[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201641278A - Transparent conductive film - Google Patents

Transparent conductive film Download PDF

Info

Publication number
TW201641278A
TW201641278A TW105115087A TW105115087A TW201641278A TW 201641278 A TW201641278 A TW 201641278A TW 105115087 A TW105115087 A TW 105115087A TW 105115087 A TW105115087 A TW 105115087A TW 201641278 A TW201641278 A TW 201641278A
Authority
TW
Taiwan
Prior art keywords
layer
transparent conductive
refractive index
conductive film
inorganic
Prior art date
Application number
TW105115087A
Other languages
Chinese (zh)
Other versions
TWI683750B (en
Inventor
Nozomi Fujino
Daiki Kato
Tomotake Nashiki
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of TW201641278A publication Critical patent/TW201641278A/en
Application granted granted Critical
Publication of TWI683750B publication Critical patent/TWI683750B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本發明之透明導電性膜於厚度方向上依序具備透明基材、含有樹脂及無機粒子之折射率調整層、含有無機原子之密接層、及透明導電層,且密接層與折射率調整層接觸,折射率調整層之與密接層接觸之側之界面附近區域中之無機原子數相對於碳原子數之比未達0.05。 The transparent conductive film of the present invention comprises, in the thickness direction, a transparent substrate, a refractive index adjusting layer containing a resin and inorganic particles, an adhesive layer containing an inorganic atom, and a transparent conductive layer, and the adhesion layer is in contact with the refractive index adjusting layer. The ratio of the number of inorganic atoms to the number of carbon atoms in the vicinity of the interface of the side of the refractive index adjusting layer in contact with the adhesion layer is less than 0.05.

Description

透明導電性膜 Transparent conductive film

本發明係關於一種透明導電性膜,詳細而言,係關於一種用於觸控面板用膜等之透明導電性膜。 The present invention relates to a transparent conductive film, and more particularly to a transparent conductive film used for a film for a touch panel or the like.

自先前以來,關於圖像顯示裝置,已知有具備形成有包含銦錫複合氧化物(ITO)等之透明配線層之觸控面板用膜。觸控面板用膜通常係藉由如下方式製造:於將ITO層等積層於透明基材而成之透明導電性膜中,將ITO層圖案化成配線圖案(例如參照專利文獻1)。 A film for a touch panel including a transparent wiring layer containing indium tin composite oxide (ITO) or the like is known as an image display device. The film for a touch panel is usually produced by patterning an ITO layer into a wiring pattern by laminating an ITO layer or the like on a transparent conductive film (see, for example, Patent Document 1).

於專利文獻1中揭示有一種觸控面板用膜,其係於透明基板之一面依序積層紫外線硬化樹脂層、透明無機氧化物層、及透明導電層而成者,且紫外線硬化樹脂層係同時包含有機成分及無機氧化物而成,並且至少於自與透明無機氧化物層接觸之表面深度10nm以內之區域中之該層之無機氧化物中之無機元素數B相對於有機成分中之有機元素數A之比,即B/A以元素數比計為0.05以上且0.35以下。 Patent Document 1 discloses a film for a touch panel in which an ultraviolet curable resin layer, a transparent inorganic oxide layer, and a transparent conductive layer are sequentially laminated on one surface of a transparent substrate, and the ultraviolet curable resin layer is simultaneously The number of inorganic elements B in the inorganic oxide of the layer, which is composed of an organic component and an inorganic oxide, and at least in a region within 10 nm from the surface in contact with the transparent inorganic oxide layer, relative to the organic element in the organic component The ratio of the number A, that is, B/A is 0.05 or more and 0.35 or less in terms of the element ratio.

該觸控面板使為了調整折射率而含有無機氧化物之紫外線硬化樹脂層與積層於其上之透明無機氧化物層之密接性提昇。 The touch panel improves the adhesion between the ultraviolet curable resin layer containing an inorganic oxide and the transparent inorganic oxide layer laminated thereon in order to adjust the refractive index.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本專利特開2010-211790號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2010-211790

近年來,伴隨圖像顯示裝置之大型化及薄膜化之要求,透明導電性膜之大型化及薄膜化之要求亦不斷提高。然而,若將透明導電性膜之ITO層進行大型化或薄膜化,則ITO層整體或一部分之電阻增加,結果產生觸控面板之感度等各功能降低之不良情況。因此,業界正謀求ITO層之比電阻值之降低(低電阻化)。 In recent years, with the demand for enlargement and thinning of image display devices, demands for enlargement and thinning of transparent conductive films have been increasing. However, when the ITO layer of the transparent conductive film is increased in size or thinned, the resistance of the entire or a part of the ITO layer increases, and as a result, the functions such as the sensitivity of the touch panel are lowered. Therefore, the industry is seeking to reduce the specific resistance of the ITO layer (low resistance).

又,伴隨圖像顯示裝置之使用用途擴大,正謀求於較先前之耐久性基準(例如,60℃ 90%之加濕環境)更嚴酯之環境下之耐久性。其中,構成透明導電性膜之各層之層間密接力由於會直接導致圖像顯示裝置之運轉不良,故而高耐久化之要求(代表性而言,於85℃ 85%環境下150小間以上之密接耐久性)尤其強烈。一般而言,關於層間密接力,各層之接觸面積越大越提昇,故而構成透明導電性膜之各層或任一層之表面粗糙度越大,則就密接力之方面而言便越有利。然而,此種透明導電性膜由於透明導電層(例如,ITO層)之表面粗糙度變大,故而難以進行結晶轉化,導致無法獲得低比電阻之透明導電性膜。 Further, with the expansion of the use of the image display device, durability in an environment where the ester durability is more stringent than the previous durability standard (for example, a humidified environment of 90% at 60 ° C) is being sought. Among them, the interlayer adhesion of the layers constituting the transparent conductive film directly causes the operation of the image display device to be poor, so that it is required to have high durability (representatively, the adhesion is durable for 150 hours or more in an environment of 85% at 85 ° C; Sex) is especially strong. In general, as for the interlayer adhesion, the contact area of each layer is increased as much as possible. Therefore, the greater the surface roughness of each layer or any layer constituting the transparent conductive film, the more advantageous it is in terms of adhesion. However, such a transparent conductive film has a surface roughness of a transparent conductive layer (for example, an ITO layer), so that it is difficult to perform crystallization conversion, and a transparent conductive film having a low specific resistance cannot be obtained.

專利文獻1中亦存在如下情況:於紫外線硬化樹脂層之表面附近大量存在無機氧化物粒子,表面變粗糙,設置於其上之透明導電層(ITO層等)之表面亦變粗糙。其結果為,雖然紫外線硬化樹脂層與透明無機氧化物層之密接性提昇,但透明導電層之比電阻值變高,導致無法實現低電阻化。 Further, in Patent Document 1, there is a case where a large amount of inorganic oxide particles are present in the vicinity of the surface of the ultraviolet curable resin layer, and the surface is roughened, and the surface of the transparent conductive layer (ITO layer or the like) provided thereon is also roughened. As a result, although the adhesion between the ultraviolet curable resin layer and the transparent inorganic oxide layer is improved, the specific resistance value of the transparent conductive layer is increased, and the reduction in resistance cannot be achieved.

本發明之目的在於提供一種折射率調整層之密接性(尤其是暴露於85℃ 85%環境後之密接性)良好、且透明導電層之低電阻優異之透明導電性膜。 An object of the present invention is to provide a transparent conductive film which is excellent in adhesion between a refractive index adjusting layer (particularly, adhesion after exposure to an environment of 85% at 85 ° C) and which is excellent in low electrical resistance of a transparent conductive layer.

本發明[1]包含一種透明導電性膜,其於厚度方向上依序具備透明基材、含有樹脂及無機粒子之折射率調整層、含有無機原子之密接層、及透明導電層,且上述密接層與上述折射率調整層接觸,上述折 射率調整層之與上述密接層接觸之側之界面附近區域中之無機原子數相對於碳原子數之比未達0.05。 The present invention [1] includes a transparent conductive film comprising, in the thickness direction, a transparent substrate, a refractive index adjusting layer containing a resin and inorganic particles, an adhesive layer containing an inorganic atom, and a transparent conductive layer, and the above-mentioned adhesion The layer is in contact with the refractive index adjusting layer, and the folding The ratio of the number of inorganic atoms to the number of carbon atoms in the vicinity of the interface of the side of the radiation rate adjusting layer in contact with the above-mentioned adhesion layer is less than 0.05.

本發明[2]包含如[1]記載之透明導電性膜,其中上述密接層含有非化學計量組成之無機氧化物。 The invention [2] comprising the transparent conductive film according to [1], wherein the adhesion layer contains an inorganic oxide having a non-stoichiometric composition.

本發明[3]包含如[2]記載之透明導電性膜,其中上述非化學計量組成之無機化合物為非化學計量組成之矽化合物。 The invention [3] contains the transparent conductive film according to [2], wherein the inorganic compound having the non-stoichiometric composition is a non-stoichiometric composition of a ruthenium compound.

本發明[4]包含如[1]至[3]中任一項記載之透明導電性膜,其中上述密接層含有矽原子,且包含藉由X射線光電子光譜法求出之Si2p軌道之鍵結能為99.0eV以上且未達103.0eV之區域。 The transparent conductive film according to any one of [1] to [3] wherein the adhesion layer contains a ruthenium atom and includes a bond of Si2p orbital determined by X-ray photoelectron spectroscopy. It can be an area of 99.0 eV or more and less than 103.0 eV.

本發明[5]包含如[1]至[4]中任一項記載之透明導電性膜,其中於上述密接層與上述透明導電層之間進而具備含有無機氧化物之光學調整層。 The transparent conductive film according to any one of [1] to [4], further comprising an optical adjustment layer containing an inorganic oxide between the adhesion layer and the transparent conductive layer.

本發明[6]包含如[1]至[5]中任一項記載之透明導電性膜,其中上述透明導電層之表面電阻值未達200Ω/□。 The transparent conductive film according to any one of [1] to [5] wherein the transparent conductive layer has a surface resistance value of less than 200 Ω/□.

本發明[7]包含如[1]至[6]中任一項記載之透明導電性膜,其中上述透明導電層之比電阻值為3.7×10-4Ω.cm以下。 The transparent conductive film according to any one of [1] to [6] wherein the transparent conductive layer has a specific resistance value of 3.7 × 10 -4 Ω. Below cm.

根據本發明之透明導電性膜,折射率調整層與設置於其上之層之密接性(尤其是暴露於85℃ 85%環境後之密接性)良好。又,由於透明導電層之比電阻值降低,故而導電性優異。 According to the transparent conductive film of the present invention, the adhesion between the refractive index adjusting layer and the layer provided thereon (especially, the adhesion after exposure to an environment of 85% at 85 ° C) is good. Further, since the specific resistance of the transparent conductive layer is lowered, the conductivity is excellent.

1‧‧‧透明導電性膜 1‧‧‧Transparent conductive film

2‧‧‧透明基材 2‧‧‧Transparent substrate

3‧‧‧折射率調整層 3‧‧‧Refractive index adjustment layer

4‧‧‧密接層 4‧‧ ‧ close layer

5‧‧‧光學調整層 5‧‧‧Optical adjustment layer

6‧‧‧透明導電層 6‧‧‧Transparent conductive layer

圖1係表示本發明之透明導電性膜之一實施形態之側視剖視圖。 Fig. 1 is a side sectional view showing an embodiment of a transparent conductive film of the present invention.

圖2係表示本發明之透明導電性膜之另一實施形態(不具備光學調整層之實施形態)之側視剖視圖。 Fig. 2 is a side cross-sectional view showing another embodiment (an embodiment in which the optical adjustment layer is not provided) of the transparent conductive film of the present invention.

於圖1中,紙面上下方向為上下方向(厚度方向、第1方向),紙面 上側為上側(厚度方向一側、第1方向一側),紙面下側為下側(厚度方向另一側、第1方向另一側)。 In Fig. 1, the upper and lower sides of the paper are in the up and down direction (thickness direction, first direction), and the paper surface The upper side is the upper side (the thickness direction side, the first direction side), and the lower side of the paper surface is the lower side (the other side in the thickness direction and the other side in the first direction).

1.透明導電性膜 Transparent conductive film

透明導電性膜1存在具有特定厚度之薄膜形狀(包含薄片形狀),且在與厚度方向正交之特定方向(面方向)上延伸,具有平坦之上表面及平坦之下表面。透明導電性膜1例如為圖像顯示裝置所具備之觸控面板用基材等之一零件,即並非圖像顯示裝置。即,透明導電性膜1係用於製作圖像顯示裝置等之零件,並不包含LCD(liquid crystal display,液晶顯示裝置)模組等圖像顯示元件,係以零件之形式單獨流通且能夠利用於產業上之元件(device)。 The transparent conductive film 1 has a film shape (including a sheet shape) having a specific thickness, and extends in a specific direction (plane direction) orthogonal to the thickness direction, and has a flat upper surface and a flat lower surface. The transparent conductive film 1 is, for example, a component such as a base material for a touch panel provided in an image display device, that is, an image display device. In other words, the transparent conductive film 1 is used for producing an image display device or the like, and does not include an image display element such as an LCD (liquid crystal display) module, and is separately circulated and available in the form of a component. The industry's components.

具體而言,如圖1所示,透明導電性膜1例如於厚度方向上依序具備透明基材2、折射率調整層3、密接層4、光學調整層5、及透明導電層6。即,透明導電性膜1具備:透明基材2、配置於透明基材2上之折射率調整層3、配置於折射率調整層3上之密接層4、配置於密接層4上之光學調整層5、及配置於光學調整層5上之透明導電層6。 Specifically, as shown in FIG. 1 , the transparent conductive film 1 includes, for example, a transparent substrate 2 , a refractive index adjusting layer 3 , an adhesion layer 4 , an optical adjustment layer 5 , and a transparent conductive layer 6 in the thickness direction. In other words, the transparent conductive film 1 includes the transparent substrate 2, the refractive index adjusting layer 3 disposed on the transparent substrate 2, the adhesion layer 4 disposed on the refractive index adjusting layer 3, and optical adjustment disposed on the adhesion layer 4. The layer 5 and the transparent conductive layer 6 disposed on the optical adjustment layer 5 are provided.

透明導電性膜1較佳為包含透明基材2、折射率調整層3、密接層4、光學調整層5、及透明導電層6。以下,針對各層進行詳細說明。 The transparent conductive film 1 preferably includes a transparent substrate 2, a refractive index adjusting layer 3, an adhesion layer 4, an optical adjustment layer 5, and a transparent conductive layer 6. Hereinafter, each layer will be described in detail.

