[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201706452A - Method of using chemical etching method for peeling growth substrate - Google Patents

Method of using chemical etching method for peeling growth substrate Download PDF

Info

Publication number
TW201706452A
TW201706452A TW105109927A TW105109927A TW201706452A TW 201706452 A TW201706452 A TW 201706452A TW 105109927 A TW105109927 A TW 105109927A TW 105109927 A TW105109927 A TW 105109927A TW 201706452 A TW201706452 A TW 201706452A
Authority
TW
Taiwan
Prior art keywords
layer
epitaxial
growth substrate
substrate
growth
Prior art date
Application number
TW105109927A
Other languages
Chinese (zh)
Other versions
TWI647335B (en
Inventor
郝茂盛
袁根如
奚明
Original Assignee
上海芯元基半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海芯元基半導體科技有限公司 filed Critical 上海芯元基半導體科技有限公司
Publication of TW201706452A publication Critical patent/TW201706452A/en
Application granted granted Critical
Publication of TWI647335B publication Critical patent/TWI647335B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

A method of using a chemical etching method for peeling the growth substrate is provided. A semiconductor-based dielectric pattern layer is etched to form a cavity structure, so an etchant can enter the cavity structure, in order to achieve peeling the growth substrate.

Description

利用化學腐蝕的方法剝離生長襯底的方法Method for stripping growth substrate by chemical etching

本發明涉及半導體照明領域,特別是涉及一種利用化學腐蝕的方法剝離生長襯底的方法。The present invention relates to the field of semiconductor illumination, and more particularly to a method of stripping a growth substrate by chemical etching.

半導體照明作為新型高效固體光源,具有壽命長、節能、環保、安全等優點,其應用領域正在迅速擴大。半導體照明的核心是發光二極體(LED),就結構而言,LED為由III-V族化合物如砷化鎵(GaAs)、磷化鎵(GaP)、磷砷化鎵(GaAsP)、氮化鎵(GaN)等半導體形成的PN結。為了增加LED的發光效率,一般會在PN結的N型層和P型層之間增加一個量子阱的有源區。因此,LED的大都利用外延的手段按照N型層、有源區、P型層的順序依次生長在襯底之上。由於沒有廉價的GaN同質襯底,GaN基LED通常生長在Si、SiC及藍寶石(主要成分為Al2O3)襯底之上,其中藍寶石襯底是使用最廣泛的生長襯底。As a new high-efficiency solid-state light source, semiconductor lighting has the advantages of long life, energy saving, environmental protection and safety, and its application field is rapidly expanding. The core of semiconductor illumination is a light-emitting diode (LED). In terms of structure, the LED is composed of a III-V compound such as gallium arsenide (GaAs), gallium phosphide (GaP), gallium arsenide (GaAsP), and nitrogen. A PN junction formed by a semiconductor such as gallium (GaN). In order to increase the luminous efficiency of the LED, an active region of a quantum well is generally added between the N-type layer and the P-type layer of the PN junction. Therefore, most of the LEDs are sequentially grown on the substrate in the order of the N-type layer, the active region, and the P-type layer by means of epitaxy. Since there are no inexpensive GaN homogeneous substrates, GaN-based LEDs are usually grown on Si, SiC, and sapphire (mainly Al2O3) substrates, with sapphire substrates being the most widely used growth substrates.

在藍寶石襯底上生長GaN晶體材料及外延結構之後,通常需要將襯底剝離。目前主要是利用鐳射剝離襯底,鐳射剝離是將高能鐳射聚焦到襯底和外延層的介面處,通過鐳射逐點掃描瞬間融化外延緩衝層,從而使襯底和外延層剝離。然而,鐳射剝離存在諸多缺陷,例如會造成外延層損傷,而且,也很難實現非常均勻的剝離。這最終導致鐳射剝離製作完成的器件存在漏電、良率低等缺陷。After growing the GaN crystal material and the epitaxial structure on the sapphire substrate, it is usually necessary to peel the substrate. At present, the substrate is mainly stripped by laser. The laser stripping is to focus the high-energy laser on the interface between the substrate and the epitaxial layer, and the epitaxial buffer layer is instantaneously melted by laser spot-by-point scanning, thereby peeling off the substrate and the epitaxial layer. However, there are many drawbacks to laser lift-off, such as damage to the epitaxial layer, and it is also difficult to achieve very uniform peeling. This ultimately leads to defects such as leakage and low yield in devices fabricated by laser stripping.

鑒於以上所述現有技術的缺點,本發明的目的在於提供一種利用化學腐蝕的方法剝離生長襯底的方法,用於解決現有生長襯底剝離技術中的各種缺點。本發明主要有兩個方面的應用:一方面可以用來製備自支撐的III-V氮化物襯底,具體過程是在異質襯底(也就是所謂的生長襯底)上生長比較厚的III-V氮化物外延層,然後利用本發明的方法剝離掉所述生長襯底,所述的III-V氮化物外延層的厚度超過能夠支撐本身的厚度,形成自支撐的III-V氮化物襯底;本發明另外一個方面的應用是可以用來將比較薄的器件的外延層結構從生長襯底轉移到其他的所謂的支撐襯底。因此,從如下兩個方面來說明本發明的內容。In view of the above-discussed shortcomings of the prior art, it is an object of the present invention to provide a method of stripping a growth substrate by chemical etching for solving various disadvantages in the prior art growth substrate peeling technique. The invention has two main applications: one can be used to prepare a self-supporting III-V nitride substrate, the specific process is to grow a relatively thick III on a heterogeneous substrate (also known as a growth substrate). a V nitride epitaxial layer, which is then stripped off by the method of the present invention, the thickness of the III-V nitride epitaxial layer being greater than the thickness capable of supporting itself, forming a self-supporting III-V nitride substrate Another application of the invention is that it can be used to transfer the epitaxial layer structure of a relatively thin device from a growth substrate to other so-called support substrates. Therefore, the contents of the present invention will be described from the following two aspects.

本發明一方面提供一種利用化學腐蝕的方法剝離生長襯底的方法,通過所述剝離生長襯底的方法製備自支撐的III-V氮化物襯底,至少包括:One aspect of the present invention provides a method of stripping a growth substrate by a chemical etching method, and preparing a self-supporting III-V nitride substrate by the method of stripping a growth substrate, comprising at least:

1)提供一生長襯底;1) providing a growth substrate;

2)於所述生長襯底上沉積III-V族氮化物外延緩衝層;2) depositing a III-V nitride epitaxial buffer layer on the growth substrate;

3)於所述外延緩衝層上沉積半導體介質層;3) depositing a semiconductor dielectric layer on the epitaxial buffer layer;

4)圖案化所述半導體介質層,也就是:去除部分半導體介質層,使去除的部分和保留的部分間隔排列,形成週期性或非週期性圖案,同時去除介質層的部分處要暴露出所述外延緩衝層的表面,去除掉介質層並暴露出所述外延緩衝層的部分被稱為生長視窗;4) patterning the semiconductor dielectric layer, that is, removing a portion of the semiconductor dielectric layer, so that the removed portion and the remaining portion are spaced apart to form a periodic or non-periodic pattern, while the portion where the dielectric layer is removed is exposed. The surface of the epitaxial buffer layer, the portion from which the dielectric layer is removed and the epitaxial buffer layer is exposed is referred to as a growth window;

5)於所述介質層圖案暴露出外延緩衝層的表面上進行外延過渡層沉積,所述外延過渡層的厚度大於半導體介質的高度,所述外延過渡層完全覆蓋半導體介質層,所述外延過渡層具有平整的上表面;5) performing epitaxial transition layer deposition on a surface of the dielectric layer pattern exposing the epitaxial buffer layer, the epitaxial transition layer having a thickness greater than a height of the semiconductor medium, the epitaxial transition layer completely covering the semiconductor dielectric layer, the epitaxial transition The layer has a flat upper surface;

6)於所述外延過渡層上沉積一定厚度的III-V族氮化物;6) depositing a certain thickness of the group III-V nitride on the epitaxial transition layer;

7)使用只能腐蝕半導體介質材料的化學試劑腐蝕掉步驟4)中形成的處於生長襯底和外延過渡層之間的半導體介質圖形層,以在生長襯底和外延過渡層之間形成空洞結構;7) etching the semiconductor dielectric pattern layer formed between the growth substrate and the epitaxial transition layer formed in step 4) using a chemical agent capable of etching only the semiconductor dielectric material to form a void structure between the growth substrate and the epitaxial transition layer ;

8)使用能夠腐蝕步驟2)中形成的外延緩衝層的化學試劑,並使這樣的化學試劑進入步驟7)中形成的空洞結構,腐蝕掉步驟2)中形成的外延緩衝層,使生長在生長襯底之上的外延過渡層連同具有一定厚度的III-V族氮化物一起與生長襯底分離開來,完成生長襯底的剝離,形成自支撐的III-V族氮化物襯底。8) using a chemical agent capable of etching the epitaxial buffer layer formed in step 2), and causing such a chemical agent to enter the void structure formed in step 7), etching away the epitaxial buffer layer formed in step 2), allowing growth to grow. An epitaxial transition layer over the substrate is separated from the growth substrate along with a III-V nitride having a certain thickness to complete the lift-off of the growth substrate to form a self-supporting III-V nitride substrate.

