TWI221271B - Damper - Google Patents
Damper Download PDFInfo
- Publication number
- TWI221271B TWI221271B TW91120044A TW91120044A TWI221271B TW I221271 B TWI221271 B TW I221271B TW 91120044 A TW91120044 A TW 91120044A TW 91120044 A TW91120044 A TW 91120044A TW I221271 B TWI221271 B TW I221271B
- Authority
- TW
- Taiwan
- Prior art keywords
- vibration
- damping
- colloid
- damping colloid
- axial
- Prior art date
Links
Landscapes
- Vibration Prevention Devices (AREA)
Abstract
Description
1221271 案號 _ _911200441221271 Case number _ _91120044
i減出唯on寫的其其是生行設輕作立丨}夕多}多 發明說明(1) :〜一一—_ 本發明是有關於〜 振膠4體,其可在不同軸向;t提體,且特別是有關於一種 隨著電腦科技的突飛猛*,電腦不同的減振能力。 =,依照光碟機之運作原理,周邊裝置不斷地推陳 讀型(R e a d 〇 n 1 y ) 、口° ’光碟機之種類主要有 ly)光碟機及覆寫型R 、 /、此寫入一次型(Write 型光碟機而言,由於Hab 1 e )光碟機等。就覆 速度均不斷地向上提升,所二3 =於資料之讀取或寫人 對於光碟片的旋轉 先碟機必須設計對應提高 對於資料的讀寫作業:缺=此才能配合光碟機之讀寫頭 光碟機本身的問題,二由於光碟片之偏心現象或 過大振動的同時,曾1二碟機在高速旋轉光碟片而產 資料的讀寫作業,从¥致光碟機之讀寫頭無法正確地進 多個減振結構,用習^技術乃設計在光碟機之内部裝 微振動,使得朵雜減緩光碟機於高速運作時所產生的 業。 、’、為之頊寫頭能正常地進行資料的讀寫 體ΐ ^其/會示習知之—種光碟機的部分組件其 Loader ) 弟1圖所示,此光碟機1 〇具有機身 、加曹播機心(TraVerSe ) 14、馬達14a (振動源 , 鬼^Dynamic Mass)16及機殼(未繪示)等。此 個;4使得光碟機1〇具有充分的減振效果,習知乃配設 2〇13同 ' 膠體(Is〇lator)20a及多個吸振膠體(Damper 個鉗^光碟機1〇之内部’更分別搭配多個甜扣結構18a及 、’扣結構18b,分別用以鉗扣隔振膠體2 〇a吸振膠體i minus the only one written by Wei On, which is a life-saving device, and it is easy to make it 丨} Xiduo} Many invention descriptions (1): ~ 一一 —_ This invention is about ~ Vibrating glue 4 body, which can be in different axial directions ; t lifting body, and especially about a computer's different vibration reduction capabilities with the rapid development of computer technology *. =, According to the operating principle of the optical disc drive, peripheral devices continue to promote the old read type (R ead 〇 1 1 y), the port ° 'The types of optical disc drive are mainly ly) optical disc drive and overwrite type R, /, this write Single-use (Write-type optical disc drive, because of Hab 1 e) optical disc drive and so on. The coverage speed has been continuously increased, so 2 = the reading or writing of data by the disc drive must be designed to improve the read and write operations of the data: lack = this can be used to read and write data The problem of the optical disc drive itself. Second, due to the eccentricity or excessive vibration of the optical disc, the data reading and writing operations of the optical disc drive were rotating at high speed. Into multiple vibration reduction structures, the technology is designed to install micro-vibration inside the optical disc drive, so that the noise can slow down the industry generated when the optical disc drive operates at high speed. , ', For which the write head can normally read and write data. ^ It / will show the familiar—some components of a CD-ROM drive and its Loader) As shown in Figure 1, this CD-ROM drive 10 has a body, Add Cao sowing machine (TraVerSe) 14, motor 14a (vibration source, ghost ^ Dynamic Mass) 16 and casing (not shown). This one; 4 makes the optical disc drive 10 have a sufficient damping effect, and it is known to be equipped with 203 with 'Isolalator 20a' and multiple vibration-absorbing gels (Damper pliers ^ the inside of the optical disc drive 10 ' It is also equipped with a plurality of sweet buckle structures 18a and 18b, which are respectively used to clamp the vibration-isolating colloid 20a and the vibration-absorbing colloid.