2.透明基材 2. Transparent substrate

透明基材2係透明導電性膜1之最下層,且為確保透明導電性膜1之機械強度之基材。透明基材2一併支持透明導電層6以及折射率調整層3、密接層4及光學調整層5。 The transparent substrate 2 is the lowermost layer of the transparent conductive film 1 and is a substrate that ensures the mechanical strength of the transparent conductive film 1. The transparent substrate 2 collectively supports the transparent conductive layer 6 and the refractive index adjusting layer 3, the adhesion layer 4, and the optical adjustment layer 5.

透明基材2例如為具有透明性之高分子膜。作為高分子膜之材料,可列舉:例如聚對苯二甲酸乙二酯(PET)、聚對苯二甲酸丁二酯、聚萘二甲酸乙二酯等聚酯樹脂;例如聚甲基丙烯酸酯等(甲基)丙烯酸樹脂(丙烯酸系樹脂及/或甲基丙烯酸樹脂);例如聚乙烯、聚丙烯、環烯烴聚合物等烯烴樹脂;例如,聚碳酸酯樹脂、聚醚碸樹脂、 聚芳酯樹脂、三聚氰胺樹脂、聚醯胺樹脂、聚醯亞胺樹脂、纖維素樹脂、聚苯乙烯樹脂、降烯樹脂等。該等高分子膜可單獨使用或併用2種以上。就透明性、耐熱性、機械強度等觀點而言,較佳為可列舉聚酯樹脂,更佳為可列舉PET。 The transparent substrate 2 is, for example, a polymer film having transparency. Examples of the material of the polymer film include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate; for example, polymethacrylate (meth)acrylic resin (acrylic resin and/or methacrylic resin); olefin resin such as polyethylene, polypropylene, cycloolefin polymer; for example, polycarbonate resin, polyether oxime resin, polyarylate Resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, polystyrene resin, drop Alkene resin, etc. These polymer films may be used alone or in combination of two or more. From the viewpoints of transparency, heat resistance, mechanical strength, and the like, a polyester resin is preferable, and PET is more preferable.

關於透明基材2之厚度,就機械強度、耐擦傷性、將透明導電性膜1設為觸控面板用膜時之打點特性等觀點而言,例如為2μm以上,較佳為20μm以上,又,例如為300μm以下,較佳為200μm以下,更佳為150μm以下。 The thickness of the transparent substrate 2 is, for example, 2 μm or more, preferably 20 μm or more, from the viewpoints of mechanical strength, scratch resistance, and dot characteristics when the transparent conductive film 1 is used as a film for a touch panel. For example, it is 300 μm or less, preferably 200 μm or less, and more preferably 150 μm or less.

再者,亦可於透明基材2之上表面及/或下表面視需要設置硬塗層、抗黏連層、易接著層、接著劑層、隔離膜等。 Further, a hard coat layer, an anti-adhesion layer, an easy-adhesion layer, an adhesive layer, a separator, or the like may be provided on the upper surface and/or the lower surface of the transparent substrate 2 as needed.

3.折射率調整層 3. Refractive index adjustment layer

折射率調整層3與後文敍述之光學調整層5均為於將透明導電層6於後續步驟中形成為配線圖案之後對透明導電性膜1之折射率進行調整以使圖案部與非圖案部之差異無法被辨識(即,為了抑制配線圖案之視認)的層。又,折射率調整層3亦為用以使透明導電層6之上表面(即,透明導電性膜1之表面)不易產生擦傷(獲得優異之耐擦傷性)之擦傷保護層。 The refractive index adjusting layer 3 and the optical adjustment layer 5 described later are both adjusted in refractive index of the transparent conductive film 1 after the transparent conductive layer 6 is formed into a wiring pattern in a subsequent step to make the pattern portion and the non-pattern portion. The difference is not recognized (ie, to suppress viewing of the wiring pattern). Further, the refractive index adjusting layer 3 is also a scratch protective layer for making the upper surface of the transparent conductive layer 6 (that is, the surface of the transparent conductive film 1) less likely to cause scratches (to obtain excellent scratch resistance).

折射率調整層3具有薄膜形狀(包含薄片形狀),例如以接觸於透明基材2之上表面之方式配置於透明基材2之整個上表面。 The refractive index adjusting layer 3 has a film shape (including a sheet shape), and is disposed on the entire upper surface of the transparent substrate 2, for example, in contact with the upper surface of the transparent substrate 2.

折射率調整層3係由樹脂組合物形成之樹脂層。 The refractive index adjusting layer 3 is a resin layer formed of a resin composition.

樹脂組合物含有樹脂、及無機原子。藉由含有無機原子,能夠將折射率調整層3之折射率調整為適當之值,從而能夠實現抑制配線圖案之視認或提昇透光率。無機原子較佳為構成無機粒子。即,樹脂組合物較佳為含有樹脂、及無機粒子,更佳為由樹脂及無機粒子構成。 The resin composition contains a resin and an inorganic atom. By including an inorganic atom, the refractive index of the refractive index adjusting layer 3 can be adjusted to an appropriate value, whereby the visibility of the wiring pattern can be suppressed or the light transmittance can be improved. The inorganic atom preferably constitutes an inorganic particle. That is, the resin composition preferably contains a resin and inorganic particles, and more preferably consists of a resin and inorganic particles.

作為樹脂,例如可列舉硬化性樹脂、熱塑性樹脂(例如聚烯烴樹 脂)等,較佳為可列舉硬化性樹脂。 Examples of the resin include a curable resin and a thermoplastic resin (for example, a polyolefin tree). The grease or the like is preferably a curable resin.

作為硬化性樹脂,可列舉:例如藉由活性能量線(具體而言,紫外線、電子束等)之照射而硬化之活性能量線硬化性樹脂;例如藉由加熱而硬化之熱硬化性樹脂等,較佳為可列舉活性能量線硬化性樹脂。 Examples of the curable resin include an active energy ray-curable resin which is cured by irradiation with an active energy ray (specifically, ultraviolet rays, an electron beam, or the like); for example, a thermosetting resin which is cured by heating, and the like. Preferably, an active energy ray-curable resin is mentioned.

活性能量線硬化性樹脂例如可列舉分子中具有含有聚合性碳-碳雙鍵之官能基之聚合物。作為此種官能基,例如可列舉乙烯基、(甲基)丙烯醯基(甲基丙烯醯基及/或丙烯醯基)等。 The active energy ray-curable resin may, for example, be a polymer having a functional group containing a polymerizable carbon-carbon double bond in the molecule. Examples of such a functional group include a vinyl group, a (meth) acrylonitrile group (methacryl fluorenyl group and/or an acryl fluorenyl group).

作為活性能量線硬化性樹脂,例如可列舉含有官能基之(甲基)丙烯酸系樹脂(丙烯酸系樹脂及/或甲基丙烯酸樹脂)等。 Examples of the active energy ray-curable resin include a (meth)acrylic resin (acrylic resin and/or methacrylic resin) containing a functional group.

又,作為活性能量線硬化性樹脂以外之樹脂,例如可列舉:胺基甲酸酯樹脂、三聚氰胺樹脂、醇酸樹脂、矽氧烷系聚合物、有機矽烷縮合物等。 In addition, examples of the resin other than the active energy ray-curable resin include a urethane resin, a melamine resin, an alkyd resin, a decyl siloxane polymer, and an organic decane condensate.

樹脂可單獨使用或併用2種以上。 The resin may be used singly or in combination of two or more.

關於樹脂之含有比率,相對於樹脂及無機原子之合計量,例如為20質量%以上,較佳為22質量%以上,更佳為25質量%以上,又,例如為90質量%以下,較佳為80質量%以下,更佳為70質量%以下,進而較佳為50質量%以下。 The content ratio of the resin to the total amount of the resin and the inorganic atom is, for example, 20% by mass or more, preferably 22% by mass or more, more preferably 25% by mass or more, and further preferably 90% by mass or less. It is 80% by mass or less, more preferably 70% by mass or less, and still more preferably 50% by mass or less.

作為無機粒子,可根據折射率調整層3所求出之折射率而選擇適當之材料,可列舉:例如二氧化矽粒子(包含中空奈米二氧化矽粒子);例如包含氧化鋯、氧化鈦、氧化鋁、氧化鋅、氧化錫等之金屬氧化物粒子;例如包含碳酸鈣等之碳酸鹽粒子等。該等無機粒子可單獨使用或併用2種以上。較佳為可列舉金屬氧化物粒子,就高折射率之觀點而言,更佳為可列舉氧化鈦粒子、氧化鋯粒子等高折射率粒子,進而較佳為可列舉氧化鋯粒子(ZrO2)。 As the inorganic particles, an appropriate material can be selected according to the refractive index obtained by the refractive index adjusting layer 3, and examples thereof include cerium oxide particles (including hollow nano cerium oxide particles); for example, zirconia, titanium oxide, and the like. A metal oxide particle such as aluminum oxide, zinc oxide or tin oxide; for example, a carbonate particle containing calcium carbonate or the like. These inorganic particles may be used alone or in combination of two or more. The metal oxide particles are preferred, and from the viewpoint of high refractive index, high refractive index particles such as titanium oxide particles and zirconium oxide particles are more preferable, and zirconia particles (ZrO 2 ) are more preferable. .

又,為了確保折射率調整層3之分散性,無機粒子亦可被加以化 學修飾。 Further, in order to ensure the dispersibility of the refractive index adjusting layer 3, the inorganic particles may be chemicalized. Learn to modify.

無機粒子之平均粒徑例如為10nm以上,較佳為15nm以上,更佳為20nm以上,又,例如為100nm以下,較佳為60nm以下,更佳為40nm以下。藉由將無機粒子之平均粒徑設為上述範圍內,能夠調整無機粒子之沈澱,從而對折射率調整層3之上表面附近之粒子數進行調整。 The average particle diameter of the inorganic particles is, for example, 10 nm or more, preferably 15 nm or more, more preferably 20 nm or more, and further preferably 100 nm or less, preferably 60 nm or less, and more preferably 40 nm or less. By setting the average particle diameter of the inorganic particles within the above range, the precipitation of the inorganic particles can be adjusted, and the number of particles in the vicinity of the upper surface of the refractive index adjusting layer 3 can be adjusted.

於本發明中,粒子之平均粒徑可使用貝克曼庫爾特(Beckman Coulter)公司製造之庫爾特粒子計數器(Coulter Multisizer)並藉由庫爾特計數法進行測定。 In the present invention, the average particle diameter of the particles can be measured by Coulter counters using a Coulter Multisizer manufactured by Beckman Coulter.

關於無機原子(尤其是無機粒子)之含有比率,相對於樹脂及無機原子之合計量,例如為10質量%以上,較佳為20質量%以上,更佳為30質量%以上,進而較佳為50質量%以上,又,例如為80質量%以下,較佳為78質量%以下,更佳為75質量%以下。 The content ratio of the inorganic atom (especially the inorganic particles) is, for example, 10% by mass or more, preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 30 parts by mass or more. 50% by mass or more, for example, it is 80% by mass or less, preferably 78% by mass or less, and more preferably 75% by mass or less.

藉由將無機原子之含有比率設為上述下限以上,能夠將折射率調整至適當之範圍。又,藉由將無機原子之含有比率設為上述上限以下,能夠將折射率調整層3之上表面附近之粒子數設為所需量以下,從而可降低透明導電層6之比電阻值。 By setting the content ratio of the inorganic atoms to the above lower limit or more, the refractive index can be adjusted to an appropriate range. In addition, by setting the content ratio of the inorganic atoms to the upper limit or less, the number of particles in the vicinity of the upper surface of the refractive index adjusting layer 3 can be made less than or equal to the required amount, and the specific resistance value of the transparent conductive layer 6 can be lowered.

折射率調整層3之折射率可藉由無機原子(較佳為無機粒子)進行適當調整,例如為1.50以上,又,為1.80以下。 The refractive index of the refractive index adjusting layer 3 can be appropriately adjusted by an inorganic atom (preferably inorganic particles), and is, for example, 1.50 or more and 1.80 or less.

關於折射率調整層3,就提高透明導電性膜1之透光率之觀點而言,較佳為含有高折射率粒子。於含有高折射率粒子(較佳為氧化鋯粒子)作為無機粒子之情形時,折射率調整層3之折射率為1.55以上,較佳為1.60以上,更佳為1.62以上,又,例如為1.74以下,較佳為1.73以下,更佳為1.70以下。若為上述範圍內,則可將存在於折射率調整層3之上表面附近之無機粒子數調整為少量,從而容易將無機原子數相對於碳原子數之比設為未達0.05。 The refractive index adjusting layer 3 preferably contains high refractive index particles from the viewpoint of improving the light transmittance of the transparent conductive film 1. When the high refractive index particles (preferably zirconia particles) are contained as the inorganic particles, the refractive index adjusting layer 3 has a refractive index of 1.55 or more, preferably 1.60 or more, more preferably 1.62 or more, and further, for example, 1.74. Hereinafter, it is preferably 1.73 or less, more preferably 1.70 or less. When it is in the above range, the number of inorganic particles existing in the vicinity of the upper surface of the refractive index adjusting layer 3 can be adjusted to a small amount, and the ratio of the number of inorganic atoms to the number of carbon atoms can be easily made to be less than 0.05.

於本發明中,折射率可藉由光譜式橢圓儀進行測定。 In the present invention, the refractive index can be measured by a spectroscopic ellipsometer.

關於折射率調整層3之厚度,就抑制配線圖案之視認、實現低電阻化之觀點而言,例如為30nm以上,較佳為50nm以上,更佳為100nm以上,又,例如為1000nm以下,較佳為500nm以下。 The thickness of the refractive index adjusting layer 3 is, for example, 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more, and further, for example, 1000 nm or less, from the viewpoint of suppressing the visibility of the wiring pattern and achieving low resistance. Good is below 500nm.

折射率調整層3之厚度係藉由利用穿透式電子顯微鏡(TEM)之剖面觀察進行測定。 The thickness of the refractive index adjusting layer 3 was measured by cross-sectional observation using a transmission electron microscope (TEM).

