number 502) is the passive transmitter symbol 5 〇〇 has non-zero energy only—interlace. The pilot transmitted in interlaced I? does not contain meaningful data or information, and the interleaving can be called “dummy” interleaving. According to the disclosed example, the energy in the interlaced L is also proportionally adjusted to be 8 times per available for each FDM symbol interleaving I38I33.doc -23 - 201004252, so that ^, ^, ^ satisfies a constant 〇ί1Μ Symbolic energy constraints. The pass or the non-active PPC symbol 5〇〇 ensures that the transmission does not interfere with the pilot of the active transmitter. As illustrated in Figure 4, the pilots are interleaved in the I]' 12, 14 and 16 uploading rounds. of. Figure 6 „ Brothers and Months are used to encode the transmitter identification device in the interleaving of the ppc symbols in action (such as the interlace illustrated in Figure 4). The installation of i6〇〇 first includes: for setting the transmission _ Modules 602 that are not (TxID) bits and allocated bits. As discussed above, the number of bits used for Txm bits and allocation bits can be set to 18 and 3, respectively. This is assumed for purposes of illustration. The embodiment 'passes a bit from module 6() 2 to module 6() 4, and the module _ is grouped to add the CRC bit (❹' as mentioned above, seven bits) to Tx .ID bit and allocation bit. Module 6〇4 then passes the total bit (which may be collectively referred to as "transmitter identification information") to an interleaver 6〇6 (eg, block error) . The specification passes 28 bits, and the block interleaver 6〇6 can be configured as a 4 X 7 matrix 'where the bits are written row by row. The bits are read out column by column to achieve interleaving. However, it should be noted that various other types of suitable interleaving that are contemplated by those skilled in the art for use with the presently disclosed apparatus and methods are contemplated. The interleaved bits are read out to an encoder 608 to encode the bits according to a predetermined coding scheme. In an example, encoder 〇8 may encode the octets using a Reed-Muller (RM) error correction code, such as a first- (64, 7) RM code. In this example, the interleaver 6〇8 passes the μ information bits to the encoder 610. With a (64,7)R]VU^, the 28 information bits will be encoded to obtain four 64-bit code blocks. Missing, | — ..., 牡一特 138133.doc •24· 201004252 In the example, when 250 coded bits are needed to match a specific number, the resulting 2S6 bits will be too large. Therefore, the 2 bits of the (64, 7) RM code can be punctured, resulting in the description of the culling module 61 内 in the encoder 6 ( 8 (62'7_code. In - specific instance In the case, the bits corresponding to the positions 62 and 63 in the Reed Muller codeword can be eliminated. Therefore, when encoding the 28 information bits, the result will be the state encoded bits. For example, the encoder 6〇8 Further illustrated by the zero insertion module 612, two zeros can be added:
該四個碼區塊以達成25〇個經編碼位元。一接收器又將假 定該等位元在解碼期間為零。 ^說明可用在傳輸器中產生驗瑪且更特定言之係在編 碼器608内的例示性硬體電路7〇〇。如所說明,硬體電路 接收-7位元輸入,由接收輸入位元_至叫之輸入I 所說明。電路亦包括…(例如,6)位元計數器7〇4, 其接收-時脈輸人以使計數器增加。藉由各別乘 706來將汁數器7〇4之輸出乘以輸入位元叫至%中之每— 者另外,將最高有效位元Π16乘以一恆定二進位「丨 (區塊7叫。藉由求和區塊71()來對乘法器之輸 1 出一 RM(64,7)碼本,A 1 士 ¥m …二)馬子其為一連串64位元值一。。應注 : 貫例中,可藉由丢棄值〜及〜來獲得經剔除之 的增加 由上述貝例,由編碼器6〇8輸出之250個 返口至圖6 ’ 一旦精由編碼器6〇8對傳輸器資訊進行 馬便可使用重複器614來確保位元之數目配合统 之特定數字。此重複供應在接收器處之處理增益“、·、充 位元可重複四次共 138133.doc -25- 201004252 1000個位元,此將導致接收器處的6 dB之處理增益。在重 複器614重複該等位元後,如由擾亂器616所說明,對該等 位元進行擾亂。在一實例中,可基於PPC符號索引(例如, 本實例中為0至7)及與交錯索引相同之槽式遮罩來用一種 子來對該等位元進行擾亂。在擾亂後,調變器6丨8根據眾 多調變方案中之任一者來調變該等經擾亂之位元以供傳 輸。在上文使用1000個位元之實例中,可將該等位元映射 至QPSK符號,此導致500個QPSK符號。在具有分成各自 為5 12個位元之八個交錯的4〇96個資料副載波的〇FDM實體 層符號中,500個QPSK符號將填滿一個交錯,其取決於 PHY層符號至具有6475個碼片之持續時間的ppc符號的映 射而橫跨一個或多個實體層符號。應注意,重複器614、 擾亂器616及調變器618之使用僅為調變方案之一實例,且 熟習此項技術者應瞭解,其他合適調變方案可用於所揭示 之方法及裝置。 此外’在上述實例中’假定接收器之—模式具有_4_ 個樣本(亦即,「4K」)快速傅立葉變換(FFT)視窗。應注 意’涵蓋使用相@方法及裝置之其他附模丨(例如,H 2Κ或 8Κ)。 在由調變器61 8調變後,例如,可拉士 ^ ^ J ^ J猎由父錯器620對調變 符號進行交錯以減輕可能在僖铨相 1寻翰頻道上傳輸期間出現之頻 率變化。另外,取決於FFT模式 式將鉍父錯之調變符號映 射至一或多個ppc實體層(PHY)符號。在4κ阡了模式之上 述實例中,對500個經調變符號進行交錯並將其映射至一 I38133.doc -26 - 201004252 PHY PPC符號。在2K FFT模式之另一實例中,可對經交錯 之付唬進行交錯,或更多地可在不同交錯中(交錯内)對經 父錯之符號進行交錯。The four code blocks are used to achieve 25 经 coded bits. A receiver will again assume that the bits are zero during decoding. ^ illustrates an exemplary hardware circuit 7 that can be used in the transmitter to generate an image and, more specifically, within the encoder 608. As illustrated, the hardware circuit receives a -7-bit input as illustrated by the receive input bit_to the called input I. The circuit also includes... (eg, 6) a bit counter 7〇4 that receives the clock input to increment the counter. By multiplying 706 by multiplying the output of the juice counter 7〇4 by the input bit to each of the %—in addition, multiplying the most significant bit Π16 by a constant binary “丨 (block 7 is called By summing block 71(), the output of the multiplier is outputted by a RM (64, 7) codebook, A 1 士¥m ... 2), which is a series of 64-bit values of one. In the example, the cull increase can be obtained by discarding the values ~ and ~ from the above-mentioned shell example, and the 250 loops output by the encoder 6 〇 8 to Fig. 6 ' Once the encoder is 〇 8 pairs The transmitter information can be used by the repeater 614 to ensure that the number of bits matches the specific number. The processing gain of the repeated supply at the receiver ", ·, the refill can be repeated four times a total of 138133.doc -25 - 201004252 1000 bits, which will result in a processing gain of 6 dB at the receiver. After the repeater 614 repeats the bits, as described by the scrambler 616, the bits are scrambled. In an example, the bits may be scrambled with a sub-port based on a PPC symbol index (e.g., 0 to 7 in this example) and a trough mask that is the same as the interleave index. After the disturbance, the modulator 6丨8 modulates the disturbed bits for transmission according to any of a variety of modulation schemes. In the example above where 1000 bits are used, the bits can be mapped to QPSK symbols, which results in 500 QPSK symbols. In a 〇FDM physical layer symbol having four interleaved 4 〇 96 data subcarriers each of which is 5 12 bits each, 500 QPSK symbols will fill an interlace, depending on the PHY layer symbol to have 6475 The mapping of the ppc symbols of the duration of the chip spans one or more physical layer symbols. It should be noted that the use of repeater 614, scrambler 616, and modulator 618 is only one example of a modulation scheme, and those skilled in the art will appreciate that other suitable modulation schemes can be used with the disclosed methods and apparatus. Further, in the above example, it is assumed that the mode of the receiver has _4_ samples (i.e., "4K") fast Fourier transform (FFT) windows. It should be noted that 'the use of phase@methods and other modes of the device (for example, H 2Κ or 8Κ) is covered. After being modulated by the modulator 61 8 , for example, the varnish can be interleaved by the parent error 620 to mitigate the frequency variations that may occur during transmission on the 1 phase 1 channel. . In addition, depending on the FFT mode, the modulation symbol of the father's fault is mapped to one or more ppc physical layer (PHY) symbols. In the above example of the 4κ阡 mode, the 500 modulated symbols are interleaved and mapped to an I38133.doc -26 - 201004252 PHY PPC symbol. In another example of a 2K FFT mode, the interleaved cells may be interleaved, or more often the inter-staggered symbols may be interleaved in different interlaces (interlaced).
圖8展示用於在無線系統(諸如,圖1及圖2所說明之系 統)中提供傳輸器識別的方法800。舉例而言,方法8〇〇適 合由網路中之傳輸器用於允許接收器件識別傳輪器以及基 乂亥傳輪态硪別來判定定位。在一實例中’可藉由如圖2 所示之214處所說明般組態的傳輸器來進行方法8 〇 〇。 如所示,在方法800開 /〜工^娜δυζ,在 中:判定傳輸器識別資訊。作為-實例,如由圖2所說 ^可自务送至傳輸器214之網路供應資料224來獲知此資8 shows a method 800 for providing transmitter identification in a wireless system, such as the systems illustrated in FIGS. 1 and 2. For example, the method 8 is suitable for determining the position by a transmitter in the network for allowing the receiving device to recognize the wheel carrier and the base wheel mode. In an example, the method 8 can be performed by a transmitter configured as described at 214 as shown in FIG. As shown, in the method 800 open / ~ work ^ Na δ υζ, in: determine the transmitter identification information. As an example, as shown in FIG. 2, the network supply data 224 that can be self-delivered to the transmitter 214 is known.