本發明另一方面提供一種利用化學腐蝕的方法剝離生長襯底的方法,通過所述剝離生長襯底的方法把器件的外延結構從生長襯底轉移到另外一支撐襯底,至少包括:Another aspect of the present invention provides a method for stripping a growth substrate by a chemical etching method, and transferring the epitaxial structure of the device from the growth substrate to another support substrate by the method of stripping the growth substrate includes at least:

1)提供一生長襯底;1) providing a growth substrate;

2)於所述生長襯底上沉積III-V族氮化物外延緩衝層;2) depositing a III-V nitride epitaxial buffer layer on the growth substrate;

3)於所述外延緩衝層上沉積半導體介質層;3) depositing a semiconductor dielectric layer on the epitaxial buffer layer;

4)圖案化所述半導體介質層,也就是:去除部分半導體介質層,使去除的部分和保留的部分間隔排列,形成週期性或非週期性圖案,同時去除介質層的部分處要暴露出所述外延緩衝層的表面,去除掉介質層並暴露出所述外延緩衝層的部分被稱為生長視窗;4) patterning the semiconductor dielectric layer, that is, removing a portion of the semiconductor dielectric layer, so that the removed portion and the remaining portion are spaced apart to form a periodic or non-periodic pattern, while the portion where the dielectric layer is removed is exposed. The surface of the epitaxial buffer layer, the portion from which the dielectric layer is removed and the epitaxial buffer layer is exposed is referred to as a growth window;

5)於所述介質層圖案暴露出外延緩衝層的表面上進行外延過渡層沉積,所述外延過渡層的厚度大於半導體介質的高度,所述外延過渡層完全覆蓋半導體介質層,所述外延過渡層具有平整的上表面;5) performing epitaxial transition layer deposition on a surface of the dielectric layer pattern exposing the epitaxial buffer layer, the epitaxial transition layer having a thickness greater than a height of the semiconductor medium, the epitaxial transition layer completely covering the semiconductor dielectric layer, the epitaxial transition The layer has a flat upper surface;

6)於所述外延過渡層上外延依次生長n型外延層、多量子阱發光層及p型外延層組成的發光二極體器件的外延結構;6) epitaxial structure of the light emitting diode device formed by epitaxially growing the n-type epitaxial layer, the multi-quantum well light-emitting layer, and the p-type epitaxial layer on the epitaxial transition layer;

7)於所述具有外延結構連同生長襯底的襯底鍵合到另一支撐襯底上,使得器件的外延結構的表面和所述支撐襯底的表面緊密粘合在一起;7) bonding the substrate having the epitaxial structure together with the growth substrate to another support substrate such that the surface of the epitaxial structure of the device and the surface of the support substrate are closely bonded together;

8)使用只能腐蝕半導體介質材料的化學試劑腐蝕掉步驟4)中形成的處於生長襯底和外延過渡層之間的半導體介質圖形層,以在生長襯底和外延過渡層之間形成空洞結構;8) etching away the semiconductor dielectric pattern layer formed between the growth substrate and the epitaxial transition layer formed in step 4) using a chemical agent capable of etching only the semiconductor dielectric material to form a void structure between the growth substrate and the epitaxial transition layer ;

9)使用能夠腐蝕步驟2)中形成的外延緩衝層的化學試劑,並使這樣的化學試劑進入步驟8)中形成的空洞結構,腐蝕掉步驟2)中形成的外延緩衝層,使生長在生長襯底之上的外延過渡層連同器件的外延結構一起與生長襯底分離開來,完成生長襯底的剝離,將所述發光二極體器件的外延結構轉移到所述的支撐襯底。9) using a chemical agent capable of etching the epitaxial buffer layer formed in step 2), and causing such a chemical agent to enter the void structure formed in step 8), etching away the epitaxial buffer layer formed in step 2), allowing growth to grow. The epitaxial transition layer over the substrate is separated from the growth substrate along with the epitaxial structure of the device to complete the lift-off of the growth substrate, transferring the epitaxial structure of the light-emitting diode device to the support substrate.

於剝離出來的支撐襯底上的外延結構層上完成器件結構製作技術。The device structure fabrication technique is completed on the epitaxial structure layer on the stripped support substrate.

如上所述,本發明提供一種利用化學腐蝕的方法剝離襯底的方法,其主要特點是先用腐蝕液將所述介質層腐蝕掉,使得原介質層處形成空洞,然後使能夠腐蝕外延緩衝層的腐蝕溶液進入所述空洞結構並腐蝕掉外延緩衝層,成功地將生長襯底剝離。As described above, the present invention provides a method of stripping a substrate by a chemical etching method, the main feature of which is to first etch the dielectric layer with an etching solution, thereby forming a void at the original dielectric layer, and then enabling etching of the epitaxial buffer layer. The etching solution enters the void structure and etches away the epitaxial buffer layer, successfully peeling off the growth substrate.

本發明的製備方法技術簡單,且有利於降低製造成本,適用於工業生產。The preparation method of the invention has simple technology and is advantageous for reducing manufacturing cost and is suitable for industrial production.

作為本發明的一種利用化學腐蝕的方法剝離襯底的方法的一種優選方案,所述生長襯底的材料為Al2O3,也可以是其他半導體材料,比如Si或SiC。As a preferred embodiment of the method for stripping a substrate by a chemical etching method of the present invention, the material of the growth substrate is Al2O3, and may be other semiconductor materials such as Si or SiC.

作為本發明的一種利用化學腐蝕的方法剝離生長襯底的方法的一種優選方案,外延緩衝層的厚度優選100~500埃,更優選200~400埃。過薄的外延緩衝層無法滿足後續外延生長所需的成核要求,導致外延層生長品質下降;過厚的外延緩衝層會導致外延在後續的升溫過程中再結晶不夠充分,影響外延層的品質;過厚的外延緩衝層還會影響在這樣的襯底上製備的LED的出光效率。As a preferred embodiment of the method for peeling a growth substrate by a chemical etching method of the present invention, the thickness of the epitaxial buffer layer is preferably from 100 to 500 angstroms, more preferably from 200 to 400 angstroms. An excessively thin epitaxial buffer layer cannot meet the nucleation requirements required for subsequent epitaxial growth, resulting in a decrease in the growth quality of the epitaxial layer; an excessively thick epitaxial buffer layer may cause insufficient recrystallization in the subsequent temperature rise process, affecting the quality of the epitaxial layer. An excessively thick epitaxial buffer layer also affects the light extraction efficiency of LEDs fabricated on such substrates.

作為本發明的一種利用化學腐蝕的方法剝離襯底的方法的一種優選方案,外延緩衝層為任何能通過退火再結晶形成六角對稱結構晶體的非晶或多晶材料,更優選地選自:採用金屬有機化合物化學氣相沉積法製備的AlxGa1-xN,0≤X≤0.5,優選0≤X≤0.2,製備的溫度範圍為450~700℃,優選500~600℃;採用金屬有機化合物化學氣相沉積法製備的AlN,製備的溫度範圍為700~1000℃;採用濺射法製備的AlN層,所述AlN層的晶向為(0001)取向;BN;或ZnO。上述外延緩衝層的製備方法為本領域技術人員已知,在此不再贅述。由於所述過渡層的製備溫度較低,所需的厚度較小,在保證後續發光外延結構(尤其是GaN基發光外延結構)成核生長的同時,可以有效地降低生產成本。相比於低溫AlxGa1-xN層,濺射法製備AlN層的好處是厚度可控性強、晶向取向度較高,同時也有利於發光外延結構(尤其是GaN基發光外延結構)的成核生長。As a preferred embodiment of the method for peeling off a substrate by a method of chemical etching according to the present invention, the epitaxial buffer layer is any amorphous or polycrystalline material capable of forming a hexagonal symmetric crystal by annealing and recrystallization, more preferably selected from: AlxGa1-xN prepared by metal organic chemical vapor deposition method, 0≤X≤0.5, preferably 0≤X≤0.2, prepared at a temperature range of 450-700 ° C, preferably 500-600 ° C; using metal organic compounds chemical vapor phase The AlN prepared by the deposition method has a temperature range of 700 to 1000 ° C; an AlN layer prepared by a sputtering method, the crystal orientation of the AlN layer is (0001) orientation; BN; or ZnO. The preparation method of the above epitaxial buffer layer is known to those skilled in the art and will not be described herein. Since the preparation temperature of the transition layer is low, the required thickness is small, and the production cost can be effectively reduced while ensuring nucleation growth of the subsequent light-emitting epitaxial structure (especially GaN-based light-emitting epitaxial structure). Compared with the low-temperature AlxGa1-xN layer, the AlN layer prepared by sputtering has the advantages of high thickness controllability, high crystal orientation, and nucleation of luminescent epitaxial structures (especially GaN-based luminescent epitaxial structures). Growing.