第6頁 1221271 _案號91120044_年月日__ 五、發明說明(2) 20b。值得注意的是,由於隔振膠體20a及吸振膠體20b雖 然在外形上很相近,但兩者僅在尺寸上略有不同,故下文 以隔振膠體2 0 a及對應之鉗扣結構1 8 a為例作說明。 請參考第2 A圖,其繪示習知之隔振膠體與钳扣結構的 示意圖。習知之隔振膠體2 0 a具有一徑向凹槽2 2及一軸向 貫孔2 4。其中徑向凹槽2 2係對應於隔振膠體2 0 a之徑向 (即圖式之左右方向),而凹陷於隔振膠體20a之外緣, 且軸向貫孔2 4則對應於隔振膠體2 0 a之軸向(即圖式之上 下方向),而貫穿隔振膠體2 0 a之本體,且鉗扣結構1 8 a則 是經由徑向凹槽2 2而鉗扣隔振膠體2 0 a。 請同時參考第1 、2 B圖,其中第2 B圖繪示習知之隔振膠 體,其應用第1圖之光碟機1 0的局部剖示圖。隔振膠體2 0 a 係配設於鉗扣結構1 8a、承靠結構26a及承靠結構2 6b之 間,其中鉗扣結構1 8 a係屬於機心1 4之部分結構,而承靠 結構2 6 a係屬於機殼(未繪示)之部分結構,且承靠結構 2 6 b係屬於機身1 2之部分結構。因此,當隔振膠體2 0 a之軸 向上的兩端面分別接觸承靠結構2 6a及承靠結構26b,且鉗 扣結構1 8 a係經由徑向凹槽2 2而鉗扣隔振膠體2 0 a時。此 外,更可將軸向連接元件2 8 (例如螺絲元件)依序貫穿承 靠結構26a、轴向貫孔24及承靠結構26b,並且連接承靠結 構2 6a及承靠結構26b,因而連接機殼及機身1 2,進而相對 固定承靠結構2 6 a及承靠結構2 6 b之間的相對位置。 請同時參考第1、2 B圖,由於隔振膠體2 0 a之材質係為 彈性材質,使得隔振膠體2 0 a之本身將具有可吸收振動及Page 6 1221271 _Case No. 91192004__ Month and Day__ V. Description of Invention (2) 20b. It is worth noting that, although the vibration-isolating colloid 20a and the vibration-absorbing colloid 20b are similar in appearance, but the two are only slightly different in size, the following is the vibration-isolating colloid 2 0 a and the corresponding clamp structure 1 8 a As an example. Please refer to FIG. 2A, which shows a schematic diagram of a conventional vibration isolation gel and a clasp structure. The conventional vibration isolation gel 20a has a radial groove 22 and an axial through hole 24. The radial groove 2 2 corresponds to the radial direction of the vibration-isolating colloid 20 a (that is, the left-right direction of the drawing), and is recessed on the outer edge of the vibration-isolating colloid 20 a, and the axial through-hole 24 corresponds to the vibration isolation The axial direction of the vibrating colloid 20 a (that is, the up and down direction of the figure), and penetrates the body of the vibration isolating gel 20 a, and the clamp structure 1 8 a is to clamp the vibration isolating gel through the radial groove 22 2 0 a. Please refer to Figs. 1 and 2B at the same time, wherein Fig. 2B shows a conventional cross-sectional view of the vibration-isolating colloid, to which the optical disc drive 10 of Fig. 1 is applied. The vibration-isolating colloid 20 a is arranged between the clasping structure 18 a, the supporting structure 26 a, and the supporting structure 26 b. The clasping structure 1 8 a belongs to a part of the movement 14 and the supporting structure 2 6 a is part of the structure of the casing (not shown), and the supporting structure 2 6 b is part of the structure of the fuselage 12. Therefore, when the two axial end surfaces of the vibration-isolating colloid 20 a contact the bearing structure 26a and the bearing structure 26b, respectively, and the clasping structure 1 8a clamps the vibration-isolating colloid 2 through the radial groove 22. At 0 a. In addition, the axial connection element 28 (for example, a screw element) can be sequentially penetrated through the bearing structure 26a, the axial through hole 24, and the bearing structure 26b, and the bearing structure 26a and the bearing structure 26b can be connected, thereby connecting The relative positions of the casing and the fuselage 12, and thus the fixed bearing structure 2 6 a and the bearing structure 2 6 b are relatively fixed. Please refer to Figures 1 and 2B at the same time. Since the material of the vibration-isolating colloid 20 a is an elastic material, the vibration-isolating colloid 20 a itself will have the ability to absorb vibration and
9822twf1.ptc 第7頁 ^21271 案號 91120044 發明說明(3) 曰 修- 緩衝振動的特性。因此,機心丨4 振動將經由鉗扣結構l8a而僖璇馬達14a所產生的輕微 :體2〇a之吸收振動及緩衝振動的=膠=’受到隔振 動不再繼續向外傳遞至機身彳2赤〜曰,使侍大部分之振 殼所受到外界之輕微振動,豆^ ^殼等,同時機身1 2或機 或承載結構26b而傳遞到振膠、體分別經由承載結構26a ί經由钳扣結構1 8a而繼續向内=曰’大。卩分之振動不 :圖所示’習知係利用多個隔振J J :心二。因此,如 〇b,並配合多個鉗扣妹 夕>體2〇8及夕個吸振膠體 光碟機1 0之機心1 4呈縣兄4壯 夕個鉗扣結構1 8 b,而將 然而,習知之光^光碟機10之内部,° °亞鋒形)之減振膠體(上、相同外形(短圓柱形或 )裝設於光碟機之内部:二$ 3 $之隔振膠體及吸振膠體 產生的輕微振動,或及、、爰衝光碟機之馬達所 得注…,由於碟機之輕微振動。值 j收及緩衝振動1無i使得膠體來 果。 炖獲致取佳之減振效 有鑑於此,本發明之目的係在於 /、可調整其不同軸、棱仏一種減振膠體, 上的減振能力。 糸數,用以調整其不同軸向 舻基甘於^本發明之上述目的’本發明係妲山^ 其中此減振膠體具有-徑向凹槽之9822twf1.ptc Page 7 ^ 21271 Case No. 91120044 Description of Invention (3) Revision-Characteristics of buffering vibration. Therefore, the movement of the movement 4 will pass through the clasp structure 18a and the slightness generated by the motor 14a: the body 20a absorbs the vibration and cushions the vibration = glue = 'the vibration is no longer transmitted to the fuselage.