’傳輪器朗(TxID)資訊可基於—指定網則 而為傳輸器所固有的。 一J 疋或擷取到TxiD資訊後’如由步驟804所說明,藉 ^器接收關於為達成PPC符號之目傳輸 曰 二=還是閒置狀態下的資訊。如先前所解釋,作二 當前閒置之傳輪器在一當前。PC符號之閒置或虛丁::輪二 進行傳輪。在—實射, 父錯上 , 得輸态(例如,圖2中之偉鈐哭 214)中之網路邏輯(例如,邏 專輸口口 或器件接收來自纲…广 適網路管理實體 指示。自網路供應^224之對當前傳輸器狀態的 在決策步驟806 作用中模式還是間 中’作出當前PPC符號之傳輸 置模式的判定 作為一實例 器是處於 可藉由圖 138133.d〇i ,27· 201004252 2所示之傳輸器214中之ppc產生器邏輯2〗〇來進行此判定。 若„亥傳輸盗對於當前ppc符號為作用中的,則處理流前 進至步驟808,在其中,藉由用wm及LID種子對導頻進行 擾亂來在副载波之第_部分(例如,交錯L、ΐ2、ΐ4、Μ. 之4載波)上編碼導頻。另外,如步驟8丨〇所示,藉由僅用 WID種子對導頻進行擾i來在副载波之第—部分之另一部 (Ή 士 乂錯1]中之副載波)上編碼導頻。應注意,副載 波之指定「第一部分」意、味著該複數個可用副載波中用於 傳送導頻載頻調的部分,諸如交錯1〇、L、U、0之彼等 副載波以及交錯U之彼等副載波。作為—實例,可藉由 圖2所說明之傳輸器邏輯2〇8及ppc產生器邏輯2⑺來進行如 由步驟808及810所示的對導頻之編碼。 如由步驟8!2所說明,副載波之—第二部分(例如,交錯 “中之副載波)編碼有傳輪器識別(TxID)資訊八 圖^、圖6及圖7之實例所論述的,根據—預定編 凡成對TxID資訊之編碼。作為一會你 — 1下马貫例,可藉由圖2所說明 之傳輸器邏輯208及PPC產生器邏輯2 水進仃如由步驟812 所示的對TxID之編碼。 仕對TxID編 旒。處理流接著可返回至步驟8〇4以對 了隹同—超訊框或;ί 一超訊框中之下-PPC符號進行編碼。作為—實例,可』 由:傳輸器邏輯(諸如’邏輯208)來進行對該符號之傳轸 若如決策步驟8〇6處所判定當前PPC符 味 寸說並非作用中, 旒,則如圖8所說明,處理流替代地前 〜逆主步驟81 6。在 138133.doc •28- 201004252 種情況下,如由步驟816所示,當前ppc符號中之該複數個 可用副載波之一群指定之可用副載波(例如,交錯〗7)編碼 有閒置資訊。作為-實例,可藉由PPC產生器邏輯210及傳 輸器邏輯2〇8來進行此編碼。在步雜⑭進行編碼後,處 理流前進至步驟8丨4以傳輸該ppc符號。 另外應注意、,作4步驟814處對ppc符號之傳輸的部 分,亦可執行該PPC符號之功率位準。如先前所論述,此 j:SFN系統之恆定符號功率。作為一實例,可藉由傳輸 器邏輯208來進行功率調整。 方法_因此操作以提供-系統以經由來自-傳輸哭之 ppc符號來提供傳輸器識別。應注意,方法_僅表示—實 施例,且在本揭示案之範疇内,對方法_之改變、: 加、刪除、組合或其他修改為可能的。雖然於 解釋之目的,將圖8之方本尸_ 又匆 法展不且描述為一連串或多個動 作仁應理解,本文中所描述之處理不受動作次序之限 !!皮因為—些動作可以不同於本文中展示且描述之次序的 -人序來發生及/或盘豆#私 飞,、,、他動作同時發生。舉例而言,孰習 此項技術者應瞭解,方法 ’’、 事件,諸如以狀離圖之开” 為一連“關狀態或 狀‘』之开4。此外,根據所揭示之本例示 方法,可並不需要所有所說明之動作來實施-方法。 圖9說明用於傳輸具有 寻輸态硪別貧訊之ppc符號的裝 置。4置900可實施為傳輪哭 傳輸器之組件。裝置9〇。二 圖/中之傳輪器214)或 匕 經組悲以接收網路供應資 侧如,傳輸狀態資訊)之模組9〇2。模組9〇2可接收諸如 I38133.doc •29- 201004252 圖2所揭示之供應資料224的資料,或關於傳輸器之狀態的 任何其他合適資料傳達資訊,諸如傳輸器對ppc傳輸而言 是作用中還是閒置,或傳輸器識別資訊(TxID)。作為模組 9〇2之實施例的實例,可利用傳輸器邏輯2〇8、產生器 邏輯210及網路邏輯212中之一或多者。 裝置900進一步包括用於使用種子wm在一作用中傳輸 器之一符號中之複數個副載波之第—部分上編碼導頻資訊 的模組904。作為此模組之所實施功能的實例,該複數個 副載波之第一部分可為劃分至交錯L中且用WID種子(例 如,LID设定為〇〇〇〇)來進行擾亂的彼等副載波。圖&中說 明用於使用WID及LID種子來在該符號之該複數個副載波 之第一部分之另一部分上編碼傳輸器識別資訊的另一模組 906。在一特定實施例中,模組9〇6可經組態以使用交錯 1〇、12、14及16中之彼等副載波來編碼導頻資訊。 雖然模組904及906在圖9之實例中展示為分成兩部分 的,但此等模組可組態為用於在屬於該複數個副載波之第 一部分的副載波(即,交錯^^及以上編碼導頻 資訊的單一模組。應注意,作為模組9〇4及9〇6之實施例之 實例,可利用傳輸器邏輯208、PPC產生器邏輯21〇及網路 邏輯212中之一或多者。 裝置900進一步包括用於根據一預定編碼方案在該複數 個副載波之第二部分(例如,交錯“中之副載波)上來編碼 傳輸益識別(TxID)資§fl的模組908。應注意,作為模組9〇8 之實施例之實例,可利用傳輸器邏輯2〇8、ppc產生器邏輯 138133.doc -30- 201004252 210及網路邏輯212中之一或多者。 裝置900亦包括經纽態以傳輪_ppc符號之模組91〇,該 PPC符號包括在該複數個副載波之第—部分上之經編碼導 頻及在„亥第一部分上之TxID。模組9丨〇之實施例可使用傳 輸器邏輯208或PPC產生器邏輯21〇或其組合。 應主思,模組9〇2、9〇4、9〇6、9〇8、“^及912可藉由經 組恶以執行程式指令或程式碼以提供如本文所描述的包括 傳輸器識別及定位的系統之態樣的至少一處理器來實施。 另外,可結合該至少一處理器提供一記憶體器件9丨4或等 效電腦可讀媒體以用於儲存該等程式指令或程式碼^ 圖10展示用於接收一包括傳輸器識別資訊之符號的方法 1000舉例而5,方法1 〇〇〇適合由網路中之接收器件用於 接收並解碼由當前作用中之傳輸器傳輸的ppc符號,諸如 用於傳輸器識別及位置判定。在一實例中,可藉由如圖2 所不之222處所說明般組態的接收器來進行方法1〇〇〇。另 外,使用方法1000。 如所示,一旦針對接收到之符號來開始該方法,處理流 便前進至步驟1002。在步驟1002處,藉由接收器接收至少 一 PPC符號。在4K模式下接收器之特定實例中,對該至少 一ppc符號之接收涉及收集輸入信號之4〇96個樣本。如所 示,步驟1002亦可包括量測一或多個交錯中之能量,諸如 用於設定FFT之比例因數以及用於判定臨限能量值以用於 判定WID及LID值,此將在下文中論述。在一特定實例 令,可自一第一接收到之PPC PHY符號之時域交錯樣本來 138133.doc -31 - 201004252 量測交錯I!中之能量。另外,亦可量測未使用之交錯(例 如,交錯I5)之能量以判定PPC頻道上之總干擾(例如,所引 入之熱及/或信號)的量測。應注意,在另一實例中,接收 裔(諸如,接收器222)中之硬體可經組態以中斷一處理器 (諸如,數位信號處理器(DSP)),以便程式化將由該硬體使 用之FFT比例因數及該等臨限。作為一實例,比例因 數之設定用於改良來自弱傳輸器之信號的量化雜訊底限 (quantization noise floor) ° 處理流接著前進至步驟1004,自含有僅用WID擾亂之導 頻的一群副載波來判定WID ;即,如先前所論述之交錯 。在一實例中,可藉由如圖2所說明之接收器邏輯216及 PPC解碼器邏輯來進行此判定。在彳反模式之另—實例中, 應注意,可利用一 512點FFT,其產生頻域樣本。在一例示 性系統中,WID偵測將包括重複解擾亂序列(在使用“個 WID種子之一例示性系統中重複16次)、反向fft以產生時 域樣本,及將該等樣本與一能量臨限進行比較(基於對交 錯之能量量測)並累加高於該臨限之樣本的能量值以判定 哪個假設之wm值產生最大能量。產生最大能量之wid將 對應於該WID值。 在判定該WID值後,如由步驟1006所說明,接下來判定 LID值。具體而言,自含有用wm及UD擾亂之導頻的—^ 副載波來判定LID ;即,交錯l0。在一實例中,可藉由如 圖2所說明之接收器邏輯216及ppc解碼器邏輯來進^此= 定。在4Κ模式之另-實例中,應、注意,可利用—⑴點 138l33.doc -32- 201004252 FFT來產生頻域樣本。在一例示性系統中’ lid偵測將包 括使用自步驟1002偵測到之WID來解擾亂的重複序列(在 使用16個WID種子及16個LID種子之一例示性系統中重複 16次)、執行反向FFt以產生時域樣本,及將彼等樣本與一 能量臨限進行比較(基於對諸如交錯h之一交錯之能量量 測)以判定哪個假設之LID值產生最大能量。產生最大能量 之LID將對應於該LID值。The 'TxID' information can be based on the designation of the network and is inherent to the transmitter. After a J 疋 or capture to the TxiD information, as explained by step 804, the borrower receives information about the destination transmission for the PPC symbol 曰 2 = or idle state. As explained earlier, the current idle idle wheel is at the present. Idle or dummy of the PC symbol:: Wheel 2 carries the wheel. In the real-life, the father's fault, the network logic in the input state (for example, Wei Wei cry 214 in Figure 2) (for example, the logic port or device receiving from the platform... The determination of the current transmitter state from the network supply 224 to the current transmitter state in the decision step 806 in the mode or in the middle of making the current PPC symbol transmission mode as an example is available by means of Figure 138133.d〇i The decision is made by the ppc generator logic 2 in the transmitter 214 shown in 2, 201004252 2. If the spoofing is active for the current ppc symbol, then the processing flow proceeds to step 808, in which The pilot is encoded on the _th portion of the subcarrier (e.g., 4 carriers of interlace L, ΐ2, ΐ4, Μ.) by scrambling the pilot with wm and LID seeds. Additionally, as shown in step 8 The pilot is encoded on the other part of the first part of the subcarrier (the subcarrier in the Ή士乂1) by using only the WID seed to interfere with the pilot. It should be noted that the subcarrier is specified. The first part means that the plurality of available subcarriers are used for transmission. The portion of the frequency-frequency tone, such as the subcarriers of the interlaces 1 〇, L, U, 0, and the subcarriers of the interlaced U. As an example, the transmitter logic 2 〇 8 and illustrated by FIG. 2 Ppc generator logic 2 (7) performs encoding of the pilot as indicated by steps 808 and 810. As explained by step 8! 2, the second portion of the subcarrier (e.g., the interleaved "subcarrier") is encoded The wheeler identification (TxID) information is shown in the figure of Figure 8, and the examples in Figure 6 and Figure 7. According to the pre-determined code of the paired TxID information. As a result, you can use the example of Figure 1. The illustrated transmitter logic 208 and PPC generator logic 2 are encoded as TxID as shown in step 812. The TxID is compiled. The processing stream can then be returned to step 8〇4 to agree. Superframe or; 一 A sub-frame below the -PPC symbol is encoded. As an instance, can be: Transmitter logic (such as 'logic 208') to pass the symbol if the decision step 8〇 The 6 places judged that the current PPC symbol is not in effect, 旒, as illustrated in Figure 8, the processing stream is replaced. The first ~ inverse main step 81 6. In the case of 138133.doc • 28- 201004252, as shown by step 816, the available subcarriers specified by one of the plurality of available subcarriers in the current ppc symbol (eg, interleaved) 7) The encoding has idle information. As an example, the encoding can be performed by PPC generator logic 210 and transmitter logic 2〇 8. After encoding in step 14, the processing flow proceeds to step 8丨4 to transmit the encoding. Ppc symbol. It should also be noted that the power level of the PPC symbol can also be performed as part of the transmission of the ppc symbol at step 814. As previously discussed, this j: constant symbol power of the SFN system. As an example, power adjustment can be performed by transmitter logic 208. The method_ therefore operates to provide a system to provide transmitter identification via the ppc symbol from the transmission. It should be noted that the method _ is merely representative of the embodiments, and it is possible to change, add, delete, combine or otherwise modify the method_ within the scope of the present disclosure. Although for the purpose of explanation, the method of the corpse of Figure 8 is not described as a series or multiple actions, the processing described in this article is not limited by the order of action! It can occur differently from the order of the people shown and described herein and/or the Pandou# private flight, and his actions occur simultaneously. For example, those skilled in the art should understand that the method '', the event, such as the opening of the figure, is the opening of the "off state or shape". Moreover, not all illustrated acts may be required to implement a method in accordance with the disclosed exemplary embodiments. Figure 9 illustrates an apparatus for transmitting a ppc symbol having a traversed state discrimination. The 4 set 900 can be implemented as a component of the transmission crying transmitter. Device 9〇. The second picture/middle wheel 214) or 匕 悲 以 以 接收 接收 接收 接收 接收 接收 接收 接收 接收 接收 接收 接收 接收 接收 。 