作為本發明的一種利用化學腐蝕的方法剝離生長襯底的方法的一種優選方案,半導體介質層為SiO2、SiONx、或SiNx中至少一種,可以採用等離子體增強化學氣相沉積法(PECVD)或其他成膜方法形成,所述半導體介質層更優選為SiO2,使用PECVD由SiH4和N2O在250-350℃溫度區間在等離子體反應環境下生成。As a preferred embodiment of the method for peeling a growth substrate by a chemical etching method of the present invention, the semiconductor dielectric layer is at least one of SiO2, SiONx, or SiNx, and may be plasma enhanced chemical vapor deposition (PECVD) or the like. The film formation method is formed, and the semiconductor dielectric layer is more preferably SiO2, which is formed by SiCH4 and N2O in a plasma reaction environment at a temperature range of 250-350 ° C using PECVD.

作為本發明的一種利用化學腐蝕的方法剝離生長襯底的方法的一種優選方案,所述半導體介質層的厚度優選0.5~2μm。As a preferred embodiment of the method for peeling a growth substrate by a chemical etching method of the present invention, the thickness of the semiconductor dielectric layer is preferably 0.5 to 2 μm.

作為本發明的一種利用化學腐蝕的方法剝離生長襯底的方法的一種優選方案,所述的半導體介質層在圖案化之後由去掉介質層的生長視窗和保留的介質層組成,生長視窗形成所謂的凹孔。在本發明中,去除掉介質層並暴露出所述外延緩衝層的部分被稱為生長視窗As a preferred embodiment of the method for stripping a growth substrate by a method of chemical etching according to the present invention, the semiconductor dielectric layer is composed of a growth window from which the dielectric layer is removed and a remaining dielectric layer after patterning, and the growth window forms a so-called Concave hole. In the present invention, the portion from which the dielectric layer is removed and the epitaxial buffer layer is exposed is referred to as a growth window.

作為本發明的一種利用化學腐蝕的方法剝離生長襯底的方法的一種優選方案,生長視窗的形狀不做限制,可以是圓形,也可以是方形或六邊形,生長視窗的尺寸優選0.1到15微米,生長視窗之間的間距優選0.1到25微米。As a preferred embodiment of the method for peeling the growth substrate by the method of chemical etching of the present invention, the shape of the growth window is not limited, and may be circular or square or hexagonal, and the size of the growth window is preferably 0.1 to At 15 microns, the spacing between the growth windows is preferably 0.1 to 25 microns.

作為本發明的一種利用化學腐蝕的方法剝離生長襯底的方法的一種優選方案,生長視窗的形狀也可以是條形結構,條形生長視窗的寬度優選0.1到15微米,條形生長窗口之間的間距優選0.1到25微米。As a preferred embodiment of the method for peeling a growth substrate by a chemical etching method of the present invention, the shape of the growth window may also be a strip structure, and the width of the strip growth window is preferably 0.1 to 15 μm, between the strip growth windows. The pitch is preferably from 0.1 to 25 microns.

作為本發明的一種利用化學腐蝕的方法剝離生長襯底的方法的一種 優選方案,所述的用來鍵合外延結構層的支撐襯底根據器件功能的要求可以是導電和導熱性能良好的Cu基襯底,也可以是其他半導體襯底,比如Si和GaAs襯底,還可以是導熱良好的陶瓷襯底。As a preferred embodiment of the method for peeling a growth substrate by a method of chemical etching according to the present invention, the support substrate for bonding the epitaxial structure layer may be a Cu-based electrode having good electrical and thermal conductivity according to the function of the device. The substrate, which may also be other semiconductor substrates, such as Si and GaAs substrates, may also be a thermally conductive ceramic substrate.

作為本發明的一種利用化學腐蝕的方法剝離生長襯底的方法的一種優選方案,所述的鍵合技術可以是半導體行業中的任何一種常規鍵合技術,根據器件功能需要如果需要導電,可以優選Au-Au鍵合或AuSn等金屬鍵合,如果不需要導電還可以選擇有機粘合劑鍵合。As a preferred embodiment of the method for stripping a growth substrate by a method of chemical etching according to the present invention, the bonding technique may be any conventional bonding technology in the semiconductor industry, and may be preferably used if necessary according to device function requirements. Metal bonding such as Au-Au bonding or AuSn, and organic binder bonding if conductivity is not required.

作為本發明的一種利用化學腐蝕的方法剝離生長襯底的方法的一種優選方案,半導體介質層是整片相連,或形成連續的長條,因此溶液能夠延伸進去,將半導體介質層全部腐蝕掉,從在生長襯底和外延層之間形成空洞結構。As a preferred embodiment of the method for peeling a growth substrate by a method of chemical etching according to the present invention, the semiconductor dielectric layer is connected in a whole piece or forms a continuous strip, so that the solution can be extended to completely etch away the semiconductor dielectric layer. A void structure is formed between the growth substrate and the epitaxial layer.

本發明中使用到的能夠腐蝕所述的半導體介質層的化學試劑或腐蝕溶液以及腐蝕技術是半導體行業中公知的,在此不再贅述,例如可以優選HF溶液或HF與HNO3的比例為1:1的混合溶液。The chemical reagents or etching solutions and etching techniques used in the present invention which are capable of etching the semiconductor dielectric layer are well known in the semiconductor industry and will not be described herein. For example, the ratio of HF solution or HF to HNO3 may be preferably 1: 1 mixed solution.

本發明中使用的能夠腐蝕所述的外延緩衝層的化學試劑或腐蝕溶液以及腐蝕技術都是半導體行業中公知的,在此不再贅述,例如可以優選摩爾濃度為10摩爾/升的KOH溶液,腐蝕溫度優選100℃。The chemical reagents or etching solutions and etching techniques which can be used in the present invention to etch the epitaxial buffer layer are well known in the semiconductor industry, and will not be described herein. For example, a KOH solution having a molar concentration of 10 mol/L can be preferably used. The etching temperature is preferably 100 °C.

實施例Example

以下通過特定的具體實施例說明本發明的實施方式,本領域技術人員可由本說明書所揭露的內容容易地瞭解本發明的其他優點與效果。本發明還可以通過另外不同的具體實施方式加以實施或應用,本說明書中的各項細節也可以基於不同觀點與應用,在沒有背離本發明的精神下進行各種修飾或改變。The embodiments of the present invention are described below by way of specific embodiments, and those skilled in the art can readily understand the other advantages and effects of the present invention from the disclosure. The present invention may be embodied or applied in various other specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention.

請參閱圖1~圖10b。需要說明的是,本實施例中所提供的圖示僅以示意方式說明本發明的基本構想,僅顯示與本發明中有關的組件示意,而非對實際實施時的元件數目、形狀、尺寸、製造方法及技術做出限定,其實際實施時各元件的型態、數量及比例可為一種隨意的改變,且其元件佈局型態也可能更為複雜。在實施例中所涉及的技術條件可以進行合理改變且達到本發明所揭示的效果。Please refer to Figures 1 to 10b. It should be noted that the illustrations provided in the present embodiment merely illustrate the basic concept of the present invention in a schematic manner, and only show the components of the present invention in relation to the present invention, rather than the number, shape, and size of the components in actual implementation. The manufacturing method and technology are limited, and the type, quantity and proportion of each component in actual implementation may be a random change, and the component layout type may also be more complicated. The technical conditions involved in the embodiments can be reasonably changed and achieve the effects disclosed by the present invention.