於折射率調整層3之上側(與密接層4接觸之側)之界面附近區域中,即於折射率調整層3之上表面附近區域,無機原子數I相對於碳原子數C之比(I/C)未達0.05,較佳為0.04以下。又,例如為0.00以上。藉由將上表面附近區域中之I/C比設為上述範圍內,可降低上表面附近區域中之無機原子(尤其是無機粒子)之存在數,從而使折射率調整層3之上表面及設置於其上之透明導電層6之表面平滑。因此,能夠降低透明導電層6之比電阻值。 In the vicinity of the interface on the upper side of the refractive index adjusting layer 3 (the side in contact with the adhesion layer 4), that is, in the vicinity of the upper surface of the refractive index adjusting layer 3, the ratio of the number of inorganic atoms I to the number of carbon atoms C (I /C) is less than 0.05, preferably less than 0.04. Further, for example, it is 0.00 or more. By setting the I/C ratio in the vicinity of the upper surface to be within the above range, the number of inorganic atoms (especially inorganic particles) in the vicinity of the upper surface can be reduced, so that the upper surface of the refractive index adjusting layer 3 and The surface of the transparent conductive layer 6 disposed thereon is smooth. Therefore, the specific resistance value of the transparent conductive layer 6 can be lowered.

所謂上表面附近區域,係自上表面(上側之表面)之厚度方向上之區域,具體而言,係自折射率調整層3之上表面(0nm)至下側10nm以內之區域。折射率調整層3之上表面附近區域之I/C比可藉由利用X射線光電子光譜法對折射率調整層3之上表面進行測定而求出。 The region in the vicinity of the upper surface is a region in the thickness direction from the upper surface (the surface on the upper side), specifically, a region from the upper surface (0 nm) of the refractive index adjusting layer 3 to within 10 nm of the lower side. The I/C ratio of the region in the vicinity of the upper surface of the refractive index adjusting layer 3 can be determined by measuring the upper surface of the refractive index adjusting layer 3 by X-ray photoelectron spectroscopy.

再者,於上表面附近區域中之I/C比之運算時,氧原子等非金屬原子並不包含於計算中。例如,於折射率調整層3含有氧化鋯粒子作為無機粒子之情形時,上述比為鋯原子數Zr相對於碳原子數C之比(Zr/C),於含有二氧化矽粒子(SiO2)作為無機粒子之情形時,上述比為矽原子數Si相對於碳原子數C之比(Si/C),於含有氧化鈦粒子作為無機粒子之情形時,上述比為鈦原子數Ti相對於碳原子數C之比(Ti/C)等。又,於折射率調整層3含有複數種無機粒子之情形時,上述比係以相對於各原子之比之合計之方式算出。 Furthermore, when the I/C ratio is calculated in the vicinity of the upper surface, non-metal atoms such as oxygen atoms are not included in the calculation. For example, when the refractive index adjusting layer 3 contains zirconia particles as inorganic particles, the ratio is the ratio of zr atom number Zr to the number of carbon atoms C (Zr/C), and contains cerium oxide particles (SiO 2 ). In the case of inorganic particles, the ratio is the ratio of the number of germanium atoms Si to the number of carbon atoms C (Si/C). When titanium oxide particles are contained as inorganic particles, the ratio is the number of titanium atoms Ti relative to carbon. The ratio of the number of atoms C (Ti/C) and the like. Further, when the refractive index adjusting layer 3 contains a plurality of inorganic particles, the ratio is calculated as a total of the ratios of the respective atoms.

又,於測定時,就排除上表面污染之影響之觀點而言,對折射 率調整層3之上表面沿厚度方向約1~2nm實施蝕刻。又,於在折射率調整層3上積層有密接層4等層之情形時,利用X射線光電子光譜法對深度分佈(測定間距以SiO2換算計設為每1nm)進行測定,並將密接層4之終端部定義為折射率調整層3之上表面(0nm)。所謂密接層4之終端部,係表示於深度分佈中,構成密接層4之無機原子之元素比率相對於峰值成為半值之深度位置。於構成密接層4與光學調整層5之無機原子相同之情形時,將包含光學調整層5在內之無機原子之元素比率相對於峰值成為半值之深度位置判斷為上表面(0nm)。 Further, at the time of measurement, the upper surface of the refractive index adjusting layer 3 was etched in the thickness direction by about 1 to 2 nm from the viewpoint of eliminating the influence of the upper surface contamination. In the case where a layer such as the adhesion layer 4 is laminated on the refractive index adjustment layer 3, the depth distribution (the measurement pitch is 1 nm per SiO 2 ) is measured by X-ray photoelectron spectroscopy, and the adhesion layer is measured. The terminal portion of 4 is defined as the upper surface (0 nm) of the refractive index adjusting layer 3. The end portion of the adhesion layer 4 is a depth position at which the element ratio of the inorganic atoms constituting the adhesion layer 4 becomes a half value with respect to the peak value in the depth distribution. When the inorganic layer constituting the adhesion layer 4 and the optical adjustment layer 5 is the same, the elemental ratio of the inorganic atom including the optical adjustment layer 5 to the depth at which the peak value becomes a half value is determined as the upper surface (0 nm).

4.密接層 4. Adhesive layer

密接層4係密接於折射率調整層3及後文敍述之光學調整層5、並且將折射率調整層3與光學調整層5牢固地結合之層。藉由密接層4之存在,即便於具備具有平滑之上表面之折射率調整層3之情形時,亦可獲得能夠抑制暴露於85℃ 85%之環境後發生剝離之透明導電性膜1。 The adhesion layer 4 is a layer in which the refractive index adjustment layer 3 and the optical adjustment layer 5 described later are in close contact with each other, and the refractive index adjustment layer 3 and the optical adjustment layer 5 are firmly bonded. By the presence of the adhesion layer 4, even when the refractive index adjustment layer 3 having a smooth upper surface is provided, the transparent conductive film 1 capable of suppressing peeling after being exposed to an environment of 85% at 85 ° C can be obtained.

密接層4具有薄膜形狀(包含薄片形狀),且以接觸於折射率調整層3之上表面之方式配置於折射率調整層3之整個上表面。 The adhesion layer 4 has a film shape (including a sheet shape) and is disposed on the entire upper surface of the refractive index adjustment layer 3 so as to be in contact with the upper surface of the refractive index adjustment layer 3.

密接層4含有無機原子,較佳為由無機物單一成分、無機化合物等無機物形成,進而較佳為由無機化合物形成。 The adhesion layer 4 contains an inorganic atom, and is preferably formed of an inorganic substance such as a single component or an inorganic compound, and is preferably formed of an inorganic compound.

作為密接層4中含有之無機原子,較佳為可列舉矽原子(Si)等。具體而言,密接層4由矽單質、或矽化合物形成,就透明性之觀點而言,較佳為由矽化合物形成。 The inorganic atom contained in the adhesion layer 4 is preferably a germanium atom (Si) or the like. Specifically, the adhesion layer 4 is formed of a ruthenium element or a ruthenium compound, and is preferably formed of a ruthenium compound from the viewpoint of transparency.

又,作為無機化合物,可列舉化學計量組成之無機化合物、及非化學計量組成之無機化合物。 Further, examples of the inorganic compound include inorganic compounds having a stoichiometric composition and inorganic compounds having a non-stoichiometric composition.

作為化學計量組成之無機化合物,例如可列舉:二氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鈮(Nb2O5)、氧化鈦(TiO2)等。 Examples of the inorganic compound having a stoichiometric composition include cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), cerium oxide (Nb 2 O 5 ), and titanium oxide (TiO 2 ).

作為非化學計量組成之無機化合物,可列舉:例如矽氮化物(例 如SiCx,0.1≦x<1.0)等無機氮化物;例如矽碳化物(例如SiNx,0.1≦x<1.3)等無機碳化物;例如矽氧化物(例如SiOx,0.1≦x<2.0)等無機氧化物等。 Examples of the inorganic compound having a non-stoichiometric composition include, for example, niobium nitride (example) Inorganic nitrides such as SiCx, 0.1≦x<1.0); inorganic carbides such as ruthenium carbide (for example, SiNx, 0.1≦x<1.3); inorganic oxidation such as ruthenium oxide (for example, SiOx, 0.1≦x<2.0) Things and so on.

該等無機化合物可為單一組成,亦可為複數種組成之混合物。 The inorganic compounds may be in a single composition or a mixture of a plurality of components.

密接層4較佳為含有非化學計量組成之無機化合物,更佳為含有非化學量組成之無機氧化物。藉由,能夠使密接層4之密接性更良好。 The adhesion layer 4 is preferably an inorganic compound containing a non-stoichiometric composition, more preferably an inorganic oxide containing a non-stoichiometric composition. Thereby, the adhesion of the adhesion layer 4 can be made better.

又,關於密接層4,於含有矽原子(尤其是矽化合物)之情形時,密接層4較佳為含有非化學計量組合物之矽化合物(例如上述之非化學計量組成之矽碳化物、矽碳化物、矽氧化物等)。更佳為含有非化學計量組成之矽氧化物。 Further, in the case where the adhesion layer 4 contains a ruthenium atom (particularly a ruthenium compound), the adhesion layer 4 is preferably a ruthenium compound containing a non-stoichiometric composition (for example, the above-described non-stoichiometric composition of ruthenium carbide, ruthenium) Carbide, niobium oxide, etc.). More preferably, it is a cerium oxide containing a non-stoichiometric composition.

於密接層4含有矽原子之情形時,密接層4之藉由X射線光電子光譜法求出之Si2p軌道之鍵結能例如為98.0eV以上,較佳為99.0eV以上,更佳為100.0eV以上,進而較佳為102.0eV以上,又,例如未達104.0eV,較佳為未達103.0eV,更佳為102.8eV以下。藉由選擇Si2p軌道之鍵結能為上述範圍之密接層4,能夠使密接層4之密接性更良好。尤其是若將密接層4之鍵結能設為99.0eV以上且未達103.0eV,則密接層4會含有非化學計量組成之無機化合物(尤其是矽化合物),故而可維持良好之透光率,並且更確實地提昇密接性。 When the adhesion layer 4 contains a ruthenium atom, the bonding energy of the Si 2p orbital obtained by X-ray photoelectron spectroscopy of the adhesion layer 4 is, for example, 98.0 eV or more, preferably 99.0 eV or more, and more preferably 100.0 eV or more. Further, it is preferably 102.0 eV or more, and further, for example, less than 104.0 eV, preferably less than 103.0 eV, more preferably 102.8 eV or less. By selecting the bonding layer 4 in which the bonding energy of the Si2p track is in the above range, the adhesion of the adhesion layer 4 can be made better. In particular, if the bonding energy of the adhesion layer 4 is set to 99.0 eV or more and less than 103.0 eV, the adhesion layer 4 may contain an inorganic compound (especially a ruthenium compound) having a non-stoichiometric composition, so that a good light transmittance can be maintained. And more surely improve the adhesion.

密接層4之上述鍵結能可藉由利用X射線光電子光譜法對密接層4之上表面進行測定而獲得。 The above bonding energy of the adhesion layer 4 can be obtained by measuring the surface of the adhesion layer 4 by X-ray photoelectron spectroscopy.

於測定時,就排除上表面污染之影響之觀點而言,對密接層4之上表面沿厚度方向約1~2nm實施蝕刻。又,於密接層4上積層有光學調整層5等層之情形時,利用X射線光電子光譜法對深度分佈(測定間距以SiO2換算計設為每1nm)進行測定,並採用距密接層4之終端部1nm以上之上側位置(較佳為1nm上側之位置)處之鍵結能值。再者,於 構成密接層4與光學調整層5之無機原子相同之情形時,將包含光學調整層5在內之無機原子之元素比率相對於峰值成為半值之深度位置設為密接層4之終端部。再者,於密接層4之厚度為8nm以下之情形時,就對測定確保充分之厚度之觀點而言,較佳為於密接層4上積層光學調整層5等,並利用上述深度分佈進行測定。 At the time of measurement, the upper surface of the adhesion layer 4 was etched in the thickness direction by about 1 to 2 nm from the viewpoint of eliminating the influence of the upper surface contamination. In the case where a layer such as the optical adjustment layer 5 is laminated on the adhesion layer 4, the depth distribution (the measurement pitch is 1 nm per SiO 2 ) is measured by X-ray photoelectron spectroscopy, and the adhesion layer 4 is used. The bonding energy value at the upper end position of the terminal portion of 1 nm or more (preferably, the position on the upper side of 1 nm). In the case where the inorganic atoms constituting the adhesion layer 4 and the optical adjustment layer 5 are the same, the depth ratio of the element ratio of the inorganic atoms including the optical adjustment layer 5 to the peak value is set to the adhesion layer 4 Terminal department. In the case where the thickness of the adhesion layer 4 is 8 nm or less, it is preferable to laminate the optical adjustment layer 5 on the adhesion layer 4 from the viewpoint of ensuring sufficient thickness for measurement, and to measure by the depth distribution. .

密接層4之折射率例如未達2.00,較佳為1.90以下,更佳為1.85以下,又,例如為1.50以上,較佳為1.55以上,更佳為1.60以上。密接層4較佳為高於後文敍述之光學調整層5之折射率,且密接層4之折射率與光學調整層5之折射率之差例如為0.01以上,較佳為0.03以上,又,例如為0.50以下,較佳為0.40以下。藉由將密接層4之折射率設為上述範圍內,能夠使透明導電性膜1之透光率等光學特性提昇。 The refractive index of the adhesion layer 4 is, for example, less than 2.00, preferably 1.90 or less, more preferably 1.85 or less, and further preferably 1.50 or more, preferably 1.55 or more, and more preferably 1.60 or more. The adhesion layer 4 is preferably higher than the refractive index of the optical adjustment layer 5 described later, and the difference between the refractive index of the adhesion layer 4 and the refractive index of the optical adjustment layer 5 is, for example, 0.01 or more, preferably 0.03 or more. For example, it is 0.50 or less, preferably 0.40 or less. By setting the refractive index of the adhesion layer 4 within the above range, the optical characteristics such as the light transmittance of the transparent conductive film 1 can be improved.

密接層4之厚度例如為1nm以上,較佳為2nm以上,又,例如為10nm以下,較佳為8nm以下,更佳為5nm以下。藉由將密接層4之厚度設為上述下限以上,而使密接層4之密接性變得良好。另一方面,藉由將密接層4之厚度設為上述上限以下,可抑制密接層4之光吸收,從而抑制透光率之降低。 The thickness of the adhesion layer 4 is, for example, 1 nm or more, preferably 2 nm or more, and is, for example, 10 nm or less, preferably 8 nm or less, more preferably 5 nm or less. By setting the thickness of the adhesion layer 4 to the above lower limit or more, the adhesion of the adhesion layer 4 is improved. On the other hand, by setting the thickness of the adhesion layer 4 to be equal to or less than the above upper limit, light absorption of the adhesion layer 4 can be suppressed, and a decrease in light transmittance can be suppressed.