。 。 。 。 。 。 。 。 。 。 The module 9〇2 can receive information such as the supply profile 224 disclosed in FIG. 2 of I38133.doc •29-201004252, or any other suitable information about the state of the transmitter, such as the transmitter acting on the ppc transmission. Still idle, or transmitter identification information (TxID). As an example of an embodiment of the module 902, one or more of the transmitter logic 〇8, the generator logic 210, and the network logic 212 can be utilized. Apparatus 900 further includes a module 904 for encoding pilot information on a portion of the plurality of subcarriers in a symbol of one of the active transmitters using the seed wm. As an example of the implemented functions of the module, the first portion of the plurality of subcarriers may be subcarriers that are partitioned into the interlace L and scrambled with a WID seed (eg, LID is set to 〇〇〇〇) . Another module 906 for encoding transmitter identification information on another portion of the first portion of the plurality of subcarriers of the symbol using the WID and LID seed is illustrated in Figure & In a particular embodiment, module 〇6 can be configured to encode pilot information using the subcarriers of interlaces 1, 12, 14, and 16. Although modules 904 and 906 are shown as split into two in the example of FIG. 9, the modules can be configured for subcarriers belonging to the first portion of the plurality of subcarriers (ie, interleaved) A single module encoding the pilot information above. It should be noted that as an example of the embodiment of the modules 9〇4 and 9〇6, one of the transmitter logic 208, the PPC generator logic 21, and the network logic 212 may be utilized. Or more. The apparatus 900 further includes a module 908 for encoding a transmission benefit identification (TxID) §fl on a second portion of the plurality of subcarriers (e.g., interleaved "subcarriers") according to a predetermined coding scheme It should be noted that as an example of an embodiment of the module 〇8, one or more of the transmitter logic 〇8, the ppc generator logic 138133.doc -30-201004252 210, and the network logic 212 may be utilized. 900 also includes a module 91〇 that transmits the _ppc symbol, the PPC symbol includes the encoded pilot on the first part of the plurality of subcarriers and the TxID on the first part of the hai. Embodiments may use transmitter logic 208 or PPC generator logic Series 21 or a combination thereof. It should be thought that the modules 9〇2, 9〇4, 9〇6, 9〇8, “^ and 912 can be provided by the group to execute program instructions or code to provide as The at least one processor described in the aspect of the system including transmitter identification and positioning is implemented. Additionally, a memory device 94 or an equivalent computer readable medium can be provided for storage in conjunction with the at least one processor. The program instructions or code are shown in FIG. 10 as an example of a method 1000 for receiving a symbol including transmitter identification information. The method 1 is suitable for receiving and decoding by the receiving device in the network by the current function. The ppc symbol transmitted by the transmitter, such as for transmitter identification and position determination. In an example, the method can be performed by a receiver configured as illustrated at 222 in Fig. 2. Additionally, method 1000 is used. As shown, once the method is started for the received symbols, the process flow proceeds to step 1002. At step 1002, at least one PPC symbol is received by the receiver. The receiver is in 4K mode. In a specific instance, The receipt of one less ppc symbol involves collecting 4 〇 96 samples of the input signal. As shown, step 1002 can also include measuring energy in one or more interlaces, such as a scaling factor for setting the FFT and for determining the Pro. The energy limit value is used to determine the WID and LID values, which will be discussed below. In a specific example, the time domain interleaved samples of the PPC PHY symbols received from a first one are measured 138133.doc -31 - 201004252 The energy in the interlaced I! can also be measured. Alternatively, the energy of the unused interlaces (e.g., interlace I5) can be measured to determine the total interference (e.g., the introduced heat and/or signal) on the PPC channel. It should be noted that in another example, a hardware in a recipient (such as receiver 222) can be configured to interrupt a processor, such as a digital signal processor (DSP), so that the programming will be performed by the hardware. The FFT scale factor used and the thresholds. As an example, the scaling factor is set to improve the quantization noise floor of the signal from the weak transmitter. The processing stream then proceeds to step 1004, from a group of subcarriers containing pilots that are only scrambled with WIDs. To determine the WID; that is, the interleaving as previously discussed. In an example, this determination can be made by receiver logic 216 and PPC decoder logic as illustrated in FIG. In another example of the inverse mode, it should be noted that a 512-point FFT can be utilized which produces frequency domain samples. In an exemplary system, WID detection will include repeated descrambling sequences (repeated 16 times using one of the "WID seeds" exemplary systems), inverse fft to generate time domain samples, and the samples with one The energy threshold is compared (based on the energy measurement of the interlace) and the energy value of the sample above the threshold is accumulated to determine which hypothetical wm value produces the maximum energy. The wid that produces the maximum energy will correspond to the WID value. After determining the WID value, the LID value is determined next as described in step 1006. Specifically, the LID is determined from the subcarrier containing the pilot scrambled with wm and UD; that is, the interlace l0. In the other example of the 4Κ mode, it should be noted that the (1) point 138l33.doc -32 can be utilized. - 201004252 FFT to generate frequency domain samples. In an exemplary system, 'lid detection will include the use of the WID detected from step 1002 to resolve the repetitive sequence (using one of 16 WID seeds and 16 LID seeds) Repeat 16 times in the exemplary system) The FFt is generated to generate time domain samples, and the samples are compared to an energy threshold (based on energy measurements such as interleaving one of the interlaces h) to determine which hypothetical LID value produces the maximum energy. The LID that produces the maximum energy Will correspond to the LID value.
