TW201414004A - Manufacturing method of LED - Google Patents
Manufacturing method of LED Download PDFInfo
- Publication number
- TW201414004A TW201414004A TW101135367A TW101135367A TW201414004A TW 201414004 A TW201414004 A TW 201414004A TW 101135367 A TW101135367 A TW 101135367A TW 101135367 A TW101135367 A TW 101135367A TW 201414004 A TW201414004 A TW 201414004A
- Authority
- TW
- Taiwan
- Prior art keywords
- epitaxial
- substrate
- manufacturing
- semiconductor layer
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 97
- 239000004065 semiconductor Substances 0.000 claims abstract description 60
- 239000010410 layer Substances 0.000 claims description 104
- 238000000034 method Methods 0.000 claims description 34
- 230000008569 process Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 8
- 239000011241 protective layer Substances 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 230000000903 blocking effect Effects 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229920002120 photoresistant polymer Polymers 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 229910002601 GaN Inorganic materials 0.000 description 10
- 239000002893 slag Substances 0.000 description 9
- 238000005530 etching Methods 0.000 description 6
- 238000003698 laser cutting Methods 0.000 description 6
- 238000001459 lithography Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000002310 reflectometry Methods 0.000 description 5
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007667 floating Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 238000000927 vapour-phase epitaxy Methods 0.000 description 3
- 229910005540 GaP Inorganic materials 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 238000004943 liquid phase epitaxy Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Led Devices (AREA)
Abstract
Description
本發明係關於一種製作方法,特別是關於一種發光二極體的製作方法。 The present invention relates to a fabrication method, and more particularly to a method of fabricating a light-emitting diode.
發光二極體(light emitting diode,LED)是一種由半導體材料製作而成的發光元件,具有耗電量低、元件壽命長、反應速度快等優點,再加上體積小容易製成極小或陣列式元件的特性,因此近年來隨著技術不斷地進步,其應用範圍也由指示燈、背光源甚至擴大到了照明領域。 A light emitting diode (LED) is a light-emitting element made of a semiconductor material, which has the advantages of low power consumption, long component life, fast reaction speed, and the like, and is small in size and easy to be made into a small or array. The characteristics of the components, so in recent years, with the continuous advancement of technology, its application range has even expanded from the indicator light, backlight to the field of lighting.
於高功率發光二極體的發展中,習知之水平導通式發光二極體之水平結構面積的增加卻使得元件操作時所產生的熱能更容易累積於發光二極體晶片上,造成元件的溫度上升而影響其發光效率及產品可靠度。因此,在提升發光二極體之光取出能力上,散熱能力也是不容忽視的一環。另外,目前有許多方法可用來提升發光二極體的輸出亮度及改善其發光效率,其中一個可行方法就是在發光二極體的背面上鍍一高反射率之金屬反射鏡,此反射鏡不僅可提升發光二極體之輸出亮度,更可幫助發光二極體進行散熱。因此,金屬反射鏡的設置已是習知水平式高功率發光二極體的最佳選擇。 In the development of high-power light-emitting diodes, the increase in the horizontal structure area of the conventional horizontal-conducting light-emitting diode makes the heat generated by the operation of the element more easily accumulated on the light-emitting diode wafer, causing the temperature of the element. The rise affects its luminous efficiency and product reliability. Therefore, in improving the light extraction capability of the light-emitting diode, the heat dissipation capability is also a loop that cannot be ignored. In addition, there are many methods for improving the output brightness of the LED and improving its luminous efficiency. One possible method is to plate a high-reflectivity metal mirror on the back surface of the LED, which is not only Improve the output brightness of the LED, and help the LED to dissipate heat. Therefore, the arrangement of the metal mirror is the best choice for the conventional horizontal high power light-emitting diode.
請分別參照圖1A至圖1E所示,其分別為習知一種發光二極體的製作流程示意圖。 Please refer to FIG. 1A to FIG. 1E respectively, which are schematic diagrams showing a manufacturing process of a conventional light-emitting diode.
首先,如圖1A所示,係於一磊晶基板11上形成具有一n-GaN層121、一多重量子井層122及一p-GaN層123的一磊晶結構12。接著,如圖1B所示,係間隔形成一溝槽T於磊晶結構12上,以分別露出n-GaN層121。另外,再分別形成一第一電極P1及一第二電極P2於各p-GaN層123及各n-GaN層121上。接著,如圖1C所示,於n-GaN層121上以雷射預切方式進行切割,以形成複數切痕C。之後,如圖1D所示,於磊晶基板11之下表面鍍上一反射層13。最後,如圖1E所示,進行晶粒劈裂,以形成複數具有反射層13之發光二極體晶粒。 First, as shown in FIG. 1A, an epitaxial structure 12 having an n-GaN layer 121, a multiple quantum well layer 122, and a p-GaN layer 123 is formed on an epitaxial substrate 11. Next, as shown in FIG. 1B, a trench T is formed on the epitaxial structure 12 to expose the n-GaN layer 121, respectively. Further, a first electrode P1 and a second electrode P2 are formed on each of the p-GaN layer 123 and each of the n-GaN layers 121, respectively. Next, as shown in FIG. 1C, the n-GaN layer 121 is cut in a laser precut manner to form a plurality of slits C. Thereafter, as shown in FIG. 1D, a reflective layer 13 is plated on the lower surface of the epitaxial substrate 11. Finally, as shown in FIG. 1E, grain splitting is performed to form a plurality of light-emitting diode crystal grains having the reflective layer 13.
於上述步驟中,當以雷射預切方式進行切割時,會於晶片上留下黑色的熔渣,此熔渣必須利用化學藥劑清除,以免影響成品後之發光二極體的發光亮度。然而,以化學藥劑清除黑色熔渣時往往熔渣無法被去除乾淨,導致發光二極體的發光亮度衰減而影響其發光效率。因此,如何提供一種發光二極體的製作方法,可改善其發光效率,是業者一直努力的目標。 In the above steps, when the laser cutting is performed in a laser pre-cut manner, black slag is left on the wafer, and the slag must be removed by using a chemical to avoid affecting the luminance of the light-emitting diode after the finished product. However, when the black slag is removed by the chemical agent, the slag cannot be removed, and the luminance of the light-emitting diode is attenuated to affect the luminous efficiency. Therefore, how to provide a method for fabricating a light-emitting diode can improve its luminous efficiency, which is a goal that the industry has been striving for.
有鑑於上述課題,本發明之目的為提供一種發光二極體的製作方法,本發明之製作方法不會有雷射切割所殘留的黑色熔渣,因此不會導致發光二極體的發光亮度衰減而影響其發光效率。 In view of the above problems, an object of the present invention is to provide a method for fabricating a light-emitting diode. The method of the present invention does not have black slag remaining by laser cutting, and thus does not cause a decrease in luminance of the light-emitting diode. And affect its luminous efficiency.
為達上述之目的,本發明提供一種發光二極體的製作 方法包括提供一磊晶基板,磊晶基板具有一第一表面與一第二表面,其中第一表面與第二表面分別位於磊晶基板之相反側;形成一磊晶結構於磊晶基板之第一表面上,其中磊晶結構具有一第一半導體層及一第二半導體層;形成一溝槽於磊晶結構上,溝槽暴露出第一半導體層;提供一固定基板設置於磊晶結構及第一半導體層上;提供一能量由磊晶基板之第二表面進入磊晶基板,並聚焦於第一表面及第二表面之間;形成一反射層於磊晶基板之第二表面上;以及移除固定基板,並進行晶粒劈裂,以形成複數發光二極體晶粒。 In order to achieve the above object, the present invention provides a light emitting diode manufacturing The method includes providing an epitaxial substrate having a first surface and a second surface, wherein the first surface and the second surface are respectively located on opposite sides of the epitaxial substrate; forming an epitaxial structure on the epitaxial substrate a surface, wherein the epitaxial structure has a first semiconductor layer and a second semiconductor layer; forming a trench on the epitaxial structure, the trench exposing the first semiconductor layer; providing a fixed substrate disposed on the epitaxial structure and Providing an energy from the second surface of the epitaxial substrate into the epitaxial substrate and focusing between the first surface and the second surface; forming a reflective layer on the second surface of the epitaxial substrate; The fixed substrate is removed and grain splitting is performed to form a plurality of light emitting diode crystal grains.
於本發明之一較佳實施例中,磊晶結構更具有一主動層,主動層夾置於第一半導體層及第二半導層之間。 In a preferred embodiment of the present invention, the epitaxial structure further has an active layer sandwiched between the first semiconductor layer and the second semiconductor layer.
於本發明之一較佳實施例中,基板包含一膠帶、一蠟、一光阻材料或一硬性基板,或其組合。 In a preferred embodiment of the invention, the substrate comprises a tape, a wax, a photoresist or a rigid substrate, or a combination thereof.
於本發明之一較佳實施例中,係藉由溝槽定義單顆的發光二極體晶粒。 In a preferred embodiment of the invention, a single luminescent diode die is defined by a trench.
於本發明之一較佳實施例中,能量係由一雷射光照射所產生。 In a preferred embodiment of the invention, the energy is generated by illumination of a laser.
於本發明之一較佳實施例中,能量之照射位置與溝槽對應。 In a preferred embodiment of the invention, the illumination position of the energy corresponds to the groove.
於本發明之一較佳實施例中,能量破壞磊晶基板之內部結構。 In a preferred embodiment of the invention, the energy destroys the internal structure of the epitaxial substrate.
於本發明之一較佳實施例中,反射層係經過蒸鍍或濺鍍製程,以形成於磊晶基板之第二表面上。 In a preferred embodiment of the invention, the reflective layer is subjected to an evaporation or sputtering process to form a second surface of the epitaxial substrate.
於本發明之一較佳實施例中,反射層係為單層結構或多層結構。 In a preferred embodiment of the invention, the reflective layer is a single layer structure or a multilayer structure.
於本發明之一較佳實施例中,反射層之材質包含銀、鋁、金、鈦、鉻、鎳、銦錫氧化物,或其組合。 In a preferred embodiment of the invention, the material of the reflective layer comprises silver, aluminum, gold, titanium, chromium, nickel, indium tin oxide, or a combination thereof.
於本發明之一較佳實施例中,製作方法更包括於磊晶結構之第二半導體層上形成一電流阻障層。 In a preferred embodiment of the present invention, the fabrication method further includes forming a current blocking layer on the second semiconductor layer of the epitaxial structure.
於本發明之一較佳實施例中,製作方法更包括形成一第一電極於磊晶結構之上及形成一第二電極於第一半導體層之上。 In a preferred embodiment of the invention, the method further includes forming a first electrode over the epitaxial structure and forming a second electrode over the first semiconductor layer.
於本發明之一較佳實施例中,製作方法更包括形成一保護層於磊晶結構上,其中保護層露出第一電極及第二電極。 In a preferred embodiment of the invention, the fabrication method further includes forming a protective layer on the epitaxial structure, wherein the protective layer exposes the first electrode and the second electrode.
於本發明之一較佳實施例中,製作方法更包括減薄磊晶基板。 In a preferred embodiment of the invention, the fabrication method further comprises thinning the epitaxial substrate.
承上所述,因依據本發明發光二極體的製作方法係包括提供一磊晶基板,磊晶基板具有一第一表面與一第二表面,其中第一表面與第二表面分別位於磊晶基板之相反側;形成一磊晶結構於磊晶基板之第一表面上,其中磊晶結構具有一第一半導體層及一第二半導體層;形成一溝槽於磊晶結構上,溝槽暴露出第一半導體層;提供一固定基板設置於磊晶結構及第一半導體層上;提供一能量由磊晶基板之第二表面進入磊晶基板,並聚焦於第一表面及第二表面之間;形成一反射層於磊晶基板之第二表面上;以及移除固定基板,並進行晶粒劈裂,以形成複數發光二極體 晶粒。藉此,與習知相較,本發明之發光二極體並不使用習知之雷射預切方式進行晶粒切割,因此不會有雷射切割所殘留的黑色熔渣,故不會有熔渣無法清除乾淨而導致發光二極體的發光亮度衰減而影響其發光效率。 As described above, the method for fabricating a light-emitting diode according to the present invention includes providing an epitaxial substrate having a first surface and a second surface, wherein the first surface and the second surface are respectively located on the epitaxial layer An opposite side of the substrate; forming an epitaxial structure on the first surface of the epitaxial substrate, wherein the epitaxial structure has a first semiconductor layer and a second semiconductor layer; forming a trench on the epitaxial structure, the trench is exposed a first semiconductor layer is disposed; a fixed substrate is disposed on the epitaxial structure and the first semiconductor layer; and an energy is supplied from the second surface of the epitaxial substrate into the epitaxial substrate, and is focused between the first surface and the second surface Forming a reflective layer on the second surface of the epitaxial substrate; and removing the fixed substrate and performing grain splitting to form a plurality of light emitting diodes Grain. Therefore, compared with the conventional one, the light-emitting diode of the present invention does not use the conventional laser pre-cutting method for grain cutting, so that there is no black slag remaining in the laser cutting, so there is no melting. The slag cannot be cleaned and the luminance of the light-emitting diode is attenuated to affect its luminous efficiency.
以下將參照相關圖式,說明依本發明較佳實施例之一種發光二極體的製作方法,其中相同的元件將以相同的參照符號加以說明。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method of fabricating a light-emitting diode according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, wherein the same elements will be described with the same reference numerals.
請分別參照圖2、圖3A至圖3H所示,其中,圖2為本發明較佳實施例之一種發光二極體的製作方法流程圖,而圖3A至圖3H分別為本發明之發光二極體的製作過程示意圖。 2, FIG. 3A to FIG. 3H, FIG. 2 is a flow chart of a method for fabricating a light-emitting diode according to a preferred embodiment of the present invention, and FIGS. 3A to 3H are respectively a light-emitting diode of the present invention. Schematic diagram of the production process of the polar body.
本發明之發光二極體的製作方法係包括步驟S01至步驟S07。 The manufacturing method of the light-emitting diode of the present invention includes steps S01 to S07.
首先,於步驟S01中,如圖3A所示,係提供一磊晶基板21,磊晶基板21具有一第一表面211與一第二表面212,其中第一表面212與第二表面212分別位於磊晶基板21之相反側。於此,第一表面211係為磊晶基板21之上表面,而第二表面212係為磊晶基板21之下表面。 First, in step S01, as shown in FIG. 3A, an epitaxial substrate 21 is provided. The epitaxial substrate 21 has a first surface 211 and a second surface 212, wherein the first surface 212 and the second surface 212 are respectively located. The opposite side of the epitaxial substrate 21. Here, the first surface 211 is the upper surface of the epitaxial substrate 21, and the second surface 212 is the lower surface of the epitaxial substrate 21.
另外,於步驟S02中,係形成一磊晶結構22於磊晶基板21之第一表面211上,其中磊晶結構22具有一第一半導體層221及一第二半導體層223。本實施例之磊晶基板21係以藍寶石基板(Sapphire)為例。當然,磊晶基板 21還可以是碳化矽、氧化鋁、氮化鎵、玻璃、石英、磷化鎵或砷化鎵基板等等。其中,形成磊晶結構22的主要磊晶方法有液相磊晶法(Liquid Phase Epitaxy,LPE)、氣相磊晶法(Vapor Phase Epitaxy,VPE)及有機金屬氣相磊晶法(Metal-organic Chemical Vapor Deposition,MOCVD),並不加以限制。 In addition, in step S02, an epitaxial structure 22 is formed on the first surface 211 of the epitaxial substrate 21, wherein the epitaxial structure 22 has a first semiconductor layer 221 and a second semiconductor layer 223. The epitaxial substrate 21 of this embodiment is exemplified by a sapphire substrate (Sapphire). Of course, the epitaxial substrate 21 can also be tantalum carbide, aluminum oxide, gallium nitride, glass, quartz, gallium phosphide or gallium arsenide substrates, and the like. Among them, the main epitaxial methods for forming the epitaxial structure 22 include liquid phase epitaxy (LPE), Vapor Phase Epitaxy (VPE), and organometallic vapor phase epitaxy (Metal-organic). Chemical Vapor Deposition, MOCVD), without limitation.
另外,磊晶結構22以材料能隙來看,常用的Ⅲ族-V族元素組成大至可分成四類,分別為:GaP/GaAsP系列、AlGaAs系列、AlGaInP系列、以及GaN系列。於此,磊晶結構22係以具有一第一半導體層221、一主動層222及一第二半導體層223為例。靠近磊晶基板21至遠離磊晶基板21依序為第一半導體層221、主動層222及第二半導體層223。第一半導體層221與第二半導體層223具有不同電性,例如當第一半導體層221為P型時,第二電性半導體層223為N型;而當第一半導體221層為N型時,第二半導體層223則為P型。於此,第一半導體層221係為N型氮化鎵(GaN),主動層222係為多重量子井(Multiple quantum-well,MQW)結構,而第二半導體層223係以P型氮化鎵為例。 In addition, the epitaxial structure 22 is in the material gap, and the commonly used group III-V elements are composed up to four types: GaP/GaAsP series, AlGaAs series, AlGaInP series, and GaN series. Here, the epitaxial structure 22 has a first semiconductor layer 221, an active layer 222, and a second semiconductor layer 223 as an example. The first semiconductor layer 221, the active layer 222, and the second semiconductor layer 223 are sequentially adjacent to the epitaxial substrate 21 and away from the epitaxial substrate 21. The first semiconductor layer 221 and the second semiconductor layer 223 have different electrical properties. For example, when the first semiconductor layer 221 is P-type, the second electrical semiconductor layer 223 is N-type; and when the first semiconductor 221 layer is N-type; The second semiconductor layer 223 is of a P type. Here, the first semiconductor layer 221 is N-type gallium nitride (GaN), the active layer 222 is a multiple quantum-well (MQW) structure, and the second semiconductor layer 223 is a P-type gallium nitride. For example.
另外,於步驟S03中,如圖3B所示,係形成一溝槽T於磊晶結構22上,其中溝槽T暴露出磊晶結構22之第一半導體層221。更詳細來說,係可利用黃光微影製程以光阻材料形成遮罩層(圖未顯示)為蝕刻遮罩,然後再利用蝕刻製程以移除未被遮罩層所覆蓋的部份磊晶結構,直至 暴露第一半導體層221,以形成於後續可定義發光二極體晶粒之溝槽T之後,再去除遮罩層。於此,蝕刻之技術可為感應耦合電漿離子蝕刻。藉由溝槽T的形成可以定義出單顆的發光二極體晶粒。在本實施例中,係以形成兩溝槽T為例,以定義出3顆發光二極體晶粒。其中,以垂直磊晶基板21之第一表面211的方向來說,溝槽T係去除部分磊晶結構22直至暴露部分第一半導體層221。而在其他實施例中,為了確定溝槽T可以暴露出部分的第一半導體層221,也可以控制蝕刻製程直到去除部分的第一半導體層221,以確保溝槽T可以暴露出第一半導體層221。 In addition, in step S03, as shown in FIG. 3B, a trench T is formed on the epitaxial structure 22, wherein the trench T exposes the first semiconductor layer 221 of the epitaxial structure 22. In more detail, a yellow light lithography process can be used to form a mask layer (not shown) with a photoresist material as an etch mask, and then an etching process is used to remove a portion of the epitaxial structure covered by the mask layer. Until The first semiconductor layer 221 is exposed to be formed after the trench T of the subsequently defineable light-emitting diode die, and then the mask layer is removed. Here, the etching technique may be inductively coupled plasma ion etching. A single light-emitting diode crystal grain can be defined by the formation of the trench T. In this embodiment, two trenches T are formed as an example to define three light-emitting diode crystal grains. Wherein, in the direction of the first surface 211 of the vertical epitaxial substrate 21, the trench T removes a portion of the epitaxial structure 22 until the portion of the first semiconductor layer 221 is exposed. In other embodiments, in order to determine that the trench T may expose a portion of the first semiconductor layer 221, the etching process may also be controlled until a portion of the first semiconductor layer 221 is removed to ensure that the trench T may expose the first semiconductor layer. 221.
另外,於其它的實施態樣中,製作方法更可包括於磊晶結構22之第二半導體層223上形成一電流阻障層(圖未顯示)。電流阻障層可避免大量電流直接灌至發光二極體中而造成電流擁塞情形,可提高發光二極體之發光效率。其中,係可以微影、蒸鍍與浮離製程之方式形成電流阻障層,而其材質可為一氧化矽(SiOx)或氮化矽(SiNx)之絕緣透明膜。而該製作方法更可包括於磊晶結構22之第二半導體層223與電流阻障層(圖未顯示)上形成一歐姆接觸的透明導電層(圖未顯示)。其中,該透明導電層係可以微影、蒸鍍與浮離或蝕刻製程之方式形成,而其材質可為一銦錫氧化物(ITO)之透明導電膜。 In addition, in other implementations, the fabrication method may further include forming a current blocking layer (not shown) on the second semiconductor layer 223 of the epitaxial structure 22. The current blocking layer can avoid a large amount of current directly flowing into the light emitting diode to cause current congestion, and can improve the luminous efficiency of the light emitting diode. Among them, the current barrier layer can be formed by a lithography, vapor deposition and floating process, and the material thereof can be an insulating transparent film of cerium oxide (SiO x ) or tantalum nitride (SiN x ). The fabrication method may further include forming a transparent conductive layer (not shown) on the second semiconductor layer 223 of the epitaxial structure 22 and forming a ohmic contact on the current blocking layer (not shown). The transparent conductive layer may be formed by a lithography, vapor deposition and floating or etching process, and the material thereof may be a transparent conductive film of indium tin oxide (ITO).
再者,如圖3C所示,於形成溝槽T之後及執行下一步驟S04之前,製作方法更可包括:形成一第一電極P1於磊晶結構22之上及形成一第二電極P2於第一半導體層 221之上。更詳細來說,第一電極P1及第二電極P2係分別設置於磊晶結構22之第二半導體層223及第一半導體層221。其中,係可以微影、蒸鍍與浮離或蝕刻製程之方式形成第一電極P1及第二電極P2,且第一電極P1及第二電極P2可為複合金屬層,其材質例如可為鈦/鉑/金或鉻/鉑/金。另外,於執行步驟S04之前,製作方法更可包括形成一保護層(圖未顯示)於磊晶結構22上,保護層並不覆蓋第一電極P1及第二電極P2,以使第一電極P1及第二電極P2可露出,以外接電源。其中,係可以微影、蒸鍍與浮離或蝕刻製程之方式形成保護層,而其材質可為一氧化矽(SiOx)或氮化矽(SiNx)之絕緣透明膜。此外,如圖3D所示,於執行步驟S04之前,製作方法更可包括減薄磊晶基板21。本實施例係以研磨及拋光等製程減少磊晶基板21的厚度。原本磊晶基板21的厚度約為440μm,可先將磊晶基板21研磨至50~100μm,最後再以拋光製程將磊晶基板21減薄至20~40μm。於此,減薄後之磊晶基板21的下表面仍稱為磊晶基板21之第二表面,以下均以212a標示之。 Furthermore, as shown in FIG. 3C, after the trench T is formed and before the next step S04 is performed, the fabrication method may further include: forming a first electrode P1 over the epitaxial structure 22 and forming a second electrode P2. Above the first semiconductor layer 221. More specifically, the first electrode P1 and the second electrode P2 are respectively disposed on the second semiconductor layer 223 and the first semiconductor layer 221 of the epitaxial structure 22 . The first electrode P1 and the second electrode P2 may be formed by a lithography, vapor deposition, and floating or etching process, and the first electrode P1 and the second electrode P2 may be a composite metal layer, and the material thereof may be titanium, for example. / Platinum / Gold or Chromium / Platinum / Gold. In addition, before the step S04 is performed, the manufacturing method may further include forming a protective layer (not shown) on the epitaxial structure 22, the protective layer not covering the first electrode P1 and the second electrode P2, so that the first electrode P1 And the second electrode P2 can be exposed, and the power source is externally connected. Wherein, the protective layer can be formed by lithography, evaporation and floating or etching processes, and the material thereof can be an insulating transparent film of cerium oxide (SiO x ) or tantalum nitride (SiN x ). In addition, as shown in FIG. 3D, before the step S04 is performed, the manufacturing method may further include thinning the epitaxial substrate 21. In this embodiment, the thickness of the epitaxial substrate 21 is reduced by processes such as polishing and polishing. The thickness of the original epitaxial substrate 21 is about 440 μm, and the epitaxial substrate 21 can be first polished to 50 to 100 μm, and finally the epitaxial substrate 21 is thinned to 20 to 40 μm by a polishing process. Here, the lower surface of the epitaxial substrate 21 after thinning is still referred to as the second surface of the epitaxial substrate 21, and is denoted by 212a below.
接著,於步驟S04中,如圖3E所示,係提供一固定基板F設置於磊晶結構22及第一半導體層221上。於此,固定基板F例如可為一軟性膠帶以黏貼的方式覆蓋於磊晶結構22及第一半導體層221之上;也可以使用蠟或光阻材料塗佈於磊晶結構22及第一半導體層221上當作固定基板F;或者可以使用一硬性基板搭配黏著劑當作固定基 板F,其中,黏著劑可例如是膠水或任何可以用來結合硬性基板與磊晶結構22與第一半導體層221之黏性物體,以將硬性基板結合於磊晶結構22及第一半導體層221之上。 Next, in step S04, as shown in FIG. 3E, a fixed substrate F is provided on the epitaxial structure 22 and the first semiconductor layer 221. For example, the fixed substrate F may be adhered to the epitaxial structure 22 and the first semiconductor layer 221 by a flexible adhesive tape; or the epitaxial structure 22 and the first semiconductor may be coated with a wax or a photoresist. The layer 221 is used as a fixed substrate F; or a rigid substrate can be used as a fixed base with an adhesive The F, wherein the adhesive can be, for example, glue or any adhesive object that can be used to bond the rigid substrate with the epitaxial structure 22 and the first semiconductor layer 221 to bond the rigid substrate to the epitaxial structure 22 and the first semiconductor layer Above 221.
接著,執行步驟S05,如圖3F所示,係提供一能量E由磊晶基板21之第二表面212a進入磊晶基板21,並聚焦於第一表面211及第二表面212a之間。在本實施例中,係以雷射光由磊晶基板21之第二表面212a(由下表面往上)照射磊晶基板21之內部,以提供一隱形雷射切割方式。其中,雷射光聚焦於磊晶基板21的內部,且能量E之照射位置與原先之溝槽T的位置對應。由於雷射光的能量E係聚焦於磊晶基板21的內部,故會解離及破壞部份磊晶基板21之內部結構,但對磊晶基板21之第二表面212a或第一表面211並不造成損傷(沒有實際的切痕)。另外,為了怕雷射光的能量E傷害磊晶結構22而影響製程良率,因此,雷射光係由第二表面212a進入磊晶基板21並聚焦於磊晶基板21內部。此外,由於已將磊晶結構22及磊晶基板21固定於固定基板F上,故經隱形雷射切割後的磊晶基板21及磊晶結構22不會受應力的影響而碎裂,也不會產生翹曲的現象。 Next, step S05 is performed. As shown in FIG. 3F, an energy E is supplied from the second surface 212a of the epitaxial substrate 21 into the epitaxial substrate 21, and is focused between the first surface 211 and the second surface 212a. In the present embodiment, the inside of the epitaxial substrate 21 is irradiated with the laser beam from the second surface 212a of the epitaxial substrate 21 (from the lower surface upward) to provide a stealth laser cutting mode. The laser light is focused on the inside of the epitaxial substrate 21, and the irradiation position of the energy E corresponds to the position of the original trench T. Since the energy E of the laser light is focused on the inside of the epitaxial substrate 21, the internal structure of the partial epitaxial substrate 21 is dissociated and destroyed, but the second surface 212a or the first surface 211 of the epitaxial substrate 21 is not caused. Damage (no actual cuts). In addition, in order to prevent the energy E of the laser light from damaging the epitaxial structure 22 and affecting the process yield, the laser light enters the epitaxial substrate 21 from the second surface 212a and is focused on the inside of the epitaxial substrate 21. In addition, since the epitaxial structure 22 and the epitaxial substrate 21 have been fixed on the fixed substrate F, the epitaxial substrate 21 and the epitaxial structure 22 after the stealth laser cutting are not broken by the influence of stress, nor are they broken. There will be warping.
另外,於步驟S06中,如圖3G所示,係形成一反射層23於磊晶基板21之第二表面212a上。本實施例係經由電子槍(E-Gun)蒸鍍或濺鍍(sputter)製程將一高反射率之反射層23設置於磊晶基板21之第二表面212a上,以 反射光線。於此,係為向上發光為例。另外,本實施例之反射層23可為單層高反射率之金屬層或為多層高反射率之金屬層,而其材質可例如包含銀、鋁、金、鈦、鉻、鎳、銦錫氧化物,或其組合,並例如可為單層的銀、雙層的鎳/銀,或雙層之銦錫氧化物/銀等。使用高反射率之反射層23可改善習知多層膜布拉格反射鏡的較窄的反射頻寬,以提供一全波段的反射光譜,不僅可提高發光二極體的發光效率,更可幫助發光二極體進行散熱。 In addition, in step S06, as shown in FIG. 3G, a reflective layer 23 is formed on the second surface 212a of the epitaxial substrate 21. In this embodiment, a high reflectivity reflective layer 23 is disposed on the second surface 212a of the epitaxial substrate 21 via an electron gun (E-Gun) evaporation or sputtering process. Reflecting light. Here, it is an example of upward illumination. In addition, the reflective layer 23 of the embodiment may be a single layer of high reflectivity metal layer or a plurality of high reflectivity metal layers, and the material thereof may include, for example, silver, aluminum, gold, titanium, chromium, nickel, indium tin oxide. The substance, or a combination thereof, may be, for example, a single layer of silver, a double layer of nickel/silver, or a double layer of indium tin oxide/silver or the like. The use of the high reflectivity reflective layer 23 can improve the narrow reflection bandwidth of the conventional multilayer film Bragg mirror to provide a full-band reflection spectrum, which not only improves the luminous efficiency of the light-emitting diode, but also helps the light-emitting diode The pole body dissipates heat.
最後,執行步驟S07,如圖3H所示,係移除固定基板F,並進行晶粒劈裂,以形成複數發光二極體晶粒。於此,發光二極體係為一水平導通式發光二極體。 Finally, step S07 is performed, as shown in FIG. 3H, the fixed substrate F is removed, and grain splitting is performed to form a plurality of light-emitting diode crystal grains. Here, the light emitting diode system is a horizontal conductive light emitting diode.
綜上所述,包括提供一磊晶基板,磊晶基板具有一第一表面與一第二表面,其中第一表面與第二表面分別位於磊晶基板之相反側;形成一磊晶結構於磊晶基板之第一表面上,其中磊晶結構具有一第一半導體層及一第二半導體層;形成一溝槽於磊晶結構上,溝槽暴露出第一半導體層;提供一固定基板設置於磊晶結構及第一半導體層上;提供一能量由磊晶基板之第二表面進入磊晶基板,並聚焦於第一表面及第二表面之間;形成一反射層於磊晶基板之第二表面上;以及移除固定基板,並進行晶粒劈裂,以形成複數發光二極體晶粒。藉此,與習知相較,本發明之發光二極體並不使用習知之雷射預切方式進行晶粒切割,因此不會有雷射切割所殘留的黑色熔渣,故不會有熔渣無法清除乾淨而導致發光二極體的發光亮度衰減而影響其發 光效率。 In summary, the present invention includes providing an epitaxial substrate having a first surface and a second surface, wherein the first surface and the second surface are respectively located on opposite sides of the epitaxial substrate; forming an epitaxial structure on the surface a first surface of the crystal substrate, wherein the epitaxial structure has a first semiconductor layer and a second semiconductor layer; forming a trench on the epitaxial structure, the trench exposing the first semiconductor layer; providing a fixed substrate disposed on An epitaxial structure and the first semiconductor layer; providing an energy from the second surface of the epitaxial substrate into the epitaxial substrate and focusing between the first surface and the second surface; forming a reflective layer on the epitaxial substrate Surface; and removing the fixed substrate and performing grain splitting to form a plurality of light-emitting diode crystal grains. Therefore, compared with the conventional one, the light-emitting diode of the present invention does not use the conventional laser pre-cutting method for grain cutting, so that there is no black slag remaining in the laser cutting, so there is no melting. The slag cannot be cleaned, causing the luminance of the light-emitting diode to decay and affecting its development. Light efficiency.
以上所述僅為舉例性,而非為限制性者。任何未脫離本創作之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。 The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of this creation shall be included in the scope of the appended patent application.
11、21‧‧‧磊晶基板 11, 21‧‧‧ epitaxial substrate
12、22‧‧‧磊晶結構 12, 22‧‧‧ epitaxial structure
121‧‧‧n-GaN層 121‧‧‧n-GaN layer
122‧‧‧多重量子井層 122‧‧‧Multiple Quantum Wells
123‧‧‧p-GaN層 123‧‧‧p-GaN layer
13、23‧‧‧反射層 13, 23‧‧‧reflective layer
211‧‧‧第一表面 211‧‧‧ first surface
212、212a‧‧‧第二表面 212, 212a‧‧‧ second surface
221‧‧‧第一半導體層 221‧‧‧First semiconductor layer
222‧‧‧主動層 222‧‧‧ active layer
223‧‧‧第二半導體層 223‧‧‧Second semiconductor layer
C‧‧‧切痕 C‧‧‧ cuts
E‧‧‧能量 E‧‧‧Energy
F‧‧‧固定基板 F‧‧‧Fixed substrate
P1‧‧‧第一電極 P1‧‧‧first electrode
P2‧‧‧第二電極 P2‧‧‧second electrode
S01~S07‧‧‧步驟 S01~S07‧‧‧Steps
T‧‧‧溝槽 T‧‧‧ trench
圖1A至圖1E分別為習知一種發光二極體的製作流程示意圖;圖2為本發明較佳實施例之一種發光二極體的製作方法流程圖;以及圖3A至圖3H分別為本發明之發光二極體的製作過程示意圖。 1A to FIG. 1E are schematic diagrams showing a manufacturing process of a conventional light-emitting diode; FIG. 2 is a flow chart of a method for fabricating a light-emitting diode according to a preferred embodiment of the present invention; and FIG. 3A to FIG. Schematic diagram of the manufacturing process of the light-emitting diode.
S01~S07‧‧‧步驟 S01~S07‧‧‧Steps
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101135367A TW201414004A (en) | 2012-09-26 | 2012-09-26 | Manufacturing method of LED |
CN201210537450.5A CN103681982A (en) | 2012-09-26 | 2012-12-12 | Method for manufacturing light emitting diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101135367A TW201414004A (en) | 2012-09-26 | 2012-09-26 | Manufacturing method of LED |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201414004A true TW201414004A (en) | 2014-04-01 |
Family
ID=50318890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101135367A TW201414004A (en) | 2012-09-26 | 2012-09-26 | Manufacturing method of LED |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103681982A (en) |
TW (1) | TW201414004A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111430511A (en) * | 2014-07-25 | 2020-07-17 | 晶元光电股份有限公司 | Light emitting element and method for manufacturing the same |
CN104625425B (en) * | 2014-12-29 | 2018-03-30 | 国家电网公司 | A kind of device for high-power power electronic wafer invisible laser cutting method |
US11309188B2 (en) | 2018-05-09 | 2022-04-19 | Semiconductor Components Industries, Llc | Singulation of silicon carbide semiconductor wafers |
CN114284131A (en) * | 2020-09-28 | 2022-04-05 | 东莞新科技术研究开发有限公司 | Method for processing wafer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3081094B2 (en) * | 1993-10-15 | 2000-08-28 | トヨタ自動車株式会社 | Semiconductor laser and manufacturing method thereof |
TWI326626B (en) * | 2002-03-12 | 2010-07-01 | Hamamatsu Photonics Kk | Laser processing method |
CN102142397A (en) * | 2010-01-28 | 2011-08-03 | 晶元光电股份有限公司 | Light-emitting diode (LED) and method for manufacturing same |
CN102593286A (en) * | 2012-03-14 | 2012-07-18 | 武汉迪源光电科技有限公司 | Method for manufacturing high-power light-emitting diode (LED) |
-
2012
- 2012-09-26 TW TW101135367A patent/TW201414004A/en unknown
- 2012-12-12 CN CN201210537450.5A patent/CN103681982A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN103681982A (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240042166A1 (en) | Semiconductor light-emitting device | |
JP6023660B2 (en) | Semiconductor light emitting device and semiconductor light emitting device | |
TWI720053B (en) | Light-emitting element and manufacturing method thereof | |
TWI431798B (en) | Light emitting diode with conducting metal substrate | |
JP2007536732A (en) | Lift-off process for GaN film formed on SiC substrate and device manufactured by the method | |
JP2007287757A (en) | Nitride semiconductor light-emitting element and its manufacturing method | |
JP2009295611A (en) | Semiconductor light emitting element and manufacturing method thereof | |
JP2007258672A (en) | Light-emitting diode and its manufacturing method | |
US10008634B2 (en) | Thin-film flip-chip light emitting diode having roughening surface and method for manufacturing the same | |
JP5992702B2 (en) | Semiconductor light emitting device, vehicle lamp, and method for manufacturing semiconductor light emitting device | |
TW201707232A (en) | Semiconductor light emitting device | |
JP6068165B2 (en) | Semiconductor optical device and method of manufacturing semiconductor optical device | |
WO2015141166A1 (en) | Semiconductor light-emitting device and method for manufacturing same | |
US8309377B2 (en) | Fabrication of reflective layer on semiconductor light emitting devices | |
TW201414004A (en) | Manufacturing method of LED | |
TW201327914A (en) | Method for fabricating wafer-level light emitting diode structure | |
CN111106212A (en) | Deep ultraviolet light-emitting diode with vertical structure and preparation method thereof | |
US20210143306A1 (en) | Semiconductor light-emitting device | |
JP2014007252A (en) | Semiconductor light-emitting element and semiconductor light-emitting element manufacturing method | |
TW201444115A (en) | Light emitting device and manufacturing method thereof | |
CN110828625A (en) | Flip chip and manufacturing method thereof | |
TW201324843A (en) | Manufacturing method of LED | |
WO2007046656A1 (en) | Method of producing light emitting diode having vertical structure | |
TW201414012A (en) | Light-emitting device and manufacturing method thereof | |
US12100791B2 (en) | Method for producing a semiconductor component having an insulating substrate, and semiconductor component having an insulating substrate |