密接層4之厚度係藉由利用穿透式電子顯微鏡(TEM)之剖面觀察進行測定。 The thickness of the adhesion layer 4 was measured by cross-sectional observation using a transmission electron microscope (TEM).

5.光學調整層 5. Optical adjustment layer

光學調整層5與折射率調整層3均係為了抑制透明導電層6之配線圖案之視認並且確保透明導電性膜1優異之透明性而對透明導電性膜1之光學物性(例如折射率)進行調整之層。 Both the optical adjustment layer 5 and the refractive index adjustment layer 3 are for optical properties (for example, refractive index) of the transparent conductive film 1 in order to suppress the visibility of the wiring pattern of the transparent conductive layer 6 and to ensure excellent transparency of the transparent conductive film 1. Adjust the layer.

光學調整層5具有薄膜形狀(包含薄片形狀),且以接觸於密接層4之上表面之方式配置於密接層4之整個上表面。 The optical adjustment layer 5 has a film shape (including a sheet shape) and is disposed on the entire upper surface of the adhesion layer 4 so as to be in contact with the upper surface of the adhesion layer 4.

光學調整層5較佳為由無機物形成。 The optical adjustment layer 5 is preferably formed of an inorganic substance.

作為無機物之組成,例如可列舉氧化物、氟化物等。 Examples of the composition of the inorganic material include an oxide, a fluoride, and the like.

作為氧化物(無機氧化物),例如可列舉:氧化矽(具體而言,二氧化矽(SiO2)、一氧化矽(SiO)等)、氧化鋁(Al2O3)、氧化鈮(Nb2O5)、氧化鈦(TiO2)等。 Examples of the oxide (inorganic oxide) include cerium oxide (specifically, cerium oxide (SiO 2 ), cerium oxide (SiO), etc.), aluminum oxide (Al 2 O 3 ), and cerium oxide (Nb). 2 O 5 ), titanium oxide (TiO 2 ), and the like.

作為氟化物,可列舉:例如氟化鈉(NaF)、六氟鋁酸三鈉(Na3AlF6)、氟化鋰(LiF)、氟化鎂(MgF2)等氟化鹼金屬;例如氟化鈣(CaF2)、氟化鋇(BaF2)等氟化鹼土金屬;及例如氟化鑭(LaF3)、氟化鈰(CeF)等氟化稀土類等。 Examples of the fluoride include a fluoride alkali metal such as sodium fluoride (NaF), trisodium hexafluoroaluminate (Na 3 AlF 6 ), lithium fluoride (LiF), or magnesium fluoride (MgF 2 ); for example, fluorine A fluorided alkaline earth metal such as calcium (CaF 2 ) or barium fluoride (BaF 2 ); and a rare earth fluoride such as lanthanum fluoride (LaF 3 ) or cesium fluoride (CeF).

無機物可單獨使用或併用2種以上。 The inorganic substances may be used singly or in combination of two or more.

作為無機物,就與密接層4之密接性、低電阻化、抑制配線圖案之視認之觀點而言,較佳為可列舉無機氧化物,更佳為可列舉二氧化矽(SiO2,折射率1.47)。尤其是光學調整層5較佳為含有無機氧化物作為無機物,更佳為含有二氧化矽作為無機物。 The inorganic material is preferably an inorganic oxide from the viewpoint of adhesion to the adhesion layer 4, low resistance, and suppression of the wiring pattern. More preferably, it is cerium oxide (SiO 2 , refractive index 1.47). ). In particular, the optical adjustment layer 5 preferably contains an inorganic oxide as an inorganic substance, and more preferably contains cerium oxide as an inorganic substance.

光學調整層5之折射率較佳為與折射率調整層3之折射率不同,光學調整層5之折射率與折射率調整層3之折射率之差例如為0.10以上,較佳為0.11以上,又,例如為0.95以下,較佳為0.60以下。 The refractive index of the optical adjustment layer 5 is preferably different from the refractive index of the refractive index adjustment layer 3, and the difference between the refractive index of the optical adjustment layer 5 and the refractive index of the refractive index adjustment layer 3 is, for example, 0.10 or more, preferably 0.11 or more. Further, for example, it is 0.95 or less, preferably 0.60 or less.

更佳為光學調整層5之折射率低於折射率調整層3之折射率。即,較佳為將折射率調整層3設為高折射率層,將光學調整層5設為具備較高折射率層之折射率低之折射率之低折射率層。藉此,於將透明導電性膜1之透明導電層6進行圖案化而形成配線圖案時,能夠降低由圖案部與非圖案部所產生之反射率差或色相差,從而更確實地抑制配線圖案之視認。 More preferably, the refractive index of the optical adjustment layer 5 is lower than the refractive index of the refractive index adjustment layer 3. That is, it is preferable that the refractive index adjusting layer 3 is a high refractive index layer, and the optical adjustment layer 5 is a low refractive index layer having a refractive index of a higher refractive index layer having a lower refractive index. When the wiring pattern is formed by patterning the transparent conductive layer 6 of the transparent conductive film 1, the difference in reflectance or the color difference caused by the pattern portion and the non-pattern portion can be reduced, and the wiring pattern can be more reliably suppressed. Recognized.

光學調整層5之折射率例如未達1.60,較佳為1.55以下,更佳為1.50以下,又,例如為1.20以上,較佳為1.30以上,更佳為1.40以上。 The refractive index of the optical adjustment layer 5 is, for example, less than 1.60, preferably 1.55 or less, more preferably 1.50 or less, and further preferably 1.20 or more, preferably 1.30 or more, and more preferably 1.40 or more.

光學調整層5之厚度例如為1nm以上,較佳為3nm以上,又,例如為50nm以下,較佳為20nm以下。 The thickness of the optical adjustment layer 5 is, for example, 1 nm or more, preferably 3 nm or more, and is, for example, 50 nm or less, preferably 20 nm or less.

光學調整層5之厚度係藉由利用穿透式電子顯微鏡(TEM)之剖面觀察進行測定。 The thickness of the optical adjustment layer 5 was measured by cross-sectional observation using a transmission electron microscope (TEM).

關於光學調整層5之厚度相對於密接層4之厚度之比(光學調整層5/密接層4),就低電阻化之觀點而言,例如為0.5以上,較佳為1.0以上,更佳為2.0以上,又,例如為100以下,較佳為50以下,更佳為30以下,進而較佳為15以下。 The ratio of the thickness of the optical adjustment layer 5 to the thickness of the adhesion layer 4 (the optical adjustment layer 5 / the adhesion layer 4) is, for example, 0.5 or more, preferably 1.0 or more, more preferably from the viewpoint of reducing the resistance. Further, 2.0 or more is, for example, 100 or less, preferably 50 or less, more preferably 30 or less, still more preferably 15 or less.

關於光學調整層5之厚度相對於折射率調整層3之厚度之比(光學調整層5/折射率調整層3),就抑制配線圖案之視認之觀點而言,例如為0.01以上,較佳為0.02以上,又,例如為3.00以下,較佳為1.00以下,更佳為0.50以下,進而較佳為0.30以下,尤佳為0.20以下。 The ratio of the thickness of the optical adjustment layer 5 to the thickness of the refractive index adjustment layer 3 (the optical adjustment layer 5 / the refractive index adjustment layer 3) is preferably 0.01 or more from the viewpoint of suppressing the visibility of the wiring pattern. Further, it is 0.02 or more, and is, for example, 3.00 or less, preferably 1.00 or less, more preferably 0.50 or less, further preferably 0.30 or less, and particularly preferably 0.20 or less.

6.透明導電層 6. Transparent conductive layer

透明導電層6係用以在後續步驟中形成為配線圖案從而形成圖案部之導電層。 The transparent conductive layer 6 is used to form a wiring pattern in a subsequent step to form a conductive layer of the pattern portion.

如圖1所示,透明導電層6為透明導電性膜1之最上層,且具有薄膜形狀(包含薄片形狀),以接觸於光學調整層5之上表面之方式配置於光學調整層5之整個上表面。 As shown in FIG. 1, the transparent conductive layer 6 is the uppermost layer of the transparent conductive film 1, and has a film shape (including a sheet shape), and is disposed on the entire surface of the optical adjustment layer 5 so as to be in contact with the upper surface of the optical adjustment layer 5. Upper surface.

作為透明導電層6之材料,例如可列舉包含選自由In、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W所組成之群中之至少1種金屬之金屬氧化物。對於金屬氧化物,亦可視需要進而摻雜上述群所示之金屬原子。 The material of the transparent conductive layer 6 is, for example, at least one selected from the group consisting of In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, and W. A metal oxide of a metal. For the metal oxide, the metal atoms shown in the above group may be doped as needed.

關於透明導電層6之材料,可列舉:例如銦錫複合氧化物(ITO)等含銦氧化物;例如銻錫複合氧化物(ATO)等含銻氧化物等,較佳為可列舉含銦氧化物,更佳為列舉ITO。 Examples of the material of the transparent conductive layer 6 include an indium-containing oxide such as indium tin composite oxide (ITO); for example, a cerium-containing oxide such as lanthanum-tin composite oxide (ATO), and the like, and preferably contains indium oxide. More preferably, ITO is listed.

於使用ITO作為透明導電層6之材料之情形時,氧化錫(SnO2)含量相對於氧化錫及氧化銦(In2O3)之合計量,例如為0.5質量%以上,較佳為3質量%以上,又,例如為15質量%以下,較佳為13質量%以下。藉 由將氧化錫之含量設為上述下限以上,能夠使ITO層之耐久性更良好。藉由將氧化錫之含量設為上述上限以下,能夠容易地進行ITO層之結晶轉化,從而提昇透明性或比電阻之穩定性。 In the case where ITO is used as the material of the transparent conductive layer 6, the content of the tin oxide (SnO 2 ) is, for example, 0.5% by mass or more, preferably 3 mass, based on the total amount of the tin oxide and the indium oxide (In 2 O 3 ). % or more is, for example, 15% by mass or less, preferably 13% by mass or less. By setting the content of the tin oxide to the above lower limit or more, the durability of the ITO layer can be further improved. By setting the content of the tin oxide to be not more than the above upper limit, the crystallization of the ITO layer can be easily performed, thereby improving the transparency or the stability of the specific resistance.

本說明書中之所謂「ITO」,只要為至少包含銦(In)及錫(Sn)之複合氧化物即可,亦可包含該等以外之追加成分。作為追加成分,例如可列舉In、Sn以外之金屬元素,具體而言,可列舉:Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W、Fe、Pb、Ni、Nb、Cr、Ga等。 The "ITO" in the present specification may be a composite oxide containing at least indium (In) and tin (Sn), and may contain additional components other than these. Examples of the additional component include metal elements other than In and Sn, and specific examples thereof include Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W, and Fe. Pb, Ni, Nb, Cr, Ga, and the like.

透明導電層6之厚度例如為10nm以上,較佳為15nm以上,又,例如為45nm以下,較佳為40nm以下,更佳為35nm以下,進而較佳為30nm以下,尤佳為28nm以下。藉由將透明導電層6之厚度設為上述下限以上,於進行加熱處理時可使ITO層等透明導電層6更均勻地結晶轉化。另一方面,藉由將透明導電層6之厚度設為上述上限以下,而不存在透明導電性膜1之透光率大幅降低之擔憂。 The thickness of the transparent conductive layer 6 is, for example, 10 nm or more, preferably 15 nm or more, and is, for example, 45 nm or less, preferably 40 nm or less, more preferably 35 nm or less, still more preferably 30 nm or less, and still more preferably 28 nm or less. By setting the thickness of the transparent conductive layer 6 to the above lower limit or more, the transparent conductive layer 6 such as an ITO layer can be more uniformly crystallized and transformed during the heat treatment. On the other hand, the thickness of the transparent conductive layer 6 is not more than the above upper limit, and there is no fear that the light transmittance of the transparent conductive film 1 is greatly lowered.

透明導電層6之厚度係藉由利用穿透式電子顯微鏡(TEM)之剖面觀察進行測定。 The thickness of the transparent conductive layer 6 was measured by cross-sectional observation using a transmission electron microscope (TEM).

透明導電層6可為結晶質及非晶質之任一者,又,亦可為結晶質及非晶質之混合體。透明導電層6較佳為由結晶質所構成,更具體而言,為結晶質ITO層。藉此,提昇透明導電層6之透明性,又,能夠進一步降低透明導電層6之比電阻值。 The transparent conductive layer 6 may be either crystalline or amorphous, or may be a mixture of crystalline and amorphous. The transparent conductive layer 6 is preferably composed of a crystalline substance, and more specifically, a crystalline ITO layer. Thereby, the transparency of the transparent conductive layer 6 is improved, and the specific resistance value of the transparent conductive layer 6 can be further reduced.

透明導電層6為結晶質膜例如可藉由如下方式進行判斷:於透明導電層6為ITO層之情形時,於20℃之鹽酸(濃度5質量%)中浸漬15分鐘之後進行水洗、乾燥,並對15mm左右之間隔之端子間電阻進行測定。於本說明書中,於鹽酸(20℃;濃度:5質量%)中之浸漬、水洗、乾燥後,15mm間隔之端子間電阻為10kΩ以下之情形時,視作ITO層為結晶質。 The transparent conductive layer 6 is, for example, a crystalline film. When the transparent conductive layer 6 is an ITO layer, it is immersed in hydrochloric acid (concentration: 5 mass%) at 20 ° C for 15 minutes, and then washed with water and dried. The resistance between the terminals at intervals of about 15 mm was measured. In the present specification, when immersed in water (20° C.; concentration: 5% by mass), washed with water, and dried, when the inter-terminal resistance at intervals of 15 mm is 10 kΩ or less, the ITO layer is regarded as crystalline.

7.透明導電性膜之製造方法 7. Method for producing transparent conductive film

繼而,對製造透明導電性膜1之方法進行說明。 Next, a method of manufacturing the transparent conductive film 1 will be described.

為了製造透明導電性膜1,例如於透明基材2上依序設置折射率調整層3、密接層4、光學調整層5及透明導電層6。以下,進行詳細說明。 In order to manufacture the transparent conductive film 1, for example, the refractive index adjusting layer 3, the adhesion layer 4, the optical adjustment layer 5, and the transparent conductive layer 6 are sequentially provided on the transparent substrate 2. The details will be described below.