在步驟1008中,接著使用複數個編碼有導頻之副載波來 判疋一頻這估計。詳言之,可使用交錯Iq、l2、“及來獲 知s亥頻道估計。在4{;:模式之接收器之實例中,可對該四個 交錯中之每一者執行5 12樣本FFT以獲得頻域樣本。接著用 先前獲得之WID及LID種子來對該等樣本進行解擾亂。接 著可將頻域中之解擾亂導頻輸入至2〇48(2K)樣本IFFT以獲 仵一時域頻道估計。一旦判定該時域頻道估計,便計算及 儲存將由處理器(諸如,DSP)讀取的每一抽頭(tap)之能 量。另外,可基於未使用之交錯(例如,交錯Μ之先前量 測的能量將計算出之能量與—臨限進行比較以狀當前作 用中之傳輸器的信號功率。應注意,作為實例,可藉由如 圖2所說明之接收器邏輯216及ppc解碼器邏輯來進行步驟 1008之程序。 社用於判疋頻道估計之程序的又—實例中,錢上述實 例,應注意,可將2K時域頻道估計頻疊回至原㈣2時域 點或樣本。-頻疊樣式之實例由以下關係給出: 138l33.doc 201004252 ⑴ 其中為時域頻道估計” 組索引,i击+ 了十人錯,且β為頻道頻率 ,京引I中在此特定實例中每 頻道拙瓸 m ,, 茨道頻率組含有512個 屑逼抽頭。因此,作為—實 3,則上述方π 右相關資料交錯(s)等於 上述方程式(1)變成: K = K + jh ^7+512 w+1024In step 1008, a plurality of subcarriers encoded with pilots are then used to determine the estimate of the frequency. In particular, interleaving Iq, l2, "and can be used to obtain the shai channel estimate. In the example of the 4{;: mode receiver, 5 12 sample FFTs can be performed on each of the four interlaces to The frequency domain samples are obtained. Then the previously obtained WID and LID seeds are used to descramble the samples. Then the descrambled pilot in the frequency domain can be input to the 2〇48 (2K) sample IFFT to obtain the first time domain channel. Estimating. Once the time domain channel estimate is determined, the energy of each tap to be read by a processor, such as a DSP, is calculated and stored. Additionally, it may be based on unused interlaces (eg, interleaved previous amounts) The measured energy compares the calculated energy with the threshold to determine the signal power of the transmitter currently in effect. It should be noted that, by way of example, receiver logic 216 and ppc decoder logic as illustrated in FIG. To perform the procedure of step 1008. In the example of the procedure used to determine the channel estimation, in the above example, it should be noted that the 2K time domain channel estimation frequency can be back to the original (four) 2 time domain point or sample. An example of a stacked style consists of the following relationship Out: 138l33.doc 201004252 (1) where is the time domain channel estimation "group index, i hit + ten people wrong, and β is the channel frequency, Jing Yin I in this particular instance per channel 拙瓸m,, the channel frequency The group contains 512 chip-powered taps. Therefore, as -3, the above-mentioned square π right-related data interleaving (s) is equal to the above equation (1) becomes: K = K + jh ^7+512 w+1024
A /1+1536 在如方程式(2)中給出般判定頻道估 斜坡應用於時域估計,如由下式給^後 (2) 可將一相位 、j2mis h e~^ (3) 為達成解碼父錯(含有傳輸器識 之曰从 u、+— 貝吼之專用資料交錯) 之目的’上述貫例假定交錯s = 3 ’ 认屮玷六蚀T *人 ^換言之,圖4之實例中 、-口出的父錯13,其含有TxiD。接英〜 VVT > m J: JU 可對 /ζ„,ρι•進行 5 12樣本 FFT以用頻域樣本獲得頻道估計。 在步驟1008後,處理流前進至 ,驟1 〇 1 〇,在其中,解碼 一具有傳輸器識別資訊(TxIE〇n 寻用育料交錯。如圖4所 說明,此專用交錯可為交錯j作 3 作馮用於在4K FFT模式下 在接收器中進行解碼之處理的特定實例,如上文所提及, 可對經頻疊之專用資料交錯⑹執行512樣本fft以產生頻 域樣本。步驟刪之處理可進_步包括使用相應頻道估計 來為具有QPSK調變之交錯l3產生! 〇〇〇個位元之對數似然比 (LLR)。接著可類似於對資料符號之解交錯來對llr進行 B8133.doc -34- 201004252 解交錯。隨後,可在四個週期内對1000個位元之LLR求平 均以達到250個位元之LLR。舉例而言,可根據以下關係 來完成此求平均: 々=4 + 々+250 + 々+500 + ’ir+750,众=〇,1,…249 ( 4 ) 其中ξ表示對於kth值之平均LLR。在對LLR求平均以產 生250個位元之LLR後,可藉由一處理器(諸如,DSP)來對 其進行處理。應注意,在一實例中,可藉由(例如)由接收 ( — 器邏輯216及/或PPC解碼器邏輯218實施之硬體來執行該求 平均。另外,該處理器可由圖2所示之所說明之接收器邏 輯216及/或PPC解碼器邏輯218所包含,此未必意謂僅包含 硬體邏輯器件。 在將250個位元之LLR遞送至處理器後,可執行雷德穆 勒解碼。舉例而言,可為每一碼區塊計算LLR之64維快速 哈德瑪變換(FHT),假定先前論述之例示性編碼使用 f RM(64,7)編碼。另外,由於在所論述之例示性編碼中藉由 剔除而僅傳輸包含(64,7)RM碼的64個位元中之62個位元, 故接收器可為達成解碼目的而用零來代替被剔除之位元。 ' 因此,變換F等於,其中//為64x64哈德瑪矩陣,且i:表 •示對應於一 RM碼區塊(亦即,7個位元,假定上述例示性 編碼使用28個位元之四個碼區塊)之LLR。在已計算出變換 F後,判定變換F内之最大量值的條目之位置。歸因於FHT 之特徵,最大量值條目之位置的二進位表示將提供RM碼 區塊中之七個訊息位元中之六個。最大量值條目之正負號 138133.doc -35- 201004252 提供第七個訊息位元,其中 τ °亥5ί1息位兀*在正負號為正時為 〇且在正負號為負時為1。 在解碼含有傳輸器識別資 — j貝所有RM碼區塊(亦即,在 本實例中為四個RM碼區塊)德, 口 埤)後,可檢查循環冗餘檢查 (C R C)以確保接收到之却自 _ ^ °心位70為(高機率)無錯誤的。在 CRC匹配之情況下,僂輪哭 _ 寻輸識別貧訊接著可由接收器使 用’ WID、LID及功率量測信玄可; 千里幻值亦可由接收器使用。 傳輸态識別資訊内之傳輪聚咨姓# 得称态貝枓接著可由接收器件用於 識別發出作用中ppc符號之僂 一 丁 K得輸态(如由步驟1012所指 示)。由於PPC符號包括自含式傳輪 0八吁鞠态識別貧訊,故接收器 件無需執行額外處理以識別值於 取別得輸态,因此供應快速且作用 中之傳輸識別。另外,廡、、*立 ^ J力外應注思,該資訊可與頻道估計、 wm、LID及功率量測資訊中之—或多者一起用於判定關 於接收器件相對於該(等)傳輸器之定位資訊,諸如經由三 角量測或任何其他合適技術。 — 在步驟1〇12之處理後’處理流前進至決策步驟1〇14。作 出是否指示來自傳輸器識別資訊内之信號傳輸資訊的額外 或其他p p c符號的判定。若不於+ % μ * 疋右不扣不額外符號,則處理1000 結束。或者,若指示額外符號,則處理流自步驟⑻, 至步驟1016以進-步解碼該等額外符號。應注意,可以血 上文結合步驟1002至1008中之一或多者來論述之處理類似 之方式來完成該處理。 、A /1+1536 is used to determine the channel estimation slope as given in equation (2). For example, the following equation can be used to give a phase, j2mis he~^ (3) for decoding. The father's fault (containing the transmitter's knowledge from the u, + - Bessie's special data interleaved) the purpose of the above-mentioned example assumes staggered s = 3 ' 屮玷 蚀 蚀 蚀 T * 人 ^ In other words, in the example of Figure 4, - The father's fault 13, which contains TxiD.接英英~ VVT > m J: JU can perform 5 12 sample FFT on / ζ „, ρι• to obtain channel estimation with frequency domain samples. After step 1008, the processing flow proceeds to, step 1 〇1 〇, in which The decoding one has the transmitter identification information (TxIE〇n seeks the breeding interlace. As illustrated in Fig. 4, the dedicated interlacing can be the interleaving j for the processing of decoding in the receiver in the 4K FFT mode. For a specific example, as mentioned above, 512 samples fft may be performed on the frequency-stacked dedicated data interleaving (6) to generate frequency domain samples. The step of deleting the processing may include using the corresponding channel estimate for QPSK modulation. Interleaving l3 produces! The log likelihood ratio (LLR) of one bit. Then, similar to the deinterlacing of data symbols, the llr is deinterleaved by B8133.doc -34- 201004252. Then, in four cycles The LLR of 1000 bits is averaged to achieve an LLR of 250 bits. For example, this averaging can be done according to the following relationship: 々=4 + 々+250 + 々+500 + 'ir+750,众=〇,1,...249 ( 4 ) where ξ represents the average LLR for the kth value After averaging the LLRs to produce 250-bit LLRs, they can be processed by a processor (such as a DSP). It should be noted that, in an example, by (for example) by receiving ( The hardware implemented by the logic 216 and/or the PPC decoder logic 218 performs the averaging. Additionally, the processor may be comprised by the receiver logic 216 and/or the PPC decoder logic 218 illustrated in FIG. This does not necessarily mean that only hardware logic is included. After the 250-bit LLR is delivered to the processor, Red Muller decoding can be performed. For example, the 64-dimensional fast of LLR can be calculated for each code block. Hadamard Transform (FHT), assuming that the previously discussed exemplary encoding uses f RM (64, 7) encoding. In addition, only the (64, 7) RM code is transmitted by culling in the exemplary encoding discussed. 