實施例1Example 1

如圖1~圖10b所示,本實施例提供一種利用化學腐蝕的方法剝離生長襯底的方法,包括以下步驟:As shown in FIG. 1 to FIG. 10b, the embodiment provides a method for peeling a growth substrate by chemical etching, comprising the following steps:

1、外延緩衝層的形成。如圖1所示,在本實施例中,所述生長襯底101為市售的平片型Al2O3襯底,其表面晶向(0001),具有原子級的平整度,襯底的尺寸為2英寸。在本實施例中,使用的是免清洗的襯底,沒有額外清洗,直接使用。將上述襯底放置在具有SiC保護層的石墨託盤之上送入金屬有機物化學氣相沉積法(MOCVD)反應室;在氫氣氣氛下將上述襯底加熱到1100℃,並在該溫度下保持10分鐘;然後將襯底溫度降低到550℃,向反應室同時通入氨氣、三甲基鋁(TMAl)和三甲基鎵(TMGa),其中氨氣的標準流量為56升/分鐘、TMAl和TMGa的摩爾流量分別為3.25×10-5和2.47×10-4摩爾/分鐘,反應室的壓力為500torr,通入時間為215秒。如圖2所示,在上述條件下在生長襯底101上形成AlxGa1-xN外延緩衝層的厚度為300埃,其中x=0.2。1. Formation of an epitaxial buffer layer. As shown in FIG. 1, in the present embodiment, the growth substrate 101 is a commercially available flat sheet type Al2O3 substrate having a surface crystal orientation (0001) having an atomic level flatness and a substrate size of 2 inch. In this embodiment, a no-clean substrate was used, which was used without additional cleaning. The substrate is placed on a graphite tray having a SiC protective layer and fed into a metal organic chemical vapor deposition (MOCVD) reaction chamber; the substrate is heated to 1100 ° C under a hydrogen atmosphere, and maintained at this temperature for 10 Minutes; then reduce the substrate temperature to 550 ° C, and simultaneously introduce ammonia gas, trimethyl aluminum (TMAl) and trimethyl gallium (TMGa) into the reaction chamber, wherein the standard flow rate of ammonia gas is 56 liters / minute, TMAl The molar flow rates of TMGa and TMGa were 3.25 x 10-5 and 2.47 x 10-4 mol/min, respectively, the pressure in the reaction chamber was 500 torr, and the pass time was 215 seconds. As shown in FIG. 2, the thickness of the AlxGa1-xN epitaxial buffer layer formed on the growth substrate 101 under the above conditions was 300 angstroms, where x = 0.2.

2、如圖3所示,完成緩衝層102的生長之後,利用等離子體增強化學氣相沉積法(PECVD)於所述緩衝層102表面形成SiO2層103,厚度為1微米。PECVD反應腔中的溫度為350℃,壓力為1torr(一個標準大氣壓為760torr),SiH4和N2O的流量分別為10sccm(標準毫升/分鐘)和300sccm,等離子的射頻功率為30W。2. As shown in FIG. 3, after the growth of the buffer layer 102 is completed, a SiO2 layer 103 is formed on the surface of the buffer layer 102 by plasma enhanced chemical vapor deposition (PECVD) to a thickness of 1 μm. The temperature in the PECVD reaction chamber was 350 ° C, the pressure was 1 torr (one standard atmospheric pressure was 760 torr), the flow rates of SiH4 and N2O were 10 sccm (standard cc / min) and 300 sccm, respectively, and the RF power of the plasma was 30 W.

3、介質層幾何圖案的形成。如圖4~圖7b所示,形成的圖形為週期性排列的SiO2凹孔,排列方式為六角密堆積結構,週期為10μm,SiO2凹孔的形狀為圓形,底部寬度為3μm,間距為7μm。3. Formation of a geometric pattern of the dielectric layer. As shown in FIG. 4 to FIG. 7b, the pattern formed is a periodically arranged SiO2 recessed hole arranged in a hexagonal close-packed structure with a period of 10 μm, a SiO2 recessed hole having a circular shape, a bottom width of 3 μm, and a pitch of 7 μm. .

具體地,介質層幾何圖案化包括以下步驟:Specifically, the geometric patterning of the dielectric layer includes the following steps:

a、如圖4~圖5b所示,首先,於所述SiO2層103表面塗布1μm光刻膠層104,通過曝光技術將所述光刻膠層104製作成以六角密堆積方式排列的光刻膠凹孔105,六角密堆積的週期為10μm,光刻膠圓柱的直徑為3μm,間距為7μm。a, as shown in FIG. 4 to FIG. 5b, first, a 1 μm photoresist layer 104 is coated on the surface of the SiO2 layer 103, and the photoresist layer 104 is formed into a lithography arranged in a hexagonal close-packed manner by an exposure technique. The recessed holes 105 have a hexagonal close-packing period of 10 μm, and the photoresist cylinder has a diameter of 3 μm and a pitch of 7 μm.

b、如圖6所示,然後,通過加熱回流技術使所述多個光刻膠凹孔回流成具有一定斜度的孔,其中,回流溫度128攝氏度和回流時間60秒。b. As shown in FIG. 6, the plurality of photoresist recesses are then reflowed into holes having a certain slope by a heating reflow technique, wherein the reflow temperature is 128 degrees Celsius and the reflow time is 60 seconds.

c、如圖7a、7b所示,之後進行,採用感應耦合等離子體刻蝕法(ICP)將光刻膠圖形轉移至所述SiO2層103,形成多個SiO2凹孔,且露出各SiO2 凹孔處的過渡層102,用於後續GaN外延材料的外延生長。上述ICP刻蝕的技術條件為:刻蝕氣體為CHF3(三氟甲烷),其標準流量為100毫升/分鐘;ICP的上電極功率為1000W,下電極功率為50W。清洗技術條件為:使用丙酮,清洗掉上述SiO2表面殘餘的光刻膠,再用稀鹽酸清洗掉上述SiO2表面及暴露出的過渡層表面上的其他污染物,即可直接用於GaN的外延生長。c, as shown in FIGS. 7a and 7b, after which the photoresist pattern is transferred to the SiO2 layer 103 by inductively coupled plasma etching (ICP) to form a plurality of SiO2 recesses, and each SiO2 recess is exposed. The transition layer 102 is used for epitaxial growth of subsequent GaN epitaxial materials. The technical conditions of the above ICP etching are: the etching gas is CHF3 (trifluoromethane), the standard flow rate is 100 ml/min; the upper electrode power of the ICP is 1000 W, and the power of the lower electrode is 50 W. The cleaning technical conditions are as follows: using acetone, cleaning the residual photoresist on the surface of the above SiO2, and then washing away the surface of the SiO2 and other contaminants on the surface of the exposed transition layer with dilute hydrochloric acid, and then directly used for epitaxial growth of GaN. .

4、外延結構層的形成。如圖8a、8b所示,用MOCVD設備在露出的緩衝層表面外延生長一層外延過渡層,所述外延過渡層完全覆蓋半導體介質凸起並且完全填充半導體介質凸起之間的空間,所述外延過渡層具有平整的上表面。將上述步驟製備的襯底結構放置在具有SiC保護層的石墨託盤之上送入金屬有機物化學氣相沉積法(MOCVD)反應室,在上述襯底結構中,曝露在SiO2凹孔處的緩衝層表面能夠起到緩衝層的作用,在NH3的保護下,直接將反應室溫度升至1100℃,外延生長厚度為2微米的GaN非摻雜層過渡層,NH3流量為25標準升/分鐘,TMGa流量為4×10-5摩爾/分鐘,生長壓力為400Torr。4. Formation of epitaxial structure layers. As shown in FIGS. 8a, 8b, an epitaxial transition layer is epitaxially grown on the exposed buffer layer surface by an MOCVD device, the epitaxial transition layer completely covering the semiconductor dielectric bumps and completely filling the space between the semiconductor dielectric bumps, the epitaxy The transition layer has a flat upper surface. The substrate structure prepared in the above step is placed on a graphite tray having a SiC protective layer and sent to a metal organic chemical vapor deposition (MOCVD) reaction chamber in which a buffer layer exposed at the SiO2 recess is provided. The surface can act as a buffer layer. Under the protection of NH3, the temperature of the reaction chamber is directly raised to 1100 ° C, and a GaN undoped layer transition layer with a thickness of 2 μm is epitaxially grown. The NH 3 flow rate is 25 standard liters per minute, TMGa. The flow rate was 4 x 10-5 mol/min and the growth pressure was 400 Torr.