首先,準備公知或市售之透明基材2。 First, a known or commercially available transparent substrate 2 is prepared.

其後,就透明基材2與折射率調整層3之密接性之觀點而言,可視需要對透明基材2之表面例如實施濺鍍、電暈放電、火焰、紫外線照射、電子束照射、化學處理、氧化等蝕刻處理或底塗處理。又,可藉由溶劑洗淨、超音波洗淨等對透明基材2進行除塵、清潔。 Thereafter, from the viewpoint of the adhesion between the transparent substrate 2 and the refractive index adjusting layer 3, the surface of the transparent substrate 2 may be subjected to sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, or chemical, as needed. Etching or undercoating treatment such as treatment, oxidation, or the like. Further, the transparent substrate 2 can be dusted and cleaned by solvent washing or ultrasonic cleaning.

繼而,於透明基材2上設置折射率調整層3。例如,藉由將樹脂組合物濕式塗佈於透明基材2,而於透明基材2之上表面形成折射率調整層3。 Then, the refractive index adjusting layer 3 is provided on the transparent substrate 2. For example, the refractive index adjusting layer 3 is formed on the upper surface of the transparent substrate 2 by wet coating the resin composition on the transparent substrate 2.

具體而言,製備利用溶劑將樹脂組合物進行稀釋而成之稀釋液,繼而,將稀釋液塗佈於透明基材2之上表面,並使稀釋液乾燥。 Specifically, a diluent obtained by diluting a resin composition with a solvent is prepared, and then the diluted solution is applied onto the upper surface of the transparent substrate 2, and the diluted solution is dried.

作為溶劑,例如可列舉有機溶劑、水系溶劑(具體而言,水)等,較佳為可列舉有機溶劑。作為有機溶劑,可列舉:例如甲醇、乙醇、異丙醇等醇化合物;例如丙酮、甲基乙基酮、甲基異丁基酮(MIBK)等酮化合物;例如乙酸乙酯、乙酸丁酯等酯化合物;例如甲苯、二甲苯等芳香族化合物等。該等溶劑可單獨使用或併用2種以上。較佳為可列舉酮化合物。 The solvent is, for example, an organic solvent, an aqueous solvent (specifically, water), and the like, and an organic solvent is preferred. The organic solvent may, for example, be an alcohol compound such as methanol, ethanol or isopropanol; for example, a ketone compound such as acetone, methyl ethyl ketone or methyl isobutyl ketone (MIBK); for example, ethyl acetate or butyl acetate; An ester compound; for example, an aromatic compound such as toluene or xylene. These solvents may be used alone or in combination of two or more. A ketone compound is preferred.

稀釋液之固形物成分濃度例如為1質量%以上且30質量%以下。 The solid content concentration of the diluent is, for example, 1% by mass or more and 30% by mass or less.

作為塗佈方法,可根據稀釋液及透明基材進行適當選擇。例如可列舉:浸漬塗佈法、氣刀塗佈法、淋幕式塗佈法、滾筒塗佈法、線棒塗佈法、凹版塗佈法、擠壓塗佈法等。 The coating method can be appropriately selected depending on the diluent and the transparent substrate. For example, a dip coating method, an air knife coating method, a curtain coating method, a roll coating method, a bar coating method, a gravure coating method, an extrusion coating method, etc. are mentioned.

乾燥溫度例如為60℃以上,較佳為70℃以上,更佳為80℃以 上,例如為200℃以下,較佳為150℃以下。 The drying temperature is, for example, 60 ° C or higher, preferably 70 ° C or higher, more preferably 80 ° C. The upper portion is, for example, 200 ° C or lower, preferably 150 ° C or lower.

乾燥時間例如為0.5分鐘以上,較佳為1分鐘以上,更佳為2分鐘以上,例如為60分鐘以下,較佳為20分鐘以下。藉由將乾燥時間設為上述範圍,進而,藉由對無機粒子之粒徑或材料進行適當調整,從而可使分散於樹脂之無機粒子沈澱,能夠降低於所獲得之折射率調整層3之上表面附近之無機粒子之存在量。 The drying time is, for example, 0.5 minutes or longer, preferably 1 minute or longer, more preferably 2 minutes or longer, and for example, 60 minutes or shorter, preferably 20 minutes or shorter. By setting the drying time to the above range, the inorganic particles dispersed in the resin can be precipitated by appropriately adjusting the particle diameter or material of the inorganic particles, and can be lowered on the obtained refractive index adjusting layer 3. The amount of inorganic particles present near the surface.

藉由上述塗佈及乾燥,於透明基材2之上表面將樹脂組合物形成為薄膜形狀。 The resin composition was formed into a film shape on the upper surface of the transparent substrate 2 by the above coating and drying.

其後,於樹脂組合物之樹脂含有活性能量線硬化性樹脂之情形時,藉由在稀釋液乾燥後照射活性能量線,而使活性能量線硬化性樹脂硬化。 Thereafter, when the resin of the resin composition contains the active energy ray-curable resin, the active energy ray-curable resin is cured by irradiating the active energy ray after drying the diluted solution.

再者,於含有熱硬化性樹脂作為樹脂組合物之樹脂之情形時,藉由該乾燥步驟,能夠在溶劑乾燥之同時使熱硬化性樹脂進行熱硬化。 Further, in the case where the thermosetting resin is used as the resin of the resin composition, the drying step allows the thermosetting resin to be thermally cured while the solvent is dried.

繼而,於折射率調整層3上設置密接層4。例如藉由乾式方法,於折射率調整層3之上表面形成密接層4。 Then, an adhesion layer 4 is provided on the refractive index adjustment layer 3. The adhesion layer 4 is formed on the upper surface of the refractive index adjustment layer 3 by, for example, a dry method.

作為乾式方法,例如可列舉:真空蒸鍍法、濺鍍法、離子鍍敷法等。較佳為可列舉濺鍍法。藉由利用該方法形成密接層4,能夠形成高密度之密接層4,故而可提昇折射率調整層3與密接層4之密接性。 Examples of the dry method include a vacuum deposition method, a sputtering method, and an ion plating method. Preferably, a sputtering method is mentioned. By forming the adhesion layer 4 by this method, the high-density adhesion layer 4 can be formed, so that the adhesion between the refractive index adjustment layer 3 and the adhesion layer 4 can be improved.

於採用濺鍍法之情形時,作為靶材,可列舉構成密接層4之上述無機物。例如,於形成包含矽氧化物(SiOx)等矽化合物之層作為密接層4之情形時,可使用Si。 In the case of using a sputtering method, the inorganic material constituting the adhesion layer 4 may be mentioned as a target. For example, in the case where a layer containing a ruthenium compound such as ruthenium oxide (SiOx) is formed as the adhesion layer 4, Si can be used.

作為濺鍍氣體,例如可列舉Ar等惰性氣體。 Examples of the sputtering gas include an inert gas such as Ar.

又,於密接層4含有無機氧化物(例如,矽氧化物)之情形時,亦可併用氧氣等反應性氣體。於併用反應性氣體之情形時,反應性氣體 之流量比並無特別限定,惰性氣體與反應性氣體之流量比例如為100:0~100:3,較佳為100:0.01~100:3,更佳為100:0.01~100:1,進而較佳為100:0.01~100:0.5。藉由將流量比設為上述範圍內,能夠抑制密接層4被自透明基材2供給之反應性氣體過度氧化,從而抑制密接性之降低。 Further, when the adhesion layer 4 contains an inorganic oxide (for example, cerium oxide), a reactive gas such as oxygen may be used in combination. Reactive gas in the case of using a reactive gas in combination The flow ratio is not particularly limited, and the flow ratio of the inert gas to the reactive gas is, for example, 100:0 to 100:3, preferably 100:0.01 to 100:3, more preferably 100:0.01 to 100:1, and further It is preferably 100: 0.01 to 100: 0.5. By setting the flow rate ratio within the above range, it is possible to suppress excessive oxidation of the adhesive layer 4 by the reactive gas supplied from the transparent substrate 2, thereby suppressing a decrease in adhesion.

關於濺鍍時之放電氣壓,就抑制濺鍍頻率之降低、實現放電穩定性等觀點而言,例如為1Pa以下,較佳為0.1Pa以上且0.7Pa以下。 The discharge gas pressure at the time of sputtering is, for example, 1 Pa or less, preferably 0.1 Pa or more and 0.7 Pa or less from the viewpoint of suppressing a decrease in the sputtering frequency and achieving discharge stability.

再者,關於密接層4之形成中之乾式方法,較佳為於冷卻下實施。例如一面將折射率調整層3進行冷卻,一面實施濺鍍。具體而言,一面使積層有折射率調整層3之透明基材2之下表面(與積層有折射率調整層3之側相反之側之表面)接觸於冷卻輥等冷卻裝置,一面實施濺鍍。 Further, the dry method in the formation of the adhesion layer 4 is preferably carried out under cooling. For example, sputtering is performed while cooling the refractive index adjusting layer 3. Specifically, the lower surface of the transparent substrate 2 on which the refractive index adjusting layer 3 is laminated (the surface opposite to the side on which the refractive index adjusting layer 3 is laminated) is brought into contact with a cooling device such as a cooling roll, and sputtering is performed. .

作為冷卻溫度,例如為20℃以下,較佳為10℃以下,更佳為未達0℃,又,例如為-30℃以上。 The cooling temperature is, for example, 20 ° C or lower, preferably 10 ° C or lower, more preferably less than 0 ° C, and further, for example, -30 ° C or higher.

藉由於冷卻下實施,可形成含有非化學計量組成之無機化合物之密接層4。尤其是藉由將Si設為靶並且於低溫下進行濺鍍形成,能夠形成含有非化學計量組成之矽化合物之層,即Si2p軌道之鍵結能為99.0eV以上且未達103.0eV之矽化合物層。因此,可確實地形成能夠與折射率調整層3牢固地密接之密接層4。 The adhesion layer 4 containing an inorganic compound having a non-stoichiometric composition can be formed by cooling. In particular, by forming Si as a target and performing sputtering at a low temperature, it is possible to form a layer containing a non-stoichiometric composition of a ruthenium compound, that is, a ruthenium compound having a bonding energy of Si2p orbital of 99.0 eV or more and less than 103.0 eV. Floor. Therefore, the adhesion layer 4 which can be firmly adhered to the refractive index adjustment layer 3 can be formed reliably.

濺鍍法所使用之電源例如可為DC(Direct current,直流)電源、AC(Alternating Current,交流)電源、MF(Multiple frequency,多頻)電源及RF(Radio Frequency,射頻)電源之任一者,又,亦可為該等之組合。 The power source used for the sputtering method may be, for example, a DC (Direct Current) power supply, an AC (Alternating Current) power supply, an MF (Multiple Frequency) power supply, and an RF (Radio Frequency) power supply. And, also, a combination of these.

繼而,於密接層4上設置光學調整層5。例如,藉由乾式方法,於密接層4之上表面形成光學調整層5。 Then, the optical adjustment layer 5 is provided on the adhesion layer 4. For example, the optical adjustment layer 5 is formed on the upper surface of the adhesion layer 4 by a dry method.

作為形成光學調整層5時之乾式方法,可列舉於密接層4中所述 之乾式方法,較佳為可列舉濺鍍法。 As a dry method for forming the optical adjustment layer 5, it can be exemplified in the adhesion layer 4 The dry method is preferably a sputtering method.

於採用濺鍍法之情形時,作為靶材,可列舉構成光學調整層5之上述無機物。例如,於形成光學調整層5為包含二氧化矽(SiO2)之層之情形時,可列舉Si。 In the case of the sputtering method, the inorganic material constituting the optical adjustment layer 5 is exemplified as the target. For example, when the optical adjustment layer 5 is formed of a layer containing cerium oxide (SiO 2 ), Si is exemplified.

作為濺鍍氣體,例如可列舉Ar等惰性氣體。 Examples of the sputtering gas include an inert gas such as Ar.

又,於光學調整層5含有氧化物(較佳為二氧化矽(SiO2))之情形時,較佳為併用氧氣等反應性氣體。於併用反應性氣體之情形時,反應性氣體之流量比並無特別限定,惰性氣體與反應性氣體之流量比例如為100:35~100:100,較佳為100:40~100:60。只要流量比為上述範圍內,則存在具有阻氣性之密接層4,即便於自透明基材2供給之反應性氣體較少之環境下,亦可較佳地獲得氧化物。 Further, when the optical adjustment layer 5 contains an oxide (preferably cerium oxide (SiO 2 )), it is preferred to use a reactive gas such as oxygen in combination. When the reactive gas is used in combination, the flow ratio of the reactive gas is not particularly limited, and the flow ratio of the inert gas to the reactive gas is, for example, 100:35 to 100:100, preferably 100:40 to 100:60. When the flow ratio is within the above range, the gas barrier layer 4 is provided, and even in an environment in which the reactive gas supplied from the transparent substrate 2 is small, an oxide can be preferably obtained.

關於濺鍍時之放電氣壓,就抑制濺鍍頻率之降低、實現放電穩定性等觀點而言,例如為1Pa以下,較佳為0.1Pa以上且0.7Pa以下。 The discharge gas pressure at the time of sputtering is, for example, 1 Pa or less, preferably 0.1 Pa or more and 0.7 Pa or less from the viewpoint of suppressing a decrease in the sputtering frequency and achieving discharge stability.

再者,形成光學調整層5時之乾式方法可於冷卻下及非冷卻下之任一情況下進行實施。 Further, the dry method in forming the optical adjustment layer 5 can be carried out under either cooling or non-cooling.

濺鍍法所使用之電源例如可為DC電源、AC電源、MF電源及RF電源之任一者,又,亦可為該等之組合。 The power source used in the sputtering method may be, for example, any of a DC power source, an AC power source, an MF power source, and an RF power source, or a combination thereof.

繼而,於光學調整層5之上表面形成透明導電層6。 Then, a transparent conductive layer 6 is formed on the upper surface of the optical adjustment layer 5.

作為透明導電層6之形成,可列舉上述乾式方法,較佳為可列舉濺鍍法。 The formation of the transparent conductive layer 6 is exemplified by the above dry method, and a sputtering method is preferred.

於採用濺鍍法之情形時,作為靶材,可列舉構成透明導電層6之上述金屬氧化物,較佳為可列舉ITO。關於ITO之氧化錫濃度,就ITO層之耐久性、結晶化等觀點而言,例如為0.5質量%以上,較佳為3質量%以上,又,例如為15質量%以下,較佳為13質量%以下。 In the case of the sputtering method, the metal oxide constituting the transparent conductive layer 6 is exemplified as the target, and ITO is preferable. The tin oxide concentration of ITO is, for example, 0.5% by mass or more, preferably 3% by mass or more, and is, for example, 15% by mass or less, preferably 13%, from the viewpoints of durability and crystallization of the ITO layer. %the following.

作為濺鍍氣體,例如可列舉Ar等惰性氣體。又,可視需要併用氧氣等反應性氣體。於併用反應性氣體之情形時,反應性氣體之流量 比並無特別限定,相對於濺鍍氣體及反應性氣體之合計流量比,例如為0.1流量%以上且5流量%以下。 Examples of the sputtering gas include an inert gas such as Ar. Further, a reactive gas such as oxygen may be used in combination as needed. Flow rate of reactive gas in the case of using a reactive gas in combination The ratio is not particularly limited, and is, for example, 0.1% by flow or more and 5% by flow or less based on the total flow rate ratio of the sputtering gas and the reactive gas.

關於濺鍍時之放電氣壓,就抑制濺鍍頻率之降低、實現放電穩定性等觀點而言,例如為1Pa以下,較佳為0.1Pa以上且0.7Pa以下。 The discharge gas pressure at the time of sputtering is, for example, 1 Pa or less, preferably 0.1 Pa or more and 0.7 Pa or less from the viewpoint of suppressing a decrease in the sputtering frequency and achieving discharge stability.

濺鍍法所使用之電源例如可為DC電源、AC電源、MF電源及RF電源之任一者,又,亦可為該等之組合。 The power source used in the sputtering method may be, for example, any of a DC power source, an AC power source, an MF power source, and an RF power source, or a combination thereof.

又,為了形成所需厚度之透明導電層6,可適當設定靶材或濺鍍之條件等並實施複數次濺鍍。 Further, in order to form the transparent conductive layer 6 having a desired thickness, the target or the sputtering conditions and the like may be appropriately set and a plurality of sputterings may be performed.

藉此,可獲得透明導電性膜1。 Thereby, the transparent conductive film 1 can be obtained.

繼而,視需要對透明導電性膜1之透明導電層6實施結晶轉化處理。 Then, the transparent conductive layer 6 of the transparent conductive film 1 is subjected to a crystallization conversion treatment as needed.

具體而言,對透明導電性膜1於大氣下實施加熱處理。 Specifically, the transparent conductive film 1 is subjected to heat treatment in the air.

加熱處理例如可使用紅外線加熱器、烘箱等進行實施。 The heat treatment can be carried out, for example, using an infrared heater, an oven, or the like.

加熱溫度例如為100℃以上,較佳為120℃以上,又,例如為200℃以下,較佳為160℃以下。藉由將加熱溫度設為上述範圍內,可抑制透明基材2之熱損傷及自透明基材2產生之雜質,並且確實地進行結晶轉化。 The heating temperature is, for example, 100 ° C or higher, preferably 120 ° C or higher, and further, for example, 200 ° C or lower, preferably 160 ° C or lower. By setting the heating temperature within the above range, thermal damage of the transparent substrate 2 and impurities generated from the transparent substrate 2 can be suppressed, and crystallization conversion can be surely performed.

加熱時間可根據加熱溫度適當決定,例如為10分鐘以上,較佳為30分鐘以上,又,例如為5小時以下,較佳為3小時以下。 The heating time can be appropriately determined depending on the heating temperature, and is, for example, 10 minutes or longer, preferably 30 minutes or longer, and further, for example, 5 hours or shorter, preferably 3 hours or shorter.

藉此,可獲得具備結晶化之透明導電層6之透明導電性膜1。 Thereby, the transparent conductive film 1 having the crystallized transparent conductive layer 6 can be obtained.

以此方式獲得之透明導電性膜1之透明導電層6之表面電阻值例如未達200Ω/□,較佳為未達170Ω/□,更佳為未達150Ω/□,進而較佳為145Ω/□以下,又,例如為50Ω/□以上。 The surface resistivity of the transparent conductive layer 6 of the transparent conductive film 1 obtained in this manner is, for example, less than 200 Ω/□, preferably less than 170 Ω/□, more preferably less than 150 Ω/□, and still more preferably 145 Ω/ □ The following, for example, is 50 Ω/□ or more.

透明導電性膜1之透明導電層6之比電阻值例如為3.7×10-4Ω.cm以下,較佳為3.5×10-4Ω.cm以下,更佳為3.3×10-4Ω.cm以下,進而較佳為3.1×10-4Ω.cm以下,又,例如為1.1×10-4Ω.cm以上,較 佳為1.4×10-4Ω.cm以上。 The specific resistance of the transparent conductive layer 6 of the transparent conductive film 1 is, for example, 3.7 × 10 -4 Ω. Below cm, preferably 3.5 × 10 -4 Ω. Below cm, more preferably 3.3 × 10 -4 Ω. Below cm, further preferably 3.1 × 10 -4 Ω. Below cm, again, for example, 1.1 × 10 -4 Ω. Above cm, preferably 1.4 × 10 -4 Ω. More than cm.

表面電阻值可藉由對透明導電層6之表面利用四端子法進行測定而求出,比電阻值可根據該測定出之表面電阻值及透明導電層6之厚度而算出。 The surface resistance value can be obtained by measuring the surface of the transparent conductive layer 6 by a four-terminal method, and the specific resistance value can be calculated from the measured surface resistance value and the thickness of the transparent conductive layer 6.

透明導電性膜1之總厚度例如為2μm以上,較佳為20μm以上,又,例如為300μm以下,較佳為150μm以下。 The total thickness of the transparent conductive film 1 is, for example, 2 μm or more, preferably 20 μm or more, and is, for example, 300 μm or less, preferably 150 μm or less.

再者,亦可視需要於結晶轉化處理之前或之後藉由公知之蝕刻方法將透明導電層6形成為條紋狀等配線圖案。 Further, it is also possible to form the transparent conductive layer 6 into a wiring pattern such as a stripe shape by a known etching method before or after the crystallization conversion treatment.

又,上述製造方法中,可利用捲對捲方式一面搬送透明基材2一面於該透明基材2之上表面依序形成折射率調整層3、密接層4、光學調整層5及透明導電層6,又,亦可利用分批方式形成該等層之一部分或全部。 Further, in the above-described manufacturing method, the refractive index adjusting layer 3, the adhesion layer 4, the optical adjustment layer 5, and the transparent conductive layer can be sequentially formed on the upper surface of the transparent substrate 2 while the transparent substrate 2 is conveyed by the roll-to-roll method. 6. Alternatively, part or all of the layers may be formed in a batch manner.

並且,透明導電性膜1依序具備透明基材2、折射率調整層3、密接層4、及透明導電層6,且於折射率調整層3之上表面附近區域之無機原子數相對於碳原子數之比未達0.05。因此,於上表面附近區域中,無機粒子之存在數降低,能夠使折射率調整層3之上表面及設置於其上之透明導電層6之表面平滑。因此,透明導電層6之比電阻值降低,可實現低電阻化。 Further, the transparent conductive film 1 is provided with the transparent substrate 2, the refractive index adjusting layer 3, the adhesion layer 4, and the transparent conductive layer 6 in this order, and the number of inorganic atoms in the vicinity of the upper surface of the refractive index adjusting layer 3 is relative to carbon. The ratio of the number of atoms is less than 0.05. Therefore, the number of inorganic particles is reduced in the vicinity of the upper surface, and the surface of the upper surface of the refractive index adjusting layer 3 and the surface of the transparent conductive layer 6 provided thereon can be made smooth. Therefore, the specific resistance of the transparent conductive layer 6 is lowered, and the resistance can be reduced.

又,密接層4與上述折射率調整層3接觸。因此,折射率調整層3牢固地密接於密接層4,且折射率調整層3經由密接層4而與光學調整層5或透明導電層6密接。因此,即便於尤為嚴酷之條件下,具體而言,即便於85℃ 85%環境下暴露150小時以上、較佳為200小時以上、更佳為240小時以上之後,亦可抑制在樹脂含有層(折射率調整層3)與無機物層(光學調整層5或透明導電層6)之間所容易產生之層間剝離。結果可抑制透明導電性膜1內之層間剝離、甚至破損。 Further, the adhesion layer 4 is in contact with the refractive index adjustment layer 3. Therefore, the refractive index adjusting layer 3 is firmly adhered to the adhesion layer 4, and the refractive index adjustment layer 3 is in close contact with the optical adjustment layer 5 or the transparent conductive layer 6 via the adhesion layer 4. Therefore, even under particularly harsh conditions, specifically, even after exposure to an environment of 85 ° C and 85% for 150 hours or more, preferably 200 hours or more, more preferably 240 hours or more, the resin-containing layer can be suppressed ( The interlayer between the refractive index adjusting layer 3) and the inorganic layer (the optical adjustment layer 5 or the transparent conductive layer 6) is easily peeled off. As a result, interlayer peeling or even breakage in the transparent conductive film 1 can be suppressed.

因此,根據該透明導電性膜1,由於能夠抑制膜之破損並且具備 良好之導電特性,故而即便用作大型或薄型觸控面板用基材,亦可抑制觸控面板之感度等各功能之降低。 Therefore, according to the transparent conductive film 1, it is possible to suppress breakage of the film and to provide Since it has good electrical conductivity characteristics, it can suppress the reduction of various functions such as the sensitivity of the touch panel even when used as a substrate for a large or thin touch panel.

該透明導電性膜1例如可用於圖像顯示裝置所具備之觸控面板用基材。作為觸控面板之形式,可列舉光學方式、超音波方式、靜電電容方式、電阻膜方式等各種方式,可尤佳地用於靜電電容方式之觸控面板。 The transparent conductive film 1 can be used, for example, for a substrate for a touch panel provided in an image display device. Examples of the touch panel include various methods such as an optical method, an ultrasonic method, a capacitive method, and a resistive film method, and can be preferably used for a capacitive touch panel.

(變化例) (variation)

於圖1之實施形態中,透明導電性膜1具備透明基材2、折射率調整層3、密接層4、光學調整層5、及透明導電層6,例如圖2所示,透明導電性膜1可包含透明基材2、折射率調整層3、密接層4、及透明導電層6。 In the embodiment of FIG. 1, the transparent conductive film 1 includes a transparent substrate 2, a refractive index adjusting layer 3, an adhesion layer 4, an optical adjustment layer 5, and a transparent conductive layer 6, for example, a transparent conductive film as shown in FIG. 1 may include a transparent substrate 2, a refractive index adjusting layer 3, an adhesion layer 4, and a transparent conductive layer 6.

即,圖2之透明導電性膜1具備透明基材2、配置於透明基材2上之折射率調整層3、配置於折射率調整層3上之密接層4、及配置於密接層4上之透明導電層6,且不具備光學調整層5。 That is, the transparent conductive film 1 of FIG. 2 includes the transparent substrate 2, the refractive index adjusting layer 3 disposed on the transparent substrate 2, the adhesion layer 4 disposed on the refractive index adjusting layer 3, and the adhesion layer 4 The transparent conductive layer 6 does not have the optical adjustment layer 5.

又,於圖1之實施形態中,使折射率調整層3接觸於透明基材2之上表面,但並不限定於此。例如,亦可不使折射率調整層3接觸於透明基材2之上表面,而於該等之間介存其他層,但未圖示。 Further, in the embodiment of Fig. 1, the refractive index adjusting layer 3 is brought into contact with the upper surface of the transparent substrate 2, but the invention is not limited thereto. For example, the refractive index adjusting layer 3 may not be brought into contact with the upper surface of the transparent substrate 2, and other layers may be interposed therebetween, but are not shown.

又,例如亦可使具有較光學折射調整層5之折射率或低或高之折射率的折射率層積層於光學調整層5之上表面及/或下表面,但未圖示。 Further, for example, a refractive index having a refractive index lower than that of the optical refractive adjustment layer 5 or a refractive index lower or higher may be laminated on the upper surface and/or the lower surface of the optical adjustment layer 5, but not shown.

於本發明中,就抑制配線圖案之視認等觀點而言,較佳為可列舉圖1之透明導電性膜1。 In the present invention, from the viewpoint of suppressing the visibility of the wiring pattern, etc., the transparent conductive film 1 of Fig. 1 is preferably used.

[實施例] [Examples]

以下,例示實施例及比較例,對本發明進一步具體地進行說明。再者,本發明不受實施例及比較例之任何限定。又,於以下記載中使用之調配比率(含有比率)、物性值、參數等具體數值可代替為上 述「實施方式」中記載之與該等對應之調配比率(含有比率)、物性值、參數等相應記載之上限值(定義為「以下」、「未達」之數值)或下限值(定義為「以上」、「超過」之數值)。 Hereinafter, the present invention will be further specifically described by way of examples and comparative examples. Further, the present invention is not limited by the examples and the comparative examples. Further, the specific values such as the blending ratio (content ratio), physical property values, and parameters used in the following descriptions may be replaced by The above-mentioned ratios (content ratios), physical property values, and parameters described in the "Embodiment" are described as upper limit values (defined as "below", "not reached") or lower limit ( Defined as "above" and "exceeded" values).

實施例1 Example 1

(透明基材) (transparent substrate)

作為透明基材,使用聚對苯二甲酸乙二酯(PET)膜(三菱樹脂公司製造,商品名「DIAFOIL」,厚度100μm)。 As the transparent substrate, a polyethylene terephthalate (PET) film (manufactured by Mitsubishi Plastics, Inc., trade name "DIAFOIL", thickness: 100 μm) was used.

(折射率調整層之形成) (Formation of refractive index adjustment layer)

將使氧化鋯(ZrO2)粒子(平均粒徑20nm)分散於甲基乙基酮中而成之分散液與紫外線硬化型丙烯酸系樹脂進行混合,並以固形物成分濃度成為5質量%之方式利用甲基乙基酮進行稀釋,而製備紫外線硬化型樹脂組合物之稀釋液。再者,關於上述紫外線硬化型樹脂組合物,於將紫外線硬化型丙烯酸系樹脂與氧化鋯粒子之合計設為100質量%之情形時,係以其組成成為紫外線硬化型丙烯酸系樹脂25質量%、氧化鋯粒子75質量%之方式進行調整。 A dispersion obtained by dispersing zirconium oxide (ZrO 2 ) particles (average particle diameter: 20 nm) in methyl ethyl ketone and an ultraviolet curable acrylic resin are mixed, and the solid content concentration is 5% by mass. A dilution of the ultraviolet curable resin composition was prepared by diluting with methyl ethyl ketone. In the case where the total amount of the ultraviolet curable acrylic resin and the zirconia particles is 100% by mass, the composition of the ultraviolet curable resin composition is 25 mass% of the ultraviolet curable acrylic resin. The zirconia particles were adjusted in such a manner as to be 75 mass%.

繼而,將稀釋液以乾燥後之厚度成為300nm之方式塗佈於PET膜之上表面,並使其於80℃下加熱乾燥3分鐘。其後,藉由高壓水銀燈照射累計光量300mJ/cm2之紫外線,藉此形成折射率調整層。即,獲得透明基材.折射率調整層積層體。 Then, the diluted solution was applied to the upper surface of the PET film so as to have a thickness of 300 nm after drying, and dried by heating at 80 ° C for 3 minutes. Thereafter, ultraviolet rays having an integrated light amount of 300 mJ/cm 2 were irradiated by a high pressure mercury lamp to form a refractive index adjusting layer. That is, a transparent substrate is obtained. The refractive index adjustment layer laminate body.

折射率調整層之折射率為1.65,且上表面附近之Zr/C之比率為0.02(測定方法將於後文進行敍述)。 The refractive index adjusting layer has a refractive index of 1.65 and a ratio of Zr/C in the vicinity of the upper surface of 0.02 (measurement method will be described later).

(密接層之形成) (formation of the adhesion layer)

繼而,於導入有Ar之氣壓0.3Pa之真空環境中一面導入氧氣(O2),一面於下述條件下實施濺鍍,而於折射率調整層之上表面形成密接層。 Then, oxygen gas (O 2 ) was introduced while introducing a pressure of 0.3 Pa in Ar, and sputtering was performed under the following conditions to form an adhesion layer on the upper surface of the refractive index adjusting layer.

電源:交流中頻(AC/MF)電源 Power: AC intermediate frequency (AC/MF) power supply

靶:Si(三井金屬礦業公司製造) Target: Si (manufactured by Mitsui Mining & Mining Co., Ltd.)

氣體流量比:Ar:O2=100:0.1,再者,於密接層之形成時,使PET膜之下表面(與形成有折射率調整層之面為相反側之面)接觸於-5℃之成膜輥,一面將PET膜進行冷卻一面實施。 Gas flow ratio: Ar: O 2 = 100: 0.1. Further, when the adhesion layer is formed, the lower surface of the PET film (the side opposite to the surface on which the refractive index adjusting layer is formed) is brought into contact with -5 ° C The film forming roll was carried out while cooling the PET film.

所獲得之密接層為Si2p軌道之鍵結能為102.2eV且厚度2nm之矽化合物層。再者,密接層之折射率為1.74。 The obtained adhesion layer was a germanium compound layer having a bonding energy of Si 2p orbital of 102.2 eV and a thickness of 2 nm. Furthermore, the adhesion layer has a refractive index of 1.74.

(光學調整層之形成) (formation of optical adjustment layer)

繼而,於導入有Ar之氣壓0.2Pa之真空環境中一面導入氧氣(O2),一面於下述條件下實施濺鍍,而於密接層之上表面形成光學調整層。 Then, oxygen gas (O 2 ) was introduced while introducing a pressure of 0.2 Pa in Ar, and sputtering was performed under the following conditions to form an optical adjustment layer on the upper surface of the adhesion layer.

電源:交流中頻(AC/MF)電源 Power: AC intermediate frequency (AC/MF) power supply

靶:Si(三井金屬礦業公司製造) Target: Si (manufactured by Mitsui Mining & Mining Co., Ltd.)

氣體流量比:Ar:O2=100:41 Gas flow ratio: Ar:O 2 =100:41

所獲得之光學調整層為厚度14nm之SiO2層。 The obtained optical adjustment layer was a SiO 2 layer having a thickness of 14 nm.

(透明導電層之形成) (formation of transparent conductive layer)

於下述條件下實施濺鍍,而於光學調整層之上表面形成厚度15nm之包含銦錫氧化物層之第1透明導電層。 Sputtering was carried out under the following conditions, and a first transparent conductive layer containing an indium tin oxide layer having a thickness of 15 nm was formed on the upper surface of the optical adjustment layer.

氣壓:0.4Pa Air pressure: 0.4Pa

氣體比:Ar及O2(流量比Ar:O2=99:1) Gas ratio: Ar and O 2 (flow ratio Ar: O 2 = 99:1)

電源:直流(DC)電源 Power: DC (DC) power supply

靶:氧化錫(10質量%)與氧化銦(90質量%)之燒結體 Target: sintered body of tin oxide (10% by mass) and indium oxide (90% by mass)

繼而,於下述條件下實施濺鍍,而於第1透明導電層之上表面形成厚度7nm之包含銦錫氧化物層之第2透明導電層。 Then, sputtering was performed under the following conditions, and a second transparent conductive layer containing an indium tin oxide layer having a thickness of 7 nm was formed on the upper surface of the first transparent conductive layer.

氣壓:0.3Pa Air pressure: 0.3Pa

氣體比:Ar及O2(流量比Ar:O2=99:1) Gas ratio: Ar and O 2 (flow ratio Ar: O 2 = 99:1)

電源:直流(DC)電源 Power: DC (DC) power supply

靶:氧化錫(3質量%)與氧化銦(97質量%)之燒結體 Target: sintered body of tin oxide (3 mass%) and indium oxide (97 mass%)

氣體流量比:Ar:O2=99:1 Gas flow ratio: Ar:O 2 =99:1

如此,於光學調整層之上表面形成包含第1透明導電層及第2透明導電層之積層體之非晶質ITO層(22nm)。 Thus, an amorphous ITO layer (22 nm) including a laminate of the first transparent conductive layer and the second transparent conductive layer was formed on the upper surface of the optical adjustment layer.

(結晶轉化處理) (crystallization conversion treatment)

繼而,將形成有非晶質ITO層之膜於140℃之烘箱內進行60分鐘加熱處理,而形成作為透明導電層之結晶質ITO層(厚度22nm)。關於經過加熱處理之透明導電層,於在20℃之鹽酸(濃度5質量%)中浸漬15分鐘之後進行水洗、乾燥,並對15mm左右之間隔之端子間電阻進行測定,確認出ITO層為結晶質。藉此製造實施例1之透明導電性膜(參照圖1)。 Then, the film in which the amorphous ITO layer was formed was heat-treated in an oven at 140 ° C for 60 minutes to form a crystalline ITO layer (thickness: 22 nm) as a transparent conductive layer. The heat-treated transparent conductive layer was immersed in hydrochloric acid (concentration: 5 mass%) at 20 ° C for 15 minutes, washed with water, dried, and the inter-terminal resistance at intervals of about 15 mm was measured to confirm that the ITO layer was crystallized. quality. Thus, the transparent conductive film of Example 1 was produced (see FIG. 1).

實施例2 Example 2

於折射率調整層之形成時,以紫外線硬化型樹脂組合物之組成成為紫外線硬化型丙烯酸系樹脂22質量%、氧化鋯粒子78質量%之方式進行調整,並且以上表面附近之鋯原子相對於碳原子之比(Zr/C)成為0.04之方式進行調整,除此以外,以與實施例1相同之方式形成折射率調整層(折射率1.67)。 In the formation of the refractive index adjusting layer, the composition of the ultraviolet curable resin composition is adjusted so as to be 22% by mass of the ultraviolet curable acrylic resin and 78% by mass of the zirconia particles, and the zirconium atom in the vicinity of the upper surface is opposite to the carbon. A refractive index adjusting layer (refractive index 1.67) was formed in the same manner as in Example 1 except that the atomic ratio (Zr/C) was adjusted to be 0.04.

又,於密接層之形成時,將Ar與O2之流量比設為Ar:O2=100:0.3,且將密接層之厚度設為3nm,除此以外,以與實施例1相同之方式形成密接層(Si2p軌道之鍵結能為102.5eV)。 In the same manner as in the first embodiment, the flow ratio of Ar to O 2 was set to Ar:O 2 =100:0.3, and the thickness of the adhesion layer was set to 3 nm. An adhesion layer is formed (the bond energy of the Si2p track is 102.5 eV).

藉此製造實施例2之透明導電性膜。 Thus, the transparent conductive film of Example 2 was produced.

實施例3 Example 3

於密接層之形成時,不導入O2,且將密接層之厚度設為3nm,除此以外,以與實施例1相同之方式形成密接層(Si2p軌道之鍵結能為101.6eV)。 In the formation of the adhesion layer, the adhesion layer was formed in the same manner as in Example 1 except that the O 2 was not introduced and the thickness of the adhesion layer was changed to 3 nm (the bonding energy of the Si 2p orbital was 101.6 eV).

藉此製造實施例3之透明導電性膜。 Thus, the transparent conductive film of Example 3 was produced.

實施例4 Example 4

於密接層之形成時,不導入O2,且以成為10nm之方式形成密接層之厚度,除此以外,以與實施例1相同之方式形成密接層(Si2p軌道之鍵結能為98.9eV)。 In the formation of the adhesion layer, the adhesion layer was formed in the same manner as in Example 1 except that O 2 was not introduced and the thickness of the adhesion layer was formed to be 10 nm (the bonding energy of the Si 2p orbital was 98.9 eV). .

藉此製造實施例4之透明導電性膜。 Thus, the transparent conductive film of Example 4 was produced.

實施例5 Example 5

於密接層之形成時,將Ar與O2之流量比設為Ar:O2=100:25,且將密接層之厚度設為10nm,除此以外,以與實施例1相同之方式形成密接層(Si2p軌道之鍵結能為103.1eV)。 In the formation of the adhesion layer, the flow ratio of Ar to O 2 was set to Ar:O 2 =100:25, and the thickness of the adhesion layer was set to 10 nm, and the adhesion was formed in the same manner as in Example 1. Layer (bonding energy of Si2p orbital is 103.1 eV).

藉此製造實施例5之透明導電性膜。 Thus, the transparent conductive film of Example 5 was produced.

比較例1 Comparative example 1

於折射率調整層之形成時,以折射率調整層之組成成為紫外線硬化型丙烯酸系樹脂15質量%、氧化鋯粒子85質量%之方式進行調整,並且以上表面附近之鋯原子相對於碳原子之比(Zr/C)成為0.09之方式進行調整。又,將折射率調整層之厚度變更為1.1μm。除該等變更以外,以與實施例1相同之方式形成折射率調整層(折射率層1.75)。 In the formation of the refractive index adjusting layer, the composition of the refractive index adjusting layer is adjusted so as to be 15% by mass of the ultraviolet curable acrylic resin and 85% by mass of the zirconia particles, and the zirconium atom in the vicinity of the upper surface is opposite to the carbon atom. The ratio is adjusted in such a manner that (Zr/C) becomes 0.09. Further, the thickness of the refractive index adjusting layer was changed to 1.1 μm. A refractive index adjusting layer (refractive index layer 1.75) was formed in the same manner as in Example 1 except for the above changes.

又,於密接層之形成時,不導入O2,且將密接層之厚度設為3nm,除此以外,以與實施例1相同之方式形成密接層(Si2p軌道之鍵結能為102.8eV)。 Further, in the formation of the adhesion layer, the adhesion layer was formed in the same manner as in Example 1 except that O 2 was not introduced and the thickness of the adhesion layer was 3 nm (the bond energy of Si 2p orbit was 102.8 eV). .

藉此製造比較例1之透明導電性膜。 Thus, the transparent conductive film of Comparative Example 1 was produced.

再者,利用與實施例1相同之方法將加熱處理後之透明導電層浸漬於鹽酸中,結果確認出ITO層並未完全地轉化為結晶質。 Further, the transparent conductive layer after the heat treatment was immersed in hydrochloric acid by the same method as in Example 1, and it was confirmed that the ITO layer was not completely converted into crystalline form.

比較例2 Comparative example 2

不形成密接層,除此以外,以與實施例1相同之方式製造比較例2之透明導電性膜。 A transparent conductive film of Comparative Example 2 was produced in the same manner as in Example 1 except that the adhesion layer was not formed.

(1)各層之厚度 (1) Thickness of each layer

折射率調整層、密接層、光學調整層及透明導電層之厚度係使用穿透式電子顯微鏡(日立製作所製造,「H-7650」)並藉由剖面觀察進行測定。透明基材之厚度係使用膜厚計(Peacock公司製造Digital Dial Gauge DG-205)進行測定。將結果示於表1。 The thicknesses of the refractive index adjusting layer, the adhesion layer, the optical adjustment layer, and the transparent conductive layer were measured by a cross-sectional observation using a transmission electron microscope ("H-7650" manufactured by Hitachi, Ltd.). The thickness of the transparent substrate was measured using a film thickness meter (Digital Dial Gauge DG-205 manufactured by Peacock Co., Ltd.). The results are shown in Table 1.

(2)折射率調整層、密接層及光學調整層之折射率 (2) Refractive index of the refractive index adjusting layer, the adhesion layer and the optical adjustment layer

折射率係藉由如下方式求出:在形成折射率調整層、密接層或光學調整層之後,分別使用高速光譜式橢圓儀(J.A.Woollam公司製造,M-2000DI)對來自測定試樣之反射光之偏光狀態之變化進行測定,並利用分析軟體WVASE32對所取得之資料進行計算。再者,本說明書之折射率之數值為波長550nm下之折射率。將結果示於表1。 The refractive index was obtained by forming a refractive index adjusting layer, an adhesion layer, or an optical adjustment layer, and then using a high-speed spectral ellipsometer (manufactured by JA Woollam Co., Ltd., M-2000DI) to reflect light from the measurement sample. The change in the polarization state is measured, and the acquired data is calculated using the analysis software WVASE32. Furthermore, the value of the refractive index of the present specification is the refractive index at a wavelength of 550 nm. The results are shown in Table 1.

(3)折射率調整層之上表面附近之Zr/C比 (3) Zr/C ratio near the upper surface of the refractive index adjusting layer

對透明基材.折射率調整層積層體使用X射線光電子光譜法(ESCA:Electron Spectroscopy for Chemical Analysis;測定裝置:「Quantum 2000」;ULVAC-PHI公司製造)將折射率調整層之上表面蝕刻約厚度1nm,以去除表面污染。繼而,對該蝕刻後之上表面測定C原子、O原子及Zr原子之元素比率(atomic%),求出上表面附近區域(厚度0~10nm)中之Zr原子數相對於C原子數之比。將結果示於表1。 For transparent substrates. The surface of the refractive index adjusting layer was etched to a thickness of about 1 nm by X-ray photoelectron spectroscopy (ESCA: Electron Spectroscopy for Chemical Analysis; measuring apparatus: "Quantum 2000"; manufactured by ULVAC-PHI Co., Ltd.) to remove Surface contamination. Then, the elemental ratio (atomic%) of the C atom, the O atom, and the Zr atom is measured on the upper surface after the etching, and the ratio of the number of Zr atoms to the number of C atoms in the region near the upper surface (thickness 0 to 10 nm) is obtained. . The results are shown in Table 1.

(4)密接層之Si2p軌道之鍵結能 (4) Bonding energy of Si2p orbital of the adhesion layer

於實施例1~3、比較例1中,對各例之透明導電性膜於下述條件下實施X射線光電子光譜法(測定裝置與上述相同),而獲取深度分佈,並求出密接層(距密接層之終端部1nm上側區域)之Si2p軌道之鍵結能。 In the examples 1 to 3 and the comparative example 1, the transparent conductive film of each example was subjected to X-ray photoelectron spectroscopy (the measurement apparatus was the same as described above) under the following conditions, and the depth distribution was obtained, and the adhesion layer was obtained ( The bonding energy of the Si2p orbital from the upper side region of the 1 nm end portion of the adhesion layer).

X射線源:單色AlKα X-ray source: monochromatic AlKα

X射線設定(X Ray setting):200μm,15kV,30W X Ray setting: 200μm , 15kV, 30W

光電子掠出角:相對於試樣表面為45° Photoelectron grazing angle: 45° relative to the surface of the sample

帶電中和條件:電子中和槍與Ar離子槍(中和模式)之併用 Charge Neutralization Conditions: Combination of Electronic Neutralizing Gun and Ar Ion Gun (Neutralization Mode)

鍵結能:將C1s光譜之源自C-C鍵之峰值修正為285.0eV(僅最表面) Bonding energy: Correcting the peak value of the C1s spectrum from the C-C bond to 285.0 eV (only the most surface)

Ar離子槍之加速電壓:1kV Acceleration voltage of Ar ion gun: 1kV

Ar離子槍之蝕刻速度:2nm/min(SiO2換算) Ar ion gun etching rate: 2nm / min (SiO 2 conversion)

於實施例4、5中,準備於透明基材.折射率調整層積層體之折射率調整層上形成有密接層之密接層積層膜,並將密接層之最表面蝕刻2nm而去除表面污染,然後藉由X射線光電子光譜法(測定裝置與上述相同)求出Si2p軌道之鍵結能。將結果示於表1。 In Examples 4 and 5, prepared in a transparent substrate. An adhesion layering film having an adhesion layer formed on the refractive index adjusting layer of the refractive index adjusting layer laminate, and etching the outer surface of the adhesion layer by 2 nm to remove surface contamination, and then by X-ray photoelectron spectroscopy (the measuring device is the same as above) The bond energy of the Si2p orbit is determined. The results are shown in Table 1.

(5)透明導電層之表面電阻值及比電阻值 (5) Surface resistance value and specific resistance value of transparent conductive layer

依據JIS K 7194(1994年)並使用四端子法對透明導電層之表面電阻值進行測定。又,將表面電阻值乘以透明導電層之厚度(cm換算)所得之值設為比電阻值。將結果示於表1。 The surface resistance value of the transparent conductive layer was measured in accordance with JIS K 7194 (1994) using a four-terminal method. Further, the value obtained by multiplying the surface resistance value by the thickness (in terms of cm) of the transparent conductive layer is defined as a specific resistance value. The results are shown in Table 1.

(6)密接性 (6) Adhesion

將透明導電性膜於85℃ 85%之加濕環境下暴露240小時,其後,依據JIS K 5400實施柵格剝離試驗(各方格1mm□,合計100格),並按照下述基準對密接性進行評價。 The transparent conductive film was exposed to a humidified atmosphere of 85% at 85 ° C for 240 hours, and thereafter, a grid peeling test (1 mm □, 100 squares in total) was carried out in accordance with JIS K 5400, and the bonding was performed in accordance with the following criteria. Sexual evaluation.

將剝落為0格之情形評價為○。 The case where the peeling was 0 grid was evaluated as ○.

將剝落為1格以上且10格以下之情形評價為△。 The case where the peeling was 1 or more and 10 or less was evaluated as Δ.

將剝落為11格以上之情形評價為×。 The case where the peeling was 11 or more was evaluated as ×.

再者,於本說明書中,所謂剝落,意指每1格有0.25mm2以上(方格面積之1/4以上)剝離之情形。將結果示於表1。 In the present specification, the term "peeling" means a case where 0.25 mm 2 or more (1/4 or more of the square area) is peeled off per one cell. The results are shown in Table 1.

(7)透光率 (7) Light transmittance

使用Suga Test Instruments公司製造之測霧計(型號:HGM-2DP)對透明導電性膜之全光線透過率進行測定。 The total light transmittance of the transparent conductive film was measured using a fog meter (Model: HGM-2DP) manufactured by Suga Test Instruments.

將全光線透過率為90%以上之情形評價為○。 The case where the total light transmittance was 90% or more was evaluated as ○.

將全光線透過率為75%以上且未達90%之情形評價為△。 The case where the total light transmittance was 75% or more and less than 90% was evaluated as Δ.

將全光線透過率未達75%之情形評價為×。 The case where the total light transmittance was less than 75% was evaluated as ×.

將結果示於表1。 The results are shown in Table 1.

再者,上述發明係作為本發明之例示之實施形態提供,其只不過為例示,不可限定性地解釋。對於該技術領域之業者而言明確之本發明之變化例包含於下文所述之申請專利範圍中。 Furthermore, the invention described above is provided as an exemplified embodiment of the invention, which is merely illustrative and not to be construed as limiting. Variations of the invention that are clear to those skilled in the art are included in the scope of the claims described below.

[產業上之可利用性] [Industrial availability]

本發明之透明導電性膜可使用於各種產業製品中,例如可較佳地使用於組裝至圖像顯示裝置中之觸控面板用膜等。 The transparent conductive film of the present invention can be used in various industrial products, and can be preferably used, for example, in a film for a touch panel incorporated in an image display device.

1‧‧‧透明導電性膜 1‧‧‧Transparent conductive film

2‧‧‧透明基材 2‧‧‧Transparent substrate

3‧‧‧折射率調整層 3‧‧‧Refractive index adjustment layer

4‧‧‧密接層 4‧‧ ‧ close layer

5‧‧‧光學調整層 5‧‧‧Optical adjustment layer

6‧‧‧透明導電層 6‧‧‧Transparent conductive layer

Claims (7)

一種透明導電性膜,其特徵在於:其於厚度方向上依序具備透明基材、含有樹脂及無機粒子之折射率調整層、含有無機原子之密接層、及透明導電層,且上述密接層與上述折射率調整層接觸,上述折射率調整層之與上述密接層接觸之側之界面附近區域中之無機原子數相對於碳原子數之比未達0.05。 A transparent conductive film comprising, in the thickness direction, a transparent substrate, a refractive index adjusting layer containing a resin and inorganic particles, an adhesive layer containing an inorganic atom, and a transparent conductive layer, wherein the adhesion layer and the adhesion layer The refractive index adjusting layer is in contact with the ratio of the number of inorganic atoms to the number of carbon atoms in the vicinity of the interface of the refractive index adjusting layer on the side in contact with the adhesion layer. 如請求項1之透明導電性膜,其中上述密接層含有非化學計量組成之無機化合物。 The transparent conductive film of claim 1, wherein the adhesion layer contains an inorganic compound having a non-stoichiometric composition. 如請求項2之透明導電性膜,其中上述非化學計量組成之無機化合物為非化學計量組成之矽化合物。 The transparent conductive film of claim 2, wherein the inorganic compound having the non-stoichiometric composition is a non-stoichiometric composition of a ruthenium compound. 如請求項1之透明導電性膜,其中上述密接層含有矽原子,且包含藉由X射線光電子光譜法求出之Si2p軌道之鍵結能為99.0eV以上且未達103.0eV之區域。 The transparent conductive film of claim 1, wherein the adhesion layer contains a ruthenium atom, and the bonding energy of the Si 2p orbital determined by X-ray photoelectron spectroscopy is 99.0 eV or more and less than 103.0 eV. 如請求項1之透明導電性膜,其中於上述密接層與上述透明導電層之間進而具備含有無機氧化物之光學調整層。 The transparent conductive film of claim 1, further comprising an optical adjustment layer containing an inorganic oxide between the adhesion layer and the transparent conductive layer. 如請求項1之透明導電性膜,其中上述透明導電層之表面電阻值未達200Ω/□。 The transparent conductive film of claim 1, wherein the transparent conductive layer has a surface resistance value of less than 200 Ω/□. 如請求項1之透明導電性膜,其中上述透明導電層之比電阻值為3.7×10-4Ω.cm以下。 The transparent conductive film of claim 1, wherein the transparent conductive layer has a specific resistance value of 3.7×10 -4 Ω. Below cm.
TW105115087A 2015-05-27 2016-05-16 Transparent conductive film TWI683750B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015107185A JP6611471B2 (en) 2015-05-27 2015-05-27 Transparent conductive film
JP2015-107185 2015-05-27

Publications (2)

Publication Number Publication Date
TW201641278A true TW201641278A (en) 2016-12-01
TWI683750B TWI683750B (en) 2020-02-01

Family

ID=57393216

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105115087A TWI683750B (en) 2015-05-27 2016-05-16 Transparent conductive film

Country Status (5)

Country Link
JP (1) JP6611471B2 (en)
KR (1) KR102558619B1 (en)
CN (1) CN107615223B (en)
TW (1) TWI683750B (en)
WO (1) WO2016189957A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770149B (en) * 2017-03-24 2022-07-11 日商大日本印刷股份有限公司 Conductive film, touch panel, and image display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172981B2 (en) * 2017-03-10 2022-11-16 コニカミノルタ株式会社 BASE FILM FOR TRANSPARENT ELECTRODE AND METHOD FOR MANUFACTURING THE SAME
JP6953170B2 (en) * 2017-04-19 2021-10-27 日東電工株式会社 Conductive film and touch panel
JP2019107785A (en) * 2017-12-15 2019-07-04 日東電工株式会社 Transparent conductive film
JP6750666B2 (en) * 2018-12-27 2020-09-02 東洋インキScホールディングス株式会社 Laminated body and method for manufacturing laminated body
JP7442283B2 (en) * 2019-09-02 2024-03-04 日東電工株式会社 Transparent conductive film, transparent conductive film manufacturing method and intermediate

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847386B1 (en) * 2005-02-07 2013-10-23 Teijin Dupont Films Japan Limited Conductive multilayer film
JP4871846B2 (en) * 2006-11-24 2012-02-08 グンゼ株式会社 Film with transparent conductive film for touch panel and touch panel using the same
JP5341790B2 (en) 2009-02-16 2013-11-13 グンゼ株式会社 Touch panel film and touch panel using the same
TWI445624B (en) * 2009-06-03 2014-07-21 Toyo Boseki Transparent electrically conductive laminated film
CN101661811A (en) * 2009-09-18 2010-03-03 浙江大学 Near-infrared reflective transparent conductive film and preparation method thereof
JP2011076932A (en) * 2009-09-30 2011-04-14 Nitto Denko Corp Transparent conductive film and touch panel
WO2013081106A1 (en) * 2011-11-30 2013-06-06 東洋紡株式会社 Transparent conductive film
KR101524580B1 (en) * 2012-01-31 2015-06-01 도레이 필름 카코우 가부시키가이샤 Transparent conductive film, touch panel, and display device
CN102527613B (en) * 2012-02-17 2014-04-30 天津大学 Liquid-phase deposition-impregnation preparation method of micro/nano low-surface hydrophobic composite anti-scaling coating
JP2013208841A (en) * 2012-03-30 2013-10-10 Teijin Ltd Electroconductive laminate
KR101963475B1 (en) * 2012-03-30 2019-03-28 데이진 가부시키가이샤 Transparent electroconductive laminate
JP6001943B2 (en) * 2012-07-17 2016-10-05 株式会社カネカ Substrate for conductive material with inorganic thin film, substrate with transparent electrode, and manufacturing method thereof
JP6264367B2 (en) * 2013-02-20 2018-01-24 凸版印刷株式会社 Transparent conductive film, touch panel and display device including the same
JP2014164999A (en) * 2013-02-25 2014-09-08 Pioneer Electronic Corp Light emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770149B (en) * 2017-03-24 2022-07-11 日商大日本印刷股份有限公司 Conductive film, touch panel, and image display device
US11669211B2 (en) 2017-03-24 2023-06-06 Dai Nippon Printing Co., Ltd. Electroconductive film, touch panel, and image display device

Also Published As

Publication number Publication date
TWI683750B (en) 2020-02-01
JP2016224511A (en) 2016-12-28
JP6611471B2 (en) 2019-11-27
CN107615223B (en) 2021-10-26
CN107615223A (en) 2018-01-19
WO2016189957A1 (en) 2016-12-01
KR20180012262A (en) 2018-02-05
KR102558619B1 (en) 2023-07-21

Similar Documents

Publication Publication Date Title
TWI683750B (en) Transparent conductive film
JP6654865B2 (en) Amorphous transparent conductive film, crystalline transparent conductive film and method for producing the same
JP6207633B2 (en) Transparent conductive film
TWI482178B (en) Production method of transparent conductive film
WO2015159799A1 (en) Transparent conductive film
JP2012111225A (en) Transparent conductive film and touch panel
TWI754720B (en) Conductive film and touch panel
JP2016225269A (en) Transparent conductive film
JP6923415B2 (en) Transparent conductive film and transparent conductive film laminate
JP6425598B2 (en) Transparent conductive film and touch panel
JP7136669B2 (en) METHOD FOR MANUFACTURING CONDUCTIVE FILM
JP7323293B2 (en) Conductive film and touch panel
WO2019116719A1 (en) Transparent conductive film
JP6892751B2 (en) Double-sided conductive film
JP6553950B2 (en) Transparent conductive film and method for producing the same
TWI887453B (en) Method for manufacturing optical laminate
TW202430926A (en) Anti-reflection film and manufacturing method thereof, and image display device
WO2016189761A1 (en) Transparent conductive film
JP2021077509A (en) Transparent conductive film
JP2020075364A (en) Electrically conductive film and touch panel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees