TW201936613A - 增強的euv光阻劑材料、配方及方法 - Google Patents
增強的euv光阻劑材料、配方及方法 Download PDFInfo
- Publication number
- TW201936613A TW201936613A TW108106376A TW108106376A TW201936613A TW 201936613 A TW201936613 A TW 201936613A TW 108106376 A TW108106376 A TW 108106376A TW 108106376 A TW108106376 A TW 108106376A TW 201936613 A TW201936613 A TW 201936613A
- Authority
- TW
- Taiwan
- Prior art keywords
- group
- acid
- sulfonate
- compound
- salt
- Prior art date
Links
Landscapes
- Materials For Photolithography (AREA)
Abstract
本揭示文件關於新穎的負型光阻劑組合物及其使用方法。本揭示文件還關於多個觸發光阻劑的方法,該方法允許在沒有放棄靈敏度的情況下,在某些系統中改善對比度、解析率及/或線邊緣粗糙度。本揭示文件的光阻劑組合物和方法在精細的專利方法的使用上是理想的,例如,紫外線輻射、極端紫外線輻射、超極端紫外線輻射、X射線和變化的粒子。本揭示文件還關於用於所揭示的組合物和方法的靈敏度增強材料。
Description
本揭示文件關於新穎的負型光阻劑組合物及其使用方法。本揭示文件還關於多個觸發光阻劑的方法,該方法允許在沒有放棄靈敏度的情況下,在某些系統中改善對比度、解析率及/或線邊緣粗糙度。目前本揭示文件的光阻劑組合物和方法在精細的專利方法的使用上是理想的,例如,紫外線輻射、極端紫外線輻射、超極端紫外線輻射、X射線和變化的粒子。本揭示文件還關於用於所揭示的組合物和方法的靈敏度增強材料。
極紫外光(Extreme UV, EUV)微影技術(lithography)(EUVL),即波長為13.5nm,被認為是最有希望替代當前193 nm光刻工具的候選者之一,以滿足未來半導體製造需求、越來越小的線和空間來創造越來越小的半導體特徵。
為了滿足新的EUV合適光阻劑材料的要求,光阻劑製造商最初重新配製了現有的193 nm抗蝕劑系統-透過配方調整、添加劑和光酸產生劑(photoacid generator, PAG)負載-用於EUV使用。雖然這是一種具成本效益的方法,但它產生了線寬粗糙度(line width roughness, LWR)、靈敏度和解析度的限制。 LWR由在圖案化微影特徵沿其長度的寬度中的隨機波動來界定。由於光阻劑用於印刷越來越小的圖案,因此,側壁中的缺陷成為圖案化誤差的較大部分。此外,在先前的幾項研究中,這些高LWR值歸因於聚合物用於光阻劑基質。 LWR值的其他影響因素是散粒雜訊(shot noise)(例如,通量變化,這一點越來越重要,因為每光子的劑量在EUV方案中大大增加)、PAG在塊體薄膜(bulk film)中的位置(相對於酸敏感的保護基)、在化學放大過程中的酸擴散(或模糊)以及顯影劑選擇性的程度。因此,已經引入了大量新材料來支持新技術,但迄今為止,沒有光阻劑能夠同時滿足國際半導體技術路線圖中規定的解析度、線寬粗糙度和靈敏度(resolution, linewidth roughness and sensitivity, RLS)要求。
除了實現用於下一代裝置的當前抗蝕劑目標外;新材料平台還必須具備超越該點的概述規範的潛力,以確保下一代微影製程的使用年限。傳統的化學放大型抗蝕劑(chemically amplified resist, CAR)材料已經擴展到試圖滿足這一需求,但隨著解析度的提高,在典型的CAR劑量在14 nm半間距(hp)下30-40 mJ/cm2
範圍內的尺寸下,會導致顯著的靈敏度降低。為了增加EUV光子的吸收,已經對金屬基抗蝕劑材料進行了大量的研究和重大的工作嘗試,以緩解產業對金屬抗蝕劑與工廠友善型製程整合的擔憂。已經報導了在16 nm半間距下小於25mJ/cm2
和在13 nm hp下小於35mJ/cm2
的劑量。產業正愈加呼籲採用新方法和更創新的化學方法來解決RLS問題。對於用以增加光密度的傳統化學放大抗蝕劑的金屬添加劑的研究已經表明,對於22 nm半間距的接觸孔,接觸孔圖案化的靈敏度從50到43 mJ/cm2
增加,但是以增加孔尺寸的可變性為代價。使用泛紫外線曝光放大透過較早的EUV暴露產生的酸的PSCAR製程已經證明劑量要求在18 nm hp下從30 mJ/cm2
顯著降低至17 mJ/cm2
,但暴露範圍顯著降低,並且也示出LWR增加。
多年來,極紫外光(EUV)微影技術一直被認為是微影圖案化的下一個支持技術。然而,許多技術上的絆腳石(即EUV光學,光罩基礎設施和光阻劑材料的問題)已經推遲了該技術的廣泛引入和實施。例如,用於圖案系統和光罩的掃描儀光學系統已經從透射光學改變到反射光學。事實證明,這種變化是一個相當具有挑戰性的過渡階段,但現在已經取得了巨大進步,並且EUV掃描儀的出貨量正在加速發展。 EUV薄膜的開發也在不斷進步(需要採取緩解措施以解決缺陷問題),遮罩基礎設施在外部和內部的遮罩採購上正在發展。
很少有市售材料的LWR低於約3 nm。需要開發能夠滿足這些LWR參數的光阻劑,同時提高光阻劑的高靈敏度。例如,大多數市售光阻劑系統需要˘35-40 mJ/cm2
來印刷合理的接觸孔(具有可用的製程窗口)。
隨著半導體尺寸減小到奈米尺度,需要重新審視和重新評估傳統上關於材料、配方和機制的思考。
本文揭示了新材料、新配方、新添加劑和新製程,其滿足並超過當前對靈敏度、線邊緣粗糙度和解析度的要求。
在第一實施例中,本文揭示並請求保護的是一種形成圖案化抗蝕劑的方法,包括:提供基板,施加包含至少一聚合物、寡聚物或單體的多觸發抗蝕劑組合物,每一多觸發抗蝕劑組合物包含兩個或更多個可交聯官能基,其中基本上全部的官能基附接於酸不穩定保護基、至少一種可酸活化的交聯劑、至少一種光酸產生劑和至少一種溶劑,其中該組合物不含任何另外的酸擴散控制成分,加熱該塗覆的基板以形成一基本上乾燥的塗層,以獲得所需厚度、使塗佈的基板成像曝光於光化輻射,使用水性顯影劑、溶劑顯影劑或組合的水-溶劑顯影劑組合物除去塗層的未暴露區域,其中選擇性地加熱剩餘的光成像圖案。
在第二個實施例中,本文揭示和請求保護上述方法,其中至少約90%的可交聯官能基附接於酸不穩定保護基。
在第三實施例中,本發明揭示和請求保護上述的任何方法,其中該至少一光酸產生劑包括鎓鹽化合物、鋶鹽、三苯基鋶鹽、磺醯亞胺、含鹵素化合物、碸、碸醯亞胺、磺酸酯、醌二疊氮、重氮甲烷、碘鎓鹽、肟磺酸鹽、二羧基亞胺基硫酸酯、亞基氨基氧基磺酸酯、磺醯基重氮甲烷,或它們的混合物,當其暴露於UV、深度UV、極UV、X射線或電子束光化輻射中的至少一種時能夠產生酸。
在第四實施例中,本文揭示和請求保護上述的任何方法,其中該至少一可酸活化的交聯劑包含脂族、芳香族或芳烷基單體、寡聚物、樹脂或聚合物,其包含縮水甘油醚、縮水甘油酯、氧環丁烷、縮水甘油胺、甲氧基甲基、乙氧基甲基、丁氧基甲基、芐氧基甲基、二甲基氨基甲基、二乙基氨基甲基氨基、二烷基甲基氨基、二丁氧基甲基氨基、二羥甲基甲基氨基、二羥乙基甲基氨基,二羥丁基甲基氨基、嗎啉代甲基、乙醯氧基甲基、芐氧基甲基、甲醯基、乙醯基、乙烯基或異丙烯基中的至少一種,並且其中酸不穩定保護基包含第三烷氧基羰基。
在第五實施例中,本文揭示和請求保護上述的任何方法,其中聚合物、寡聚物或單體是至少一種xMT酯。
在第六實施例中,本文揭示和請求保護上述的任何方法,其中該組合物更包括至少一金屬成分,其中該金屬成分表現出高EUV光吸收截面、中度至高度非彈性電子散射及低度至中度彈性散射係數。
相關申請案的交叉引用:
本申請案請求2018年2月24日提交的美國專利臨時申請案第62/634,827號其35 U.S.C 119(e)的權益,該申請案名稱為「增強的EUV光阻劑材料、配方及方法」,該申請案透過引用而整體併入本文。
本申請案請求2018年2月24日提交的美國專利臨時申請案第62/634,827號其35 U.S.C 119(e)的權益,該申請案名稱為「增強的EUV光阻劑材料、配方及方法」,該申請案透過引用而整體併入本文。
如本文所用,除非另有說明,否則連接詞「和」旨在包括在內,並且連接詞「或」不旨在是排他性的。例如,短語「或者,替代地」旨在是排他性的。
如本文所用,術語「具有」,「含有」,「包括」,「包含」和類似術語為開放式術語,其指出存在所聲明的元素或特徵,但不排除其他元素或特徵。除非上下文另有明確說明,否則冠詞「一」、「一個」和「該」旨在包括複數以及單數。
如本文所用,術語「乾燥」、「乾燥的」和「乾燥塗層」是指具有少於8%的殘餘溶劑。
如本文所用,術語「受保護的聚合物」是指含有能夠與交聯劑交聯的官能基的聚合物,透過酸不穩定官能基保護該官能基不與交聯劑反應,因此當暴露於酸時,酸不穩定官能基已去除。
如本文所用,術語「金屬」包括中性的、未氧化的物質以及金屬可能存在的任何類型的氧化態。
如本文所用,線邊緣粗糙度(line edge roughness, LER)是指光限定線上與線的其餘部分不對齊的區域。這也指線幾何和線寬粗糙度。
傳統的半導體材料基於化學放大抗蝕劑(CAR)材料。在正性系統中,典型的配方包括光酸產生劑(PAG)、具有至少一部分被酸不穩定基阻斷的顯影劑敏感基的聚合物和鹼猝滅劑。當塗覆的製劑暴露於光化輻射時,PAG散發出酸官能基,其與酸不穩定基反應以使顯影劑敏感官能基脫離保護。然後施加顯影劑,傳統上為水性鹼,其與現在脫離保護的聚合物反應,使其溶解並將其除去,留下所需的線、空間、通孔等。由於輻射產生的酸與傳統的酸不穩定基反應以使顯影劑敏感基脫離保護所需的活化能,因此需要後曝光烘烤(post exposure bake, PEB)。傳統上,顯影劑敏感基是酚類OH(phenolic OH),其易於與水性鹼反應。
多年來,隨著更細的線和空間變得合乎需要,已經發現光生成酸的酸遷移已成為一個問題。在這裡,在PEB期間,使聚合物脫離保護所需的熱量也活化了光生成酸,使其在整個系統中遷移,特別是在不需要的區域,例如在遮罩下,然後其在已不暴露於輻射的區域中使聚合物脫離保護,這樣的結果是不被期望的。這也被稱為「暗反應」。這導致線比期望的更細(在正性工作抗蝕劑中)。為了彌補這種不期望的效果,眾所周知並且通常需要的是,抗蝕劑配方中必須包含一種成分以透過與其結合來降低遷移酸的作用,這些成分通常是酸擴散控制劑,通常以基團的形式存在。
在基於含有被酸不穩定基保護的反應性官能基的聚合物的負性抗蝕劑中,出現類似的問題。在這些抗蝕劑中,當被光生成酸去保護而獲得的反應性官能基被設計成與製劑的交聯劑成分交聯。在這些抗蝕劑中,交聯劑通常用酸不穩定的保護基保護,例如六甲氧基甲基三聚氰胺(hexamethoxymethylmelamines, HMMM)或透過光生成劑的活化,例如環氧樹脂和氧環丁烷。當這些抗蝕劑經歷曝光和PEB時,曝光區域成為已交聯的並且不溶於顯影劑,顯影劑除去未暴露區域。在這些抗蝕劑中,酸遷移導致線的生長,因為酸在遮罩下擴散並在不期望的區域中開始交聯反應,特別是影響線寬增長和粗糙度以及線邊緣粗糙度。
在本揭示內容中,我們驚訝地發現,單獨除去鹼基猝滅或當與本文提出的其他創新方案組合時,已經導致解析度、線邊緣粗糙度和靈敏度的改善。這是一個意想不到的結果,因為目前所有的抗蝕劑都具有基礎淬滅劑,並且研究已經清楚地表明,基礎淬滅劑對於獲得小的顯影特徵是絕對必要的。
我們還發現,消除後曝光烘烤(PEB)導致光生成酸的低熱遷移,允許改善線寬增長和粗糙度以及線邊緣粗糙度。同樣,這是意想不到的結果,因為所有抗蝕劑製程都包括PEB。
基於這些發現,而不受理論束縛,我們相信目前揭示的製程和配方已經掌握了奈米特徵的物理性質和化學性質,到目前為止還沒有得到解決;在巨觀世界,線邊緣粗糙度和線寬增長和粗糙度的問題也出現在當前的材料、配方和製程。然而,在奈米世界中,這些問題已經變得明顯,並且當前的技術無法解決奈米特徵問題。我們發現,使用目前可用的基於酚類OH的第三丁氧基羰基(t-butoxycarbonyl, t-BOC)保護的材料,PEB是脫離保護所必需的。
此外,我們發現t-BOC保護的酚類OH產生自猝滅劑的作用,因為光生成酸理論上可以與高電子密度的分子配位,例如,碳酸酯官能基的任何氧原子形成介穩(metastable)態複合物(一個可能的例子示出為方案1)。當不加熱時,複合物保持在這種介穩狀態,或者恢復到非活性光產物,而在加熱時,tBOC將使苯酚解封。
方案1
方案1
可用於本揭示內容的基板是本領域熟知的用於製造電子元件的基板,包括例如已經塗覆有其他材料的矽基板,例如二氧化矽、其他氧化物、有機物和/或無機塗層等。
多觸發抗蝕劑組合物含有至少一聚合物、寡聚物或單體,每一者包含兩個或更多個可交聯官能基。這種聚合物、寡聚物和單體是本領域已知的,包括例如酚醛清漆樹脂和聚羥基苯乙烯。可用於所揭示方法的兩個或更多個可交聯官能基在產業上是已知的,包括例如羥基、氨基、肟等。在酸和酸活化的交聯劑存在下的官能基將進行交聯反應。這些官能基附接於含有這些基的聚合物、寡聚物或單體,例如芳基,其可以是取代或未取代的二價芳香族基,這些芳香族基包括例如伸苯基(-C6
H4
-)、稠合的二價芳香族基(例如伸萘基(-C10
H6
-),伸蒽基(-C14
H8
-)等)以及異芳香族基(例如氮異環化合物:吡啶、喹啉、吡咯、吲哚、吡唑、三嗪和本領域已知的其它含氮芳香異環)以及氧異環:呋喃、噁唑和其它含氧芳香異環,以及含硫芳香異環異環,例如噻吩。也可使用三價和四價芳香族化合物。
芳基可以是寡聚物或聚合物的形式,其分子量在約1000道爾頓(daltons)和100,000道爾頓之間或更高,這取決於固化的負性抗蝕劑圖案的所需性能,例如,耐蝕刻性。示例包括基於苯酚的酚醛清漆樹脂、甲酚、間苯二酚、連苯三酚(pyrogallols)等,其還包括由其製備的共聚物。而且,基於聚羥基苯乙烯的聚合物及其衍生物或共聚物可用於這些光阻劑組合物中。
如上所述,可交聯官能基被酸不穩定保護基阻斷或保護。酸不穩定保護基,包括,例如,取代的甲基、1-取代的乙基、1-取代的烷基、矽基、三氫鍺基(germyl)、烷氧基羰基、醯基和環酸可解離基。取代的甲基包括,例如,甲氧基甲基、甲硫基甲基、乙氧基甲基、乙硫基甲基、甲氧基乙氧基甲基、芐氧基甲基、芐硫基甲基、苯甲醯基、溴苯甲醯基、甲氧基苯甲醯基、甲硫基苯甲醯基、α-甲基苯甲醯基、環丙基甲基、芐基、二苯基甲基、三苯基甲基、溴芐基、硝芐基、甲氧基芐基、甲硫基芐基、乙氧基芐基、乙硫基芐基、胡椒基、甲氧基羰基甲基、乙氧基羰基甲基、N-丙氧基羰基甲基、異丙氧基羰基甲基、N-丁氧基羰基甲基和第三丁氧基羰基甲基。1-取代的乙基包括,例如,1-甲氧基乙基、1-甲硫基乙基、1,1-二甲氧基乙基、1-乙氧基乙基、1-乙硫基乙基、1,1-二乙氧基乙基、1-苯氧基乙基、1-苯硫基乙基、1,1-二苯氧基乙基、1-芐氧基乙基、1-芐硫基乙基、1-環丙基乙基、1-苯基乙基、1,1-二苯基乙基、1-甲氧基羰基乙基、1-乙氧基羰基乙基、1-N-丙氧基羰基乙基、 1-異丙氧基羰基乙基、1-N-丁氧基羰基乙基和1-第三丁氧基羰基乙基。1-取代的烷基包括異丙基、第二丁基、第三丁基、1,1-二甲基丙基、1-甲基丁基和1,1-二甲基丁基。
酸不穩定保護基可含有矽基官能基,包括,例如,三甲基矽基、乙基二甲基矽基、甲基二乙基矽基、三乙基矽基、異丙基二甲基矽基、甲基二異丙基矽基、三異丙基矽基、第三丁基二甲基矽基、甲基二第三丁基矽基、三第三丁基矽基、苯基二甲基矽基、甲基二苯基矽基和三苯基矽基。三氫鍺基包括,例如,三甲基三氫鍺基、乙基二甲基三氫鍺基、甲基二乙基三氫鍺基、三乙基三氫鍺基、異丙基二甲基三氫鍺基、甲基二異丙基三氫鍺基、三異丙基三氫鍺基、第三丁基二甲基三氫鍺基、甲基二第三丁基三氫鍺基、三第三丁基三氫鍺基、苯基二甲基三氫鍺基、甲基二苯基三氫鍺基和三苯基三氫鍺基。
其它酸不穩定保護基包括烷氧基羰基酸不穩定保護基,包括,例如,甲氧基羰基、乙氧基羰基、異丙氧基羰基和第三丁氧基羰基。可以使用醯基酸不穩定保護基,包括,例如,乙醯基、丙醯基、丁醯基、庚醯基、己醯基、戊醯基、三甲基乙醯基、異戊醯基、月桂醯基、肉荳蔻醯基、棕櫚醯基、硬脂醯基、乙二醯基、丙二醯基、丁二醯基、戊二醯基、己二醯基、胡椒基、辛二醯基、壬二醯基、癸二醯基、丙烯醯基、丙炔醯基、甲基丙烯醯基、巴豆醯基、油醯基、順丁烯二醯基、反丁烯二醯基、中康醯基(mesaconoyl)、樟腦二醯基、苯甲醯基、鄰苯二甲醯基、間苯二甲醯基、對苯二甲醯基、萘甲醯基、甲苯甲醯基(toluoyl)、水合阿托醯基(hydroatropoyl)、阿托醯基(atropoyl)、桂皮醯基、呋喃甲醯基、噻吩甲醯基、菸鹼醯基、異菸鹼醯基、p-甲苯磺醯基和甲磺醯基。
另外的酸不穩定保護基包括環酸不穩定保護基,包括,例如,環丙基、環戊基、環己基、環己烷基、4-甲氧基環己基、四氫吡喃基、四氫呋喃基、四氫硫吡喃基(tetrahydrothiopyranyl)、四氫硫呋喃基(tetrahydrothiofuranyl)、3-溴四氫吡喃基、4-甲氧基四氫吡喃基、4-甲氧基四氫硫吡喃和3-四氫噻吩-1,1-二氧基。
適用於本揭示內容的酸活化交聯劑構成能夠在該製程期間與上述可交聯官能基交聯的化合物,使得當脫離保護以提供例如苯酚或類似基時,交聯劑將與位於苯酚或類似基上的當前脫離保護的-OH基反應。交聯劑可以是聚合物、寡聚物或單體。不受理論束縛,據信透過暴露於光化輻射產生的酸不僅與聚合物、寡聚物或單體的酸不穩定保護基反應,而且與作為第二觸發劑的交聯劑反應。當兩種材料足夠接近時引起固化反應。這種固化反應降低了暴露的和現在反應的區域的顯影劑溶解度,從而產生固化材料的圖案。交聯劑的示例包括含有至少一種取代基的化合物,所述取代基具有與羥基的交聯反應性,例如來自苯酚、胺或聚合物、寡聚物或單體的類似基。酸活化交聯劑的具體示例包括縮水甘油基醚基、縮水甘油基酯基、縮水甘油基氨基、甲氧基甲基、乙氧基甲基、芐氧基甲基、二甲基氨基甲基、二乙基氨基甲基、二羥甲基氨基甲基、二乙醇氨基甲基、嗎啉代甲基、乙醯氧基甲基、芐氧基甲基、甲醯基、乙醯基、乙烯基和異丙烯基。
具有上述酸活化交聯劑的化合物的示例包括,例如,雙酚A基環氧化合物、雙酚F基環氧化合物、雙酚S基環氧化合物、酚醛清漆樹脂基環氧化合物、可溶酚醛樹脂基(resole resin-based)環氧化合物、和聚(羥基苯乙烯)基環氧化合物。
基於三聚氰胺的酸活化交聯劑可用於本揭示內容,包括,例如,含羥甲基的三聚氰胺化合物、含羥甲基的苯並胍胺化合物、含羥甲基的脲化合物、含羥甲基的酚化合物、含烷氧基烷基的三聚氰胺化合物、含烷氧基烷基的苯並胍胺化合物、含烷氧基烷基的脲化合物、含烷氧基烷基的酚化合物、含羧甲基的三聚氰胺樹脂、含羧甲基的苯並胍胺樹脂、含羧甲基的脲樹脂、含羧甲基的酚樹脂、含羧甲基的三聚氰胺化合物、含羧甲基的苯並胍胺化合物、含羧甲基的脲化合物和含羧甲基的酚化合物、含羥甲基酚化合物、含甲氧基甲基的三聚氰胺化合物、含甲氧基甲基的酚化合物、含甲氧基甲基的乙二醇-脲化合物、含甲氧基甲基的脲化合物和含乙醯氧基甲基的酚化合物。含有甲氧基甲基的三聚氰胺的化合物可商購獲得,例如CYMEL300、CYMEL301、CYMEL303、CYMEL305(由Mitsui Cyanamid製造),含甲氧基甲基的乙二醇-脲化合物可商購獲得,例如CYMEL117 4(由Mitsui Cyanamid製造),以及含有甲氧基甲基的脲化合物可以商購獲得,例如MX290(由Sanwa Chemicals製造)。
其他酸活化的交聯劑包括環氧交聯劑。在本發明範圍內使用的環氧樹脂的說明包括聚合型態、寡聚型態和單體型態的脂族和芳香族環氧樹脂,包括,例如,脂環族環氧樹脂、雙酚A環氧樹脂、3,4-環氧環己基甲基3,4-環氧環己基羧酸酯等。還包括基於對氨基苯酚的縮水甘油醚的環氧樹脂配方,如美國專利第5,514,729號中所述。可用於實施本發明的其它合適的環氧樹脂包括但不限於衍生自雙酚S、雙酚F、酚醛清漆樹脂和由雙酚A和環氧鹵丙烷(epihalohydrins)反應得到的環氧樹脂。這種環氧樹脂描述於美國專利第5,623,031號中。可用於實施本發明的其它合適的環氧樹脂揭示在美國專利第5,602,193號; 第5,741,835號;和第5,910,548號中。可用於本揭示內容的環氧樹脂的其他示例是基於酚醛清漆樹脂的聚合物、寡聚物和單體的縮水甘油醚和縮水甘油酯,以及氧環丁烷。
適用於本揭示內容的多觸發負性工作光阻劑的光致產酸劑(PAG)包括鎓鹽化合物、碸醯亞胺化合物、含鹵素化合物、碸化合物、酯磺酸鹽化合物、醌二疊氮化合物和重氮甲烷化合物。這些酸產生劑的具體示例如下所示。
鎓鹽化合物的示例包括鋶鹽、碘鎓鹽、鏻鹽、重氮鹽和吡啶鎓鹽。鎓鹽化合物的具體示例包括二苯基(4-苯硫基苯基)鋶六氟銻酸鹽、4,4'-雙[二苯基磺醯基苯基硫化物雙六氟銻酸鹽和它們的組合、三苯基鋶九氟丁烷磺酸鹽、三苯基鋶三氟甲烷磺酸鹽、三苯基鋶芘磺酸鹽、三苯基鋶十二烷基苯磺酸鹽、三苯基鋶p-甲苯磺酸鹽、三苯基鋶苯磺酸鹽、三苯基鋶10-樟腦磺酸鹽、三苯基鋶辛烷磺酸鹽、三苯基鋶2-三氟甲基苯磺酸鹽、三苯基鋶六氟銻酸鹽、三芳基鋶六氟銻酸鹽、三芳基鋶六氟磷酸鹽、三芳基鋶四氟硼酸鹽以及其他四氟硼酸鹽、三苯基鋶萘磺酸鹽、三(4-羥基苯基)鋶九氟丁烷磺酸鹽、三( 4-羥基苯基)鋶三氟甲烷磺酸鹽、三(4-羥基苯基)鋶芘磺酸鹽、三(4-羥基苯基)鋶十二烷基磺酸鹽,三(4-羥基苯基)鋶p-甲苯磺酸鹽、三(4-羥基苯基)鋶苯磺酸鹽、三(4-羥基苯基)鋶樟腦磺酸鹽、三(4-羥基苯基)鋶辛烷磺酸鹽、三(4-羥基苯基)鋶2-三氟甲基苯磺酸鹽、三(4-羥基苯基)鋶六氟銻酸鹽、三(4-羥基苯基)鋶萘磺酸鹽、二苯基碘鎓九氟丁烷磺酸鹽、二苯基碘鎓三氟甲烷磺酸鹽、二苯基碘鎓芘磺酸鹽、二苯基碘鎓十二烷基苯磺酸鹽、二苯基碘鎓p-甲苯磺酸鹽、二苯基碘鎓苯磺酸鹽、二苯基碘鎓10-樟腦磺酸鹽、二苯基碘鎓辛烷磺酸鹽、二苯基碘鎓2-三氟甲基苯磺酸鹽、雙(4-第三丁基苯基)碘鎓九氟丁烷磺酸鹽、雙(4-第三丁基苯基)碘鎓三氟甲烷磺酸鹽、雙(4-第三丁基苯基)碘鎓芘磺酸鹽、雙(4-第三丁基苯基)碘鎓十二烷基苯磺酸鹽、雙(4-第三丁基苯基)碘鎓p-甲苯磺酸鹽、雙(4-第三丁基苯基)碘鎓苯磺酸鹽、雙(4-第三丁基苯基)碘鎓10-樟腦磺酸鹽、雙(4-第三丁基苯基)碘鎓辛烷磺酸鹽、雙(4-第三丁基苯基)碘鎓2-三氟甲基苯磺酸鹽、4-羥基-1-萘基四氫噻吩三氟甲烷磺酸鹽和4,7-二羥基-1-萘基四氫噻吩三氟甲烷磺酸鹽。
碸醯亞胺化合物的具體示例包括N-(三氟甲基磺醯氧基)丁二醯亞胺、N-(三氟甲基磺醯氧基)鄰苯二甲醯亞胺、N-(三氟甲基磺醯氧基)二苯基馬來醯亞胺、N-(三氟甲基磺醯氧基)雙環[2.2.1]庚-5-烯-2,3-二羧醯亞胺、N-(三氟甲基磺醯氧基)-7-氧異二環[2.2.1]庚-5-烯-2,3-二羧醯亞胺、N-(三氟甲基磺醯氧基)雙環[2.2.1]庚烷-5,6-氧-2,3-二羧基醯亞胺、N-(三氟甲基磺醯氧基)萘醯亞胺、N-(10-樟腦-磺醯氧基)丁二醯亞胺、N-(10-樟腦-磺醯氧基)鄰苯二甲醯亞胺、N-(10-樟腦-磺醯氧基)二苯基馬來醯亞胺、N-(10-樟腦-磺醯氧基)雙環[2.2.1]庚-5-烯-2,3-二羧醯亞胺、N-(10-樟腦-磺醯氧基)-7-氧異二環[2.2.1]庚-5-烯-2,3-二羧醯亞胺、N-(10-樟腦-磺醯氧基)雙環[2.2.1]庚烷-5,6-氧基-2,3-二羧醯亞胺、N-(10-樟腦-磺醯氧基)萘醯亞胺、N-(p-甲苯磺醯氧基)丁二醯亞胺、N-(p-甲苯磺醯氧基)鄰苯二甲醯亞胺、N-(p-甲苯磺醯氧基)二苯基馬來醯亞胺、N-(p-甲苯磺醯氧基)雙環[2.2.1]庚-5-烯-2,3-二羧醯亞胺、N-(p-甲苯磺醯氧基)-7-氧異二環[2.2.1]庚-5-烯-2,3-二羧醯亞胺、N-(p-甲苯磺醯氧基)雙環[2.2.1]庚烷-5,6-氧基-2,3-二羧醯亞胺、N-(p-甲苯磺醯氧基)萘醯亞胺、N-(2-三氟甲基苯磺醯氧基)丁二醯亞胺、N-(2 - 三氟甲基苯磺醯氧基)鄰苯二甲醯亞胺、N-(2-三氟甲基苯磺醯氧基)二苯基馬來醯亞胺、N-(2-三氟甲基苯磺醯氧基)雙環[2.2.1]庚-5-烯-2,3-二羧醯亞胺、N-(2-三氟甲基苯磺醯氧基)-7-氧異二環[2.2.1]庚-5-烯-2,3-二羧醯亞胺、N-(2-三氟甲基苯磺醯氧基)雙環[2.2.1]庚烷-5,6-氧基-2,3-二羧醯亞胺、N-(2-三氟甲基苯磺醯氧基)萘醯亞胺、N-(4-氟苯磺醯氧基)丁二醯亞胺、N-(4-氟苯磺醯氧基)鄰苯二甲醯亞胺、N-(4-氟苯磺醯氧基)二苯基馬來醯亞胺、N-(4-氟苯磺醯氧基)雙環[2.2.1]庚-5-烯-2,3-二羧醯亞胺、N-(4-氟苯磺醯氧基)-7-氧異二環[2.2.1]庚-5-烯-2,3-二羧醯亞胺、N-(4-氟苯磺醯氧基)雙環[2.2.1]庚烷-5,6-氧基-2,3-二羧醯亞胺,N-(4-氟苯磺醯氧基)萘醯亞胺、N-(九氟丁基磺醯氧基)丁二醯亞胺、N-(九氟丁基磺醯氧基)鄰苯二甲醯亞胺、N-(九氟丁基磺醯氧基)二苯基馬來醯亞胺、N-(九氟丁基磺醯氧基)雙環[2.2.1]庚-5-烯-2,3-二羧醯亞胺、N-(九氟丁基磺醯氧基)-7-氧異雙環[2.2.1] 庚-5-烯-2,3-二羧醯亞胺、N-(九氟丁基磺醯氧基)雙環[2.2.1]庚烷-5,6-氧基-2,3-二羧醯亞胺和N-(九氟丁基磺醯氧基)萘醯亞胺。
含鹵素化合物的示例包括,例如,含鹵代烷基的烴化合物和含鹵代烷基的異環化合物。含鹵素化合物的具體示例包括(聚)三氯甲基-s-三嗪衍生物,例如苯基-雙(三氯甲基)-s-三嗪、4-甲氧基苯基雙(三氯甲基)-s-三嗪和1-萘基-雙(三氯甲基)-s-三嗪和1,1-雙(4-氯苯基)-2,2,2-三氯乙烷。
碸化合物的示例包括,例如,β-酮碸和β-磺醯碸,及其α-重氮化合物。碸化合物的具體示例包括苯甲醯基苯碸、2,4,6-三甲苯基碸、雙(苯磺醯基)甲烷、1,1-雙(苯磺醯基)環丁烷、1,1-雙(苯磺醯基)環戊烷、1,1-雙(苯磺醯基)環己烷和4-三苯甲醯基碸。
磺酸酯化合物的示例包括烷基磺酸酯、鹵代烷基磺酸酯、芳基磺酸酯和亞氨基磺酸鹽。磺酸酯化合物的具體示例包括安息香甲苯磺酸酯、連苯三酚三三氟甲烷磺酸鹽、連苯三酚三九氟丁烷磺酸鹽、連苯三酚甲烷磺酸三酯、硝基芐基-9,10-二乙氧基蒽-2-磺酸鹽、α-羥甲基安息香甲苯磺酸酯、α-羥甲基安息香辛烷磺酸鹽、α-羥安息香三氟甲烷基磺酸鹽和α-羥甲基安息香十二烷基磺酸鹽。
奎寧二嗪化合物的示例包括含有1,2-醌二疊氮磺醯基的化合物,例如1,2-苯醌二疊氮-4-磺醯基、1,2-萘醌二疊氮-4-磺醯基、1,2-萘醌二疊氮-4-磺醯基、1,2-萘醌二疊氮-5-磺醯基和1,2-萘醌二疊氮-6-磺醯基。醌二疊氮化合物的具體示例包括(聚)羥基苯基芳基酮的1,2-醌二疊氮磺酸酯,如2,3,4-三羥基二苯甲酮、2,4,6-三羥基二苯甲酮、2,3,4,4'-四羥基二苯甲酮、2,2',3,4-四羥基二苯甲酮、3'-甲氧基-2,3,4,4'-四羥基二苯甲酮、2,2',4,4'-四羥基二苯甲酮、2,2',3,4,4'-五羥基二苯甲酮、2,2',3,4,6'-五羥基二苯甲酮、2,3,3',4,4',5'-六羥基二苯甲酮、2,3',4,4',5',6-六羥基二苯甲酮;雙[(聚)羥基苯基]烷烴的1,2-醌二疊氮磺酸酯,如雙(4-羥基苯基)甲烷、雙(2,4-二羥基苯基)甲烷、雙(2,3,4-三羥基苯基)甲烷、2,2-雙(4-羥基苯基)丙烷、2,2-雙(2,4-二羥基苯基)丙烷和2,2-雙(2,3,4-三羥基苯基)丙烷;(聚)羥基三苯基烷烴的1,2-醌二疊氮磺酸酯,如4,4'-二羥基三苯基甲烷、4,4',4''-三羥基三苯基甲烷、2,2',5,5'-四甲基-2'',4,4'-三羥基三苯基甲烷、3,3',5,5'-四甲基-2'',4,4'-三羥基三苯基甲烷、4,4',5,5'-四甲基-2,2',2-三羥基三苯基甲烷、2,2',5,5'-四甲基-4,4',4''-三羥基三苯基甲烷、1,1,1-三(4-羥基苯基)乙烷、1,1-雙(4-羥基苯基)-1-苯基乙烷、1,1-雙(4-羥基苯基)-1-[4-{1-(4-羥基苯基)-1-甲基乙基}苯基]乙烷、1,1,3-三(2,5-二甲基-4-羥基苯基)丙烷、1,1,3-三(2,5-二甲基-4-羥基苯基)丁烷和1,3,3-三(2,5-二甲基-4-羥基苯基)丁烷;和(聚)羥基苯基黃烷的1,2-醌二疊氮磺酸酯,如2,4,4-三甲基-2',4',7-三羥基-2-苯基黃烷和2,4,4-三甲基-2',4',5',6',7-五羥基-2-苯基黃烷。
重氮甲烷化合物的具體示例包括雙(三氟甲基磺醯基)重氮甲烷、雙(環己基磺醯基)重氮甲烷、雙(苯磺醯基)重氮甲烷、雙(p-甲苯磺醯基)重氮甲烷、甲基磺醯基-p-甲苯磺醯基重氮甲烷、1-環己基磺醯基-1-(1,1-二甲基乙基磺醯基)重氮甲烷和雙(1,1-二甲基乙基磺醯基)重氮甲烷。
本揭示內容的組合物可包含一個或多個上述光酸產生劑。
用於本揭示內容的合適溶劑的示例包括醚、酯、醚酯、酮和酮酯,並且,更具體地說,乙二醇單烷基醚、二乙二醇二烷基醚、丙二醇單烷基醚、丙二醇二烷基醚、乙酸酯、羥基乙酸酯、乳酸酯、乙二醇單烷基醚乙酸酯、丙二醇單烷基醚乙酸酯、烷氧基乙酸酯、(非)環酮、乙醯乙酸酯、丙酮酸酯和丙酸酯。這些溶劑的具體示例包括乙二醇單甲基醚、乙二醇單乙基醚、乙二醇單丙基醚、乙二醇單丁基醚、二乙二醇二甲基醚、二乙二醇二乙基醚、二乙二醇二丙基醚、二乙二醇二丁基醚、甲基賽珞蘇乙酸酯、乙基賽珞蘇乙酸、丙二醇單甲基醚乙酸酯、丙二醇單乙基醚乙酸酯、丙二醇單丙基醚乙酸酯、異丙烯基乙酸酯、異丙烯基丙酸酯、甲基乙基酮、環己酮、2-庚酮、3-庚酮、4-庚酮、2-羥基丙酸乙酯、2-羥基-2-甲基丙酸乙酯、乙氧基乙酸乙酯、羥基乙酸乙酯、2-羥基-3-甲基甲基丁酸酯、3-甲氧基丁基乙酸酯、3-甲基-3-甲氧基丁基乙酯、3-甲基-3-甲氧基丁基丙酸酯、3-甲基-3-甲氧基丁基丁酸酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、乙醯乙酸甲酯、乙醯乙酸乙酯、3-甲氧基丙酸甲酯、3-甲氧基丙酸乙酯、3-乙氧基丙酸甲酯和3-乙氧基丙酸乙酯。上述溶劑可以單獨使用,也可以兩種以上混合使用。此外,至少一種高沸點溶劑,如芐基乙醚、二己醚、二乙二醇單甲基醚、二乙二醇單乙基醚、丙酮基丙酮、異佛爾酮(isoholon)、己酸、癸酸、1-辛醇、1-壬醇、苯甲醇,乙酸芐酯、苯甲酸乙酯、草酸二乙酯、馬來酸二乙酯、γ-丁內酯、碳酸伸乙酯、碳酸伸丙酯和乙酸苯基賽珞蘇,可以加入上述溶劑中。
在典型的抗蝕劑配方中,添加了用於酸擴散控制劑的各種添加劑,以阻止酸遷移到塗層的未暴露區域。我們已經發現,透過適當選擇酸不穩定保護基和適當選擇可酸活化交聯劑,可以不需要這種酸擴散劑。也就是說,酸不穩定保護基和酸活化交聯劑將與光生成酸複合而不遷移。並非所有酸不穩定保護基或可酸活化的交聯劑都會與光酸複合,因此需要作為酸擴散控制劑。
可交聯官能基全部被酸不穩定保護基阻斷,阻斷約90%至約100%。選擇酸不穩定基以具有與光生成酸複合的能力。
可以將光阻劑組合物塗覆到基板上,例如矽晶片或塗有二氧化矽、鋁、氧化鋁、銅、鎳,多種半導體材料或氮化物或半導體產業眾所周知的其它基板的任何一種,或其上具有有機膜的基板,例如,底層抗反射膜等。透過諸如旋塗、幕塗、槽塗、浸塗、輥塗、刮塗等製程施加於光阻劑組合物。塗覆後,將溶劑除去至可以適當暴露塗層的程度。在一些情況下,殘留的5%溶劑可能殘留在塗層中,而在其他情況下,需要少於1%。乾燥可以透過熱板加熱,對流加熱、紅外線加熱等完成。透過含有所需圖案的標記成像曝光塗層。
適用於所述光阻劑組合物的輻射包括,例如,紫外線(UV),例如汞燈(254 nm)的亮線光譜,KrF準分子雷射(248 nm)和ArF準分子雷射(193 nm)、極紫外線(EUV)(例如來自電漿放電和同步加速器光源的13.5 nm)、超極紫外(beyond extreme ultraviolet, BEUV)(例如6.7 nm曝光)、X射線(例如同步輻射)。也可以使用離子束顯影和諸如電子束的帶電粒子射線。
在當前的方法實施例中,在曝光之後,暴露的塗覆的基板不經過後曝光烘烤,因此防止光生成酸遷移,從而防止引起線邊緣粗糙和其它不期望的圖案缺陷的暗反應。
接下來使用顯影劑移動未暴露區域。這些顯影劑通常包括有機溶劑。顯影溶劑的侵蝕性低於用於製備光阻劑組合物的溶劑。
在顯影之後,可以包括最終烘烤步驟以進一步增強現在曝光和顯影的圖案的固化。加熱過程可以是,例如,約30至約300℃,持續約10至約120秒,並且可以透過熱板加熱、對流加熱、紅外線加熱等來完成。
在進一步的揭示內容中,我們開發了新材料xMT,其可用於所揭示方法的組合物。這些材料描述於美國專利第9,122,156號、美國專利第9,229,322號和美國專利第9,519,215號中,其透過引用併入本文,包括那些通式:
其中X或Y中的至少一個包含-(烷基)j
-(芳基)k
-(O)p
-(COO)q
-LG
其中j、k、p和q取圖1的表中的值;其中烷基是支鏈或非支鏈、取代或未取代的含有取代至鏈中的0-16個異原子的1-16個碳原子的二價烷基鏈,芳基是取代或未取代的二價苯基、二價異芳香族基,或二價稠合芳香族或稠合的異芳香族基,其中LG是第三烷基或第三環烷基、脂環族基、縮酮或環狀脂族縮酮,或為離去基的縮醛。
令人驚訝地發現這些材料可以改善解析度、靈敏度和線幾何形狀,例如線邊緣粗糙度和靈敏度。在可用於本揭示內容中的其他更新開發的xMT材料令人驚訝地提供了更好的LER和靈敏度改善,其包括圖2中的那些。兩種變體都被設計為透過在光反應之前和之後使分子硬化來降低LER,其中它們以交聯劑交聯。一種變體,如圖8B所示,包括設計用於增加光敏性的另外的官能基,可用於本揭示內容的xMT材料基於如前述參考文獻中所述的受保護的丙二酸酯和脒的反應產物。
可用於本揭示內容的金屬成分包括那些表現出高EUV光吸收截面、中度至高度非彈性電子散射和低度至中度彈性散射係數的金屬,包括,例如,選自元素週期表第3-17欄和第3-6列的金屬,其包括鈧、鈦、釩、鉻、錳、鐵、鈷、鎳、銅、鋅、鎵、鍺、砷、硒、溴、釔、鋯、鈮、鉬、鎝、釕、銠、鈀、銀、鎘、銦、錫、銻、碲、碘、鑭系元素、鉿、鉭、鎢、錸、鋨、銥、鉑、金、汞、鉛、鉍、釙,以及第13-17欄第3列,包括鋁、矽、磷、硫和氯或鹽類或配位錯合物或這些選定的金屬,選定的金屬包含單體、寡聚或聚合配體。這些材料描述於美國專利第9,632,409號中,其透過引用併入本文。
在一些實施例中,曝光的抗蝕劑可經歷曝光後烘烤步驟。該可選步驟包括一段選定時間的選定溫度。選擇時間和溫度以在顯影之前最佳化曝光固化,這取決於顯影劑的侵蝕性,並且還取決於由光生成酸與成分(例如至少一種聚合物、寡聚物或單體)的複合產生的複合物的強度,每一聚合物、寡聚物或單體包含兩個或更多個可交聯官能基,其中至少90%的官能基附接於酸不穩定保護基和/或至少一種可酸活化交聯劑。
示例:
用光酸產生劑(PAG)配製tBOC保護的苯酚並暴露於EUV輻射。保持15分鐘後,幾乎沒有tBOC與光生成酸反應,且未產生酚類OH。圖3示出了苯酚和tBOC保護的苯酚的IR光譜,示出了tBOC官能基的羰基部分在1774cm-1 處的顯著延展。圖4示出在UV暴露和15分鐘保持時間後,沒有發生tBOC官能基的羰基還原。t-BOC官能基在1774cm-1 處的顯著延展基本相同。圖5示出了進一步的證據,其中在受保護的苯酚和PAG暴露之後以及在保持15分鐘之後,IR中沒有出現OH,並且可以預期,如果tBOC與光生成酸反應以使酚氧解封,可以透過在約3000 cm-1 處(這裡為-OH強烈吸收處)的小變化或無變化證明。
用光酸產生劑(PAG)配製tBOC保護的苯酚並暴露於EUV輻射。保持15分鐘後,幾乎沒有tBOC與光生成酸反應,且未產生酚類OH。圖3示出了苯酚和tBOC保護的苯酚的IR光譜,示出了tBOC官能基的羰基部分在1774cm-1 處的顯著延展。圖4示出在UV暴露和15分鐘保持時間後,沒有發生tBOC官能基的羰基還原。t-BOC官能基在1774cm-1 處的顯著延展基本相同。圖5示出了進一步的證據,其中在受保護的苯酚和PAG暴露之後以及在保持15分鐘之後,IR中沒有出現OH,並且可以預期,如果tBOC與光生成酸反應以使酚氧解封,可以透過在約3000 cm-1 處(這裡為-OH強烈吸收處)的小變化或無變化證明。
此外,我們驚訝地發現,在負性光阻劑中發現的典型交聯劑,例如環氧樹脂,也需要加熱來完成它們的固化步驟。圖6示出了典型的環氧交聯劑與典型的PAG混合的紅外線光譜,A線。可以看出,在UV照射後,一些環氧樹脂已經反應,B線,但直到PEB反應完成後才進行反應,C線。
不受理論束縛,我們認為,基於前述內容,tBOC官能基和環氧樹脂用來作為自猝滅材料,因為光生成酸將與tBOC保護的材料的氧原子和交聯劑的氧原子配合(coordinate),或與這些具有高電子密度的分子上任何其他位置配合。
所提出的機制如圖7中的A-E所示。該示意圖說明了新揭示的製程。在圖7A中,光生成酸將與tBOC形成介穩態複合物,並且只有加熱才能產生苯酚。光生成酸也將與交聯劑形成介穩態複合物,如圖7B所示。然而,一些環氧樹脂將打開並部分交聯,如圖7B所示。據信,在環境溫度下,僅產生小鏈,透過來自PAG的光產物的鏈轉移機制的鏈終止結束,如圖7C所示。圖7D示出典型光阻劑的機制,其中已施加PEB,tBOC使苯酚脫離保護,然後苯酚與來自熱活化鏈增長交聯劑的增長鏈反應。因為一旦施加PEB,對反應幾乎沒有控制,鏈和交聯以及酸遷移產生線邊緣粗糙度、線寬增長和粗糙度。如圖7E所示的新的非預期製程中,介穩態材料保持未反應,直到tBOC複合物和交聯劑複合物足夠接近以使它們能夠反應,並且在環氧樹脂的情況下,鏈將開始增長。因為需要同時發生兩個事件,所以多個觸發製程,線和空間的幾何形狀,將被同時控制。圖8A示出了使用典型方法的含有額外酸擴散控制成分的標準光阻劑的SEM,與使用目前揭示的非PEB組合物和製程的抗蝕劑相比,如圖8B所示。可以很容易地看到,線和空間的幾何形狀的改進。光酸將活化基質分子,但反應僅在基礎分子和交聯劑彼此非常接近地同時活化的情況下進行。因此,令人驚訝地發現消除PEB的新製程在光阻劑配方中產生令人驚訝的優異結果。
在本揭示內容的某些實施例中,高Z金屬和/或非金屬和xMT材料可各自單獨用於所揭示的抗蝕劑組合物中或它們可以組合。
例1:
實施例的材料示出在圖9中。
實施例的材料示出在圖9中。
組合物1:
將圖9中的xMT分子樹脂化合物與分子交聯劑和光酸產生劑在乳酸乙酯中以0.2:2:1的重量比混合。將該組合物旋塗在專用的碳塗覆的矽晶片上,並在75℃的熱板上加熱5分鐘,得到約25 nm的薄膜。然後將塗覆的晶片成像曝光於13-14 nm波長的基於同步加速器的EUV光,並在90℃下後曝光烘烤3分鐘。透過在50:50的單氯苯和異丙醇的混合物中進行浸置顯影(puddle development)20秒,然後用異丙醇沖洗除去未暴露的區域。透過在50:50的單氯苯和異丙醇的混合物中進行浸置顯影20秒,然後用異丙醇沖洗除去未暴露的區域。
組成2:
重複組合物1,但加入2.5%猝滅劑。
重複組合物1,但加入2.5%猝滅劑。
結果示出在圖10中,比較組合物1(圖10A)和組合物2(圖10B)。從圖10A中可以看出,沒有猝滅劑的抗蝕劑具有18.9 mJ/cm2
相對於40.4 mJ/cm2
的更高靈敏度,同時線邊緣粗糙度基本相同。在相同的曝光下,組合物1的線邊緣粗糙度比組合物2高約50%。
示例2:
很少有由市售取得的材料具有低於約3 nm的LWR,並且需要開發更高靈敏度的光阻劑。例如,大多數市售光阻劑系統需要35-40 mJ/cm2 來印刷合理的接觸孔(具有可用的製程窗口)。
很少有由市售取得的材料具有低於約3 nm的LWR,並且需要開發更高靈敏度的光阻劑。例如,大多數市售光阻劑系統需要35-40 mJ/cm2 來印刷合理的接觸孔(具有可用的製程窗口)。
使用勞倫斯柏克萊國家實驗室(Lawrence Berkeley National Laboratory)的微場曝光(Microfield Exposure)工具,組合物1用於印刷具有接觸孔圖案的樣品(參見圖11),該工具是世界上解析度最高的EUV顯影工具(0.3數值孔徑)。特別地,該曝光的圖案化劑量小於17 mJ/cm2
,並且臨界尺寸目標是緻密的25 nm接觸孔結構。
結果示出使用本揭示的組合物的當前方法之孔的完整解析度。當使用後曝光烘烤時,孔無法解析或解析度更差。
無
圖1示出了關於在可用於本揭示內容中的xMT分子的結構的圖表。
圖2示出了可用於本揭示內容的替代xMT分子。
圖3示出了在t-BOC保護的苯酚的紅外光譜上覆蓋的苯酚的紅外光譜。
圖4示出了在本製程之前和期間的比較材料的紅外光譜。
圖5示出了本組合物在本製程的不同階段的紅外光譜。
圖6示出了在該製程的各個階段的交聯劑的紅外光譜。
圖7示出了包括本製程在內的各種製程的建議機制。
圖8比較了本製程B與標準製程A的SEM。
圖9示出了示例中使用的成分的化學結構。
圖10進一步比較了本製程B與標準製程A的SEM。
圖11示出了使用本組合物和本製程的接觸孔圖案的SEM。
無
Claims (10)
- 一種形成圖案化抗蝕劑的方法,包含: (a) 提供基板, (b) 施加多觸發抗蝕劑組合物,包含: I 至少一聚合物、寡聚物或單體,各包含兩個或更多個可交聯的官能基,其中至少90%的官能基是附接於酸不穩定保護基, II 至少一可酸活化的交聯劑, III 至少一光酸產生劑,和 IV 至少一溶劑, 其中該組合物不含任何另外的酸擴散控制成分, (c) 加熱該塗覆的基板以形成一基本上乾燥的塗層,以獲得所需厚度, (d) 使塗覆的基板成像曝光於光化輻射, (e) 使用水性顯影劑、溶劑顯影劑或組合的水-溶劑顯影劑組合物除去塗層的未暴露區域。
- 如請求項1所述的方法,其中該至少一光酸產生劑包括鎓鹽化合物、鋶鹽、三苯基鋶鹽、磺醯亞胺、含鹵素化合物、碸、碸醯亞胺、磺酸酯、醌二疊氮、重氮甲烷、碘鎓鹽、肟磺酸鹽、二羧基亞胺基硫酸酯、亞基氨基氧基磺酸酯、磺醯基重氮甲烷,或它們的混合物,當其暴露於UV、深度UV、極UV、X射線或電子束光化輻射中的至少一種時能夠產生酸。
- 如請求項1所述的方法,其中該至少一可酸活化的交聯劑包含脂族、芳香族或芳烷基單體、寡聚物、樹脂或聚合物,其包含縮水甘油醚、縮水甘油酯、氧環丁烷、縮水甘油胺、甲氧基甲基、乙氧基甲基、丁氧基甲基、芐氧基甲基、二甲基氨基甲基、二乙基氨基甲基氨基、二烷基甲基氨基、二丁氧基甲基氨基、二羥甲基甲基氨基、二羥乙基甲基氨基,二羥丁基甲基氨基、嗎啉代甲基、乙醯氧基甲基、芐氧基甲基、甲醯基、乙醯基、乙烯基或異丙烯基中的至少一種。
- 如請求項1所述的方法,其中該聚合物、寡聚物或單體是至少一種xMT酯,其包含以下結構之一的化合物: 其中X或Y中的至少一個包括: -(烷基)j -(芳基)k -(O)p -(COO)q -LG 其中j、k、p和q取下表中的值: 其中烷基是支鍊或非支鏈、取代或未取代的含有取代至鏈中的0-16個異原子的1-16個碳原子的二價烷基鏈,芳基是取代或未取代的二價苯基、二價異芳香族基,或二價稠合芳香族或稠合的異芳香族基,其中LG是第三烷基或第三環烷基、脂環族基、縮酮或環狀脂族縮酮,或為離去基的縮醛。
- 如請求項4所述的方法,其中xMT酯包含下列結構之一的化合物: 其中X或Y中的至少一個包括: -(烷基)j -(芳基)k -(O)p -(COO)q -LG 其中j、k、p和q取下表中的值: 其中烷基是支鏈或非支鏈、取代或未取代的含有取代至鏈中的0-16個異原子的1-16個碳原子的二價烷基鏈,芳基是取代或未取代的二價苯基、二價異芳香族基,或二價稠合芳香族或稠合的異芳香族基,其中LG是第三烷基或第三環烷基、脂環族基、縮酮或環狀脂族縮酮,或為離去基的縮醛。
- 如請求項5所述的方法,其中該至少一光酸產生劑包括鎓鹽化合物、鋶鹽、三苯基鋶鹽、磺醯亞胺、含鹵素化合物、碸、碸醯亞胺、磺酸酯、醌二疊氮、重氮甲烷、碘鎓鹽、肟磺酸鹽、二羧基亞胺基硫酸酯、亞基氨基氧基磺酸酯、磺醯基重氮甲烷,或它們的混合物,當其暴露於UV、深度UV、極UV、X射線或電子束光化輻射中的至少一種時能夠產生酸,並且其中該至少一可酸活化的交聯劑包含脂族、芳香族或芳烷基單體、寡聚物、樹脂或聚合物,其包含縮水甘油醚、縮水甘油酯、氧環丁烷、縮水甘油胺、甲氧基甲基、乙氧基甲基、丁氧基甲基、芐氧基甲基、二甲基氨基甲基、二乙基氨基甲基氨基、二烷基甲基氨基、二丁氧基甲基氨基、二羥甲基甲基氨基、二羥乙基甲基氨基,二羥丁基甲基氨基、嗎啉代甲基、乙醯氧基甲基、芐氧基甲基、甲醯基、乙醯基、乙烯基或異丙烯基中的至少一種。
- 如請求項1所述的方法,其中該組合物更包括至少一金屬成分,其中該金屬成分表現出高EUV光吸收截面、中度至高度非彈性電子散射及低度至中度彈性散射係數,其中該至少一金屬從元素週期表第3-17欄和第3-6列中選擇,其包括鈧、鈦、釩、鉻、錳、鐵、鈷、鎳、銅、鋅、鎵、鍺、砷、硒、溴、釔、鋯、鈮、鉬、鎝、釕、銠、鈀、銀、鎘、銦、錫、銻、碲、碘、鑭系元素、鉿、鉭、鎢、錸、鋨、銥、鉑、金、汞、鉛、鉍、釙,以及第13-17欄第3列,包括鋁、矽、磷、硫和氯或所選金屬的鹽或配位錯合物,或包含選定的金屬的單體、寡聚或聚合配體。
- 如請求項7所述的方法,其中該至少一光酸產生劑包括鎓鹽化合物、鋶鹽、三苯基鋶鹽、磺醯亞胺、含鹵素化合物、碸、碸醯亞胺、磺酸酯、醌二疊氮、重氮甲烷、碘鎓鹽、肟磺酸鹽、二羧基亞胺基硫酸酯、亞基氨基氧基磺酸酯、磺醯基重氮甲烷,或它們的混合物,當其暴露於UV、深度UV、極UV、X射線或電子束光化輻射中的至少一種時能夠產生酸,並且其中該至少一可酸活化的交聯劑包含脂族、芳香族或芳烷基單體、寡聚物、樹脂或聚合物,其包含縮水甘油醚、縮水甘油酯、氧環丁烷、縮水甘油胺、甲氧基甲基、乙氧基甲基、丁氧基甲基、芐氧基甲基、二甲基氨基甲基、二乙基氨基甲基氨基、二烷基甲基氨基、二丁氧基甲基氨基、二羥甲基甲基氨基、二羥乙基甲基氨基,二羥丁基甲基氨基、嗎啉代甲基、乙醯氧基甲基、芐氧基甲基、甲醯基、乙醯基、乙烯基或異丙烯基中的至少一種。
- 如請求項5所述的方法,其中該組合物更包括至少一金屬成分,其中該金屬成分表現出高EUV光吸收截面、中度至高度非彈性電子散射及低度至中度彈性散射係數,其中該至少一金屬從元素週期表第3-17欄和第3-6列中選擇,其包括鈧、鈦、釩、鉻、錳、鐵、鈷、鎳、銅、鋅、鎵、鍺、砷、硒、溴、釔、鋯、鈮、鉬、鎝、釕、銠、鈀、銀、鎘、銦、錫、銻、碲、碘、鑭系元素、鉿、鉭、鎢、錸、鋨、銥、鉑、金、汞、鉛、鉍、釙,以及第13-17欄第3列,包括鋁、矽、磷、硫和氯或所選金屬的鹽或配位錯合物,或包含選定的金屬的單體、寡聚或聚合配體。
- 如請求項9所述的方法,其中該至少一種光酸產生劑包括鎓鹽化合物、鋶鹽、三苯基鋶鹽、磺醯亞胺、含鹵素化合物、碸、碸醯亞胺、磺酸酯、醌二疊氮、重氮甲烷、碘鎓鹽、肟磺酸鹽、二羧基亞胺基硫酸酯、亞基氨基氧基磺酸酯、磺醯基重氮甲烷,或它們的混合物,當其暴露於UV、深度UV、極UV、X射線或電子束光化輻射中的至少一種時能夠產生酸,並且其中該至少一可酸活化的交聯劑包含脂族、芳香族或芳烷基單體、寡聚物、樹脂或聚合物,其包含縮水甘油醚、縮水甘油酯、氧環丁烷、縮水甘油胺、甲氧基甲基、乙氧基甲基、丁氧基甲基、芐氧基甲基、二甲基氨基甲基、二乙基氨基甲基氨基、二烷基甲基氨基、二丁氧基甲基氨基、二羥甲基甲基氨基、二羥乙基甲基氨基,二羥丁基甲基氨基、嗎啉代甲基、乙醯氧基甲基、芐氧基甲基、甲醯基、乙醯基、乙烯基或異丙烯基中的至少一種。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862634827P | 2018-02-24 | 2018-02-24 | |
US62/634,827 | 2018-02-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201936613A true TW201936613A (zh) | 2019-09-16 |
TWI823901B TWI823901B (zh) | 2023-12-01 |
Family
ID=68618577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108106376A TWI823901B (zh) | 2018-02-24 | 2019-02-25 | 增強的euv光阻劑材料、配方及方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI823901B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI774144B (zh) * | 2019-12-02 | 2022-08-11 | 台灣積體電路製造股份有限公司 | 製造半導體裝置的方法和半導體裝置製造工具 |
TWI790553B (zh) * | 2020-02-27 | 2023-01-21 | 台灣積體電路製造股份有限公司 | 光阻劑組成物與製造半導體裝置的方法 |
TWI848228B (zh) * | 2020-07-28 | 2024-07-11 | 艾力克斯 菲利普 葛拉漢 羅賓森 | 靈敏度增強型光阻劑 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5708522B2 (ja) * | 2011-02-15 | 2015-04-30 | 信越化学工業株式会社 | レジスト材料及びこれを用いたパターン形成方法 |
US9122156B2 (en) * | 2013-10-31 | 2015-09-01 | Alex Philip Graham Robinson | Composition of matter and molecular resist made therefrom |
US9519215B2 (en) * | 2013-10-31 | 2016-12-13 | Irresistible Materials, Ltd | Composition of matter and molecular resist made therefrom |
CN107548473A (zh) * | 2015-04-22 | 2018-01-05 | 亚历克斯·菲利普·格雷厄姆·罗宾逊 | 灵敏度增强的光致抗蚀剂 |
-
2019
- 2019-02-25 TW TW108106376A patent/TWI823901B/zh active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI774144B (zh) * | 2019-12-02 | 2022-08-11 | 台灣積體電路製造股份有限公司 | 製造半導體裝置的方法和半導體裝置製造工具 |
TWI790553B (zh) * | 2020-02-27 | 2023-01-21 | 台灣積體電路製造股份有限公司 | 光阻劑組成物與製造半導體裝置的方法 |
TWI848228B (zh) * | 2020-07-28 | 2024-07-11 | 艾力克斯 菲利普 葛拉漢 羅賓森 | 靈敏度增強型光阻劑 |
Also Published As
Publication number | Publication date |
---|---|
TWI823901B (zh) | 2023-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11681227B2 (en) | Enhanced EUV photoresist materials, formulations and processes | |
US20040265733A1 (en) | Photoacid generators | |
JP2016517532A (ja) | メタノフラーレン | |
TWI775797B (zh) | 多觸發光阻劑組合物及方法 | |
US9256126B2 (en) | Methanofullerenes | |
TW201137011A (en) | Photoresist comprising nitrogen-containing compound | |
US9383646B2 (en) | Two-step photoresist compositions and methods | |
TW201936613A (zh) | 增強的euv光阻劑材料、配方及方法 | |
EP2239631B1 (en) | Patterning process | |
US9323149B2 (en) | Methanofullerenes | |
JP7432620B2 (ja) | Euv用パターン化レジストの形成方法 | |
KR20240040748A (ko) | 강화된 euv 포토레지스트 및 그 사용 방법 | |
US20200319555A1 (en) | Negative resist formulation for producing undercut pattern profiles | |
JP2020531883A (ja) | 複合トリガーモノマー含有フォトレジスト組成物および方法 | |
JP2000147771A (ja) | ポジ型感放射線性樹脂組成物 | |
JPH09138503A (ja) | レジスト塗布液用基剤、その調製方法及びそれを用いたネガ型レジスト組成物 |