在完成外延過渡層生長之後,在不中斷生長的情況下,直接利用MOCVD生長於所述外延過渡層的表面面上繼續生長外延有源層,所述外延有源層至少含有n型摻雜外延層、p摻雜型外延層、與發光層,所述n型外延層、p型外延層位於所述發光層的兩側。After the epitaxial transition layer growth is completed, the epitaxial active layer is grown by directly growing on the surface of the epitaxial transition layer by MOCVD without interrupting growth, and the epitaxial active layer contains at least an n-type doped epitaxial layer. a layer, a p-doped epitaxial layer, and a light-emitting layer, wherein the n-type epitaxial layer and the p-type epitaxial layer are located on both sides of the light-emitting layer.

外延有源層各層的主要生長條件如下:The main growth conditions of each layer of the epitaxial active layer are as follows:

a、生長Si摻雜的n型GaN層,NH3流量為25標準升/分鐘,TMGa流量為4×10-3摩爾/分鐘,摻雜SiH4流量從2×10-7摩爾/分鐘,反應室的溫度為,1100℃,壓力為400Torr,n型GaN層厚度為3微米;a, growing Si-doped n-type GaN layer, NH3 flow rate is 25 standard liters / minute, TMGa flow rate is 4 × 10-3 moles / minute, doping SiH4 flow rate from 2 × 10-7 moles / minute, the reaction chamber The temperature is 1,100 ° C, the pressure is 400 Torr, and the thickness of the n-type GaN layer is 3 μm;

b、生長Si摻雜的n型AlGaN插入層,生長溫度為1050℃,生長時間為10min,壓力為400Torr,厚度為0.1微米;b, growing a Si-doped n-type AlGaN intercalation layer, a growth temperature of 1050 ° C, a growth time of 10 min, a pressure of 400 Torr, a thickness of 0.1 micron;

c、生長多量子阱層發光層:多量子阱層包括10個依次交疊的量子阱結構,所述量子阱結構由InxGa1-xN(x=0.2)勢阱層和GaN勢壘層依次交疊生長而成。所述InxGa1-xN勢阱層的生長溫度為780℃,壓力為300Torr,厚度為2.5nm;所述GaN勢壘層的生長溫度為950℃之間,壓力為400Torr之間,厚度為12nm;c. growing multiple quantum well layer light-emitting layer: the multiple quantum well layer comprises ten sequentially overlapping quantum well structures, which are sequentially overlapped by an InxGa1-xN (x=0.2) well layer and a GaN barrier layer Growing up. The growth temperature of the InxGa1-xN well layer is 780 ° C, the pressure is 300 Torr, and the thickness is 2.5 nm; the growth temperature of the GaN barrier layer is between 950 ° C, the pressure is between 400 Torr, and the thickness is 12 nm;

d、生長Mg參雜的p型AlGaN層,生長溫度為1000℃,NH3流量 為41標準升/分鐘,TMGa流量為1.1×10-4摩爾/分鐘,TMAl流量為6.2×10-5摩爾/分鐘,Cp2Mg流量為7.5×10-7摩爾/分鐘,反應室壓力為500Torr,生長厚度為50納米;d, growing Mg-doped p-type AlGaN layer, growth temperature is 1000 ° C, NH3 flow rate is 41 standard liter / minute, TMGa flow rate is 1.1 × 10 -4 mole / minute, TMAl flow rate is 6.2 × 10-5 mole / minute , Cp2Mg flow rate is 7.5 × 10-7 mol / min, the reaction chamber pressure is 500 Torr, the growth thickness is 50 nm;

e、生長Mg參雜的p型GaN層:溫度降至950℃,TMGa流量為1×10-4摩爾/分鐘,Cp2Mg流量為4.5×10-6摩爾/分鐘,反應室壓力為500Torr,生長厚度為600納米;e, growth of Mg-doped p-type GaN layer: temperature dropped to 950 ° C, TMGa flow rate of 1 × 10-4 mol / min, Cp2Mg flow rate of 4.5 × 10-6 mol / min, reaction chamber pressure of 500 Torr, growth thickness 600 nanometers;

f、生長Mg參雜的InGaN層,溫度降到650℃,NH3流量為40標準升/分鐘,TEGa流量為1.5×10-5摩爾/分鐘,TMIn流量為3×10-5摩爾/分鐘,Cp2Mg流量為3.2×10-6摩爾/分鐘,反應室壓力為500Torr,生長厚度為5納米;f. Grinding the Mg-doped InGaN layer, the temperature is lowered to 650 ° C, the NH 3 flow rate is 40 standard liter / minute, the TEGa flow rate is 1.5 × 10 -5 mol / min, the TMIn flow rate is 3 × 10 -5 mol / min, Cp2Mg The flow rate is 3.2×10-6 mol/min, the reaction chamber pressure is 500 Torr, and the growth thickness is 5 nm;

g、退火處理,最後將溫度降至800℃,N2總流量為80標準升/分鐘,反應室壓力為200Torr,活化時間10分鐘。g, annealing treatment, and finally the temperature was lowered to 800 ° C, the total flow rate of N2 was 80 standard liter / minute, the reaction chamber pressure was 200 Torr, and the activation time was 10 minutes.

5、完成整個外延結構的生長之後,將MOCVD反應室的溫度降到室溫,然後將樣品從MOCVD反應室取出來,就可以將外延結構連同生長襯底轉鍵合到支撐襯底之上,在該實施例中使用的支撐襯底為Si(001),使用的鍵合技術為Au-Au鍵合技術,首先需要在外延層表面和Si支撐襯底表面分別蒸鍍1微米的金屬Au的鍵合層,然後將兩者的表面貼合在一起,在280℃,5Kg的壓力下保持10分鐘就可以完成鍵合。5. After the growth of the entire epitaxial structure is completed, the temperature of the MOCVD reaction chamber is lowered to room temperature, and then the sample is taken out from the MOCVD reaction chamber, and the epitaxial structure can be transferred to the support substrate along with the growth substrate. The support substrate used in this embodiment is Si (001), and the bonding technique used is Au-Au bonding technology. First, it is necessary to vapor-deposit 1 μm of metal Au on the surface of the epitaxial layer and the surface of the Si support substrate, respectively. Bonding the layers, and then bonding the surfaces of the two together, the bonding can be completed by holding at 280 ° C, 5 Kg for 10 minutes.

6、空洞的形成。如圖9a、9b所示,用HF酸溶液將半導體介質層腐蝕乾淨,由於半導體介質層是整片相連,因此溶液能夠延伸進去,將半導體介質層全部腐蝕掉,從而在外延結構和生長襯底之間形成空洞結構。6, the formation of voids. As shown in Figures 9a and 9b, the semiconductor dielectric layer is etched away with an HF acid solution. Since the semiconductor dielectric layer is connected in a single piece, the solution can be extended to completely etch away the semiconductor dielectric layer, thereby forming the epitaxial structure and the growth substrate. A void structure is formed between them.

7、生長襯底剝離。將上面所述的具有空洞結構的樣品放入100℃的高溫KOH腐蝕溶液之中,KOH的摩爾濃度為10摩爾/升,KOH溶液就會進入所述的處於外延結構和生長襯底之間的空洞結構,將外延緩衝層腐蝕掉,腐蝕時間為3分鐘,成功地實現生長徹底的化學剝離。7. The growth substrate is peeled off. The sample having the void structure described above is placed in a high temperature KOH etching solution at 100 ° C, and the molar concentration of KOH is 10 mol / liter, and the KOH solution enters between the epitaxial structure and the growth substrate. The void structure erodes the epitaxial buffer layer and the etching time is 3 minutes, and the chemical peeling of the growth is successfully achieved.

8、完成在支撐Si襯底之上的器件外延結構的器件技術。8. A device technique for completing an epitaxial structure of a device over a Si substrate.

實施例2Example 2

如圖1~圖10b所示,本實施例提供一種利用化學腐蝕的方法剝離襯底的方法,其基本步驟如實施例1,所不同處僅為第2步:圖形化所述的半導體介質層103為週期性間隔排列的SiO2線條,線條底部寬度為7μm,間距為3μm。As shown in FIG. 1 to FIG. 10b, the present embodiment provides a method for stripping a substrate by chemical etching. The basic steps are as in Embodiment 1, except that the second step is: patterning the semiconductor dielectric layer. 103 is a periodically spaced SiO2 line having a line bottom width of 7 μm and a pitch of 3 μm.