彳 2 Chi ~ Said that the majority of the vibration shell is subjected to slight vibrations from the outside, such as the shell, etc. At the same time, the fuselage 12 or the machine or the bearing structure 26b is transmitted to the vibration glue, and the body is passed through the bearing structure 26a. Ί Continue inward via the clasp structure 18a = 'large'. The vibration of the cents is not as shown in the figure. The conventional system uses multiple vibration isolations. J J: Heart II. Therefore, such as 〇b, and cooperate with a plurality of clamp buckle girls Xigt> body 208 and a shock absorber colloidal disc drive 10 of the movement 14 is a county brother 4 Zhuangxi buckle structure 1 8b, and However, the light of the known ^ the inside of the optical disc drive 10, ° ° sub-sharp shape, the upper and the same shape (short cylindrical or) is installed inside the optical disc drive: two $ 3 $ of vibration isolation gel and The slight vibration generated by the vibration-absorbing colloid, or, and, the motor obtained by flushing the optical disc drive Note ... Due to the slight vibration of the disc drive. The value of j and the buffering vibration 1 without i make the colloid come to fruit. Stew has the best vibration reduction effect. In view of this, the object of the present invention is to adjust the vibration damping ability of a different type of vibration damping colloid on different axes and edges. The number is used to adjust its different axial directions. The present invention is Laoshan ^ wherein the vibration damping colloid has a radial groove
1221271 案號 911200Φ: 年月W&土年本 曰 修正 五、發明說明(4) 徑向而凹陷於減振膠體之外緣,且減振膠體之徑向上的部 分剖面輪廓之形狀係為非對稱形。其中,此減振膠體更具 有一軸向貫孔,其對應減振膠體之轴向而貫穿減振膠體之 本體。 同樣基於本發明之上述目的,本發明更提出一種減振 膠體,其中此減振膠體具有一徑向凹槽,其對應減振膠體 之徑向而凹陷於減振膠體之外緣,且減振膠體更具有至少 一凹槽,其凹陷於減振膠體之外緣。其中,此凹槽係為一 軸向凹槽,其對應於減振膠體之軸向而凹陷於減振膠體之 外緣,並且此軸向凹槽係可連通於上述之徑向凹槽。此 外,此減振膠體更具有一軸向貫孔,其對應減振膠體之軸 向而貫穿減振膠體之本體。 同樣基於本發明之上述目的,本發明又提出一種減振 結構,其主要包括一減振膠體及一鉗扣結構。此減振膠體 具有一徑向凹槽,其對應減振膠體之徑向而凹陷於減振膠 體之外緣,而此鉗扣結構係經由徑向凹槽而鉗扣減振膠 體,且鉗扣結構之内緣與徑向凹槽之内壁的接觸面積係小 於徑向凹槽之内壁的面積。其中,此減振膠體更具有一軸 向貫孔,其對應減振膠體之轴向而貫穿減振膠體之本體。 為了讓本發明之目的、特徵和優點能更明顯易懂,下 文特舉三較佳實施例,並配合所附圖式作詳細說明如下: 圖式之標示說明 1 0 :光碟機 1 2 :機身 1 4 :機心 1 4 a :馬達(振動源)1221271 Case No. 911200 Φ: Year W & Year of the Earth Amendment V. Description of the Invention (4) Radial and recessed on the outer edge of the vibration-damping colloid, and the shape of the section profile in the radial direction of the vibration-damping colloid is asymmetric shape. Among them, the damping colloid further has an axial through hole, which corresponds to the axial direction of the damping colloid and penetrates the body of the damping colloid. Also based on the above-mentioned object of the present invention, the present invention further provides a vibration-damping colloid, wherein the vibration-damping colloid has a radial groove, which is recessed on the outer edge of the vibration-damping colloid corresponding to the radial direction of the vibration-damping colloid, and the vibration is reduced. The colloid further has at least one groove, which is recessed on the outer edge of the vibration-damping colloid. Wherein, the groove is an axial groove, which is recessed on the outer edge of the vibration-damping colloid corresponding to the axial direction of the vibration-damping colloid, and the axial groove is communicated with the above-mentioned radial groove. In addition, the damping colloid has an axial through hole which penetrates the body of the damping colloid corresponding to the axial direction of the damping colloid. Also based on the above object of the present invention, the present invention further provides a vibration damping structure, which mainly includes a vibration damping gel and a clamp structure. The damping colloid has a radial groove, which is recessed on the outer edge of the damping colloid corresponding to the radial direction of the damping colloid. The clamp structure clamps the damping gel through the radial groove, and the clamp The contact area between the inner edge of the structure and the inner wall of the radial groove is smaller than the area of the inner wall of the radial groove. Among them, the damping colloid further has an axial through hole, which corresponds to the axial direction of the damping colloid and penetrates the body of the damping colloid. In order to make the purpose, features, and advantages of the present invention more comprehensible, three preferred embodiments are given below and described in detail in conjunction with the accompanying drawings as follows: Symbols and descriptions of the drawings 1 0: Optical disc drive 12: Drive Body 1 4: Movement 1 4 a: Motor (source of vibration)
9822twf1.ptc 第9頁 1221271 _案號91120044; .年2月 日 修正_ 五、發明說明(5) 1 6 :加重塊 1 8 a、1 8 b :钳扣結構 2 0 a :隔振膠體 2 0 b :吸振膠體 2 2 :徑向凹槽 2 4 :轴向貫孔 2 6 a、2 6 b :承靠結構 2 8 :軸像連接元件 1 1 8 ·•鉗扣結構 1 2 0 :減振膠體 1 2 2 :徑向凹槽 1 2 4 :軸向貫孔 126:斜面 128:凹槽 1 3 0 :減振結構 第一實施例 為使得減振膠體能在其不同軸向上提供不同的減振能 力,本發明之第一實施例主要係藉由改變減振膠體之徑向 上的部分剖面輪廓之形狀係為非對稱形,例如呈矩形、橢 圓形或高階曲線等等,使得減振膠體之不同軸向上的彈性 係數亦不相同,故可調整減振膠體之不同軸向上的減振能 力。 請參考第3 A圖,其繪示本發明之第一實施例之第一種 減振膠體的示意圖。減振膠體1 2 0具有一徑向凹槽1 2 2,其 對應減振膠體1 2 0之徑向(即圖式之左右方向)而凹陷於 減振膠體1 2 0之外緣,且鉗扣結構1 1 8則可經由徑向凹槽 1 2 2而鉗扣減振膠體1 2 0,並且減振膠體1 2 0在其徑向凹槽 1 2 2之徑向上的剖面輪廓之形狀係為不對稱形,例如矩形 或其他形狀等。值得注意的是,此處所指的不對稱形乃是 除了圓形以外的其他形狀。此外,鉗扣結構1 1 8之内緣的 形狀必須符合钳扣減振膠體1 2 0之徑向凹槽1 2 2的形狀,如9822twf1.ptc Page 9 1221271 _Case No. 9119440;. Amended on February 2, 2005 _ V. Description of the invention (5) 1 6: Weighting block 1 8 a, 1 8 b: Clamping structure 2 0 a: Vibration-isolating colloid 2 0 b: Vibration-absorbing colloid 2 2: Radial groove 2 4: Axial through hole 2 6 a, 2 6 b: Bearing structure 2 8: Shaft-like connection element 1 1 8 • Clamping structure 1 2 0: Less Vibration colloid 1 2 2: Radial groove 1 2 4: Axial through hole 126: Bevel 128: Groove 1 3 0: Vibration damping structure The first embodiment is to enable the vibration damping colloid to provide different Vibration damping ability. The first embodiment of the present invention is mainly to change the shape of a part of the cross-sectional profile in the radial direction of the damping colloid to an asymmetric shape, such as a rectangular, elliptical or higher-order curve, etc. The coefficient of elasticity in different axial directions is also different, so the vibration damping capacity of the vibration damping colloid can be adjusted. Please refer to FIG. 3A, which illustrates a schematic diagram of the first vibration-damping colloid of the first embodiment of the present invention. The vibration damping gel 1 2 0 has a radial groove 1 2 2, which is corresponding to the radial direction of the vibration damping gel 1 2 0 (that is, the left-right direction of the drawing) and is recessed on the outer edge of the vibration damping gel 1 2 0. The buckle structure 1 1 8 can clamp the damping gel 1 2 0 through the radial groove 1 2 2, and the shape of the cross-sectional profile of the damping gel 1 2 0 in the radial direction of the radial groove 1 2 2 is It is asymmetric, such as rectangular or other shapes. It is worth noting that the asymmetric shape referred to here is a shape other than a circle. In addition, the shape of the inner edge of the clamp structure 1 1 8 must conform to the shape of the radial grooves 1 2 2 of the clamp vibration damping gel 1 2 0, such as
9822twf1.ptc 第10頁 1221271 go 9 _案號91120044 月 日 修正_ 五、發明說明(6) 此才能使得鉗扣結構仍可經由徑向凹槽1 2 2,而鉗扣減振 膠體120。此外,減振膠體120更可具有一軸向貫孔124, 其對應減振膠體1 2 0之軸向(即圖式之上下方向),而貫 穿減振膠體120之本體。 請參考第3 B圖,其繪示本發明之第一實施例之第二種 減振膠體的示意圖。減振膠體1 2 0具有一徑向凹槽1 2 2,其 對應減振膠體120之徑向(即圖式之左右方向)而凹陷於 減振膠體1 2 0之外緣,且鉗扣結構1 1 8則可經由徑向凹槽 1 2 2而鉗扣減振膠體1 2 0,並且減振膠體1 2 0之外緣在徑向 上的剖面輪廓之形狀係為不對稱形,例如矩形或其他形 狀。值得注意的是,此處所指的不對稱形同樣是除了圓形 以外的其他形狀。此外,減振膠體1 2 0更可具有一軸向貫 孔124,其對應減振膠體120之軸向(即圖式之上下方向 ),而貫穿減振膠體120之本體。 請參考第3 C圖,其繪示本發明之第一實施例之第三種 減振膠體的示意圖。減振膠體120具有一徑向凹槽122,其 對應減振膠體1 2 0之徑向(即圖式之左右方向)而凹陷於 減振膠體1 2 0之外緣,且鉗扣結構1 1 8則可經由徑向凹槽 1 2 2而鉗扣減振膠體1 2 0,並且減振膠體1 2 0之接近徑向凹 槽1 2 2之兩側的外緣均具有斜面1 2 6,使得減振膠體1 2 0之 徑向上的所有剖面輪廓之形狀係為兩種以上之不對稱形。 值得注意的是,此處所指的不對稱形同樣是除了圓形以外 的其他形狀。此外,減振膠體1 2 0更可具有一軸向貫孔 124,其對應減振膠體120之軸向(即圖式之上下方向),9822twf1.ptc Page 10 1221271 go 9 _Case No. 91192004 April Amendment _ V. Description of the invention (6) Only in this way can the clamp structure still pass through the radial groove 1 2 2 while the clamp buckle the vibration-absorbing gel 120. In addition, the vibration damping gel 120 may further have an axial through hole 124 corresponding to the axial direction of the vibration damping gel 120 (that is, the upper and lower directions in the figure), and penetrate the body of the vibration damping gel 120. Please refer to FIG. 3B, which illustrates a schematic diagram of the second vibration-damping colloid of the first embodiment of the present invention. The vibration-damping colloid 1 2 0 has a radial groove 1 2 2, which corresponds to the radial direction of the vibration-damping colloid 120 (that is, the left-right direction of the drawing) and is recessed on the outer edge of the vibration-damping colloid 1 2 0. 1 1 8 can clamp the damping gel 1 2 0 through the radial groove 1 2 2, and the shape of the cross-sectional profile of the outer edge of the damping gel 1 2 0 in the radial direction is asymmetric, such as rectangular or Other shapes. It is worth noting that the asymmetric shape referred to here is also a shape other than a circle. In addition, the vibration-damping colloid 120 may further have an axial through-hole 124 corresponding to the axial direction of the vibration-damping colloid 120 (ie, the upper and lower directions in the figure) and penetrating through the body of the vibration-damping colloid 120. Please refer to FIG. 3C, which illustrates a schematic diagram of a third vibration-damping colloid according to the first embodiment of the present invention. The vibration-damping colloid 120 has a radial groove 122, which corresponds to the radial direction of the vibration-damping colloid 1 2 0 (that is, the left-right direction of the drawing) and is recessed on the outer edge of the vibration-damping colloid 1 2 0, and the clasping structure 1 1 8 can clamp the damping gel 1 2 0 through the radial groove 1 2 2, and the outer edges of the damping gel 1 2 0 close to the radial groove 1 2 2 have slopes 1 2 6, The shape of all the cross-sectional profiles in the radial direction of the vibration-damping colloid 120 is two or more asymmetric shapes. It is worth noting that the asymmetric shape referred to here is also a shape other than a circle. In addition, the vibration-damping colloid 120 may further have an axial through-hole 124 corresponding to the axial direction of the vibration-damping colloid 120 (ie, the upper and lower directions of the drawing).
9822twf1.ptc 第11頁 1221271 u〜日丨 案號91120044 U务 ί£年ϋ 曰 修正 五、發明說明(7) 一 而貫穿減振膠體120之本體。 請參考第3 D圖,其繪示本發明之第一實施例之第四種 減振膠體的示意圖。減振膠體120具有一徑向凹槽122,其 對應減振膠體1 2 0之徑向(即圖式之左右方向)而凹陷於 減振膠體1 2 0之外緣,且鉗扣結構1 1 8則可經由徑向凹槽 1 2 2而鉗扣減振膠體1 2 0,並且減振膠體1 2 0之遠離徑向凹 槽1 2 2之兩侧的外緣均具有斜面1 2 6,使得減振膠體1 2 0之 徑向上的所有剖面輪廓之形狀係為兩種以上之不對稱形。 值得注意的是,此處所指的不對稱形同樣是除了圓形以外 的形狀。此外,減振膠體1 2 0更可具有一軸向貫孔1 2 4,其 對應減振膠體120之軸向(即圖式之上下方向),而貫穿 減振膠體120之本體。 基於上述,本發明之第一實施例的減振膠體之徑向上 的剖面輪廓之形狀係為係為非對稱狀,例如矩形、橢圓形 或高階曲線等,故可藉由改變減振膠體之徑向上的剖面輪 廓之形狀,用以改變減振膠體之不同軸向上的彈性係數, 進而調整減振膠體之不同軸向上的減振能力。 第二實施例 與第一實施例不同的是,本發明之第二實施例的減振 膠體乃是在其内部形成凹槽,用以改變減振膠體之不同軸 向上的彈性係數,進而調整減振膠體之不同軸向上的減振 能力。 請參考第4 A圖,其繪示本發明之第二實施例之第一種 減振膠體的示意圖。減振膠體120具有一徑向凹槽122,其9822twf1.ptc Page 11 1221271 u ~ 日 丨 Case No. 91192004 U Service ί £ Yuanϋ Revision V. Description of the Invention (7) First, it penetrates the body of the vibration-damping colloid 120. Please refer to FIG. 3D, which shows a schematic diagram of a fourth vibration-damping colloid of the first embodiment of the present invention. The vibration-damping colloid 120 has a radial groove 122, which corresponds to the radial direction of the vibration-damping colloid 1 2 0 (that is, the left-right direction of the drawing) and is recessed on the outer edge of the vibration-damping colloid 1 2 0, and the clasping structure 1 1 8 can clamp the damping gel 1 2 0 through the radial groove 1 2 2, and the outer edges of the damping gel 1 2 0 that are away from the radial groove 1 2 2 have slopes 1 2 6, The shape of all the cross-sectional profiles in the radial direction of the vibration-damping colloid 120 is two or more asymmetric shapes. It is worth noting that the asymmetric shape referred to here is also a shape other than a circle. In addition, the vibration-damping colloid 120 may further have an axial through-hole 1 24, which corresponds to the axial direction of the vibration-damping colloid 120 (ie, the upper and lower directions in the figure), and penetrates the body of the vibration-damping colloid 120. Based on the above, the shape of the cross-sectional profile in the radial direction of the vibration-damping colloid of the first embodiment of the present invention is asymmetric, such as rectangular, oval, or higher-order curve, so the diameter of the vibration-damping colloid can be changed by The shape of the upward cross-sectional profile is used to change the elastic coefficient in different axial directions of the vibration-damping colloid, so as to adjust the vibration-damping ability of the vibration-damping colloid in different axial directions. The second embodiment is different from the first embodiment in that the vibration damping colloid of the second embodiment of the present invention is formed with a groove in the inside to change the elastic coefficient of the vibration damping colloid in different axial directions, thereby adjusting the damping Vibration damping capacity of different colloids in different axial directions. Please refer to FIG. 4A, which illustrates a schematic diagram of the first vibration-damping colloid of the second embodiment of the present invention. The vibration-damping colloid 120 has a radial groove 122, which
9822twf1.ptc 第12頁 1221271 _案號91120044 λ 年 /月; 日 修正_ 五、發明說明(8) ............ , 對應減振膠體1 2 0之徑向(即圖式之左右方向)而凹陷於 減振膠體1 2 0之外緣,且鉗扣結構1 1 8則可經由徑向凹槽 1 2 2而钳扣減振膠體1 2 0。值得注意的是,減振膠體1 2 0更 具有一軸向凹槽128,其對應減振膠體120之軸向而凹陷於 減振膠體1 2 0之外緣,例如對應減振膠體1 2 0之軸向而凹陷 於減振膠體1 2 0之軸向上的兩端面。此外,減振膠體1 2 0更 可具有一軸向貫孔1 2 4,其對應減振膠體1 2 0之軸向(即圖 式之上下方向),而貫穿減振膠體120之本體。 請參考第4 Β圖,其繪示本發明之第二實施例之第二種 減振膠體的示意圖。減振膠體120具有一徑向凹槽122,其 對應減振膠體1 2 0之徑向(即圖式之左右方向)而凹陷於 減振膠體1 2 0之外緣,且鉗扣結構1 1 8則可經由徑向凹槽 1 2 2而鉗扣減振膠體1 2 0。值得注意的是,減振膠體1 2 0更 具有至少一軸向凹槽1 2 8,其對應凹陷於減振膠體1 2 0之外 緣,例如對應減振膠體1 2 0之軸向而凹陷於減振膠體1 2 0之 徑向凹槽122的内壁,使得軸向凹槽128係連通於徑向凹槽 1 2 2。此外,減振膠體1 2 0更可具有一軸向貫孔1 2 4,其對 應減振膠體1 2 0之軸向(即圖式之上下方向),而貫穿減 振膠體1 2 0之本體。 基於上述,本發明之第二實施例的減振膠體具有一凹 槽,其凹陷於減振膠體之外緣,用以改變減振膠體之不同 軸向上的彈性係數,進而調整減振膠體之不同軸向上的減 振能力。 第三實施例9822twf1.ptc Page 121221271 _Case No. 9119044 λ Year / Month; Day Correction_ V. Description of the invention (8) ............ Corresponds to the radial direction of the vibration-absorbing colloid 1 2 0 ( That is, the left-right direction of the figure) is recessed on the outer edge of the vibration-damping gel 1 2 0, and the clamp structure 1 1 8 can clamp the vibration-damping gel 1 2 0 through the radial groove 1 2 2. It is worth noting that the vibration damping gel 1 2 0 further has an axial groove 128, which corresponds to the axial direction of the vibration damping gel 120 and is recessed on the outer edge of the vibration damping gel 1 2 0, for example, corresponding to the vibration damping gel 1 2 0 The axial direction is recessed on both end surfaces in the axial direction of the vibration-absorbing gel 1 2 0. In addition, the vibration-damping colloid 120 may further have an axial through-hole 1 24, which corresponds to the axial direction of the vibration-damping colloid 120 (i.e., the up-down direction of the figure) and penetrates the body of the vibration-damping colloid 120. Please refer to FIG. 4B, which illustrates a schematic diagram of a second vibration-damping colloid according to the second embodiment of the present invention. The vibration-damping colloid 120 has a radial groove 122, which corresponds to the radial direction of the vibration-damping colloid 1 2 0 (that is, the left-right direction of the drawing) and is recessed on the outer edge of the vibration-damping colloid 1 2 0, and the clasping structure 1 1 8 can clamp the damping gel 1 2 0 through the radial groove 1 2 2. It is worth noting that the vibration-damping colloid 1 2 0 further has at least one axial groove 1 2 8 corresponding to a depression on the outer edge of the vibration-damping colloid 1 2 0, for example, corresponding to the axial direction of the vibration-damping colloid 1 2 0. The inner wall of the radial groove 122 of the vibration-damping colloid 120 causes the axial groove 128 to communicate with the radial groove 1 2 2. In addition, the vibration-absorbing gel 1 2 0 may further have an axial through-hole 1 2 4, which corresponds to the axial direction of the vibration-absorbing gel 1 2 0 (that is, the upper and lower directions of the figure), and penetrates the body of the vibration-absorbing gel 1 2 0. . Based on the above, the vibration-damping colloid of the second embodiment of the present invention has a groove which is recessed on the outer edge of the vibration-damping colloid to change the elastic coefficient in different axial directions of the vibration-damping colloid, thereby adjusting the difference of the vibration-damping gel Axial damping ability. Third embodiment
9822twf1.ptc 第13頁 1221271 _案號91120044_年月日__ 五、發明說明(9) 本發明之第三實施例乃是揭露一種減振結構,此減振 結構主要係由減振膠體及鉗扣結構所構成,並可藉由改變 減振膠體及鉗扣結構之間的接觸面之大小及分佈,進而調 整減振結構之不同軸向上的減振能力。 請參考第5圖,其繪示本發明之第三實施例之減振結構 的示意圖。減振結構1 3 0包括減振膠體1 2 0及钳扣結構 1 1 8,其中減振膠體1 2 0具有一徑向凹槽1 2 2,其對應減振 膠體120之徑向(即圖式之左右方向)而凹陷於減振膠體 1 2 0之外緣,且钳扣結構1 1 8則可經由徑向凹槽1 2 2而钳扣 減振膠體1 2 0。值得注意的是,與第2 A圖之鉗扣結構1 8 a相 較之下,第5圖之鉗扣結構1 1 8之内緣的兩侧邊係可形成斜 面或凹陷之結構,因而使得鉗扣結構1 1 8之内緣與徑向凹 槽1 2 2之内壁的接觸面積將小於徑向凹槽1 2 2之内壁的面 積,並同時改變上述兩者之接觸面的分佈。此外,減振膠 體1 2 0更可具有一軸向貫孔1 2 4,其對應減振膠體1 2 0之軸 向(即圖式之上下方向),而貫穿減振膠體120之本體。 基於上述,本發明之第三實施例的減振結構主要是改 變減振膠體與鉗扣結構之接觸面的大小及分佈,用以調整 減振結構之不同軸向上的減振能力。 綜上所述,本發明乃是藉由改變減振膠體之徑向上的 剖面輪廓之形狀,或是增加凹槽凹陷於減振膠體之外緣, 用以改變減振膠體之不同軸向上的彈性係數,因而調整減 振膠體之不同軸向上的減振能力。此外,本發明之減振結 構係改變其減振膠體與其鉗扣結構之接觸面的大小及分9822twf1.ptc Page 13 1221271 _Case No. 91192004__ Month and Day__ V. Description of the Invention (9) The third embodiment of the present invention is to disclose a vibration-damping structure, which is mainly composed of a vibration-damping colloid and The structure of the clamp structure can be adjusted by changing the size and distribution of the contact surface between the vibration damping gel and the structure of the clamp structure, so as to adjust the vibration reduction capacity of the vibration reduction structure in different axial directions. Please refer to FIG. 5, which illustrates a schematic diagram of a vibration damping structure according to a third embodiment of the present invention. The damping structure 1 3 0 includes a damping gel 1 2 0 and a clamp structure 1 1 8. The damping gel 1 2 0 has a radial groove 1 2 2, which corresponds to the radial direction of the damping gel 120 (ie, the figure The left and right directions of the formula) are recessed on the outer edge of the vibration-damping gel 1 2 0, and the clamping structure 1 1 8 can clamp the vibration-damping gel 1 2 0 through the radial groove 1 2 2. It is worth noting that, compared with the clip structure 1 8 a of FIG. 2A, the sides of the inner edge of the clip structure 1 1 8 of FIG. 5 can form a beveled or recessed structure, so that The contact area between the inner edge of the clamp structure 1 1 8 and the inner wall of the radial groove 1 2 2 will be smaller than the area of the inner wall of the radial groove 12 2, and at the same time, the distribution of the contact surfaces between the two will be changed. In addition, the vibration-damping colloid 120 may further have an axial through-hole 1 24, which corresponds to the axial direction of the vibration-damping colloid 120 (that is, the upper and lower directions of the drawing) and penetrates the body of the vibration-damping colloid 120. Based on the above, the vibration-damping structure of the third embodiment of the present invention is mainly to change the size and distribution of the contact surface between the vibration-damping colloid and the clasp structure to adjust the vibration-damping ability of the vibration-damping structure in different axial directions. In summary, the present invention is used to change the elasticity of the vibration-absorbing gel in different axial directions by changing the shape of the cross-sectional profile of the vibration-absorbing gel in the radial direction, or by adding a recess to the outer edge of the vibration-absorbing gel. Coefficient, thus adjusting the vibration-absorbing ability of the vibration-absorbing colloid in different axial directions. In addition, the vibration-damping structure of the present invention changes the size and analysis of the contact surface between the vibration-damping colloid and the clamp structure.
9822twfl.ptc 第14頁 12212719822twfl.ptc Page 14 1221271
_案號91120044_年月曰 修正_ 五、發明說明(10) 佈,用以調整此減振結構之不同轴向上的減振能力。因 此,同一台光碟機之預設減振操作點將可採用具有不同軸 向上之彈性係數不同的減振膠體或減振結構,使得同一台 光碟機可獲致最佳的減振效果,進而有效提高光碟機對於 資料之讀寫性能。然而,本發明之減振膠體及減振結構不 僅應用在光碟機之技術領域,亦可應用在其他任何需要緩 衝輕微振動的設備或裝置,並以此獲致最佳之減振效果。 雖然本發明已以三較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作些許之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。_Case No. 91120044_ Year Month Amendment_ Five. Description of the invention (10) The cloth is used to adjust the vibration damping capacity of this vibration damping structure in different axial directions. Therefore, the preset vibration-damping operating point of the same optical disc drive can use vibration-absorbing colloids or structures with different elastic coefficients in different axial directions, so that the same optical disc drive can obtain the best vibration-damping effect, thereby effectively improving the optical disc. Read and write performance of the machine. However, the vibration-damping colloid and the vibration-damping structure of the present invention are not only applied to the technical field of optical disc players, but also can be applied to any other equipment or device that needs to cushion the slight vibration, so as to obtain the best vibration-damping effect. Although the present invention has been disclosed as above with three preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make some modifications and retouching without departing from the spirit and scope of the present invention. The scope of protection of the invention shall be determined by the scope of the attached patent application.
9822twf1.ptc 第15頁 1221271 _案號91120044_年月日__ 圖式簡單說明 第1圖繪示習知之一種光碟機的部分組件其立體爆炸 圖, 第2 A圖繪示習知之隔振膠體與鉗扣結構的示意圖; 第2 B圖繪示習知之隔振膠體,其應用第1圖之光碟機1 0 的局部剖示圖; 第3 A〜3 D圖依序繪示本發明之第一實施例之四種減振 膠體的示意圖; 第4 A〜4 B圖依序繪示本發明之第二實施例之二種減振 膠體的示意圖;以及 第5圖繪示本發明之第三實施例之減振結構的示意圖。9822twf1.ptc Page 15 1221271 _Case No. 91192004_Year Month Date__ Brief Description of Drawings Figure 1 shows a stereoscopic exploded view of some components of a conventional optical disc drive, and Figure 2A shows a conventional vibration-isolating colloid. Schematic diagram of the structure with the clasp; Fig. 2B shows a conventional vibration-isolating gel, which is a partial cross-sectional view of the optical disc drive 10 of Fig. 1; Figs. 3A to 3D sequentially show the first part of the present invention. Schematic diagrams of four kinds of vibration-damping colloids of an embodiment; Figures 4 A to 4 B sequentially show schematic diagrams of two kinds of vibration-damping colloids of the second embodiment of the present invention; and Figure 5 illustrates a third kind of vibration-damping colloids of the present invention. Schematic diagram of the vibration damping structure of the embodiment.
9822twf1.ptc 第16頁9822twf1.ptc Page 16
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91120044A TWI221271B (en) | 2002-09-03 | 2002-09-03 | Damper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91120044A TWI221271B (en) | 2002-09-03 | 2002-09-03 | Damper |
Publications (1)
Publication Number | Publication Date |
---|---|
TWI221271B true TWI221271B (en) | 2004-09-21 |
Family
ID=34388886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91120044A TWI221271B (en) | 2002-09-03 | 2002-09-03 | Damper |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI221271B (en) |
-
2002
- 2002-09-03 TW TW91120044A patent/TWI221271B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5960812B2 (en) | Passive damper | |
US4875679A (en) | Tennis racket | |
US2352311A (en) | Oscillation translating device | |
TWI221271B (en) | Damper | |
JP2009164991A (en) | Speaker apparatus | |
TW200526885A (en) | Vibration damped tool holder | |
JP2004022161A (en) | Disk drive employing vibration absorber | |
JPH0658006A (en) | Damping device | |
CN106678233A (en) | Novel active absorber based on PZT (piezoelectric ceramic) | |
US9368129B1 (en) | Disk drive suspension having dual vibration damper | |
JPH07222393A (en) | Axial vibration isolator using plate spring or laminated spring | |
TWM241777U (en) | Optical disc drive | |
JPH1089412A (en) | Vibration insulator | |
JP4829543B2 (en) | Dynamic vibration absorber and optical disk apparatus using the same | |
CN206617461U (en) | A kind of shaft coupling of cleaning solar energy cell panel assembly | |
JPS5950245A (en) | Damper suppressing torsional vibration | |
JP3720302B2 (en) | Mortise pipe | |
JP3015951B1 (en) | Optical disk drive vibration damping device | |
CN108518451A (en) | The centrifugal pendulum structure of novel torsional damper | |
TWI322418B (en) | Vibration proof device for an optical disk drive | |
TW201819772A (en) | Vibration damper structure and fan thereof | |
TWI614415B (en) | Shock absorbing structure and its series fan | |
US20040202099A1 (en) | Damper with different damping power in different axes | |
Hujare et al. | Enhancement of Damping Performance of CLD Treatment Using Segmentation Method | |
JPH0724682Y2 (en) | Dynamic damper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |