WO2015141166A1 - Semiconductor light-emitting device and method for manufacturing same - Google Patents
Semiconductor light-emitting device and method for manufacturing same Download PDFInfo
- Publication number
- WO2015141166A1 WO2015141166A1 PCT/JP2015/001188 JP2015001188W WO2015141166A1 WO 2015141166 A1 WO2015141166 A1 WO 2015141166A1 JP 2015001188 W JP2015001188 W JP 2015001188W WO 2015141166 A1 WO2015141166 A1 WO 2015141166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- semiconductor
- semiconductor layer
- light emitting
- electrode
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 121
- 238000000034 method Methods 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000002310 reflectometry Methods 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims description 55
- 239000002184 metal Substances 0.000 claims description 55
- 229920002120 photoresistant polymer Polymers 0.000 claims description 46
- 239000000758 substrate Substances 0.000 claims description 27
- 238000005530 etching Methods 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 15
- 229910052594 sapphire Inorganic materials 0.000 claims description 7
- 239000010980 sapphire Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 6
- 238000005566 electron beam evaporation Methods 0.000 claims description 5
- 238000004544 sputter deposition Methods 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 claims description 4
- 238000001017 electron-beam sputter deposition Methods 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 2
- 229910003465 moissanite Inorganic materials 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 229910052596 spinel Inorganic materials 0.000 claims description 2
- 239000011029 spinel Substances 0.000 claims description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 2
- 230000002265 prevention Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 224
- 238000000059 patterning Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
- H01L33/382—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/405—Reflective materials
Definitions
- the present invention relates to a semiconductor light emitting device and a method for manufacturing the same.
- GaN-based GaN series Al 1-xy Ga x In y N (0 ⁇ x, y ⁇ 1, 0 ⁇ (x + y) ⁇ 1, hereinafter referred to as GaN-based GaN series) light emitting diodes capable of generating white light and the like have been developed.
- an n-type GaN-based layer, a multiple quantum well GaN-based active layer, and a p-type GaN-based layer are grown on a sapphire substrate by metal organic chemical vapor deposition (MOCVD) to form a GaN-based semiconductor epitaxial stack.
- MOCVD metal organic chemical vapor deposition
- a p-side electrode layer is formed on the exposed p-type GaN-based layer, etched into a predetermined shape to form a p-side electrode, and then the p-type GaN-based layer and the GaN-based active layer are etched to form n
- a via hole exposing the type GaN layer is formed, a necessary insulating structure is formed, and an n-side electrode connected to the bottom surface of the via hole is formed (for example, JP-T-2010-525585).
- a support substrate provided with a connection wiring layer connected to the p-side electrode and the n-side electrode can be bonded above the p-type layer.
- the sapphire substrate cannot be said to have excellent heat dissipation characteristics.
- a configuration is known in which an n-type GaN-based layer is exposed by removing a sapphire substrate that functions as a growth substrate.
- a p-side electrode and an n-side electrode are formed on the p-type GaN-based layer side, the entire surface of the n-type GaN-based layer exposed by removing the growth substrate can be used as a light emitting surface.
- the exposed n-type layer surface is roughened (fine processing such as micro cones), the light extraction efficiency can be improved.
- the p-side electrode is formed by widely reflecting a reflective electrode mainly composed of Ag on the surface of the p-type layer, and can reflect the light directed toward the back side in the p-type layer to the surface (n-type layer) side. .
- the light extraction efficiency can be improved (for example, JP 2010-123717 A).
- the n-side electrode When the n-side electrode is arranged in the via hole and the wiring is routed to the p-type layer surface side, the light emitting function is lost because the active layer in the via hole is removed.
- the n-type GaN-based layer exists on the n-side electrode (on the light emission surface side) and can propagate light from the surrounding region. It can be considered that the n-side electrode is used as a reflective electrode to reflect as much propagating light as possible on the surface side of the n-type layer to alleviate luminance unevenness.
- the contact electrode that ensures contact with the n-type layer generally has a low reflectance.
- a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer are laminated, a second conductivity type side high reflectance electrode having an opening is formed on the second conductivity type semiconductor layer, Etching the second conductive type semiconductor layer and the active layer to expose the first conductive type semiconductor layer, forming a contact electrode on the first conductive type semiconductor layer to ensure contact, and providing a high reflectivity above the contact electrode
- emits light from the 1st conductivity type semiconductor layer side was examined.
- the high reflectance indicates an average reflectance of 80% or more in the wavelength range of 350 nm to 850 nm including the visible light region (380 nm to 760 nm).
- the reflectivity of the contact electrode is low, the area of the contact electrode extending outside the contact surface is limited as narrow as possible, and the first conductivity type side high reflectivity electrode is distributed around the first conductivity type layer. An attempt was made to reflect the propagating light at the high reflectivity electrode. However, a phenomenon occurs in which the electrical continuity between the contact electrode and the connection wiring, and thus the light emission phenomenon itself, is impaired. It has been difficult to realize a highly reliable first-conductivity-type side electrode with high reflectivity.
- a semiconductor stack including a stack of a first semiconductor layer having a first conductivity type, an active layer, and a second semiconductor layer having a second conductivity type;
- a second electrode having a high reflectance formed on the second semiconductor layer;
- a recess that penetrates the second semiconductor layer and the active layer from the surface of the second semiconductor layer, enters the first semiconductor layer, exposes the semiconductor stack on a side surface, and exposes the first semiconductor layer on a bottom surface;
- An insulating film having an opening on a bottom surface of the recess and covering the side surface of the recess;
- a contact region formed by digging down the first semiconductor layer exposed in the opening;
- a first semiconductor layer-side contact electrode that forms an electrical contact with the surface of the contact region, has a hook portion that smoothly wraps around the upper surface of the insulating film adjacent to the opening and is continuous;
- a first semiconductor layer-side high reflectivity electrode having a high reflectivity with respect to light emitted from the semiconductor stack, and extending from the first semiconductor layer-side contact
- Epitaxially growing a semiconductor stack including a stack of a first semiconductor layer having a first conductivity type, an active layer, and a second semiconductor layer having a second conductivity type on a growth substrate; Etching from the surface of the second semiconductor layer through the second semiconductor layer and the active layer and entering the first semiconductor layer, exposing the semiconductor stack on the side, and exposing the first semiconductor layer on the bottom Forming a recess to be Covering the recess inner surface and forming an insulating film; Forming a laminated resist layer of a sacrificial resist lower layer and a photoresist upper layer on the insulating film; Exposing the photoresist upper layer with a pattern having an opening in the recess bottom; Developing the laminated resist layer, lowering the sacrificial resist lower layer end from the photoresist upper layer end to form a drawing space above the insulating film; Etching the insulating film using the laminated resist layer as an etching mask, digging down the first semiconductor layer below to
- FIGS. 1A to 1H are cross-sectional views showing main processes of a method for manufacturing a semiconductor light emitting device according to an embodiment.
- 2A to 2F are cross-sectional views showing main processes of a method for manufacturing a semiconductor light-emitting device based on a preliminary experiment.
- 3A and 3B are cross-sectional views showing the main points of a method for manufacturing a semiconductor light emitting device according to an embodiment.
- FIG. 4A is a plan view showing an arrangement example of the p-side electrode and the n-side electrode
- FIG. 4B is a cross-sectional view showing an example of the configuration of the p-side electrode
- FIGS. 4C-4E are plan views showing other arrangement examples of the recesses.
- FIG. 5 is a cross-sectional view showing a configuration example of the semiconductor light emitting device in a completed state.
- an n-type GaN layer 2, an active layer 3, and a p-type GaN layer 4 are grown on a sapphire growth substrate 1 by metal organic chemical vapor deposition (MOCVD).
- MOCVD metal organic chemical vapor deposition
- a p-side electrode 5 such as Ag having a high reflectance is formed on the p-type GaN layer 4.
- a cap insulating layer 10 such as silicon oxide is deposited so as to cover the p-side electrode 5.
- a photoresist pattern is formed on the insulating layer 10 to serve as a mask when etching the recesses in the semiconductor layer.
- the insulating film 12 and the n-type layer 2 are partially etched to form a contact region 16 on the bottom surface of the recess 15.
- Contact region 16 includes a region from which insulating layer 12 has been removed and a region from which n-type layer 2 has been removed.
- the insulating layer 12 has a bottom surface portion having a surface parallel to the bottom surface of the recess 15 around the contact region 16.
- a contact metal layer CM such as Ti is deposited on the surface of the contact region 16 and the surface of the resist pattern PR1.
- the photoresist pattern PR1 used as an etching mask is also used as a lift-off resist pattern for shaping the contact metal layer.
- the photoresist pattern PR1 is removed and the contact metal on the photoresist pattern PR1 is removed by lift-off.
- the photoresist pattern PR1 is a resist pattern that can withstand the dry etching process shown in FIG. 2B, and is a forward tapered resist pattern in which the opening width becomes narrower from the top to the bottom.
- a positive resist pattern having a reverse taper shape in which the opening width becomes narrower from the bottom to the top, in other words, the upper part of the resist pattern protrudes from the lower part.
- the photoresist pattern is once removed and re-formed at this stage, the displacement will almost certainly occur. Therefore, the same photoresist pattern must be used as an etching mask and a lift-off mask.
- a high reflectivity electrode RM is formed, covers the contact metal layer CM, and further extends on the insulating layer 12 to end the p-side electrode 5 Patterning is performed so as to cover a region almost reaching the part.
- a lift-off resist pattern PR2 for patterning the high reflectance electrode RM is formed on the insulating film 12.
- a high reflectivity electrode RM such as Ag is formed on the contact metal layer CM and the insulating film 12 by electron beam evaporation, sputtering, or the like.
- the high reflectivity electrode RM deposited on the photoresist pattern PR2 is lifted off together with the photoresist pattern PR2 to be removed.
- the patterned high reflectivity electrode RM covers the contact metal layer CM and the region above between the contact metal layer CM and the p-side electrode 5.
- the n-side electrode formed by laminating the contact metal layer CM and the high reflectivity electrode RM thus formed does not exhibit stable characteristics and often breaks when a large current is passed.
- irregularities such as irregularities are formed at the end of the contact metal layer CM after lift-off shown in FIG. 2D, and the high reflectance electrode RM is formed as shown in FIG. 2E.
- the high reflectance electrode RM on the contact metal layer CM and the high reflectance electrode RM on the insulating film 12 are not electrically continuous.
- the contact metal layer is deposited on the n-type layer and the resist pattern while leaving the resist pattern used for the recess etching, and the contact metal on the resist pattern is completely separated from the contact metal layer on the n-type layer. I examined that.
- a sacrificial layer made of a material that can be wet etched with a resist developer is formed under the resist layer.
- An example of the material for the sacrificial layer is the LOR series available from Nippon Kayaku Co., Ltd.
- the sacrificial layer is gradually dissolved only by being immersed in a developer such as TMAH (tetramethylammonium hydroxide).
- a photoresist layer is formed with a laminated structure of a lower sacrificial layer and an upper photoresist layer.
- the upper photoresist layer becomes the desired pattern.
- the lower sacrificial layer exposed by removing the upper photoresist layer is etched into the developer. The end of the lower sacrificial layer is drawn from the end of the upper photoresist layer.
- the photoresist layer PR1 in the step shown in FIG. 2A is replaced with a two-stage resist DLR of a lower sacrificial layer SR and an upper photoresist layer PR.
- the lower sacrificial layer SR is formed by, for example, LOR available from Nippon Kayaku Co., Ltd.
- the upper photoresist layer PR that can withstand dry etching is formed by, for example, AZ6130 manufactured by AZ.
- the lower sacrificial layer SR is spin-coated, for example, with a thickness of about 300 nm to 500 nm, and the upper photoresist layer PR is, for example, several ⁇ m thick, to form a two-stage resist DLR.
- exposure is performed at 400 mJ and development is performed for 50 seconds.
- the upper photoresist layer PR of the opening set on the bottom of the recess is patterned as usual.
- the lower sacrificial layer SR exposed by the removal of the upper photoresist layer PR is also etched by the developer, and opens in a wider range than the resist pattern.
- a pull-in region 17 in which the lower sacrificial layer SR is side-etched (under-etched) is formed with a width of about 2.5 ⁇ m, for example.
- the contact region 16 is formed by etching to form a recess in the insulating film 12 and the n-type layer 2 as in the step shown in FIG. 2B.
- the upper photoresist layer PR functions as an etching mask.
- a lead-in region 17 is disposed on the shoulder 14 of the patterned insulating film 12.
- a contact metal layer CM is deposited by sputtering.
- a lead-in region 17 generated by side etching of the sacrificial layer SR.
- the sputtered high-energy metal raw material also enters the pull-in region 17 and continues to the tip of the main part of the contact metal layer formed on the side wall of the recess, and is smoothly bent into a hook shape (enters the pull-in region 17).
- a film 18 having a smooth surface is formed.
- the metal film CM1 having a hook-shaped tip formed so as to surround the shoulder of the insulating film 12 is completely separated from the metal film CM2 deposited on the photoresist pattern PR, and deformation caused by stress is suppressed.
- the sacrificial layer SR and the photoresist pattern PR are removed, and the metal thereon is lifted off. Since the metal layer CM2 deposited on the photoresist pattern PR is completely separated from the metal layer CM1 deposited on the n-type layer 2 and the insulating layer 12, the end of the metal layer CM1 is deformed by lift-off. There is nothing to do. An end portion of the hook-shaped metal layer CM1 having a smoothly continuous surface from the surface of the insulating film 12 is obtained. When the reflective metal layer is deposited, a continuous reflective metal layer is obtained from the contact layer CM1 to the insulating film 12.
- a sapphire substrate is prepared as the growth substrate 1.
- the growth substrate 1 is put into an MOCVD apparatus and thermal cleaning is performed.
- an n-type GaN layer 2 having a thickness of about 5 ⁇ m doped with Si or the like is grown.
- the GaN buffer layer and the undoped GaN layer are collectively shown as the n-type GaN layer 2.
- a light emitting layer (active layer) 3 is grown on the n-type GaN layer 2.
- the light emitting layer 3 for example, a multiple quantum well structure in which an InGaN layer is a well layer and a GaN layer is a barrier layer can be formed.
- a p-type GaN layer 4 having a thickness of about 0.5 ⁇ m doped with Mg or the like is grown on the light emitting layer 3.
- the growth substrate 1 is a single crystal substrate having a lattice constant capable of epitaxial growth of GaN, and is transparent to light having a wavelength of 362 nm which is an absorption edge wavelength of GaN so that the substrate can be peeled off by laser lift-off in a later process. Selected from ones. In addition to sapphire, spinel, SiC, ZnO, or the like may be used.
- a layer having a thickness of 200 nm is deposited by electron beam evaporation and Ag is added with an additive such as Al, Pt, Rh, or an alloy thereof, and patterning is performed by lift-off. Then, the high reflectance p-side electrode 5 having a predetermined shape is formed.
- the p-side electrode 5 preferably contains Ag, Al, Pt, Rh, or an alloy thereof in order to function as a reflective electrode.
- the p-side electrode 5 has a plurality of openings and is covered with a cap insulating layer 10 such as silicon oxide.
- a recess 15 is formed by etching the cap insulating layer and the semiconductor layer in the opening, and the contact region is further etched in the recess to form a contact metal layer in the contact region.
- a high reflectivity electrode is formed above the contact metal layer to form an n-side electrode including the contact metal layer and the high reflectivity electrode.
- FIG. 4A shows an example of a schematic planar structure of the contact portion between the p-side electrode 5 and the n-side contact electrode CM in the semiconductor light emitting element with the semiconductor layer.
- a p-side electrode 5 is formed extending over the upper surface of the p-type semiconductor layer. Openings are formed discretely in a matrix, for example, in the p-side electrode 5, and the recesses RC are disposed in the openings.
- An n-side contact electrode CM is formed inside each recess RC.
- One element has, for example, a rectangular shape with a size of about 600 ⁇ m ⁇ 1300 ⁇ m, and the number of contact electrodes CM arranged in one element is several tens to several hundreds, for example, about 40.
- FIGS. 1A to 1H typically show one n-side contact electrode CM and one opening HL formed in the p-side electrode 5.
- a SiO 2 film having a thickness of 300 nm is deposited by sputtering, and patterned by lift-off to form a cap insulating layer 10.
- a patterning method in addition to lift-off, for example, dry etching using a CF 4 gas may be used after depositing SiO 2 on the entire surface.
- the cap insulating layer 10 has a function of preventing leakage and diffusion of the material used for the p-side electrode 5, particularly Ag.
- a metal material such as TiW can be used in addition to an insulating material such as SiO 2 and SiN.
- the insulating layer 10 is also formed in the vicinity of the edge of the opening HL of the p-side electrode, and is formed so as to extend also on the side surface of the p-side electrode 5 that defines the opening HL.
- a photoresist pattern having an opening in the opening HL of the p-side electrode 5 is formed on the insulating layer 10, the insulating layer 10, the p-type layer 4, and the active layer 3 are etched, and further, a partial thickness of the n-type layer 2
- the recess 15 is formed by etching.
- a float insulating layer 12 made of silicon oxide or the like is formed so as to cover the inner surface of the recess 15, and a two-step resist DLR is applied on the insulating layer 12.
- the two-step resist is exposed and developed to form an opening above the bottom surface of the recess 15. It is the process demonstrated with reference to FIG. 3A.
- the sacrificial layer SR forms an opening in a wider range than the photoresist layer PR. For example, an undercut region having a width of about 2.5 ⁇ m can be formed by developing for 50 seconds.
- openings are formed in the photoresist layer PR and the sacrificial layer SR of the two-stage resist DLR above the bottom surface of the recess 15, and the openings of the sacrificial layer SR are further widened.
- a lead-in region 17 is formed between the photoresist layer PR and the insulating layer 12. This is the configuration described with reference to FIGS. 3A and 3B.
- the insulating layer 12 and the n-type layer 2 are partially etched with a chlorine-based gas to form a contact region 16 in the n-type layer 2. . It is a process corresponding to FIG. 2B.
- the inner side surface of the insulating layer 12 and the inner side surface of the photoresist PR are separated by a drawing region 17.
- a contact metal layer CM is deposited by sputtering a contact metal, for example, Ti.
- the contact metal deposited on the n-type layer 2 and the insulating layer 12 forms the contact metal layer CM, and the migrated contact metal extends on the bottom surface of the lead-in region 17.
- the contact metal layer CM extending from the side surface to the bottom surface of the recess has a hook portion whose tip is bent into a hook shape, and improves the adhesion.
- the contact metal deposited on the photoresist PR is separated from the contact metal layer CM on the bottom surface and the lower side surface of the recess in the drawing region 17. Since both contact metal layers are separated, no stress is exerted.
- the two-stage resist is removed and the contact metal on the photoresist layer PR is lifted off.
- the contact metal layer CM formed on the bottom and side surfaces of the contact region 16 further extends on the upper surface of the opening peripheral edge of the insulating film 12.
- a photoresist pattern PR2 for patterning the high reflectivity electrode by lift-off is formed.
- the photoresist pattern PR2 has a reverse tapered cross-sectional shape. It is a process corresponding to FIG. 2E.
- an Ag / Ti / Pt / Au layer is deposited on the n-side contact metal electrode CM and the insulating film 12 by, for example, electron beam evaporation or sputtering, with a film thickness of 200 nm / 100 nm / 200 nm / 200 nm, respectively.
- the n-side high reflectivity electrode RM is formed by patterning by lift-off.
- the n-side high reflectivity electrode RM is formed so that the edge thereof overlaps with the edge of the p-side electrode 5 in plan view.
- a Ti layer may be formed as a base for the Ag layer in order to improve adhesion.
- the contact metal layer CM preferably contains any one of Ti, Ni, and Cr, and the high reflectivity electrode preferably contains Ag, Al, Pt, Rh, or any of these alloys.
- a photoresist pattern for lift-off is formed, and a Ti / Pt / Au layer is deposited to a thickness of 50 nm / 100 nm / 400 nm by electron beam evaporation or sputtering, respectively, and patterned by lift-off to provide cap conductivity.
- Layer NC is formed. Note that the cap conductive layer is not an essential component.
- an n-side electrode including contact metal electrodes and high reflectivity electrodes having different shapes can be formed.
- the area of the contact metal electrode is limited, and the high reflectance electrode is widely disposed around the contact metal electrode, so that the reflectance as a whole is improved.
- the surface of the insulating film 12 may be roughened by performing reverse sputtering of Ar gas, for example, in the state of FIG. 1E.
- FIG. 4B shows one example.
- the state of the electrode end portion on the surface of the p-type layer 4 is also shown together with the configuration in the recess RC.
- An Ag alloy layer 6 and an insulating fringe layer 13 containing an additive for improving contact properties are formed on the p-type layer 4, and no additive is contained in a region including the upper surface of the Ag alloy layer 6 and extending to the upper surface of the insulating fringe layer 13.
- a pure silver layer 7 and a cap metal layer 8 such as TiW having an Ag diffusion preventing function are laminated to form a p-side electrode 5, and a cap insulating layer 10 and a float insulating film 12 are formed to cover the insulating fringe layer 13.
- the cap insulating layer is preferably formed of a light-transmitting insulating material such as SiO 2 or SiN.
- FIG. 5 is a cross-sectional view showing one configuration example of such a semiconductor light emitting device.
- a wiring layer 23 including an n-side connection wiring layer and a p-side connection wiring layer is formed on the support substrate 21 via an insulating layer 22 and is coupled to the n-side electrode and the p-side electrode of the light emitting diode.
- the growth substrate is removed by laser lift-off or the like.
- Microcones are formed on the exposed n-type layer surface by alkali treatment or the like. Street separation, scribing, and the like are performed to constitute a unit having a desired number of light emitting elements 31A and 31B.
- the support substrate 21 of the unit is mounted on the mounting substrates 41 and 42 via the adhesive layer 26, and the pads 44 and the wire bonding 43 are performed.
- the light emitting diode structure is sealed with a sealing resin 45 containing a phosphor.
- the recesses RC are arranged as via electrode formation regions that are dispersed in the plane.
- the cross section of each recess RC is configured as shown in FIG. 1H.
- the shape of the n-side contact electrode and the recess RC that accommodates it is not limited thereto.
- the n-side electrode may be formed with the chip periphery as a recess RC.
- the recess RC may be a continuous groove.
- a cross section perpendicular to the direction in which the groove extends is as shown in FIG.
- the cross section perpendicular to the direction in which the side of the peripheral portion of the chip extends is such that the contact metal layer CM in FIG. 1H is cut from the center.
- the recess RC may be a combination of a hole area and a groove area.
- the semiconductor exemplified by GaN may be other AlGaInN such as InGaN.
- Various materials can be used as the n-type impurity and the p-type impurity.
- As the active layer a homo to hetero single layer active layer may be used instead of the multilayer quantum well structure.
- the exemplified materials and numerical values do not have a restrictive meaning unless otherwise specified. Various additions, changes, improvements, combinations, and the like are possible.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
A semiconductor light-emitting device has: a semiconductor stacked layer including stacked layers of a first semiconductor layer having a first conductivity type, an active layer, and a second semiconductor layer having a second conductivity type; a second electrode formed on the second semiconductor layer and having a high reflectivity; a recess extending from the surface of the second semiconductor layer into the first semiconductor layer through the second semiconductor layer and the active layer, exposing the semiconductor stacked layers to the side surface, and exposing the first semiconductor layer to the bottom surface; an insulating film having an opening at the bottom surface of the recess and covering the side surface of the recess; a contact region formed by digging down the first semiconductor layer exposed to the opening; a first semiconductor layer side contact electrode forming an electrical contact with the surface of the contact region, creeping up to the upper surface of the insulating film in the vicinity of the opening, and having a smoothly continuous hook portion; and a first semiconductor layer side high-reflectivity electrode having a high reflectivity to the light emitted from the semiconductor stacked layer and extending from above the first semiconductor layer side contact electrode onto the insulating film.
Description
本発明は、半導体発光装置とその製造方法に関する。
The present invention relates to a semiconductor light emitting device and a method for manufacturing the same.
白色光等を発生できるAl1-x-yGaxInyN(0≦x、y≦1、0≦(x+y)≦1、以下GaN系GaN series と呼ぶ)発光ダイオードが開発されている。例えば、サファイア基板上に、n型GaN系層、多重量子井戸GaN系活性層、p型GaN系層を有機金属気相成長(MOCVD)で成長し、GaN系半導体エピタキシャル積層を形成する。発光ダイオード(LED)として機能させるためには、p型GaN系層、n型GaN系層に電荷キャリアを供給できる電極を接続する必要がある。例えば、露出しているp型GaN系層上にp側電極層を形成し、所定形状にエッチしてp側電極を形成し、さらにp型GaN系層、GaN系活性層をエッチしてn型GaN層を露出するビア孔を形成し、必要な絶縁構造を形成し、ビア孔底面に接続するn側電極を形成する(例えば、特表2010-525585号)。p型層上方に、p側電極、n側電極と接続する接続配線層を備えた支持基板を結合することもできる。
Al 1-xy Ga x In y N (0 ≦ x, y ≦ 1, 0 ≦ (x + y) ≦ 1, hereinafter referred to as GaN-based GaN series) light emitting diodes capable of generating white light and the like have been developed. For example, an n-type GaN-based layer, a multiple quantum well GaN-based active layer, and a p-type GaN-based layer are grown on a sapphire substrate by metal organic chemical vapor deposition (MOCVD) to form a GaN-based semiconductor epitaxial stack. In order to function as a light emitting diode (LED), it is necessary to connect an electrode capable of supplying charge carriers to the p-type GaN-based layer and the n-type GaN-based layer. For example, a p-side electrode layer is formed on the exposed p-type GaN-based layer, etched into a predetermined shape to form a p-side electrode, and then the p-type GaN-based layer and the GaN-based active layer are etched to form n A via hole exposing the type GaN layer is formed, a necessary insulating structure is formed, and an n-side electrode connected to the bottom surface of the via hole is formed (for example, JP-T-2010-525585). A support substrate provided with a connection wiring layer connected to the p-side electrode and the n-side electrode can be bonded above the p-type layer.
サファイア基板は、放熱特性が優れているとは言えない。成長基板として機能したサファイア基板を除去して、n型GaN系層を露出する構成が知られている。p型GaN系層側に、p側電極、n側電極を形成した場合、成長基板を除去して露出したn型GaN系層全面を光出射面とすることができる。露出したn型層表面を粗面化(マイクロコーン等の微細加工)すると、光取り出し効率を向上できる。
The sapphire substrate cannot be said to have excellent heat dissipation characteristics. A configuration is known in which an n-type GaN-based layer is exposed by removing a sapphire substrate that functions as a growth substrate. When a p-side electrode and an n-side electrode are formed on the p-type GaN-based layer side, the entire surface of the n-type GaN-based layer exposed by removing the growth substrate can be used as a light emitting surface. When the exposed n-type layer surface is roughened (fine processing such as micro cones), the light extraction efficiency can be improved.
p側電極は、Agを主成分とする反射電極をp型層表面に広く分布させて形成し、p型層内を裏面側に向う光を表面(n型層)側に反射することができる。反射率を高くすることにより、光取り出し効率を向上できる(例えば、特開2010-123717号)。
The p-side electrode is formed by widely reflecting a reflective electrode mainly composed of Ag on the surface of the p-type layer, and can reflect the light directed toward the back side in the p-type layer to the surface (n-type layer) side. . By increasing the reflectance, the light extraction efficiency can be improved (for example, JP 2010-123717 A).
ビア孔内にn側電極を配置して、p型層表面側に配線を引き回す場合、ビア孔内の活性層は除去されるので、発光機能は失われる。但し、n型GaN系層がn側電極の上(光出射面側)に存在し、周囲の領域からの光を伝播できる。n側電極を反射電極として、なるべく多くの伝播光をn型層表面側に反射させ、輝度ムラを緩和することが考えられる。
When the n-side electrode is arranged in the via hole and the wiring is routed to the p-type layer surface side, the light emitting function is lost because the active layer in the via hole is removed. However, the n-type GaN-based layer exists on the n-side electrode (on the light emission surface side) and can propagate light from the surrounding region. It can be considered that the n-side electrode is used as a reflective electrode to reflect as much propagating light as possible on the surface side of the n-type layer to alleviate luminance unevenness.
n型層に対するコンタクト性を確保するコンタクト電極は、一般的に反射率が低い。反射率を高くするため、n側電極を、コンタクト電極と、コンタクト電極を覆い高反射率を持つ、Ag等を主成分とする反射金属層で形成することが考えられる。
The contact electrode that ensures contact with the n-type layer generally has a low reflectance. In order to increase the reflectivity, it is conceivable to form the n-side electrode with a contact electrode and a reflective metal layer that covers the contact electrode and has a high reflectivity and is mainly composed of Ag or the like.
発明の開示
第1導電型半導体層、活性層、第2導電型半導体層を積層し、第2導電型半導体層上に開口を有する第2導電型側高反射率電極を形成し、開口内の第2導電型半導体層、活性層をエッチして第1導電型半導体層を露出し、第1導電型半導体層上にコンタクト性を確保するコンタクト電極を形成し、コンタクト電極上方に高反射率を確保する第1導電型側高反射率電極を形成し、第1導電型半導体層側から光を出射する構成を検討した。なお、高反射率は、可視光領域(380nm-760nm)を含む、350nm-850nmの波長範囲で平均80%以上の反射率を指すものとする。 DISCLOSURE OF THE INVENTION A first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer are laminated, a second conductivity type side high reflectance electrode having an opening is formed on the second conductivity type semiconductor layer, Etching the second conductive type semiconductor layer and the active layer to expose the first conductive type semiconductor layer, forming a contact electrode on the first conductive type semiconductor layer to ensure contact, and providing a high reflectivity above the contact electrode The structure which forms the 1st conductivity type side high reflectance electrode to ensure, and radiate | emits light from the 1st conductivity type semiconductor layer side was examined. Note that the high reflectance indicates an average reflectance of 80% or more in the wavelength range of 350 nm to 850 nm including the visible light region (380 nm to 760 nm).
第1導電型半導体層、活性層、第2導電型半導体層を積層し、第2導電型半導体層上に開口を有する第2導電型側高反射率電極を形成し、開口内の第2導電型半導体層、活性層をエッチして第1導電型半導体層を露出し、第1導電型半導体層上にコンタクト性を確保するコンタクト電極を形成し、コンタクト電極上方に高反射率を確保する第1導電型側高反射率電極を形成し、第1導電型半導体層側から光を出射する構成を検討した。なお、高反射率は、可視光領域(380nm-760nm)を含む、350nm-850nmの波長範囲で平均80%以上の反射率を指すものとする。 DISCLOSURE OF THE INVENTION A first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer are laminated, a second conductivity type side high reflectance electrode having an opening is formed on the second conductivity type semiconductor layer, Etching the second conductive type semiconductor layer and the active layer to expose the first conductive type semiconductor layer, forming a contact electrode on the first conductive type semiconductor layer to ensure contact, and providing a high reflectivity above the contact electrode The structure which forms the 1st conductivity type side high reflectance electrode to ensure, and radiate | emits light from the 1st conductivity type semiconductor layer side was examined. Note that the high reflectance indicates an average reflectance of 80% or more in the wavelength range of 350 nm to 850 nm including the visible light region (380 nm to 760 nm).
コンタクト電極の反射率は低くなるので、コンタクト面より外側に延在するコンタクト電極面積はなるべく狭く制限し、周囲には第1導電型側高反射率電極を分布させ、第1導電型層内を伝播する光が高反射率電極で反射されるように試みた。ところが、コンタクト電極と接続配線間の電気的導通、従って発光現象そのものが損なわれる現象が発生した。信頼性の高い高反射率の第1導電型側電極を実現することは困難であった。
Since the reflectivity of the contact electrode is low, the area of the contact electrode extending outside the contact surface is limited as narrow as possible, and the first conductivity type side high reflectivity electrode is distributed around the first conductivity type layer. An attempt was made to reflect the propagating light at the high reflectivity electrode. However, a phenomenon occurs in which the electrical continuity between the contact electrode and the connection wiring, and thus the light emission phenomenon itself, is impaired. It has been difficult to realize a highly reliable first-conductivity-type side electrode with high reflectivity.
実施例によれば、
第1導電型を有する第1半導体層、活性層、第2導電型を有する第2半導体層の積層を含む半導体積層と、
前記第2半導体層上に形成された高反射率を有する第2電極と、
前記第2半導体層表面から、前記第2半導体層、前記活性層を貫通し、前記第1半導体層に入り、側面に前記半導体積層を露出し、底面に前記第1半導体層を露出するリセスと、
前記リセスの底面に開口を有し、前記リセス側面を覆う絶縁膜と、
前記開口に露出した前記第1半導体層を掘り下げて形成したコンタクト領域と、
前記コンタクト領域の表面と電気的コンタクトを形成し、前記開口に近接する前記絶縁膜縁上面に回り込み、滑らかに連続するフック部分を有する、第1半導体層側コンタクト電極と、
前記半導体積層が発する光に対して高反射率を有し、前記第1半導体層側コンタクト電極上から前記絶縁膜上に延在する、第1半導体層側高反射率電極と、
を有する半導体発光装置
が提供される。 According to the example,
A semiconductor stack including a stack of a first semiconductor layer having a first conductivity type, an active layer, and a second semiconductor layer having a second conductivity type;
A second electrode having a high reflectance formed on the second semiconductor layer;
A recess that penetrates the second semiconductor layer and the active layer from the surface of the second semiconductor layer, enters the first semiconductor layer, exposes the semiconductor stack on a side surface, and exposes the first semiconductor layer on a bottom surface; ,
An insulating film having an opening on a bottom surface of the recess and covering the side surface of the recess;
A contact region formed by digging down the first semiconductor layer exposed in the opening;
A first semiconductor layer-side contact electrode that forms an electrical contact with the surface of the contact region, has a hook portion that smoothly wraps around the upper surface of the insulating film adjacent to the opening and is continuous;
A first semiconductor layer-side high reflectivity electrode having a high reflectivity with respect to light emitted from the semiconductor stack, and extending from the first semiconductor layer-side contact electrode to the insulating film;
A semiconductor light emitting device is provided.
第1導電型を有する第1半導体層、活性層、第2導電型を有する第2半導体層の積層を含む半導体積層と、
前記第2半導体層上に形成された高反射率を有する第2電極と、
前記第2半導体層表面から、前記第2半導体層、前記活性層を貫通し、前記第1半導体層に入り、側面に前記半導体積層を露出し、底面に前記第1半導体層を露出するリセスと、
前記リセスの底面に開口を有し、前記リセス側面を覆う絶縁膜と、
前記開口に露出した前記第1半導体層を掘り下げて形成したコンタクト領域と、
前記コンタクト領域の表面と電気的コンタクトを形成し、前記開口に近接する前記絶縁膜縁上面に回り込み、滑らかに連続するフック部分を有する、第1半導体層側コンタクト電極と、
前記半導体積層が発する光に対して高反射率を有し、前記第1半導体層側コンタクト電極上から前記絶縁膜上に延在する、第1半導体層側高反射率電極と、
を有する半導体発光装置
が提供される。 According to the example,
A semiconductor stack including a stack of a first semiconductor layer having a first conductivity type, an active layer, and a second semiconductor layer having a second conductivity type;
A second electrode having a high reflectance formed on the second semiconductor layer;
A recess that penetrates the second semiconductor layer and the active layer from the surface of the second semiconductor layer, enters the first semiconductor layer, exposes the semiconductor stack on a side surface, and exposes the first semiconductor layer on a bottom surface; ,
An insulating film having an opening on a bottom surface of the recess and covering the side surface of the recess;
A contact region formed by digging down the first semiconductor layer exposed in the opening;
A first semiconductor layer-side contact electrode that forms an electrical contact with the surface of the contact region, has a hook portion that smoothly wraps around the upper surface of the insulating film adjacent to the opening and is continuous;
A first semiconductor layer-side high reflectivity electrode having a high reflectivity with respect to light emitted from the semiconductor stack, and extending from the first semiconductor layer-side contact electrode to the insulating film;
A semiconductor light emitting device is provided.
実施例によれば、
成長基板上に、第1導電型を有する第1半導体層、活性層、第2導電型を有する第2半導体層の積層を含む半導体積層をエピタキシャル成長する工程と、
前記第2半導体層表面から、前記第2半導体層、前記活性層を貫通し、前記第1半導体層に入るエッチングを行い、側面に前記半導体積層を露出し、底面に前記第1半導体層を露出するリセスを形成する工程と、
前記リセス内面を覆い、絶縁膜を形成する工程と、
前記絶縁膜上に犠牲レジスト下層とフォトレジスト上層との積層レジスト層を形成する工程と、
前記リセス底面に開口を有するパターンを前記フォトレジスト上層に露光する工程と、
前記積層レジスト層を現像し、前記犠牲レジスト下層端部を前記フォトレジスト上層端部より引き下げて、前記絶縁膜上方に引き込み空間を形成する工程と、
前記積層レジスト層をエッチングマスクとして前記絶縁膜をエッチし、その下の前記第1半導体層を掘り下げて前記第1半導体層のコンタクト領域を形成する工程と、
前記コンタクト領域の前記第1半導体層、その上の前記絶縁膜、前記積層レジスト層上にコンタクトメタル層を堆積し、前記引き込み空間の底面肩部上に配置されたフック部分を有するコンタクト電極を形成する工程と、
前記積層レジスト層を除去するとともにその上に堆積したコンタクトメタルをリフトオフする工程と、
前記コンタクト電極を覆い、周囲の前記絶縁膜上に延在する、高反射率電極を形成する工程と、
を有する半導体発光装置の製造方法
が提供される。 According to the example,
Epitaxially growing a semiconductor stack including a stack of a first semiconductor layer having a first conductivity type, an active layer, and a second semiconductor layer having a second conductivity type on a growth substrate;
Etching from the surface of the second semiconductor layer through the second semiconductor layer and the active layer and entering the first semiconductor layer, exposing the semiconductor stack on the side, and exposing the first semiconductor layer on the bottom Forming a recess to be
Covering the recess inner surface and forming an insulating film;
Forming a laminated resist layer of a sacrificial resist lower layer and a photoresist upper layer on the insulating film;
Exposing the photoresist upper layer with a pattern having an opening in the recess bottom;
Developing the laminated resist layer, lowering the sacrificial resist lower layer end from the photoresist upper layer end to form a drawing space above the insulating film;
Etching the insulating film using the laminated resist layer as an etching mask, digging down the first semiconductor layer below to form a contact region of the first semiconductor layer;
A contact metal layer is deposited on the first semiconductor layer in the contact region, the insulating film thereon, and the laminated resist layer to form a contact electrode having a hook portion disposed on the bottom shoulder of the lead-in space. And a process of
Removing the laminated resist layer and lifting off the contact metal deposited thereon;
Forming a high reflectivity electrode covering the contact electrode and extending over the surrounding insulating film;
A method of manufacturing a semiconductor light-emitting device having the above is provided.
成長基板上に、第1導電型を有する第1半導体層、活性層、第2導電型を有する第2半導体層の積層を含む半導体積層をエピタキシャル成長する工程と、
前記第2半導体層表面から、前記第2半導体層、前記活性層を貫通し、前記第1半導体層に入るエッチングを行い、側面に前記半導体積層を露出し、底面に前記第1半導体層を露出するリセスを形成する工程と、
前記リセス内面を覆い、絶縁膜を形成する工程と、
前記絶縁膜上に犠牲レジスト下層とフォトレジスト上層との積層レジスト層を形成する工程と、
前記リセス底面に開口を有するパターンを前記フォトレジスト上層に露光する工程と、
前記積層レジスト層を現像し、前記犠牲レジスト下層端部を前記フォトレジスト上層端部より引き下げて、前記絶縁膜上方に引き込み空間を形成する工程と、
前記積層レジスト層をエッチングマスクとして前記絶縁膜をエッチし、その下の前記第1半導体層を掘り下げて前記第1半導体層のコンタクト領域を形成する工程と、
前記コンタクト領域の前記第1半導体層、その上の前記絶縁膜、前記積層レジスト層上にコンタクトメタル層を堆積し、前記引き込み空間の底面肩部上に配置されたフック部分を有するコンタクト電極を形成する工程と、
前記積層レジスト層を除去するとともにその上に堆積したコンタクトメタルをリフトオフする工程と、
前記コンタクト電極を覆い、周囲の前記絶縁膜上に延在する、高反射率電極を形成する工程と、
を有する半導体発光装置の製造方法
が提供される。 According to the example,
Epitaxially growing a semiconductor stack including a stack of a first semiconductor layer having a first conductivity type, an active layer, and a second semiconductor layer having a second conductivity type on a growth substrate;
Etching from the surface of the second semiconductor layer through the second semiconductor layer and the active layer and entering the first semiconductor layer, exposing the semiconductor stack on the side, and exposing the first semiconductor layer on the bottom Forming a recess to be
Covering the recess inner surface and forming an insulating film;
Forming a laminated resist layer of a sacrificial resist lower layer and a photoresist upper layer on the insulating film;
Exposing the photoresist upper layer with a pattern having an opening in the recess bottom;
Developing the laminated resist layer, lowering the sacrificial resist lower layer end from the photoresist upper layer end to form a drawing space above the insulating film;
Etching the insulating film using the laminated resist layer as an etching mask, digging down the first semiconductor layer below to form a contact region of the first semiconductor layer;
A contact metal layer is deposited on the first semiconductor layer in the contact region, the insulating film thereon, and the laminated resist layer to form a contact electrode having a hook portion disposed on the bottom shoulder of the lead-in space. And a process of
Removing the laminated resist layer and lifting off the contact metal deposited thereon;
Forming a high reflectivity electrode covering the contact electrode and extending over the surrounding insulating film;
A method of manufacturing a semiconductor light-emitting device having the above is provided.
図1A~1Hは、実施例による半導体発光装置の製造方法の主要プロセスを示す、断面図である。
1A to 1H are cross-sectional views showing main processes of a method for manufacturing a semiconductor light emitting device according to an embodiment.
図2A~2Fは、予備実験による、半導体発光装置の製造方法の主要プロセスを示す、断面図である。
2A to 2F are cross-sectional views showing main processes of a method for manufacturing a semiconductor light-emitting device based on a preliminary experiment.
図3A,3Bは、実施例による半導体発光装置の製造方法の要点を示す、断面図である。
3A and 3B are cross-sectional views showing the main points of a method for manufacturing a semiconductor light emitting device according to an embodiment.
図4Aはp側電極とn側電極の配置例を示す平面図、図4Bはp側電極の構成例を示す断面図、図4C-4Eは他の凹部配置例を示す平面図である。
4A is a plan view showing an arrangement example of the p-side electrode and the n-side electrode, FIG. 4B is a cross-sectional view showing an example of the configuration of the p-side electrode, and FIGS. 4C-4E are plan views showing other arrangement examples of the recesses.
図5は、完成した状態の半導体発光装置の構成例を示す断面図である。
FIG. 5 is a cross-sectional view showing a configuration example of the semiconductor light emitting device in a completed state.
まず、予備実験について説明する。
First, a preliminary experiment will be described.
図2Aに示すように、有機金属気相成長(MOCVD)により、サファイアの成長基板1上にn型GaN層2、活性層3、p型GaN層4を成長する。p型GaN層4上に、高反射率を有するAg等のp側電極5を形成する。p側電極5を覆って、酸化シリコン等のキャップ絶縁層10を堆積する。絶縁層10上に、半導体層に凹部をエッチングする際のマスクとなるフォトレジストパターンを形成する。マスクの開口内の絶縁層10、p型層4、活性層3の全厚さをエッチングし、さらにn型層2の一部厚さをエッチングしてn型層2を露出する凹部15を形成する。その後、フォトレジストパターンを除去する。凹部15の内表面を覆う酸化シリコン等のフロート絶縁膜12を堆積する。絶縁膜12上に、凹部15底面(中央部)に開口を有する新たなフォトレジストパターンPR1を形成する。
As shown in FIG. 2A, an n-type GaN layer 2, an active layer 3, and a p-type GaN layer 4 are grown on a sapphire growth substrate 1 by metal organic chemical vapor deposition (MOCVD). On the p-type GaN layer 4, a p-side electrode 5 such as Ag having a high reflectance is formed. A cap insulating layer 10 such as silicon oxide is deposited so as to cover the p-side electrode 5. A photoresist pattern is formed on the insulating layer 10 to serve as a mask when etching the recesses in the semiconductor layer. Etching the entire thickness of the insulating layer 10, the p-type layer 4 and the active layer 3 in the opening of the mask, and further etching a part of the thickness of the n-type layer 2 to form a recess 15 exposing the n-type layer 2. To do. Thereafter, the photoresist pattern is removed. A float insulating film 12 such as silicon oxide covering the inner surface of the recess 15 is deposited. On the insulating film 12, a new photoresist pattern PR1 having an opening on the bottom surface (central portion) of the recess 15 is formed.
図2Bに示すように、フォトレジストパターンPR1をエッチングマスクとして、絶縁膜12、n型層2の一部厚さをエッチングして、凹部15の底面にコンタクト領域16を形成する。コンタクト領域16は絶縁層12を除去した領域とn型層2を除去した領域とを含む。絶縁層12は、コンタクト領域16周囲に、凹部15底面と平行な表面を有する底面部を有する。
2B, using the photoresist pattern PR1 as an etching mask, the insulating film 12 and the n-type layer 2 are partially etched to form a contact region 16 on the bottom surface of the recess 15. Contact region 16 includes a region from which insulating layer 12 has been removed and a region from which n-type layer 2 has been removed. The insulating layer 12 has a bottom surface portion having a surface parallel to the bottom surface of the recess 15 around the contact region 16.
図2Cに示すように、コンタクト領域16表面およびレジストパターンPR1表面に、Ti等のコンタクトメタル層CMを堆積する。エッチングマスクとして用いたフォトレジストパターンPR1を、コンタクトメタル層を整形するリフトオフ用のレジストパターンとしても用いる。
2C, a contact metal layer CM such as Ti is deposited on the surface of the contact region 16 and the surface of the resist pattern PR1. The photoresist pattern PR1 used as an etching mask is also used as a lift-off resist pattern for shaping the contact metal layer.
図2Dに示すように、フォトレジストパターンPR1を除去すると共に、その上のコンタクトメタルもリフトオフで除去する。フォトレジストパターンPR1は、図2Bに示したドライエッチング工程に耐えるレジストパターンであり、上方から下方に向って開口幅が狭くなる順テーパ形状のレジストパターンである。
2D, the photoresist pattern PR1 is removed and the contact metal on the photoresist pattern PR1 is removed by lift-off. The photoresist pattern PR1 is a resist pattern that can withstand the dry etching process shown in FIG. 2B, and is a forward tapered resist pattern in which the opening width becomes narrower from the top to the bottom.
リフトオフを行うには、下方から上方に向って開口幅が狭くなる、言い換えれば、レジストパターンの上側部が下側部より張り出した、逆テーパ型形状のポジレジストパターンを用いるのが好ましい。しかし、この段階でフォトレジストパターンを一旦除去し、再度形成すると、ほぼ確実に位置ずれが生じてしまう。従って、同一フォトレジストパターンをエッチングマスク、及びリフトオフ用マスクとして用いざるを得ない。
In order to perform the lift-off, it is preferable to use a positive resist pattern having a reverse taper shape in which the opening width becomes narrower from the bottom to the top, in other words, the upper part of the resist pattern protrudes from the lower part. However, if the photoresist pattern is once removed and re-formed at this stage, the displacement will almost certainly occur. Therefore, the same photoresist pattern must be used as an etching mask and a lift-off mask.
図2Dに示す工程で、コンタクトメタル層CMをリフトオフによりパターニングした後、高反射率電極RMを形成し、コンタクトメタル層CMを覆い、さらに絶縁層12上に延在して、p側電極5端部にほぼ至る領域を覆う形状にパターニングする。
In the step shown in FIG. 2D, after the contact metal layer CM is patterned by lift-off, a high reflectivity electrode RM is formed, covers the contact metal layer CM, and further extends on the insulating layer 12 to end the p-side electrode 5 Patterning is performed so as to cover a region almost reaching the part.
図2Eに示すように、高反射率電極RMをパターニングするためのリフトオフ用レジストパターンPR2を絶縁膜12上に形成する。Ag等の高反射率電極RMを、コンタクトメタル層CM、絶縁膜12上に、電子ビーム蒸着、スパッタリング等で形成する。
As shown in FIG. 2E, a lift-off resist pattern PR2 for patterning the high reflectance electrode RM is formed on the insulating film 12. A high reflectivity electrode RM such as Ag is formed on the contact metal layer CM and the insulating film 12 by electron beam evaporation, sputtering, or the like.
図2Fに示すように、フォトレジストパターンPR2上に堆積した高反射率電極RMをフォトレジストパターンPR2と共にリフトオフして除去する。パターニングされた高反射率電極RMが、コンタクトメタル層CMを覆うと共に、コンタクトメタル層CMとp側電極5との間の領域上方を覆う。
As shown in FIG. 2F, the high reflectivity electrode RM deposited on the photoresist pattern PR2 is lifted off together with the photoresist pattern PR2 to be removed. The patterned high reflectivity electrode RM covers the contact metal layer CM and the region above between the contact metal layer CM and the p-side electrode 5.
このようにして形成した、コンタクトメタル層CMと高反射率電極RMとの積層で形成したn側電極は、安定な特性を示さず、大電流を流すと破壊してしまうことが多かった。原因を究明すると、図2Dに示したリフトオフ後のコンタクトメタル層CMの端部に、むしれ、凹凸等の不規則形状が生じており、図2Eに示すように高反射率電極RMを形成しても、コンタクトメタル層CM上の高反射率電極RMと絶縁膜12上の高反射率電極RMとが電気的に連続しない可能性が高かった。
The n-side electrode formed by laminating the contact metal layer CM and the high reflectivity electrode RM thus formed does not exhibit stable characteristics and often breaks when a large current is passed. When the cause is investigated, irregularities such as irregularities are formed at the end of the contact metal layer CM after lift-off shown in FIG. 2D, and the high reflectance electrode RM is formed as shown in FIG. 2E. However, there is a high possibility that the high reflectance electrode RM on the contact metal layer CM and the high reflectance electrode RM on the insulating film 12 are not electrically continuous.
リフトオフ用のレジストパターンをエッチングマスク用のレジストパターンとは別に作成すれば、リフトオフ後のコンタクトメタル層の端部形状を好適に作成できるであろうが、マスクを作り直すと位置ずれが生じてしまい、好ましくない。そこで、凹部エッチングに用いたレジストパターンを残したまま、コンタクトメタル層をn型層、レジストパターン上に堆積し、かつレジストパターン上のコンタクトメタルをn型層上のコンタクトメタル層から完全に分離することを検討した。
If the resist pattern for lift-off is created separately from the resist pattern for the etching mask, the end shape of the contact metal layer after the lift-off will be able to be suitably created, but if the mask is re-created, positional deviation will occur. It is not preferable. Therefore, the contact metal layer is deposited on the n-type layer and the resist pattern while leaving the resist pattern used for the recess etching, and the contact metal on the resist pattern is completely separated from the contact metal layer on the n-type layer. I examined that.
レジスト層の下に、レジストの現像液によりウェットエッチング可能な材料による犠牲層を形成する実施例を検討する。犠牲層の材料として例えば日本化薬株式会社から入手可能なLORシリーズがある。犠牲層は、TMAH(水酸化テトラメチルアンモニウム)等の現像液に浸漬するだけで徐々に溶解する。
Consider an example in which a sacrificial layer made of a material that can be wet etched with a resist developer is formed under the resist layer. An example of the material for the sacrificial layer is the LOR series available from Nippon Kayaku Co., Ltd. The sacrificial layer is gradually dissolved only by being immersed in a developer such as TMAH (tetramethylammonium hydroxide).
フォトレジスト層を下層犠牲層と上層フォトレジスト層の積層構造で形成する。上層フォトレジスト層を露光し現像すると、上層フォトレジスト層は所望パターンとなる。上層フォトレジスト層の現像工程で、上層フォトレジスト層の除去により露出した下層犠牲層は現像液にエッチングされる。上層フォトレジスト層の端部より、下層犠牲層の端部が引き込んだ形状となる。
A photoresist layer is formed with a laminated structure of a lower sacrificial layer and an upper photoresist layer. When the upper photoresist layer is exposed and developed, the upper photoresist layer becomes the desired pattern. In the development process of the upper photoresist layer, the lower sacrificial layer exposed by removing the upper photoresist layer is etched into the developer. The end of the lower sacrificial layer is drawn from the end of the upper photoresist layer.
図3Aに示すように、図2Aに示す工程のフォトレジスト層PR1を、下層犠牲層SRと上層フォトレジスト層PRの2段レジストDLRに置き換える。下層犠牲層SRは例えば日本化薬株式会社から入手可能なLORで形成し、ドライエッチングに耐える上層フォトレジスト層PRは例えばAZ社製のAZ6130で形成する。
As shown in FIG. 3A, the photoresist layer PR1 in the step shown in FIG. 2A is replaced with a two-stage resist DLR of a lower sacrificial layer SR and an upper photoresist layer PR. The lower sacrificial layer SR is formed by, for example, LOR available from Nippon Kayaku Co., Ltd., and the upper photoresist layer PR that can withstand dry etching is formed by, for example, AZ6130 manufactured by AZ.
凹部15のエッチング、フロート絶縁膜12の形成に続き、下層犠牲層SRを例えば厚さ300nm~500nm程度、上層フォトレジスト層PRを例えば厚さ数μm、スピン塗布し、2段レジストDLRを形成する。例えば400mJの露光を行い、現像を50秒間行う。
Following the etching of the recess 15 and the formation of the float insulating film 12, the lower sacrificial layer SR is spin-coated, for example, with a thickness of about 300 nm to 500 nm, and the upper photoresist layer PR is, for example, several μm thick, to form a two-stage resist DLR. . For example, exposure is performed at 400 mJ and development is performed for 50 seconds.
凹部底面に設定した開口部の上層フォトレジスト層PRが通常通りパターニングされる。上層フォトレジスト層PRの除去により露出した下層犠牲層SRも現像液によってエッチングされ、レジストパターンよりも広い範囲で開口する。下層犠牲層SRがサイドエッチング(アンダーエッチング)された引き込み領域17が、例えば幅2.5μm程度、形成される。
The upper photoresist layer PR of the opening set on the bottom of the recess is patterned as usual. The lower sacrificial layer SR exposed by the removal of the upper photoresist layer PR is also etched by the developer, and opens in a wider range than the resist pattern. A pull-in region 17 in which the lower sacrificial layer SR is side-etched (under-etched) is formed with a width of about 2.5 μm, for example.
この2段レジストを用いて、図2Bに示す工程同様、絶縁膜12及びn型層2に凹部を形成するエッチングを行って、コンタクト領域16を形成する。上層フォトレジスト層PRがエッチングマスクの機能を果たす。パターニングされた絶縁膜12の肩部14の上に、引き込み領域17が配置される。
Using this two-stage resist, the contact region 16 is formed by etching to form a recess in the insulating film 12 and the n-type layer 2 as in the step shown in FIG. 2B. The upper photoresist layer PR functions as an etching mask. A lead-in region 17 is disposed on the shoulder 14 of the patterned insulating film 12.
図3Bに示すように、コンタクトメタル層CMをスパッタリングにより堆積する。ここで、フォトレジスト層PRと絶縁膜12との間には、犠牲層SRのサイドエッチングによって生じた、引き込み領域17が存在する。スパッタリングされた高エネルギのメタル原料は、引き込み領域17にも入り込み、凹部側壁上に形成されるコンタクトメタル層主要部の先端に連続して、(引き込み領域17内に入り込む)フック状に折れた滑らかな表面を有する膜18を形成する。絶縁膜12の肩部を囲むように形成されたフック状先端を有するメタル膜CM1はフォトレジストパターンPR上に堆積したメタル膜CM2とは完全に分離され、応力による変形等は抑制される。
As shown in FIG. 3B, a contact metal layer CM is deposited by sputtering. Here, between the photoresist layer PR and the insulating film 12, there is a lead-in region 17 generated by side etching of the sacrificial layer SR. The sputtered high-energy metal raw material also enters the pull-in region 17 and continues to the tip of the main part of the contact metal layer formed on the side wall of the recess, and is smoothly bent into a hook shape (enters the pull-in region 17). A film 18 having a smooth surface is formed. The metal film CM1 having a hook-shaped tip formed so as to surround the shoulder of the insulating film 12 is completely separated from the metal film CM2 deposited on the photoresist pattern PR, and deformation caused by stress is suppressed.
その後、犠牲層SR,フォトレジストパターンPRを除去し、その上のメタルをリフトオフする。フォトレジストパターンPR上に堆積したメタル層CM2は、n型層2、絶縁層12上に堆積したメタル層CM1とは完全に分離されているので、リフトオフによって、メタル層CM1の端部が変形したりすることはない。絶縁膜12表面から滑らかに連続する表面を持つ、フック状のメタル層CM1端部が得られる。反射金属層を堆積すれば、コンタクト層CM1上から絶縁膜12上に連続する反射金属層が得られる。要点のみを説明したが、以下、実施例による半導体発光装置の製造方法の主要工程を説明する。
Thereafter, the sacrificial layer SR and the photoresist pattern PR are removed, and the metal thereon is lifted off. Since the metal layer CM2 deposited on the photoresist pattern PR is completely separated from the metal layer CM1 deposited on the n-type layer 2 and the insulating layer 12, the end of the metal layer CM1 is deformed by lift-off. There is nothing to do. An end portion of the hook-shaped metal layer CM1 having a smoothly continuous surface from the surface of the insulating film 12 is obtained. When the reflective metal layer is deposited, a continuous reflective metal layer is obtained from the contact layer CM1 to the insulating film 12. Although only the main points have been described, the main steps of the method for manufacturing a semiconductor light emitting device according to the embodiment will be described below.
図1Aを参照する。成長基板1として例えばサファイア基板を準備する。成長基板1をMOCVD装置に投入し、サーマルクリーニングを行う。GaNバッファ層及びアンドープのGaN層を成長した後に、Si等をドープした膜厚5μm程度のn型GaN層2を成長する。なお、図1A等において、GaNバッファ層及びアンドープのGaN層をn型GaN層2とまとめて示す。
Refer to FIG. 1A. For example, a sapphire substrate is prepared as the growth substrate 1. The growth substrate 1 is put into an MOCVD apparatus and thermal cleaning is performed. After growing the GaN buffer layer and the undoped GaN layer, an n-type GaN layer 2 having a thickness of about 5 μm doped with Si or the like is grown. In FIG. 1A and the like, the GaN buffer layer and the undoped GaN layer are collectively shown as the n-type GaN layer 2.
n型GaN層2上に、発光層(活性層)3を成長する。発光層3として、例えば、InGaN層を井戸層、GaN層を障壁層とした多重量子井戸構造を形成することができる。発光層3上に、Mg等をドープした膜厚0.5μm程度のp型GaN層4を成長する。
A light emitting layer (active layer) 3 is grown on the n-type GaN layer 2. As the light emitting layer 3, for example, a multiple quantum well structure in which an InGaN layer is a well layer and a GaN layer is a barrier layer can be formed. A p-type GaN layer 4 having a thickness of about 0.5 μm doped with Mg or the like is grown on the light emitting layer 3.
成長基板1は、GaNのエピタキシャル成長が可能な格子定数を有する単結晶基板であり、後工程においてレーザーリフトオフによる基板剥離を可能にするよう、GaNの吸収端波長である362nmの光に対して透明なものから選択される。サファイア以外に、スピネル、SiC、ZnO等を用いてもよい。
The growth substrate 1 is a single crystal substrate having a lattice constant capable of epitaxial growth of GaN, and is transparent to light having a wavelength of 362 nm which is an absorption edge wavelength of GaN so that the substrate can be peeled off by laser lift-off in a later process. Selected from ones. In addition to sapphire, spinel, SiC, ZnO, or the like may be used.
p型GaN層4上に、例えば、電子ビーム蒸着により膜厚200nmの、AgにAl、Pt、Rhもしくはこれらの合金のいずれかのような添加物が添加された層を堆積し、リフトオフによりパターニングして、所定形状の高反射率p側電極5を形成する。p側電極5は、反射電極として機能させるために、Ag,Al,Pt,Rh,もしくはこれらの合金のいずれかを含むことが好ましい。
On the p-type GaN layer 4, for example, a layer having a thickness of 200 nm is deposited by electron beam evaporation and Ag is added with an additive such as Al, Pt, Rh, or an alloy thereof, and patterning is performed by lift-off. Then, the high reflectance p-side electrode 5 having a predetermined shape is formed. The p-side electrode 5 preferably contains Ag, Al, Pt, Rh, or an alloy thereof in order to function as a reflective electrode.
p側電極5は複数の開口を有し、酸化シリコン等のキャップ絶縁層10で覆われる。開口内においてキャップ絶縁層、半導体層をエッチした凹部15を形成し、凹部内においてさらにコンタクト領域をエッチし、コンタクト領域にコンタクトメタル層を形成する。コンタクトメタル層上方に高反射率電極を形成し、コンタクトメタル層と高反射率電極を含むn側電極を構成する。
The p-side electrode 5 has a plurality of openings and is covered with a cap insulating layer 10 such as silicon oxide. A recess 15 is formed by etching the cap insulating layer and the semiconductor layer in the opening, and the contact region is further etched in the recess to form a contact metal layer in the contact region. A high reflectivity electrode is formed above the contact metal layer to form an n-side electrode including the contact metal layer and the high reflectivity electrode.
図4Aは、半導体発光素子におけるp側電極5とn側コンタクト電極CMの、半導体層との接触部分の概略平面構造の例を示す。p型半導体層の上面上に広がって、p側電極5が形成される。p側電極5内に例えば行列状に離散的に開口が形成され、開口内に凹部RCが配置される。各凹部RCの内部にn側コンタクト電極CMが形成される。なお、素子1個は、例えば、サイズ600μm×1300μm程度の矩形形状であり、1つの素子に配置されるコンタクト電極CMの個数は、数十~百数十、例えば40個程度である。図1A-1Hは、代表的に1つ分のn側コンタクト電極CMを示し、p側電極5に形成された1つ分の開口HLを示す。
FIG. 4A shows an example of a schematic planar structure of the contact portion between the p-side electrode 5 and the n-side contact electrode CM in the semiconductor light emitting element with the semiconductor layer. A p-side electrode 5 is formed extending over the upper surface of the p-type semiconductor layer. Openings are formed discretely in a matrix, for example, in the p-side electrode 5, and the recesses RC are disposed in the openings. An n-side contact electrode CM is formed inside each recess RC. One element has, for example, a rectangular shape with a size of about 600 μm × 1300 μm, and the number of contact electrodes CM arranged in one element is several tens to several hundreds, for example, about 40. FIGS. 1A to 1H typically show one n-side contact electrode CM and one opening HL formed in the p-side electrode 5.
図1Aに戻って、p側電極5を覆って、例えば、スパッタリングにより膜厚300nmのSiO2を堆積し、リフトオフによりパターニングして、キャップ絶縁層10を形成する。なお、パターニング方法としてはリフトオフの他、例えば、SiO2を全面に成膜後、CF4系ガスを用いてのドライエッチングを用いてもよい。キャップ絶縁層10は、p側電極5に用いた材料、特にAgの漏洩、拡散を防止する機能を有する。Agの漏洩、拡散防止のためには、SiO2、SiN等の絶縁材料の他、TiW等の金属材料を用いることができる。
Returning to FIG. 1A, covering the p-side electrode 5, for example, a SiO 2 film having a thickness of 300 nm is deposited by sputtering, and patterned by lift-off to form a cap insulating layer 10. As a patterning method, in addition to lift-off, for example, dry etching using a CF 4 gas may be used after depositing SiO 2 on the entire surface. The cap insulating layer 10 has a function of preventing leakage and diffusion of the material used for the p-side electrode 5, particularly Ag. In order to prevent leakage and diffusion of Ag, a metal material such as TiW can be used in addition to an insulating material such as SiO 2 and SiN.
絶縁層10は、p側電極の開口HLの縁近傍にも形成され、開口HLを画定するp側電極5の側面上にも延在するように形成される。絶縁層10上に、p側電極5の開口HL内に開口を有するホトレジストパターンを形成し、絶縁層10、p型層4、活性層3、をエッチし、さらにn型層2の一部厚さをエッチして凹部15を形成する。
The insulating layer 10 is also formed in the vicinity of the edge of the opening HL of the p-side electrode, and is formed so as to extend also on the side surface of the p-side electrode 5 that defines the opening HL. A photoresist pattern having an opening in the opening HL of the p-side electrode 5 is formed on the insulating layer 10, the insulating layer 10, the p-type layer 4, and the active layer 3 are etched, and further, a partial thickness of the n-type layer 2 The recess 15 is formed by etching.
凹部15の内表面を覆って、酸化シリコン等のフロート絶縁層12を形成し、絶縁層12の上に2段レジストDLRを塗布する。2段レジストを露光、現像し、凹部15の底面上方に開口を形成する。図3Aを参照して説明した工程である。2段レジストDLRを露光現像すると、犠牲層SRはフォトレジスト層PRより広い範囲で開口を形成する。例えば50秒の現像で幅2.5μm程度のアンダーカット領域を形成することができる。
A float insulating layer 12 made of silicon oxide or the like is formed so as to cover the inner surface of the recess 15, and a two-step resist DLR is applied on the insulating layer 12. The two-step resist is exposed and developed to form an opening above the bottom surface of the recess 15. It is the process demonstrated with reference to FIG. 3A. When the two-stage resist DLR is exposed and developed, the sacrificial layer SR forms an opening in a wider range than the photoresist layer PR. For example, an undercut region having a width of about 2.5 μm can be formed by developing for 50 seconds.
図1Bに示すように、凹部15底面上方において、2段レジストDLRのフォトレジスト層PR、犠牲層SRに開口が形成され、さらに犠牲層SRの開口は広げられている。フォトレジスト層PRと絶縁層12との間に引き込み領域17が形成される。図3A,3Bを参照して説明した構成である。
As shown in FIG. 1B, openings are formed in the photoresist layer PR and the sacrificial layer SR of the two-stage resist DLR above the bottom surface of the recess 15, and the openings of the sacrificial layer SR are further widened. A lead-in region 17 is formed between the photoresist layer PR and the insulating layer 12. This is the configuration described with reference to FIGS. 3A and 3B.
図1Cに示すように、2段レジストDLRをエッチングマスクとして、絶縁層12、n型層2の一部厚さを、塩素系ガスにより、エッチングし、n型層2にコンタクト領域16を形成する。図2Bに対応する工程である。絶縁層12の内側側面とフォトレジストPRの内側側面とが、引き込み領域17で分断されている。
As shown in FIG. 1C, using the two-stage resist DLR as an etching mask, the insulating layer 12 and the n-type layer 2 are partially etched with a chlorine-based gas to form a contact region 16 in the n-type layer 2. . It is a process corresponding to FIG. 2B. The inner side surface of the insulating layer 12 and the inner side surface of the photoresist PR are separated by a drawing region 17.
図1Dに示すように、コンタクトメタル,例えばTi、をスパッタリングして、コンタクトメタル層CMを堆積する。n型層2、絶縁層12上に堆積したコンタクトメタルがコンタクトメタル層CMを形成し、更にマイグレートしたコンタクトメタルが引き込み領域17の底面上に延在する。側面上から凹部の底面上に延在するコンタクトメタル層CMは、先端がフック状に折れ曲がったフック部分を有し、密着性を向上させる。フォトレジストPR上に堆積したコンタクトメタルは、引き込み領域17で凹部底面、下方側面上のコンタクトメタル層CMから分離される。両コンタクトメタル層間は分離されるので応力を及ぼし合わない。
As shown in FIG. 1D, a contact metal layer CM is deposited by sputtering a contact metal, for example, Ti. The contact metal deposited on the n-type layer 2 and the insulating layer 12 forms the contact metal layer CM, and the migrated contact metal extends on the bottom surface of the lead-in region 17. The contact metal layer CM extending from the side surface to the bottom surface of the recess has a hook portion whose tip is bent into a hook shape, and improves the adhesion. The contact metal deposited on the photoresist PR is separated from the contact metal layer CM on the bottom surface and the lower side surface of the recess in the drawing region 17. Since both contact metal layers are separated, no stress is exerted.
図1Eに示すように、2段レジストを除去し、フォトレジスト層PR上のコンタクトメタルをリフトオフする。コンタクト領域16の底面、側面上に形成されたコンタクトメタル層CMは、さらに絶縁膜12の開口周縁部上面上に延在する。
As shown in FIG. 1E, the two-stage resist is removed and the contact metal on the photoresist layer PR is lifted off. The contact metal layer CM formed on the bottom and side surfaces of the contact region 16 further extends on the upper surface of the opening peripheral edge of the insulating film 12.
図1Fに示すように、高反射率電極をリフトオフによりパターニングするためのフォトレジストパターンPR2を形成する。フォトレジストパターンPR2は、逆テーパ状の断面形状を持つ。図2Eに対応する工程である。
As shown in FIG. 1F, a photoresist pattern PR2 for patterning the high reflectivity electrode by lift-off is formed. The photoresist pattern PR2 has a reverse tapered cross-sectional shape. It is a process corresponding to FIG. 2E.
図1Gに示すように、n側コンタクトメタル電極CM、絶縁膜12上に、例えば、電子ビーム蒸着またはスパッタリングによりAg/Ti/Pt/Au層をそれぞれ膜厚200nm/100nm/200nm/200nm堆積し、リフトオフによりパターニングして、n側高反射率電極RMを形成する。n側高反射率電極RMは、平面視上、その縁部が、p側電極5の縁部と重なるように形成される。なお、密着性向上のためAg層の下地としてTi層を形成してもよい。
As shown in FIG. 1G, an Ag / Ti / Pt / Au layer is deposited on the n-side contact metal electrode CM and the insulating film 12 by, for example, electron beam evaporation or sputtering, with a film thickness of 200 nm / 100 nm / 200 nm / 200 nm, respectively. The n-side high reflectivity electrode RM is formed by patterning by lift-off. The n-side high reflectivity electrode RM is formed so that the edge thereof overlaps with the edge of the p-side electrode 5 in plan view. Note that a Ti layer may be formed as a base for the Ag layer in order to improve adhesion.
ただし、反射率が減少してしまうため、このTi層の膜厚は5nm以下、例えば1nmとする。尚、コンタクトメタル層CMとしては、Ti,Ni,Crのいずれかを含むことが、高反射率電極としてはAg,Al,Pt,Rh,もしくはこれらの合金のいずれかを含むことが好ましい。
However, since the reflectance decreases, the thickness of this Ti layer is 5 nm or less, for example, 1 nm. The contact metal layer CM preferably contains any one of Ti, Ni, and Cr, and the high reflectivity electrode preferably contains Ag, Al, Pt, Rh, or any of these alloys.
図1Hに示すように、リフトオフ用のフォトレジストパターンを形成し、電子ビーム蒸着またはスパッタリングにより、Ti/Pt/Au層をそれぞれ膜厚50nm/100nm/400nm堆積し、リフトオフによりパターニングして、キャップ導電層NCを形成する。なお、キャップ導電層は必須の構成要件ではない。
As shown in FIG. 1H, a photoresist pattern for lift-off is formed, and a Ti / Pt / Au layer is deposited to a thickness of 50 nm / 100 nm / 400 nm by electron beam evaporation or sputtering, respectively, and patterned by lift-off to provide cap conductivity. Layer NC is formed. Note that the cap conductive layer is not an essential component.
このようにして、異なる形状を有するコンタクトメタル電極と高反射率電極とを含むn側電極を形成することができる。コンタクトメタル電極の面積は制限され、その周囲に広く高反射率電極が配置されるので、全体としての反射率が向上する。
In this way, an n-side electrode including contact metal electrodes and high reflectivity electrodes having different shapes can be formed. The area of the contact metal electrode is limited, and the high reflectance electrode is widely disposed around the contact metal electrode, so that the reflectance as a whole is improved.
なお、絶縁膜12に対する高反射率電極RMの密着性を向上させるため、例えば図1Eの状態において、Arガスの逆スパッタリングを行い、絶縁膜12の表面を荒らしてもよい。
In order to improve the adhesion of the high reflectivity electrode RM to the insulating film 12, the surface of the insulating film 12 may be roughened by performing reverse sputtering of Ar gas, for example, in the state of FIG. 1E.
p側電極として、単層のp側電極5を形成する場合を説明した。他の種々の構成のp側電極をもちいることもできる。図4Bはその1例を示す。図4Bにおいては、凹部RC内の構成と共にp型層4の表面上における電極端部の様子も図示した。p型層4の上に、コンタクト性向上の添加物を含むAg合金層6と絶縁フリンジ層13を形成し、Ag合金層6上面を含み絶縁フリンジ層13上面に及ぶ領域に添加物を含まない純銀層7、Ag拡散防止機能を有するTiW等のキャップ金属層8を積層して、p側電極5とし、さらにキャップ絶縁層10、フロート絶縁膜12を形成して、絶縁フリンジ層13も覆う。この場合、キャップ絶縁層はSiO2やSiNの透光性の絶縁材料で形成されることが好ましい。
The case where the single-layer p-side electrode 5 is formed as the p-side electrode has been described. Other various configurations of the p-side electrode can also be used. FIG. 4B shows one example. In FIG. 4B, the state of the electrode end portion on the surface of the p-type layer 4 is also shown together with the configuration in the recess RC. An Ag alloy layer 6 and an insulating fringe layer 13 containing an additive for improving contact properties are formed on the p-type layer 4, and no additive is contained in a region including the upper surface of the Ag alloy layer 6 and extending to the upper surface of the insulating fringe layer 13. A pure silver layer 7 and a cap metal layer 8 such as TiW having an Ag diffusion preventing function are laminated to form a p-side electrode 5, and a cap insulating layer 10 and a float insulating film 12 are formed to cover the insulating fringe layer 13. In this case, the cap insulating layer is preferably formed of a light-transmitting insulating material such as SiO 2 or SiN.
なお、AlGaInNエピタキシャル層上方に、p側電極、n側電極を形成する構成を説明した。引き続き、接続配線を有する支持基板を結合した後、エピタキシャル層、支持基板を切断し、成長基板を剥離し、個々の発光装置に分割することができる。
The configuration in which the p-side electrode and the n-side electrode are formed above the AlGaInN epitaxial layer has been described. Subsequently, after the supporting substrate having the connection wiring is bonded, the epitaxial layer and the supporting substrate are cut, the growth substrate is peeled off, and the light emitting devices can be divided.
図5は、このような半導体発光装置の1構成例を示す断面図である。支持基板21上に絶縁層22を介して、n側接続配線層及びp側接続配線層を含む配線層23を形成し、発光ダイオードのn側電極、p側電極と結合する。成長基板をレーザリフトオフ等で除去する。露出したn型層表面にアルカリ処理等によりマイクロコーンを形成する。ストリート分離、スクライビング等を行い、所望数の発光素子31A,31Bを有するユニットを構成する。ユニットの支持基板21を、接着層26を介して実装基板41,42に実装し、パッド44とワイヤボンディング43等を行う。蛍光体を含む封止樹脂45で発光ダイオード構造を封止する。
FIG. 5 is a cross-sectional view showing one configuration example of such a semiconductor light emitting device. A wiring layer 23 including an n-side connection wiring layer and a p-side connection wiring layer is formed on the support substrate 21 via an insulating layer 22 and is coupled to the n-side electrode and the p-side electrode of the light emitting diode. The growth substrate is removed by laser lift-off or the like. Microcones are formed on the exposed n-type layer surface by alkali treatment or the like. Street separation, scribing, and the like are performed to constitute a unit having a desired number of light emitting elements 31A and 31B. The support substrate 21 of the unit is mounted on the mounting substrates 41 and 42 via the adhesive layer 26, and the pads 44 and the wire bonding 43 are performed. The light emitting diode structure is sealed with a sealing resin 45 containing a phosphor.
図4Aを参照して複数のn側コンタクト電極を分布形成する場合を説明した。図4Aにおいて凹部RCは面内に分散して存在するビア電極形成領域として配置されている。それぞれの凹部RCの断面が図1Hに示すような構成となる。n側コンタクト電極およびそれを収容する凹部RCの形状はこれに限らない。図4Cに示すように、チップ周辺部を凹部RCとして、n側電極を形成してもよい。図4Dに示すように凹部RCを連続する溝部としてもよい。図4Dにおいては溝部の伸びる方向に垂直な断面が図1Hに示すような構成となる。図4Cにおいてはチップ周辺部の辺の伸びる方向に垂直な断面が図1Hのコンタクトメタル層CMを中心から切断したような構成となる。図4Eに示すように、凹部RCを孔状領域と溝状領域との組み合わせとしてもよい。
The case where a plurality of n-side contact electrodes are formed in a distributed manner has been described with reference to FIG. 4A. In FIG. 4A, the recesses RC are arranged as via electrode formation regions that are dispersed in the plane. The cross section of each recess RC is configured as shown in FIG. 1H. The shape of the n-side contact electrode and the recess RC that accommodates it is not limited thereto. As shown in FIG. 4C, the n-side electrode may be formed with the chip periphery as a recess RC. As shown in FIG. 4D, the recess RC may be a continuous groove. In FIG. 4D, a cross section perpendicular to the direction in which the groove extends is as shown in FIG. 1H. In FIG. 4C, the cross section perpendicular to the direction in which the side of the peripheral portion of the chip extends is such that the contact metal layer CM in FIG. 1H is cut from the center. As shown in FIG. 4E, the recess RC may be a combination of a hole area and a groove area.
以上、実施例に沿って説明したが、これらは制限的な意味を持つものではない。GaNで例示した半導体を、InGaN等他のAlGaInNとしてもよい。n型不純物、p型不純物として、種々の材料を用いることもできる。活性層として、多層量子井戸構造の代わりに、ホモ乃至ヘテロ単層活性層を用いてもよい。例示した材料、数値は特に断らない限り制限的な意味を有さない。種々の追加、変更、改良、組み合わせ、等が可能である。
As mentioned above, although it demonstrated along the Example, these do not have a restrictive meaning. The semiconductor exemplified by GaN may be other AlGaInN such as InGaN. Various materials can be used as the n-type impurity and the p-type impurity. As the active layer, a homo to hetero single layer active layer may be used instead of the multilayer quantum well structure. The exemplified materials and numerical values do not have a restrictive meaning unless otherwise specified. Various additions, changes, improvements, combinations, and the like are possible.
Claims (20)
- 第1導電型を有する第1半導体層、活性層、第2導電型を有する第2半導体層の積層を含む半導体積層と、
前記第2半導体層上に形成された高反射率を有する第2電極と、
前記第2半導体層表面から、前記第2半導体層、前記活性層を貫通し、前記第1半導体層に入り、側面に前記半導体積層を露出し、底面に前記第1半導体層を露出するリセスと、
前記リセスの底面に開口を有し、前記リセス側面を覆う絶縁膜と、
前記開口に露出した前記第1半導体層を掘り下げて形成したコンタクト領域と、
前記コンタクト領域の表面と電気的コンタクトを形成し、前記開口に近接する前記絶縁膜縁上面に回り込み、滑らかに連続するフック部分を有する、第1半導体層側コンタクト電極と、
前記半導体積層が発する光に対して高反射率を有し、前記第1半導体層側コンタクト電極上から前記絶縁膜上に延在する、第1半導体層側高反射率電極と
を有する半導体発光装置。 A semiconductor stack including a stack of a first semiconductor layer having a first conductivity type, an active layer, and a second semiconductor layer having a second conductivity type;
A second electrode having a high reflectance formed on the second semiconductor layer;
A recess that penetrates the second semiconductor layer and the active layer from the surface of the second semiconductor layer, enters the first semiconductor layer, exposes the semiconductor stack on a side surface, and exposes the first semiconductor layer on a bottom surface; ,
An insulating film having an opening on a bottom surface of the recess and covering the side surface of the recess;
A contact region formed by digging down the first semiconductor layer exposed in the opening;
A first semiconductor layer-side contact electrode that forms an electrical contact with the surface of the contact region, has a hook portion that smoothly wraps around the upper surface of the insulating film adjacent to the opening and is continuous;
A semiconductor light emitting device having a high reflectivity with respect to light emitted from the semiconductor stack and having a first semiconductor layer side high reflectivity electrode extending from the first semiconductor layer side contact electrode to the insulating film . - 前記第1半導体層、前記活性層、前記第2半導体層がAlGaInNエピタキシャル層で形成される、請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1, wherein the first semiconductor layer, the active layer, and the second semiconductor layer are formed of an AlGaInN epitaxial layer.
- 前記第1半導体層側コンタクト電極は、Ti、Ni,Crのいずれかを含む請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1, wherein the first semiconductor layer side contact electrode includes any one of Ti, Ni, and Cr.
- 前記第1半導体層側高反射率電極はAg,Al,Pt,Rh,これらの合金のいずれかを含む請求項1に記載の半導体発光装置。 2. The semiconductor light emitting device according to claim 1, wherein the first semiconductor layer side high reflectivity electrode includes Ag, Al, Pt, Rh, or an alloy thereof.
- 前記リセスは、複数の領域に分布する請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1, wherein the recess is distributed in a plurality of regions.
- 前記リセスが、孔状領域と溝状領域との組み合わせを含む請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1, wherein the recess includes a combination of a hole-shaped region and a groove-shaped region.
- 前記第1半導体層表面に形成された凹凸構造をさらに有する請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1, further comprising a concavo-convex structure formed on the surface of the first semiconductor layer.
- 前記第1半導体層表面を覆う蛍光体層をさらに有する請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1, further comprising a phosphor layer covering the surface of the first semiconductor layer.
- 成長基板上に、第1導電型を有する第1半導体層、活性層、第2導電型を有する第2半導体層の積層を含む半導体積層をエピタキシャル成長する工程と、
前記第2半導体層表面から、前記第2半導体層、前記活性層を貫通し、前記第1半導体層に入るエッチングを行い、側面に前記半導体積層を露出し、底面に前記第1半導体層を露出するリセスを形成する工程と、
前記リセス内面を覆い、絶縁膜を形成する工程と、
前記絶縁膜上に犠牲レジスト下層とフォトレジスト上層との積層レジスト層を形成する工程と、
前記リセス底面に開口を有するパターンを前記フォトレジスト上層に露光する工程と、
前記積層レジスト層を現像し、前記犠牲レジスト下層端部を前記フォトレジスト上層端部より引き下げて、前記絶縁膜上方に引き込み空間を形成する工程と、
前記積層レジスト層をエッチングマスクとして前記絶縁膜をエッチし、その下の前記第1半導体層を掘り下げて前記第1半導体層のコンタクト領域を形成する工程と、
前記コンタクト領域の前記第1半導体層、その上の前記絶縁膜、前記積層レジスト層上にコンタクトメタル層を堆積し、前記引き込み空間の底面肩部上に配置されたフック部分を有するコンタクト電極を形成する工程と、
前記積層レジスト層を除去するとともにその上に堆積したコンタクトメタルをリフトオフする工程と、
前記コンタクト電極を覆い、周囲の前記絶縁膜上に延在する、高反射率電極を形成する工程と、
を有する半導体発光装置の製造方法。 Epitaxially growing a semiconductor stack including a stack of a first semiconductor layer having a first conductivity type, an active layer, and a second semiconductor layer having a second conductivity type on a growth substrate;
Etching from the surface of the second semiconductor layer through the second semiconductor layer and the active layer and entering the first semiconductor layer, exposing the semiconductor stack on the side, and exposing the first semiconductor layer on the bottom Forming a recess to be
Covering the recess inner surface and forming an insulating film;
Forming a laminated resist layer of a sacrificial resist lower layer and a photoresist upper layer on the insulating film;
Exposing the photoresist upper layer with a pattern having an opening in the recess bottom;
Developing the laminated resist layer, lowering the sacrificial resist lower layer end from the photoresist upper layer end to form a drawing space above the insulating film;
Etching the insulating film using the laminated resist layer as an etching mask, digging down the first semiconductor layer below to form a contact region of the first semiconductor layer;
Wherein the first semiconductor layer of said contact region, said insulating layer thereon, said depositing a contact metal layer on the laminated resist layer, a contact electrode having a hook component which is arranged on the bottom shoulder of the pull-space Forming, and
Removing the laminated resist layer and lifting off the contact metal deposited thereon;
Forming a high reflectivity electrode covering the contact electrode and extending over the surrounding insulating film;
A method of manufacturing a semiconductor light emitting device having - 前記半導体積層をエピタキシャル成長する工程の後、前記第2半導体層上に高反射率を有する第2導電層側電極を形成する工程をさらに含む請求項9に記載の半導体発光装置の製造方法。 The method for manufacturing a semiconductor light emitting device according to claim 9, further comprising a step of forming a second conductive layer side electrode having high reflectivity on the second semiconductor layer after the step of epitaxially growing the semiconductor stack.
- 前記第2導電層側電極は、Ag,Al,Pt,Rh,これらの合金のいずれかを含む請求項10に記載の半導体発光装置の製造方法。 The method of manufacturing a semiconductor light emitting device according to claim 10, wherein the second conductive layer side electrode includes Ag, Al, Pt, Rh, or an alloy thereof.
- 前記第2導電層側電極を覆う拡散防止膜を形成する工程をさらに含む請求項10に記載の半導体発光装置の製造方法。 The method of manufacturing a semiconductor light emitting device according to claim 10, further comprising a step of forming a diffusion prevention film that covers the second conductive layer side electrode.
- 前記第2導電層側電極を形成する工程の後、前記第2導電層側電極を覆ってキャップ絶縁膜を形成する工程をさらに含み、
前記第1半導体層を露出するリセスを形成する工程は、前記キャップ絶縁膜上にレジストマスクを形成して行う、請求項10に記載の半導体発光層装置の製造方法。 After the step of forming the second conductive layer side electrode, further comprising the step of forming a cap insulating film covering the second conductive layer side electrode;
11. The method of manufacturing a semiconductor light emitting layer device according to claim 10, wherein the step of forming a recess exposing the first semiconductor layer is performed by forming a resist mask on the cap insulating film. - 前記積層レジスト層の現像工程は、TMAHを含む現像液を用いる請求項9に記載の半導体発光装置の製造方法。 The method for manufacturing a semiconductor light emitting device according to claim 9, wherein the developing process of the laminated resist layer uses a developer containing TMAH.
- 前記コンタクト電極の形成工程は、Ti、Ni,Crのいずれかを含む原料をスパッタリングする請求項9に記載の半導体発光装置の製造方法。 The method for manufacturing a semiconductor light emitting device according to claim 9, wherein in the step of forming the contact electrode, a raw material containing any one of Ti, Ni, and Cr is sputtered.
- 前記高反射率電極を形成する工程は、Ag,Al,Pt,Rh,これらの合金、のいずれかを含む原料を電子ビーム蒸着またはスパッタリングする、請求項9に記載の半導体発光装置の製造方法。 10. The method of manufacturing a semiconductor light emitting device according to claim 9, wherein the step of forming the high reflectivity electrode includes electron beam evaporation or sputtering of a raw material containing any of Ag, Al, Pt, Rh, and alloys thereof.
- さらに、前記高反射率電極形成工程の前に、前記第2絶縁膜表面をArガスで逆スパッタして荒らす工程を含む請求項9に記載の半導体発光装置の製造方法。 The method of manufacturing a semiconductor light emitting device according to claim 9, further comprising a step of roughing the surface of the second insulating film by reverse sputtering with Ar gas before the step of forming the high reflectivity electrode.
- 前記高反射率電極形成工程の後、前記第2半導体層側表面に支持基板を結合する工程と、
前記成長基板を除去する工程と、
前記第1半導体層側表面上方に蛍光体層を塗布する工程と、
をさらに含む請求項9に記載の半導体発光装置の製造方法。 After the high reflectivity electrode formation step, a step of bonding a support substrate to the second semiconductor layer side surface;
Removing the growth substrate;
Applying a phosphor layer over the first semiconductor layer side surface;
The method for manufacturing a semiconductor light emitting device according to claim 9, further comprising: - 前記成長基板を除去する工程がレーザーリフトオフを含み、前記成長基板がサファイア、スピネル、SiC,ZnOのいずれかで形成されている、請求項18に記載の半導体発光装置の製造方法。 The method of manufacturing a semiconductor light emitting device according to claim 18, wherein the step of removing the growth substrate includes laser lift-off, and the growth substrate is formed of sapphire, spinel, SiC, or ZnO.
- 前記成長基板を除去する工程の後、前記第1半導体層表面に凹凸構造を形成する工程をさらに含む、請求項18に記載の半導体発光装置の製造方法。
The method of manufacturing a semiconductor light emitting device according to claim 18, further comprising a step of forming a concavo-convex structure on the surface of the first semiconductor layer after the step of removing the growth substrate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014053133A JP2015177087A (en) | 2014-03-17 | 2014-03-17 | Semiconductor light emitting device and manufacturing method for the same |
JP2014-053133 | 2014-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141166A1 true WO2015141166A1 (en) | 2015-09-24 |
Family
ID=54144154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/001188 WO2015141166A1 (en) | 2014-03-17 | 2015-03-05 | Semiconductor light-emitting device and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015177087A (en) |
WO (1) | WO2015141166A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6160726B2 (en) * | 2015-04-27 | 2017-07-12 | 日亜化学工業株式会社 | Light emitting device |
JP6260640B2 (en) * | 2015-05-22 | 2018-01-17 | 日亜化学工業株式会社 | Light emitting element |
DE102015119353B4 (en) * | 2015-11-10 | 2024-01-25 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component |
WO2017090903A1 (en) * | 2015-11-27 | 2017-06-01 | 주식회사 썬다이오드코리아 | Light emitting diode including buried p-type contact layer |
KR20170088663A (en) * | 2016-01-25 | 2017-08-02 | 서울반도체 주식회사 | Uv light emitting device |
JP6693336B2 (en) * | 2016-08-25 | 2020-05-13 | 豊田合成株式会社 | Method of manufacturing light emitting device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55154737A (en) * | 1979-05-22 | 1980-12-02 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Method of forming pattern |
JPH0529139U (en) * | 1991-09-27 | 1993-04-16 | 三菱電機株式会社 | Lift off mask |
JPH10154707A (en) * | 1996-09-27 | 1998-06-09 | Hitachi Cable Ltd | Manufacture of semiconductor device |
JP2006351575A (en) * | 2005-06-13 | 2006-12-28 | Matsushita Electric Ind Co Ltd | Semiconductor light-emitting element |
JP2009238893A (en) * | 2008-03-26 | 2009-10-15 | Oki Data Corp | Semiconductor device, optical print head, and image forming apparatus |
JP2010525585A (en) * | 2007-04-26 | 2010-07-22 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Optoelectronic semiconductor body and manufacturing method thereof |
-
2014
- 2014-03-17 JP JP2014053133A patent/JP2015177087A/en active Pending
-
2015
- 2015-03-05 WO PCT/JP2015/001188 patent/WO2015141166A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55154737A (en) * | 1979-05-22 | 1980-12-02 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Method of forming pattern |
JPH0529139U (en) * | 1991-09-27 | 1993-04-16 | 三菱電機株式会社 | Lift off mask |
JPH10154707A (en) * | 1996-09-27 | 1998-06-09 | Hitachi Cable Ltd | Manufacture of semiconductor device |
JP2006351575A (en) * | 2005-06-13 | 2006-12-28 | Matsushita Electric Ind Co Ltd | Semiconductor light-emitting element |
JP2010525585A (en) * | 2007-04-26 | 2010-07-22 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Optoelectronic semiconductor body and manufacturing method thereof |
JP2009238893A (en) * | 2008-03-26 | 2009-10-15 | Oki Data Corp | Semiconductor device, optical print head, and image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2015177087A (en) | 2015-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5421001B2 (en) | Light emitting device and manufacturing method thereof | |
TWI593145B (en) | Light emitting diode | |
CN107527976B (en) | Semiconductor light emitting device and method for manufacturing the same | |
JP6720472B2 (en) | Method of manufacturing light emitting device | |
TWI569470B (en) | Light emitting diode and method of fabricating the same | |
US20190103515A1 (en) | Light-emitting device and manufacturing method thereof | |
TWI422077B (en) | Light-emitting diode structure and method for manufacturing the same | |
WO2015141166A1 (en) | Semiconductor light-emitting device and method for manufacturing same | |
TW201344962A (en) | Semiconductor light emitting device and a manufacturing method of the same | |
KR20100035846A (en) | Light emitting device and method for fabricating the same | |
KR20190104693A (en) | Semiconductor light emitting device | |
KR102022659B1 (en) | High efficiency light emitting diode and method of fabricating the same | |
KR20140068474A (en) | Method for separating substrate and method for fabricating light-emitting diode chip using the same | |
KR20140028803A (en) | Light emitting diode having reflecting dielectric layer for flip bonding and method for fabricating the same | |
KR20210135426A (en) | Light-emitting device | |
US9048348B2 (en) | Method of separating substrate and method of fabricating semiconductor device using the same | |
US9159871B2 (en) | Light-emitting device having a reflective structure and a metal mesa and the manufacturing method thereof | |
TWI625870B (en) | Method of manufacuring semiconductor light emitting device | |
JP6627728B2 (en) | Light emitting device manufacturing method | |
KR20130098760A (en) | High efficiency light emitting diode and method of fabricating the same | |
US8507938B2 (en) | Light-emitting diode structure and method for manufacturing the same | |
JP5945409B2 (en) | Semiconductor device and manufacturing method thereof | |
US8878218B2 (en) | Semiconductor light-emitting device and method for manufacturing the same | |
KR102217128B1 (en) | Light emitting diode and method of fabricating the same | |
TWI848299B (en) | Optoelectronic semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15765927 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15765927 Country of ref document: EP Kind code of ref document: A1 |