上述實施例僅例示性說明本發明的原理及其功效,而非用於限制本發明。任何熟悉此技術的人士皆可在不違背本發明的精神及範疇下,對上述實施例進行修飾或改變。因此,舉凡所屬技術領域中具有通常知識者在未脫離本發明所揭示的精神與技術思想下所完成的一切等效修飾或改變,仍應由本發明的權利要求所涵蓋。The above-described embodiments are merely illustrative of the principles of the invention and its effects, and are not intended to limit the invention. Modifications or variations of the above-described embodiments may be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and scope of the invention will be covered by the appended claims.

101‧‧‧生長襯底
102‧‧‧外延緩衝層
103‧‧‧半導體介質層
104‧‧‧光刻膠層
105‧‧‧間隔排列的光刻膠圖案
106‧‧‧帶有斜度的間隔排列的光刻膠圖案
107‧‧‧間隔排列的半導體介質圖案
108‧‧‧外延結構層
109‧‧‧空洞
110‧‧‧支撐襯底
101‧‧‧ growth substrate
102‧‧‧ Epitaxial buffer layer
103‧‧‧Semiconductor dielectric layer
104‧‧‧Photoresist layer
105‧‧‧ spaced photoresist patterns
106‧‧‧Striped photoresist pattern with slope
107‧‧‧ spaced semiconductor dielectric patterns
108‧‧‧Extensive structural layer
109‧‧‧ hollow
110‧‧‧Support substrate

圖1、圖2係分別顯示為本發明的一種利用化學腐蝕的方法剝離襯底的方法步驟1)、2)所呈現的結構示意圖。1 and 2 are respectively schematic structural views showing steps 1) and 2) of a method for peeling a substrate by a chemical etching method according to the present invention.

圖3係顯示為本發明的一種利用化學腐蝕的方法剝離襯底的方法步驟3)所呈現的結構示意圖。3 is a schematic view showing the structure of the method 3) of the method for peeling off a substrate by a chemical etching method of the present invention.

圖4、圖5a、圖5b、圖6、圖7a、圖7b係分別顯示為本發明的一種利用化學腐蝕的方法剝離襯底的方法步驟4)所呈現的結構示意圖。4, FIG. 5a, FIG. 5b, FIG. 6, FIG. 7a, and FIG. 7b are respectively schematic structural diagrams showing the step 4) of the method for peeling off the substrate by the method of chemical etching according to the present invention.

圖8a、圖8b係分別顯示為本發明的一種利用化學腐蝕的方法剝離襯底的方法步驟5)、6)所呈現的結構示意圖。8a and 8b are respectively schematic structural views showing steps 5) and 6) of the method for peeling off a substrate by a method of chemical etching according to the present invention.

圖9a、圖9b係分別顯示為本發明的一種利用化學腐蝕的方法剝離襯底的方法步驟7)所呈現的結構示意圖。9a and 9b are respectively schematic structural views showing a step 7) of a method for stripping a substrate by a method of chemical etching according to the present invention.

圖10a、圖10b係分別顯示為本發明的一種利用化學腐蝕的方法剝離襯底的方法步驟8)所呈現的結構示意圖。10a and 10b are respectively schematic structural views showing a step 8) of a method for stripping a substrate by a chemical etching method according to the present invention.

101‧‧‧生長襯底 101‧‧‧ growth substrate

108‧‧‧外延結構層 108‧‧‧Extensive structural layer

Claims (14)

一種利用化學腐蝕的方法剝離生長襯底的方法,通過所述剝離生長襯底的方法製造自支撐III-V族氮化物襯底,其特徵在於: 1)提供一生長襯底; 2)於所述生長襯底上沉積III-V族氮化物外延緩衝層; 3)於所述外延緩衝層上沉積半導體介質層; 4)圖案化所述半導體介質層,也就是:去除部分半導體介質層,使去除的部分和保留的部分間隔排列,形成週期性或非週期性圖案,同時去除介質層的部分處要暴露出部分所述外延緩衝層的表面,去除掉介質層並暴露出所述外延緩衝層的部分被稱為生長視窗; 5)於所述介質層圖案暴露出外延緩衝層的表面上進行外延過渡層沉積,所述外延過渡層的厚度大於半導體介質的高度,所述外延過渡層完全覆蓋半導體介質層,所述外延過渡層具有平整的上表面; 6)於所述外延過渡層上沉積一定厚度的III-V族氮化物; 7)使用只能腐蝕半導體介質材料的化學試劑腐蝕掉步驟4)中形成的處於生長襯底和外延過渡層之間的半導體介質圖形層,以在生長襯底和外延過渡層之間形成空洞結構; 使用能夠腐蝕步驟2)中形成的外延緩衝層的化學試劑,並使這樣的化學試劑進入步驟7)中形成的空洞結構,腐蝕掉步驟2)中形成的外延緩衝層,使生長在生長襯底之上的外延過渡層連同具有一定厚度的III-V族氮化物一起與生長襯底分離開來,完成生長襯底的剝離,形成自支撐的III-V族氮化物襯底。A method for stripping a growth substrate by a chemical etching method, manufacturing a self-supporting III-V nitride substrate by the method of stripping a growth substrate, characterized in that: 1) providing a growth substrate; 2) Depositing a III-V nitride epitaxial buffer layer on the growth substrate; 3) depositing a semiconductor dielectric layer on the epitaxial buffer layer; 4) patterning the semiconductor dielectric layer, that is, removing a portion of the semiconductor dielectric layer, The removed portion and the remaining portion are spaced apart to form a periodic or non-periodic pattern, while a portion of the dielectric layer is removed to expose a portion of the surface of the epitaxial buffer layer, the dielectric layer is removed, and the epitaxial buffer layer is exposed. The portion is referred to as a growth window; 5) epitaxial transition layer deposition is performed on the surface of the dielectric layer pattern exposing the epitaxial buffer layer, the thickness of the epitaxial transition layer being greater than the height of the semiconductor medium, and the epitaxial transition layer is completely covered a semiconductor dielectric layer having a flat upper surface; 6) depositing a certain thickness of III-V nitride on the epitaxial transition layer; 7) using only The chemical agent etching the semiconductor dielectric material etches away the semiconductor dielectric pattern layer formed between the growth substrate and the epitaxial transition layer formed in step 4) to form a void structure between the growth substrate and the epitaxial transition layer; 2) The chemical agent of the epitaxial buffer layer formed in the process, and such a chemical agent is introduced into the void structure formed in the step 7), the epitaxial buffer layer formed in the step 2) is etched away, and the epitaxial growth layer grown on the growth substrate is grown. The transition layer is separated from the growth substrate along with a III-V nitride having a certain thickness to complete the lift-off of the growth substrate to form a self-supporting III-V nitride substrate. 一種利用化學腐蝕的方法剝離生長襯底的方法,通過所述剝離生長襯底的方法將生長在生長襯底之上的器件的外延結構從生長襯底上剝離,其特徵在於: 1)提供一生長襯底; 2)於所述生長襯底上沉積III-V族氮化物外延緩衝層; 3)於所述外延緩衝層上沉積半導體介質層; 4)圖案化所述半導體介質層,也就是:去除部分半導體介質層,使去除的部分和保留的部分間隔排列,形成週期性或非週期性圖案,同時去除介質層的部分處要暴露出部分所述外延緩衝層的表面,去除掉介質層並 暴露出所述外延緩衝層的部分被稱為生長視窗; 5)於所述介質層圖案暴露出外延緩衝層的表面上進行外延過渡層沉積,所述外延過渡層的厚度大於半導體介質的高度,所述外延過渡層完全覆蓋半導體介質層,所述外延過渡層具有平整的上表面; 6)於所述外延過渡層上外延依次生長n型外延層、多量子阱發光層及p型外延層組成的發光二極體的外延結構; 7)將所述具有外延結構連同生長襯底鍵合到另一支撐襯底上,使得所述器件的外延結構的表面和所述支撐襯底的表面緊密的粘合在一起; 8)使用只能腐蝕半導體介質材料的化學試劑的方法腐蝕掉步驟4)中形成的處於生長襯底和外延過渡層之間的半導體介質圖形層,以在生長襯底和外延過渡層之間形成空洞結構; 9)使用能夠腐蝕步驟2)中形成的外延緩衝層的化學試劑,並使這樣的化學試劑進入步驟8)中形成的空洞結構,腐蝕掉步驟2)中形成的外延緩衝層,使生長在生長襯底之上的外延結構連同支撐襯底一起與生長襯底分離開來,完成生長襯底的剝離,並將步驟6)中形成器件外延結構轉移到支撐襯底上。A method of stripping a growth substrate by a chemical etching method, wherein an epitaxial structure of a device grown on a growth substrate is peeled off from a growth substrate by the method of stripping a growth substrate, characterized in that: 1) providing a Growing a substrate; 2) depositing a III-V nitride epitaxial buffer layer on the growth substrate; 3) depositing a semiconductor dielectric layer on the epitaxial buffer layer; 4) patterning the semiconductor dielectric layer, that is, Removing a portion of the semiconductor dielectric layer such that the removed portion and the remaining portion are spaced apart to form a periodic or non-periodic pattern, while a portion of the dielectric layer is removed to expose a portion of the surface of the epitaxial buffer layer, and the dielectric layer is removed. And exposing a portion of the epitaxial buffer layer to be referred to as a growth window; 5) performing epitaxial transition layer deposition on a surface of the dielectric layer pattern exposing the epitaxial buffer layer, the epitaxial transition layer having a thickness greater than a height of the semiconductor medium The epitaxial transition layer completely covers the semiconductor dielectric layer, the epitaxial transition layer has a flat upper surface; 6) epitaxially growing on the epitaxial transition layer An epitaxial structure of a light-emitting diode composed of an n-type epitaxial layer, a multi-quantum well light-emitting layer, and a p-type epitaxial layer; 7) bonding the epitaxial structure together with a growth substrate to another support substrate such that The surface of the epitaxial structure of the device and the surface of the support substrate are closely bonded together; 8) etching the growth substrate and the epitaxial transition formed in step 4) using a chemical agent that can only etch the semiconductor dielectric material a semiconductor dielectric pattern layer between the layers to form a void structure between the growth substrate and the epitaxial transition layer; 9) using a chemical agent capable of etching the epitaxial buffer layer formed in step 2), and bringing such a chemical reagent into the step The void structure formed in 8) etches away the epitaxial buffer layer formed in step 2), so that the epitaxial structure grown on the growth substrate is separated from the growth substrate together with the support substrate to complete the stripping of the growth substrate And transferring the device epitaxial structure formed in step 6) onto the support substrate. 如申請專利範圍第1項或第2項所述之利用化學腐蝕的方法剝離生長襯底的方法,其特徵在於:所述襯底的材料為Al2O3或SiC半導體材料。A method of peeling a growth substrate by chemical etching as described in claim 1 or 2, wherein the material of the substrate is Al2O3 or SiC semiconductor material. 如申請專利範圍第1項或第2項所述之利用化學腐蝕的方法剝離生長襯底的方法,其特徵在於:所述氮化物外延緩衝層為III-V族氮化物,以MOCVD或鹵化氣相外延(HVPE)或PVD方法沉積所得,其優選厚度在5~1000埃之間。A method for peeling a growth substrate by chemical etching as described in claim 1 or 2, wherein the nitride epitaxial buffer layer is a group III-V nitride, which is MOCVD or a halogenated gas. It is deposited by phase epitaxy (HVPE) or PVD method, preferably having a thickness between 5 and 1000 angstroms. 如申請專利範圍第1項或第2項所述之利用化學腐蝕的方法剝離生長襯底的方法,其特徵在於:所述半導體介質層為SiO2、SiN、或SiONx中一種或多種材質,以等離子增強化學氣相沉積(PECVD)、PVD或電子束蒸發方法沉積所得,其優選厚度在0.01~5微米間。A method for peeling a growth substrate by chemical etching as described in claim 1 or 2, wherein the semiconductor dielectric layer is one or more of SiO2, SiN, or SiONx, and is plasma-treated. It is deposited by enhanced chemical vapor deposition (PECVD), PVD or electron beam evaporation methods, preferably having a thickness between 0.01 and 5 microns. 如申請專利範圍第1項或第2項所述之利用化學腐蝕的方法剝離生長襯底的方法,其特徵在於:圖案化所述半導體介質層至少包括以下步驟: a)所述介質層表面形成光刻膠層,通過曝光技術將所述光刻膠層製作成光刻膠圖案; b)採用幹法刻蝕或濕法腐蝕將光刻膠圖案轉移至所述介質層,腐蝕掉介質層的部分的氮化物緩衝的表面要完全暴露出來,形成後續生長外延 過渡層的生長視窗,保留下來的介質層形成阻止外延生長的圖形化的介質醃膜層; c)去除所述光刻膠塊的殘留。A method of peeling a growth substrate by chemical etching as described in claim 1 or 2, wherein the patterning the semiconductor dielectric layer comprises at least the following steps: a) forming a surface of the dielectric layer a photoresist layer, the photoresist layer is formed into a photoresist pattern by an exposure technique; b) the photoresist pattern is transferred to the dielectric layer by dry etching or wet etching, and the dielectric layer is etched away Part of the nitride buffered surface is completely exposed to form a growth window for the subsequent growth of the epitaxial transition layer, and the remaining dielectric layer forms a patterned dielectric pickle film that prevents epitaxial growth; c) removing the photoresist block Residual. 如申請專利範圍第1項或第2項所述之利用化學腐蝕的方法剝離生長襯底的方法,其特徵在於:外延過渡層以MOCVD或鹵化氣相外延(HVPE)或PVD方法沉積在具有生長視窗和圖形化的介質醃膜層的襯底上,外延過渡層的厚度大於所述介質醃膜層的厚度。A method for stripping a growth substrate by chemical etching as described in claim 1 or 2, wherein the epitaxial transition layer is deposited by MOCVD or halogenated vapor phase epitaxy (HVPE) or PVD method. On the substrate of the window and the patterned medium pickle layer, the thickness of the epitaxial transition layer is greater than the thickness of the dielectric pickle layer. 如申請專利範圍第1項所述之利用化學腐蝕的方法剝離生長襯底的方法,其特徵在於:所述外延過渡層上沉積一定厚度的III-V族氮化物,以MOCVD或鹵化氣相外延(HVPE)或PVD方法沉積在外延過渡層之上。A method for peeling a growth substrate by chemical etching as described in claim 1, characterized in that a certain thickness of a group III-V nitride is deposited on the epitaxial transition layer by MOCVD or halogenated vapor phase epitaxy. A (HVPE) or PVD method is deposited over the epitaxial transition layer. 如申請專利範圍第2項所述之利用化學腐蝕的方法剝離生長襯底的方法,其特徵在於:所述發光二極體器件的外延結構層至少包括n型GaN,InGaN多量子阱(MQW)發光層,與p型GaN,以MOCVD方法沉積在外延過渡層之上。A method for peeling a growth substrate by chemical etching as described in claim 2, wherein the epitaxial structure layer of the light emitting diode device comprises at least n-type GaN, InGaN multiple quantum well (MQW) The luminescent layer, with p-type GaN, is deposited on the epitaxial transition layer by MOCVD. 如申請專利範圍第2項所述之利用化學腐蝕的方法剝離生長襯底的方法,其特徵在於:支撐襯底襯底可以是Cu基襯底,也可以是其他半導體襯底如Si和GaAs襯底,還可以是導熱良好的陶瓷襯底。A method of peeling a growth substrate by chemical etching as described in claim 2, wherein the support substrate is a Cu-based substrate, or may be another semiconductor substrate such as Si and GaAs. The bottom may also be a ceramic substrate with good thermal conductivity. 如申請專利範圍第2項所述之利用化學腐蝕的方法剝離生長襯底的方法,其特徵在於:鍵合技術優選Au-Au鍵合或AuSn金屬鍵合,還可以選擇有機粘合劑鍵合。A method for peeling a growth substrate by chemical etching as described in claim 2, wherein the bonding technique is preferably Au-Au bonding or AuSn metal bonding, and organic binder bonding is also selected. . 如申請專利範圍第1項或第2項所述之利用化學腐蝕的方法剝離生長襯底的方法,其特徵在於:只能腐蝕半導體介質材料的化學試劑可以是HF溶液或HF與化學試劑的混合物。A method for peeling a growth substrate by chemical etching as described in claim 1 or 2, wherein the chemical agent capable of etching only the semiconductor dielectric material may be an HF solution or a mixture of HF and a chemical reagent. . 如申請專利範圍第1項或第2項所述之利用化學腐蝕的方法剝離生長襯底的方法,其特徵在於:可以腐蝕所述緩衝層的化學試劑可以是KOH溶液,也可以是NaOH溶液,或H2SO4和H2PO4混合溶液,或能腐蝕氮化物的溶液。The method for peeling a growth substrate by chemical etching as described in claim 1 or 2, wherein the chemical agent capable of etching the buffer layer may be a KOH solution or a NaOH solution. Or a mixed solution of H2SO4 and H2PO4, or a solution capable of etching nitrides. 如申請專利範圍第1項或第2項所述之利用化學腐蝕的方法剝離生長襯底的方法,其特徵在於:首先使用只能腐蝕半導體介質材料的化學試劑的方法腐蝕掉步驟處於生長襯底和外延過渡層之間的半導體介質圖形層,在生長襯底和外延過渡層之間形成空洞結構,然後使能夠腐蝕外延緩衝層的化學試劑進入所述的空洞結構腐蝕掉所述的外延層緩衝層,完成生長襯底的剝離。A method of peeling a growth substrate by chemical etching as described in claim 1 or 2, wherein the etching step is first performed on a growth substrate by a method of etching only a chemical agent of the semiconductor dielectric material. a semiconductor dielectric pattern layer between the epitaxial transition layer, a void structure formed between the growth substrate and the epitaxial transition layer, and then a chemical agent capable of etching the epitaxial buffer layer enters the void structure to etch away the epitaxial layer buffer The layer completes the peeling of the growth substrate.
TW105109927A 2015-05-29 2016-03-29 Method for stripping growth substrate by chemical etching TWI647335B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201510290140.1 2015-05-29
CN201510290140.1A CN104993023B (en) 2015-05-29 2015-05-29 A kind of method that method using chemical attack removes growth substrates

Publications (2)

Publication Number Publication Date
TW201706452A true TW201706452A (en) 2017-02-16
TWI647335B TWI647335B (en) 2019-01-11

Family

ID=54304807

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105109927A TWI647335B (en) 2015-05-29 2016-03-29 Method for stripping growth substrate by chemical etching

Country Status (3)

Country Link
CN (1) CN104993023B (en)
TW (1) TWI647335B (en)
WO (1) WO2016192434A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993023B (en) * 2015-05-29 2018-06-05 上海芯元基半导体科技有限公司 A kind of method that method using chemical attack removes growth substrates
CN105895761B (en) * 2016-06-07 2018-02-23 厦门乾照光电股份有限公司 A kind of GaN light emitting diode with peelable structure
CN105895755B (en) * 2016-06-07 2018-01-26 厦门乾照光电股份有限公司 A kind of GaN LED production method with peelable structure
CN106252481B (en) * 2016-08-29 2018-12-07 河北工业大学 A kind of vertical LED chip preparation method for realizing Sapphire Substrate recycling
CN106784182A (en) * 2016-12-16 2017-05-31 厦门乾照光电股份有限公司 A kind of substrate desquamation structure of light emitting diode, preparation method and stripping means
CN109216511A (en) * 2017-07-03 2019-01-15 上海芯元基半导体科技有限公司 The face P goes out the film LED chip and its manufacturing method of light
CN108878598B (en) * 2018-05-31 2020-03-27 华灿光电(浙江)有限公司 Manufacturing method of light emitting diode chip with vertical structure
CN110783170B (en) * 2018-07-25 2022-05-24 乂馆信息科技(上海)有限公司 Method for stripping semiconductor film and transferring substrate
CN111129242B (en) * 2019-12-27 2021-06-18 广东省半导体产业技术研究院 LED preparation method and LED structure to be stripped
CN111628055B (en) * 2020-04-20 2021-08-17 浙江博蓝特半导体科技股份有限公司 AlGaN-based ultraviolet LED epitaxial layer and stripping method thereof
CN113345798B (en) * 2021-06-01 2022-07-12 中科汇通(内蒙古)投资控股有限公司 Method for preparing GaN by SiC substrate epitaxy
CN114141914B (en) * 2021-12-01 2023-05-23 东莞市中麒光电技术有限公司 Substrate peeling method
WO2023206122A1 (en) * 2022-04-27 2023-11-02 重庆康佳光电技术研究院有限公司 Chip assembly and preparation method therefor, and preparation method for display panel
CN114899696A (en) * 2022-05-19 2022-08-12 山东大学 Substrate corrosion method of GaAs-based VECSEL laser
CN115233304B (en) * 2022-06-17 2023-12-22 西安电子科技大学 Preparation method of self-supporting GaN film based on AlPN buffer layer
CN115491764B (en) * 2022-09-29 2024-01-30 中国电子科技集团公司第十三研究所 Method for stripping epitaxial diamond and GaN material
CN116799113A (en) * 2023-08-23 2023-09-22 江西兆驰半导体有限公司 Substrate preparation method, substrate, epitaxial wafer and LED chip
CN117005032B (en) * 2023-10-07 2024-01-26 深圳市鲁光电子科技有限公司 Growth method of semiconductor material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683580B2 (en) * 2002-12-05 2005-08-17 浜松ホトニクス株式会社 Laser processing equipment
CN101866880B (en) * 2009-04-16 2012-11-21 展晶科技(深圳)有限公司 Method for separating base plate and semiconductor layer
CN101794849B (en) * 2010-02-23 2011-06-22 山东华光光电子有限公司 Wet etching stripping method of SiC-substrate GaN-based LED
TWI474507B (en) * 2011-10-18 2015-02-21 Lextar Electronics Corp Manufacturing method of solid state light emitting element
JP5729335B2 (en) * 2012-03-19 2015-06-03 豊田合成株式会社 Group III nitride semiconductor light emitting device and method of manufacturing the same
CN102709411B (en) * 2012-06-04 2014-08-20 中国科学院半导体研究所 Vertically-structured LED manufacturing method based on wet lift-off
CN104638068B (en) * 2013-11-07 2018-08-24 上海蓝光科技有限公司 A kind of substrat structure and preparation method thereof being used for the growth of III-V group-III nitride
CN104993023B (en) * 2015-05-29 2018-06-05 上海芯元基半导体科技有限公司 A kind of method that method using chemical attack removes growth substrates

Also Published As

Publication number Publication date
CN104993023A (en) 2015-10-21
CN104993023B (en) 2018-06-05
WO2016192434A1 (en) 2016-12-08
TWI647335B (en) 2019-01-11

Similar Documents

Publication Publication Date Title
TWI647335B (en) Method for stripping growth substrate by chemical etching
JP3219854U (en) III-V nitride semiconductor epitaxial wafer and III-V nitride semiconductor device
US8709845B2 (en) Solid state lighting devices with cellular arrays and associated methods of manufacturing
TWI405257B (en) Method for separating an epitaxial substrate from a semiconductor layer
US10964843B2 (en) Patterned Si substrate-based LED epitaxial wafer and preparation method therefor
CN101673792B (en) Manufacturing method of GaN-based film LED based on maskless transfer photonic crystal structure
TWI419354B (en) Group iii nitride semiconductor light emitting element and method for making same
US8486730B2 (en) Method of separating light-emitting diode from a growth substrate
KR20120092326A (en) Non-polar light emitting diode having photonic crystal structure and method of fabricating the same
US20110272703A1 (en) Semiconductor device, light emitting device and method for manufacturing the same
US20170069788A1 (en) Fabrication of thin-film devices using selective area epitaxy
JP2019004164A (en) Light emitting device grown on silicon substrate
US20190157069A1 (en) Semipolar amd nonpolar light-emitting devices
TW201921820A (en) Laser diodes, LEDs, and silicon integrated sensors on patterned substrates
KR20090016438A (en) Laser lift-off led with improved light extraction
CN111129238A (en) III-V group nitride semiconductor epitaxial wafer, device comprising epitaxial wafer and preparation method of device
KR100814463B1 (en) Forming method for surface unevenness and manufacturing method for nitride semiconductor light emitting device using thereof
KR102296170B1 (en) Method of manufacturing nitride-based semiconductor light emitting device using semiconductor manufacturing process
KR102213462B1 (en) Method of manufacturing nitride-based semiconductor light emitting device using semiconductor manufacturing process
KR20120080560A (en) Vertical light emitting diode and method of fabricating the same
KR101072199B1 (en) Light emitting device and method for fabricating the same
TW201340374A (en) Method for making light emitting diode
KR101012638B1 (en) Method for fabricating vertical GaN-based light emitting diode
KR100808197B1 (en) LED having vertical structure and method for making the same
KR101154321B1 (en) Light emitting diode and method of fabricating the same