62 of the 64 bits, so the receiver can replace the truncated bit with zero for decoding purposes. ' Therefore, the transform F is equal to, where // is a 64x64 Hadamard matrix, and i : Table representation corresponds to an RM code block (ie, 7 bits, assuming the above exemplary The code uses the LLR of the four code blocks of 28 bits. After the transformation F has been calculated, the position of the item of the largest magnitude within the transformation F is determined. Due to the characteristics of the FHT, the position of the maximum magnitude entry The binary representation will provide six of the seven message bits in the RM code block. The sign of the maximum value entry 138133.doc -35- 201004252 provides the seventh message bit, where τ °海5ί1 Bit 兀* is 在 when the sign is positive and 1 when the sign is negative. After decoding all the RM code blocks (that is, four RM code blocks in this example) containing the transmitter identification information, the cyclic redundancy check (CRC) can be checked to ensure reception. However, since _ ^ ° heart position 70 is (high probability) no error. In the case of CRC matching, the 偻 wheel cries _ the search for the poor message can then be used by the receiver 'WID, LID and power measurement signal can be used; The transmission state identification information is transmitted by the receiving device to identify the ppc symbol of the active ppc symbol (as indicated by step 1012). Since the PPC symbol includes a self-contained transmission, the receiving device does not need to perform additional processing to recognize the value in the selected state, thus providing fast and active transmission identification. In addition, 庑, , *, 立, J, should be considered, this information can be used together with channel estimation, wm, LID and power measurement information - or more to determine the transmission of the receiving device relative to the (etc.) Location information of the device, such as via triangulation or any other suitable technique. – After the processing of step 1〇12, the processing flow proceeds to decision step 1〇14. A determination is made whether to indicate additional or other p p c symbols from the signal transmission information within the transmitter identification information. If not + % μ * 疋 right without deducting extra symbols, processing 1000 ends. Alternatively, if additional symbols are indicated, then processing flows from step (8) to step 1016 to further decode the additional symbols. It should be noted that this process can be accomplished in a manner similar to that discussed above in connection with one or more of steps 1002 through 1008. ,
應注意,^函蓋用於在接收器件處針對其他FFT模式 碼符號的處理。舉例而言,假定2K 棋式—接收器件 138133.doc -36- 201004252 收集來自每一符號之2K個樣本。接著可為該符號中之每一 時域交錯樣本執行256點FFT。接著可將來自該256點FFT 之頻域交錯樣本與來自跨兩個符號(例如,ΡΗγ符號)之樣 本串連。作為一實例,若來自一第一符號之該組256交錯 樣本表示為6 = /^.少/ 0,少2,少加以且來自一第二符號 之該組256交錯樣本表示為r严仏,;,外7,乃;,· .·,乃”,", 則此等兩組樣本之所得串連可表示為卜卜"力义.,It should be noted that the ^ cover is used for processing of other FFT mode code symbols at the receiving device. For example, assume that 2K chess-receive devices 138133.doc -36- 201004252 collect 2K samples from each symbol. A 256-point FFT can then be performed for each of the time domain interleaved samples in the symbol. The frequency domain interleaved samples from the 256-point FFT can then be concatenated with samples from across two symbols (e.g., ΡΗ gamma symbols). As an example, if the set of 256 interlaced samples from a first symbol is represented as 6 = /^. less / 0, less 2, less and the set of 256 interlaced samples from a second symbol is represented as r strict, ;, outside 7, is;;···, is ",", then the resulting series of these two sets of samples can be expressed as Bub "力义.,
少2jj,。,_νΛ;,乃",··_,汐。在來自多個ρΗγ符號之512 個樣本串連後,如上文結合步驟1〇〇2至1〇16中之一或多者 來論述的,侧及⑽们則、頻道估計及llr產生可類似 於4K FFT操作模式之處理。 在1KFFT模式之另一實例中,對來自每一pHYppc符號 之時域交錯樣本執行128點FFT。類似於上述實例,將來自 4個PHY PPC符號之所得頻域樣本串連以形成一交錯。在 8K FFT模式之又一實例中,雍立 應,主思’一交錯包含1 000個副 載波。因此,藉由接收器件進行之處理將利用仄 肌·處理以及4KIFFT處理來進行頻道估計。 二_因此操作以用於在接收器件處接收及處理包括 傳輸裔識別資訊之符號。岸 ,,H 應,主思,方法1000僅表示一實施 例在本揭示案之範嘴内,對方法⑽0之改變、添加、 刪除、組合或其他修改為可 曰的,技同雖然,為達成易於解釋之 :的將圖Η)之方法展示且描述為 應理解,本文中所描述之夕個動作: -些動作可以不同於本 _ :動作-人序之限制,因為 不且描述之次序的次序來發 138133.doc -37· 201004252 生及/或與其他動作同時發生 者應瞭解,方法可或者表干A ^ 編匕項技術 次者表不為一連串相關狀態或事件,嗜 如以狀態圖之形式。此外,根據 ° 很稞所揭不之本例示性方法, 可並不需要所有所說明之動作來實施一方法。 « η展示-接收^置之另—實例或替代地可用於具有 傳輸器識別資訊之系統中的用在接收器中之裝置咖。裝 置mo包括用於接收至少—PPC符號且判^ —或多個交錯 (諸如’已使用之交錯(例如,Μ及未使用之交錯(例如, 5))中之此里的杈組11〇2。如藉由至通信匯流排u⑽之連 接所說明,接著可與裝置議内之其他模組共用該能量判 定。應注意,此®流排架構料例示性的且意欲說明各種 通信能夠在裝置丨100内之模組之間進行。 衣置1100亦包括用於自一預定交錯(例如,交錯判定 wID種子的模組11(^如早先所解釋的,對動之判定可 包括基於先前量測之能量(諸如,藉由模組11〇2)來定臨 限。將藉由模組1106判定之WID傳遞至模組11〇8以供使用 WID自預定交錯(例如,交錯1〇)判定LID。又,由模組n〇8 偵測LID可使用所量測之能量,該所量測之能量係由模組 1102判定。 裝置1100進一步包括用於自作用中交錯(例如,交錯1〇、 12、I4及id判定一頻道估計的模組111〇。如先前所解釋, 例如’對頻道估計之判定可包括將抽頭之能量計算與能量 限(諸如,由模組11 02判定之能量臨限)進行比較。亦包 括用於解碼專用交錯(例如,13)以判定傳輸器識別資訊 138133.doc •38· 201004252 (TxID)的模組ιι12。作為一實例,如在上文在結合圖⑺之 對步驟10 10之描述中詳細描述的,模組1112可進行解碼處 理。另外,在裳置1100中提供用於基於TxiD判定傳輸器識 別碼(及基於傳輸器ID、頻道估計及能量量測之接收器件 疋位)的模組1114。模組1114可包括以下功能性:執行循環 几餘檢查以確保接收到之訊息位元無錯誤,且若無錯誤, 則觸發用供諸如處理器丨116之處理器(其可為DSp或其他合 適處理器)使用的傳輸器識別、wm、LID及所量測之功率 來填充接收裝置1100中之傳輸器1]〇表。該傳輸器ID表可含 於與處理器111 6及/或裝置丨100中之模組通信的記憶體器件 1118 内。 應注忌,模組Π 〇2、1106、! j 〇8、!【(〇、ii 2及i i*可 藉由經組態以執行程式指令以提供本文所描述的包括傳輸 器識別及定位的系統之實例的至少一處理器來實施。在— 實例中,模組1102、1106、1108、1110及1112可藉由接收 器邏輯216及/或ppC解碼器邏輯218來實施。在一實例中, 模組1114藉由位置判定邏輯221來實施。另外,可結合該 至少一處理益提供記憶體器件1 Π 8或等效電腦可讀媒體以 用於儲存程式指令或程式碼。 應注意’可用經設計以執行本文中所描述之功能的通用 處理器、數位信號處理器(DSP)、特殊應用積體電路 (ASIC)、場可程式化閘陣列(FPGA)或其他可程式化邏輯哭 件、離散閘或電晶體邏輯、離散硬體組件,或其任何組人 末貝把或執行結合所揭不之貫例描述的各種說明性邏輯 138133.doc -39- 201004252 邏輯區塊、模組及電路。通用處理器可為一微處理器,但 在替代實施例中,處理器可為任一習知處理器、控制器、 微控制器或狀態機。處理器亦可實施為計算器件之組合, 例如,一 DSP與一微處理器之組合、複數個微處理器、結 合一 DSP核心之一或多個微處理器,或任何其他此組態。 可以硬體、由處理器執行之軟體模組,或兩者之組合來 直接實施結合本文中揭示之實例所描述之方法或演算法的 步驟或處理。軟體模組可駐留於RAM記憶體、快閃記憶 體、ROM記憶體、EPROM記憶體、EEPROM記憶體、暫存 器、硬碟、抽取式碟片、CD-ROM或此項技術中已知的任 何其他形式之儲存媒體中。例示性儲存媒體可耦接至處理 器,使得處理器可自儲存媒體讀取資訊且將資訊寫入至儲 存媒體。在替代實施例中,儲存媒體可整合至處理器。處 理器及儲存媒體可駐留於ASIC中。該ASIC可駐留於使用 者終端機中。在替代實施例中,處理器及儲存媒體可作為 離散組件而駐留於使用者終端機中。 對所揭示實例的描述經提供以使任何熟習此項技術者能 夠製造或使用目前所揭示之方法及裝置。熟習此項技術者 可易於瞭解對此等所揭示實例之各樣修改,且在不脫離本 揭示案之精神或範疇的情況下,可將本文所界定之一般原 理應用於其他實例(例如,在即時傳訊服務或任何通用無 線資料通信應用中)。因此,本揭示案並不意欲限於本文 中所示之實例,而應符合與本文所揭示之原理及新穎特徵 一致的最廣泛範疇。詞語「例示性」在本文中專用於意謂 138133.doc -40- 201004252 「用作一實例、範例或說 。士七山 j次=兒明」。本文中描述 之任何實例並非必須理解A H A 例不性」 解為比其他貫例較佳或有利。 因此’雖然已在本文中今明芬p,曰士 說月及榣述具有傳輸器識別之通 信系統的實例’但應瞭解,在不脫離其精神或本質特徵之 情況下,可對該等實例進行各種改變。 138133.doc 41 201004252 z贤If 一钯辨 ^^odd^^ooo丨杷Me· ?F 馀輜鹄KMe^udd^KO^碱妹矣砘^αιί · I丧柃M#sLess 2jj,. , _νΛ;, is ",··_, 汐. After 512 samples from a plurality of ρΗ γ symbols are concatenated, as discussed above in connection with one or more of steps 1〇〇2 to 1〇16, the side and (10), channel estimation, and llr generation may be similar. Processing of 4K FFT operation mode. In another example of a 1K FFT mode, a 128 point FFT is performed on time domain interleaved samples from each pHYppc symbol. Similar to the above example, the resulting frequency domain samples from the four PHY PPC symbols are concatenated to form an interlace. In yet another example of the 8K FFT mode, the main idea is that the interleave contains 1 000 subcarriers. Therefore, the processing performed by the receiving device will perform channel estimation using the 肌 muscle processing and 4 KIFFT processing. Second, the operation is for receiving and processing symbols including transmission identification information at the receiving device. Shore, H should, think, method 1000 only indicates that an embodiment is within the scope of this disclosure, the change, addition, deletion, combination or other modification of method (10) 0 is awkward, although the same, to achieve It is easy to explain: the method of the diagram is shown and described as being understood, the action described in this article: - Some actions may be different from the limit of this _: action - person order, because not in the order of description Orders to send 138133.doc -37· 201004252 Health and / or concurrent with other actions should be understood, the method can be either a dry A ^ compiled technical sub-list is not a series of related states or events, like the state map Form. In addition, not all illustrated acts may be required to implement a method in accordance with the exemplary embodiments disclosed herein. The « η display-received-independent-example or alternatively can be used in a device for use in a system with transmitter identification information for use in a receiver. The device mo includes a group 11〇2 for receiving at least a -PPC symbol and determining one or more interlaces (such as 'interlaced used (eg, Μ and unused interlaces (eg, 5)) As explained by the connection to the communication bus u(10), the energy determination can then be shared with other modules within the device. It should be noted that this ® flow diagram architecture is illustrative and intended to illustrate that various communications can be performed in the device. The placement of the modules 1100 also includes a module 11 for interleaving (e.g., interleaving the wID seed). (As explained earlier, the determination of the motion may include based on previous measurements. The energy is determined by the module (e.g., by module 11 〇 2). The WID determined by module 1106 is passed to module 11 〇 8 for determining the LID from the predetermined interlace (e.g., interlaced 1 使用) using WID. Moreover, the measured energy is detected by the module n〇8, and the measured energy is determined by the module 1102. The device 1100 further includes interleaving for self-acting (eg, interlacing 1〇, 12) , I4 and id determine the module 111 of the channel estimation. As explained earlier For example, the determination of the channel estimate can include comparing the energy calculation of the tap to an energy limit, such as the energy threshold determined by module 102. Also included is a decoding dedicated interleave (eg, 13) to determine the transmitter. The identification information 138133.doc • 38· 201004252 (TxID) module ιι 12. As an example, as described in detail above in connection with FIG. 7 (7), the module 1112 can perform decoding processing. A module 1114 for determining a transmitter identification code based on the TxiD (and receiving device clamp based on transmitter ID, channel estimation, and energy measurements) is provided in the slot 1100. The module 1114 can include the following functionality: Cycle through the checks to ensure that the received message bits are error free, and if there are no errors, trigger the transmitter for use with a processor such as processor 丨 116 (which can be a DSp or other suitable processor), wm The LID and the measured power are used to fill the transmitter 1 in the receiving device 1100. The transmitter ID table may be included in a memory device that communicates with the processor 11 16 and/or the module in the device 100. 11 Within 18. It should be noted that the modules Π 2, 1106, ! j 〇 8, ! [(〇, ii 2 and ii* can be configured to execute program instructions to provide the transmitter identification described herein). And implementing at least one processor of an example of a location system. In an example, modules 1102, 1106, 1108, 1110, and 1112 can be implemented by receiver logic 216 and/or ppC decoder logic 218. In an example, module 1114 is implemented by location decision logic 221. Additionally, memory device 1 或 8 or an equivalent computer readable medium can be provided in conjunction with the at least one processing for storing program instructions or code. It should be noted that 'general purpose processors, digital signal processors (DSPs), special application integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable devices that are designed to perform the functions described herein may be used. Logical crying, discrete gate or transistor logic, discrete hardware components, or any set of illustrative logic described by any group of people in the end or combination of executions 138133.doc -39- 201004252 logical block, Modules and circuits. A general purpose processor may be a microprocessor, but in an alternative embodiment, the processor may be any conventional processor, controller, microcontroller, or state machine. The processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more of a DSP core, or any other such configuration. The steps or processes of the method or algorithm described in connection with the examples disclosed herein may be directly implemented by hardware, a software module executed by a processor, or a combination of both. The software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, scratchpad, hard disk, removable disk, CD-ROM or known in the art. Any other form of storage media. An exemplary storage medium can be coupled to the processor such that the processor can read information from the storage medium and write the information to the storage medium. In an alternate embodiment, the storage medium can be integrated into the processor. The processor and storage medium can reside in the ASIC. The ASIC can reside in the user terminal. In an alternate embodiment, the processor and the storage medium may reside as discrete components in the user terminal. The description of the disclosed examples is provided to enable any person skilled in the art to make or use the presently disclosed methods and apparatus. Various modifications to the disclosed examples can be readily appreciated by those skilled in the art, and the general principles defined herein may be applied to other examples without departing from the spirit or scope of the disclosure (eg, in Instant messaging service or any general wireless data communication application). Therefore, the present disclosure is not intended to be limited to the examples shown herein, but in the broadest scope of the principles and novel features disclosed herein. The word "exemplary" is used exclusively in this article to mean 138133.doc -40- 201004252 "used as an example, example or saying. Shi Qi Shan j times = children's Ming". Any of the examples described herein do not necessarily require an understanding of the A H A case, which is preferred or advantageous over other examples. Therefore, 'although this article has been published in this article, the gentleman said the month and the examples of the communication system with transmitter identification', but it should be understood that the examples can be carried out without departing from the spirit or essential characteristics. Various changes. 138133.doc 41 201004252 zxian If a palladium discrimination ^^odd^^ooo丨杷Me· ?F 馀辎鹄KMe^udd^KO^alka 矣砘^αιί · I 柃 M#s
註釋 指示TxID或其他參數 如同*QC設計中 額外位元,以匹配封包 大小 1如同QC設計中 1如同QC設計中 位元數目 CN 〇〇 〇 in m 卜 欄位 i 封包類型 傳輸器ID 保留 分配 CRC 註釋 指示TxID或其他參數 0.125秒解析度 同上 4 m解析度 i以微秒為單位 1如同QC設計中 1如同QC設計中 位元數 (N ΓΛ (N 〇 y 1Η cn 攔位 封包類型 緯度 經度 海拔高度 網路延遲 分配 CRC i mmooISc/(3a) * I38133.doc -42- 201004252 eifudd^每9S 丨杷HC· fF^^^^Me^udd^KO^^^^^^al^l· 碱妹鉍Φ饀粦udd愈:z丧柃Mf審 #\ < ‘The comment indicates that the TxID or other parameters are like extra bits in the *QC design to match the packet size as in the QC design. 1 is like the number of bits in the QC design. CN 〇〇〇in m Field i Packet Type Transmitter ID Reserved Allocation CRC Note indicates TxID or other parameters 0.125 seconds resolution as above 4 m resolution i in microseconds 1 as in QC design 1 as in QC design bit number (N ΓΛ (N 〇y 1Η cn block type latitude longitude elevation) High network delay allocation CRC i mmooISc/(3a) * I38133.doc -42- 201004252 eifudd^ every 9S 丨杷HC· fF^^^^Me^udd^KO^^^^^^al^l· Alkali铋Φ饀粦udd more: z 柃 柃 Mf review #\ < '
註釋 指示哪個參數與TxID—起發送 如同QC設計中 可為緯度、經度、海拔高度+網 路延遲,或一個也沒有,或保留 1如同QC設計中 如同QC設計中 位元數目 寸 00 m 卜 攔位 封包類型 傳輸器ID 參數 分配 CRC 138133.doc •43- 201004252 π要如^客备犮叙υα^^ΙΑΙώ· 鵰舰該杷一-截噠^^00^-¾¾°1寸-ilng 碱 w^n?r实 1·^麵,-ΤΝ嘱-ffil# ·The comment indicates which parameter is sent with the TxID as in the QC design, which can be latitude, longitude, altitude + network delay, or one, or one is reserved as in the QC design, as in the QC design, the number of bits in the QC design is 00 m. Bit Packet Type Transmitter ID Parameter Assignment CRC 138133.doc •43- 201004252 π要如^客备犮犮α^^ΙΑΙώ· 雕 杷 - - - 哒 ^^00^-3⁄43⁄4°1 inch-ilng base w ^n?r real 1·^ face, -ΤΝ嘱-ffil# ·
138133.doc -44 - 201004252138133.doc -44 - 201004252
Tte鍥及 g碱墙琼墩Ml龙it翁敢-¾漪*碱妹章械忠初^趄噢奪^^-@-宕^^?嫦砘趑剧黩^某+ 宕缽浞蜱,f' Y-S)if丨衅κ贤軿學嗒-岬电蒎茛/漠駟衾叙+ 璩瀣K-JJJI^W革读駟柘驷矣II + 匣要^2-^,翱^囬碱^¥^奪11^^+ (β絮》^^學95)3丧^驄審:艄过 ·.·' ·...'/.. 138133.doc -45 201004252Tte锲 and g-alkali wall Qiongdun Ml Long It Weng-3⁄4漪* Alkali sister Zhang Zhongchu ^趄噢夺^^-@-宕^^?嫦砘趑剧黩^^+宕钵浞蜱,f ' YS) if丨衅κ贤軿学嗒岬岬岬/驷衾驷衾叙+ 璩瀣K-JJJI^W革读驷柘驷矣II + 匣要^2-^,翱^回碱^¥ ^夺11^^+ (β絮)^^学95)3 丧^骢审:艄过·.·'·...'/.. 138133.doc -45 201004252
|_|_
1MB 議1MB discussion
奪發'* 慈邀uPHd^li 槳奴 # Ε 痛fx-ft·阳 袭运篛孤<·τ P回^叫妾哿氅銮驷樂·ζ nar^^-ft-t'v!:兩篛殲 犮擊挪煢二氅实驷¥£^)檠煢*>11^·! S 歌阳.k W魈奚运赛猶唉念田αΐΊ/αΐΑν · ΊΙ^^ΟΙΊ/αΙΜ 阳一Γ <实細硪骇瀹浚餐羿弊錐¥紫· 阳蟛 H寐敢-δ-阳桊铢书蚌_ ® *tosΦ趔^卜弊· 138133.doc -46- 201004252 /ix (did)丨??畲兴(0 雄)ε/1 ή esdcy阳W了 i^fl'^^t:琳舉£阳^婵· 阳蛛宕璁贺幣骧〇^1-15》^隳81〇^实#=孤-^^^弊实驷學1〇嘁0^阳^· 擊渫:ε丧柃Mt案夺发'* 慈 invite uPHd^li 桨奴# Ε pain fx-ft·yang attack 篛 & & · · · 回 nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar nar篛歼犮 茕 & & £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ & & & & & & & & & & & & & & & & & & & Γ < 实 硪骇瀹浚 羿 羿 ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ® δ δ δ δ δ δ δ δ δ δ 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 Hey? ?畲兴(0 雄)ε/1 ή esdcy 阳W, i^fl'^^t: 琳举£阳^婵· 阳蛛宕璁贺骧〇 1^1-15》^隳81〇^实#=孤-^^^ 弊 驷 〇嘁 1〇嘁0^阳^· 渫 渫: ε funeral Mt case
cnOH丨?F 谗^(SM3S/I Ή wsda阳也了 i-^-u' 忘檠銮触 阳赵蛘 Τ—'^趄厚 9Ζ.6cnOH丨? F 谗^(SM3S/I Ή wsda 阳也 i-^-u' Forgot to touch Yang Zhao 蛘 Τ—'^趄厚 9Ζ.6
.^与學9卜6 138133.doc •47- 201004252 踽舰該杷¥銮耦妹^棘^^<:11||粲致^僉衾阳^· <您β^: ε丧柃 註釋 如同QC設計中 0.125秒解析度 同上 4m解析度 以微秒為單位 i有效負載為976個位元 關於任一PLP 關於任一 PLP 位元數目 00 r ^ 〇 1 * Η 〇〇 攔位 傳輸器ID 緯度 經度 海拔南度 網路延遲 保留 CRC 保留+尾部 卜 138133.doc -48- 201004252 Μ趄^畲^割馁^煢^#||奪龄>>^餿^英翁齧令1<--«璁#^侩+ + Ύ踩I該杷矣#ί私丨教¾剧 碱妹豸钝女蜊每W II奪致每疑刼诤^侩+ 皿碱製琼墩β發龙!I奪赞与漪-碱妹豸械抝僉^+ ^昶镧4<^球瑞《柃^难初^鉍蛉蛘,【、^初眾^+ («)^w^赵 SA6)e^^Mt 審:躺玢 138133.doc -49- 201004252 【圖式簡單說明】 圖1»兒明可使用所揭示之傳輸器識別方案的通信網路·, 圖2 »兒明特徵在於傳輪器識別資訊之傳輸的通信系統之 實例; 圖3展示可用於圖丨或圖2之系統中的傳輸超訊框; 圖4展示用於由作用中傳輸器傳輸之PPC符號之0FDM符 號之交錯結構的功能圖; 圖5展示用於由被動或非作用中傳輸器傳輸之ppc符號 之OFDM符號之交錯結構的功能圖; 圖6說明用於在作用中ppc符號之交錯(諸如,圖*所說明 之交錯)中編碼傳輸器識別的裝置; 圖7說明可用在傳輸器中產生物碼白勺例示性硬體電路; 圖8展不用於在無線系統(諸如,圖1及圖2所說明之系 統)中提供傳輸器識別的方法; 圖9龙明用於傳輸具有傳輪器識別資訊之ppc符號的裝 置; 圖10展示用於接收-包括傳輸器識別資訊之符號的方 法;及 圖11展不一接收器裝置之另—實例或替代地可用於具有 傳輸器識別資訊之系統中的用在接收器中之裝置。〃 【主要元件符號說明】 100 通信網路 102 廣域區域 104 廣域區域 138133.doc 50- 201004252 106 局域區域 108 局域區域 110 局域區域 112 傳輸器 114 傳輸器 . 116 傳輸器 118 行動器件 120 行動器件 122 傳輸器 124 傳輸器 126 傳輸器 128 器件 130 器件 132 傳輸器 134 傳輸器 Ο 136 傳輸器 138 器件 140 器件 ' 142 箭頭 - 144 箭頭 146 箭頭 200 通信系統 202 導頻定位用頻道 204 無線鏈路 138133.doc -51 - 201004252 206 接收器件 208 傳輸器邏輯 210 PPC產生器邏輯 212 網路邏輯 214 傳輸器步驟 216 接收器邏輯 218 PPC解碼器邏輯 220 傳輸器ID判定邏輯 221 位置判定邏輯 222 接收器件 224 網路供應資訊 226 糸統時間 234 PPC符號 236 PPC符號 238 PPC符號 300 傳輸超訊框 302 序言資料 304 育料訊框 400 OFDM符號/作用中PPC符號 402 交錯1〇 404 交錯12 406 交錯14 408 交錯16 410 交錯h 138133.doc -52- 201004252 412 交錯I3 414 交錯I5 416 交錯I7 500 非作用中PPC符號 502 交錯17 . 600 用於在作用中PPC符號之交錯(諸如,圖4所說明 之交錯)中編碼傳輸器識別的裝置 602 用於設定或判定傳輸器識別符(TxID)位元及分配 C11 位元的模組 604 用於將CRC位元添加至TxID位元及分配位元的模 組 606 交錯器 608 編碼 610 編碼器 612 零插入模組 / . 614 重複器 616 擾亂器 618 調變器 ' 620 交錯器 700 硬體電路 702 輸入 704 計數器 706 乘法器 708 區塊 138133.doc -53- 201004252 710 900 902 904 906 908 910 912 914 1100 1102 1104 1106 求和區塊 用於傳輸具有傳輸器識別資訊之PPC符號的裝置 經組態以接收網路供應資料(例如,傳輸狀態資 訊)之模組 用於使用種子WID在-作用中傳輸器之—符號中之 複數個副載波之第一部分上編石馬導頻資訊的模組 用於使用WID及LID種子來在該符號之該複數個 副載波之第一部分之另一部分上編碼傳輸器識別 資訊的模組 用於根據一預定編碼方案在該複數個副載波之第 二部分(例如,交錯Is中之副載波)上來編碼傳輸 器識別(TxID)資訊的模組 經組態以傳輸PPC符號之模組 模組 記憶體器件 用於具有傳輸器識別資訊之系統中的用在接收器 中之裝置 用於接收至少一 PPC符號且判定一或多個交錯中 之能量的模組 通信匯流排 用於自一預定交錯(例如’交錯1】)判定WID種子 的模組 用於使用WID自預定交錯(例如’交錯10)判定LID 的模組 138133.doc -54- 1108 201004252 πιο 用於自作用中交錯(例如,交錯ίο、ί2、J4及16)判 定一頻道估計的模組 1112 用於解碼專用交錯(例如,13)以列定傳輸器識別 資訊(TxID)的模組 1114 用於基於TxID判定傳輸器識別碼(及基於傳輸器 1116 ID、頻道估計及能量量測之接收器件定位)的模組 處理器 ' ' 1118 記憶體器件 Τ1-Τ5 傳輸器.^与学9卜6 138133.doc •47- 201004252 踽船杷杷銮銮同^^棘^^<:11||粲致^佥衾阳^· <你β^: ε柃柃柃Note As in the QC design, the 0.125 second resolution is the same as the above 4m resolution in microseconds. The i payload is 976 bits. For any PLP, the number of any PLP bits is 00 r ^ 〇1 * Η 〇〇 〇〇 传输 传输 传输 传输Latitude longitude, altitude, south, network delay, retention, CRC, reservation, tail, 138133.doc -48- 201004252 Μ趄^畲^cut 馁^茕^#||夺龄>>^馊^英翁拳令1<- - «璁#^侩+ + Ύ I I杷矣杷矣#ί私丨教3⁄4剧碱妹豸 豸女蜊 Every W II wins every doubt ^侩+ 碱碱制琼墩β发龙! I praise and 漪- 豸 豸 豸 + ^ + ^ 昶镧 & & ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^Mt 审: lie 138133.doc -49- 201004252 [Simple diagram of the diagram] Figure 1»The communication network that can be used to reveal the transmitter identification scheme is shown in Fig. 2, Fig. 2 » The characteristics of the vehicle are the identification of the wheel transmitter Example of a communication system for transmission of information; Figure 3 shows a transmission hyperframe that can be used in the system of Figure 2 or Figure 2; Figure 4 shows the function of an interleaved structure of OFDM symbols for PPC symbols transmitted by an active transmitter Figure 5 shows a functional diagram of the interleaved structure of OFDM symbols for ppc symbols transmitted by passive or inactive transmitters; Figure 6 illustrates interleaving for ppc symbols in action (such as the interleaving illustrated in Figure *) Apparatus for identifying a coded transmitter; Figure 7 illustrates an exemplary hardware circuit that can be used to generate a code in a transmitter; Figure 8 is not intended for use in a wireless system, such as the system illustrated in Figures 1 and 2. Method for transmitter identification; Figure 9 is a device for transmitting a ppc symbol with a carrier identification information; 10 shows a method for receiving - including symbols of transmitter identification information; and FIG. 11 is another example of a receiver device or alternatively can be used in a receiver in a system having transmitter identification information. Device. 〃 [Main component symbol description] 100 Communication network 102 Wide area 104 Wide area 138133.doc 50- 201004252 106 Local area 108 Local area 110 Local area 112 Transmitter 114 Transmitter. 116 Transmitter 118 Mobile device 120 mobile device 122 transmitter 124 transmitter 126 transmitter 128 device 130 device 132 transmitter 134 transmitter 136 136 transmitter 138 device 140 device ' 142 arrow - 144 arrow 146 arrow 200 communication system 202 pilot positioning channel 204 wireless chain 138133.doc -51 - 201004252 206 Receiver 208 Transmitter Logic 210 PPC Generator Logic 212 Network Logic 214 Transmitter Step 216 Receiver Logic 218 PPC Decoder Logic 220 Transmitter ID Decision Logic 221 Location Decision Logic 222 Receiver 224 Network Supply Information 226 糸 Time 234 PPC Symbol 236 PPC Symbol 238 PPC Symbol 300 Transmission Hyperframe 302 Preamble Data 304 Breeding Frame 400 OFDM Symbol/Active PPC Symbol 402 Interleaving 1〇404 Interleaving 12 406 Interleaving 14 408 Interlaced 16 410 interlaced h 138133.doc -52- 201004252 412 Interleaving I3 414 Interleaving I5 416 Interleaving I7 500 Inactive PPC Symbol 502 Interleaving 17. 600 Apparatus for encoding transmitter identification in interleaving of PPC symbols in action (such as the interleaving illustrated in Figure 4) 602 a module 604 for setting or determining a transmitter identifier (TxID) bit and allocating a C11 bit, a module 606 for adding a CRC bit to a TxID bit and an allocation bit, an interleaver 608, an encoding 610 encoder 612 Zero Insertion Module / . 614 Repeater 616 Scrambler 618 Modulator ' 620 Interleaver 700 Hardware Circuit 702 Input 704 Counter 706 Multiplier 708 Block 138133.doc -53- 201004252 710 900 902 904 906 908 910 912 914 1100 1102 1104 1106 A module for transmitting a PPC symbol having transmitter identification information configured to receive network provisioning data (eg, transmission status information) for use with a seed WID in operation The module of the first part of the plurality of subcarriers in the symbol of the transmitter is used to use the WID and the LID seed to use the first part of the plurality of subcarriers of the symbol A portion of the module for encoding the transmitter identification information is configured to encode the transmitter identification (TxID) information on the second portion of the plurality of subcarriers (eg, the subcarriers in the interlaced Is) according to a predetermined coding scheme. A module module memory device configured to transmit PPC symbols for use in a system having transmitter identification information for use in a receiver for receiving at least one PPC symbol and determining energy in one or more interlaces The module communication bus is used to determine the WID seed module from a predetermined interleave (eg, 'interlace 1') for using the WID to determine the LID from a predetermined interleave (eg, 'interlace 10') 138133.doc -54 - 1108 201004252 Πιο A module for determining a channel estimate by self-acting interleaving (eg, interlacing ίο, ί2, J4, and 16) for decoding a dedicated interlace (eg, 13) to list transmitter identification information (TxID). 1114 Module Processor '1118 Memory Device for TxID Based Transmitter Identification Code (and Receiver Location Based on Transmitter 1116 ID, Channel Estimation, and Energy Measurement) Τ1-Τ5 transmitter
138133.doc ·55·138133.doc ·55·
Claims (1)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2391908P | 2008-01-28 | 2008-01-28 | |
US2414308P | 2008-01-28 | 2008-01-28 | |
US3017808P | 2008-02-20 | 2008-02-20 | |
US12/165,653 US8165064B2 (en) | 2008-01-28 | 2008-07-01 | Enhancements to the positioning pilot channel |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201004252A true TW201004252A (en) | 2010-01-16 |
TWI390935B TWI390935B (en) | 2013-03-21 |
Family
ID=40913486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098103300A TWI390935B (en) | 2008-01-28 | 2009-02-02 | Enhancements to the positioning pilot channel |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2241048A2 (en) |
JP (1) | JP5313267B2 (en) |
KR (1) | KR101281714B1 (en) |
CN (1) | CN101946450A (en) |
TW (1) | TWI390935B (en) |
WO (1) | WO2009097345A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10277439B2 (en) * | 2016-07-18 | 2019-04-30 | Qualcomm Incorporated | Dual stage channel interleaving for data transmission |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7158635B2 (en) * | 2002-05-07 | 2007-01-02 | Interdigital Technology Corporation | Generation of user equipment identification specific scrambling code for the high speed shared control channel |
KR20050075242A (en) * | 2004-01-16 | 2005-07-20 | 삼성전자주식회사 | Pilot channel-based channel estimation method for mc-cdma system using frequency interleaving |
US7706328B2 (en) * | 2006-01-04 | 2010-04-27 | Qualcomm Incorporated | Methods and apparatus for position location in a wireless network |
JP2007251739A (en) * | 2006-03-17 | 2007-09-27 | Hitachi Kokusai Electric Inc | Antenna control method of transmission apparatus |
EP2028808A3 (en) * | 2007-07-25 | 2009-06-03 | Qualcomm Incorporated | Methods and apparatus for transmitter identification in a wireless network |
-
2009
- 2009-01-28 EP EP09705230A patent/EP2241048A2/en not_active Withdrawn
- 2009-01-28 CN CN2009801058789A patent/CN101946450A/en active Pending
- 2009-01-28 KR KR1020107019068A patent/KR101281714B1/en not_active IP Right Cessation
- 2009-01-28 WO PCT/US2009/032257 patent/WO2009097345A2/en active Application Filing
- 2009-01-28 JP JP2010545108A patent/JP5313267B2/en not_active Expired - Fee Related
- 2009-02-02 TW TW098103300A patent/TWI390935B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TWI390935B (en) | 2013-03-21 |
JP5313267B2 (en) | 2013-10-09 |
KR101281714B1 (en) | 2013-07-03 |
KR20100114106A (en) | 2010-10-22 |
JP2011511568A (en) | 2011-04-07 |
EP2241048A2 (en) | 2010-10-20 |
WO2009097345A3 (en) | 2009-12-17 |
WO2009097345A2 (en) | 2009-08-06 |
CN101946450A (en) | 2011-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11671298B2 (en) | Reference signals and common search space for enhanced control channels | |
CN104170509B (en) | Mobile station apparatus, base station apparatus, wireless communications method | |
TWI321660B (en) | Methods and apparatus for position location in a wireless network | |
ES2751928T3 (en) | Using a field format on a communication device | |
EP3910852A1 (en) | Device and method for transmitting uplink control channel in wireless communication system | |
CN104769871B (en) | Multiplexed resource element group for the control channel element of control channel | |
US8165064B2 (en) | Enhancements to the positioning pilot channel | |
CN111726150B (en) | System and method for enhanced control channel | |
US20120195282A1 (en) | Method and base station for transmitting sa-preamble and method and user equipment for receiving sa-preamble | |
TW200828858A (en) | Method and apparatus for communicating network identifiers in a communication system | |
CN110430031A (en) | It is adapted for the quantity of the polymerization grade of control channel element | |
KR20140115326A (en) | Reference signal design and association for physical downlink control channels | |
CN104769868A (en) | Terminal device, integrated circuit, radio communication method, and base station device | |
CN108476046A (en) | Base station apparatus, terminal installation and communication means | |
CN108307535A (en) | The method and apparatus of transmission data | |
US20130259098A1 (en) | Signaling of Sequence Generator Initialization Parameters for Uplink Reference Signal Generation | |
US20180205511A1 (en) | Method and device for multi-user multiplexing transmission | |
US20090028100A1 (en) | Methods and apparatus for transmitter identification in a wireless network | |
TW201004252A (en) | Enhancements to the positioning pilot channel | |
EP2028808A2 (en) | Methods and apparatus for transmitter identification in a wireless network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |