TW201314267A - Autostereoscopic display device - Google Patents
Autostereoscopic display device Download PDFInfo
- Publication number
- TW201314267A TW201314267A TW101119231A TW101119231A TW201314267A TW 201314267 A TW201314267 A TW 201314267A TW 101119231 A TW101119231 A TW 101119231A TW 101119231 A TW101119231 A TW 101119231A TW 201314267 A TW201314267 A TW 201314267A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- display
- light
- refractive index
- display configuration
- Prior art date
Links
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
本發明係關於一種包括具有用於產生一顯示之一顯示像素陣列之一顯示面板及用於將不同視像(view)引導至不同空間位置之一成像配置之類型之自動立體顯示裝置。 The present invention relates to an autostereoscopic display device comprising a display panel having one display pixel array for producing a display and an imaging configuration for directing different views to one of different spatial locations.
用於此種類型之顯示器之一成像配置之一第一實例係(舉例而言)具有相對於該顯示器之下伏像素定尺寸及定位之狹縫之一阻障。在一雙視像設計中,觀看者能夠感知到一3D影像,條件係他/她的頭處於一固定位置。該阻障定位於該顯示面板前面且經設計以便分別將來自奇數像素行及偶數像素行之光引向觀看者之左眼及右眼。 A first example of an imaging configuration for one of such types of displays is, for example, one of the slits that are sized and positioned relative to the underlying pixels of the display. In a pair of video designs, the viewer can perceive a 3D image with the condition that his/her head is in a fixed position. The barrier is positioned in front of the display panel and is designed to direct light from odd pixel rows and even pixel rows to the left and right eyes of the viewer, respectively.
此類型之雙視像顯示設計之一缺點在於觀看者必須處於一固定位置,且只可向左或向右移動大約3釐米。在一更佳實施例中,不存在每一狹縫下方之兩個子像素行,而是存在若干個子像素行。以此方式,觀看者被允許向左及向右移動且始終在他/她的眼睛中感知到一立體影像。 One disadvantage of this type of dual view display design is that the viewer must be in a fixed position and can only move about 3 cm to the left or right. In a more preferred embodiment, there are no two sub-pixel rows below each slit, but there are several sub-pixel rows. In this way, the viewer is allowed to move left and right and always perceive a stereoscopic image in his/her eyes.
該阻障配置易於產生但不具光效益。因此,一較佳替代形式係使用一透鏡配置作為該成像配置。舉例而言,可提供彼此平行延伸且上覆該像素陣列之一細長凸鏡狀元件陣列,且透過此等凸鏡狀元件觀察該等顯示像素。 This barrier configuration is easy to produce but not optically efficient. Therefore, a preferred alternative uses a lens configuration as the imaging configuration. For example, an array of elongated convex mirror elements extending parallel to one another and overlying the pixel array can be provided and viewed through the convex mirror elements.
該等凸鏡狀元件提供為一元件薄層,其中每一元件係一細長半圓凸鏡狀凸鏡狀元件。該等凸鏡狀元件沿該顯示面板之行方向延伸,其中每一凸鏡狀元件上覆一各別群組之 兩個或兩個以上毗鄰顯示像素行。 The convex mirror-like elements are provided as a thin layer of elements, each of which is an elongated semi-circular convex mirror-like element. The convex mirror-like elements extend along a row direction of the display panel, wherein each convex mirror element is covered with a respective group Two or more adjacent display pixel rows.
在一其中(舉例而言)每一微透鏡與兩個顯示像素行相關聯之配置中,每一行中之顯示像素提供一各別二維子影像之一垂直片段。該凸鏡狀薄層將該兩個片段及來自與其他微透鏡相關聯之顯示像素行之對應片段引導至定位於該該薄層前面之一使用者之左眼及右眼,以使得該使用者觀察到一單個立體影像。該凸鏡狀元件薄層因此提供一光輸出引導功能。 In a configuration in which, for example, each microlens is associated with two rows of display pixels, the display pixels in each row provide a vertical segment of a respective two-dimensional sub-image. The convex thin layer directs the two segments and corresponding segments from the display pixel rows associated with the other microlenses to the left and right eyes of the user positioned in front of the thin layer to enable the use A single stereo image was observed. The thin layer of convex mirror elements thus provides a light output guiding function.
在其他配置中,每一微透鏡皆沿列方向與一群組之四個或四個以上毗鄰顯示像素相關聯。每一群組中之對應顯示像素行經適當配置以提供來自一各別二維子影像之一垂直片段。當一使用者之頭從左向右移動時,感知到一系列連續、不同、立體視像,從而形成(舉例而言)一環顧印象。 In other configurations, each microlens is associated with a group of four or more adjacent display pixels in a column direction. The corresponding display pixel rows in each group are suitably configured to provide a vertical segment from one of the respective two-dimensional sub-images. As a user's head moves from left to right, a series of continuous, different, stereoscopic views are perceived to form, for example, a look around.
已知自動立體顯示器使用液體顯示器來產生影像。 Autostereoscopic displays are known to use liquid displays to produce images.
對使用諸如電致發光顯示器之發射顯示器(舉例而言,有機發光二極體(OLED)顯示器)越來越感興趣,因為該等顯示器不需要偏振器,且潛在地其應能夠提供與使用一連續受照背光之LCD面板相比增強之效率,此乃因該等像素在不用於顯示一影像時關斷。 There is increasing interest in the use of emissive displays such as electroluminescent displays, such as organic light emitting diode (OLED) displays, because such displays do not require a polarizer and potentially should be capable of providing and using one The enhanced efficiency of LCD panels that are continuously illuminated is due to the fact that the pixels are turned off when not being used to display an image.
亦對使用諸如電泳顯示器及電潤濕顯示器之反射顯示器越來越感興趣。 There is also growing interest in the use of reflective displays such as electrophoretic displays and electrowetting displays.
本發明係基於在一自動立體顯示系統內使用係發射或反射之一顯示配置。 The present invention is based on the use of a system of emission or reflection display configurations within an autostereoscopic display system.
諸如OLED顯示器之發射顯示器及諸如電泳顯示器之反 射顯示器與LCD顯示器之明顯區別在於如何自像素發射光。OLED像素係在很寬之方向範圍內發射光之發射器,且電泳像素係在很寬之方向範圍內反射光之反射器。依據本發明,此等發射器及反射器亦分別稱作漫射發射器及漫射反射器。對於一習用(2D)顯示器,OLED顯示器相對於需要一背光且在不採取特別措施之情況下僅以一窄束發射光之LCD顯示器具有一明顯優點。然而,OLED材料之漫射發射亦提出一挑戰,因為大量光在有機層內部再循環而不發射從而導致一低效率。為改良,人們已探尋各種解決方案以改良對從OLED發出之光之外部耦合。 An emissive display such as an OLED display and a counter such as an electrophoretic display The obvious difference between a radiation display and an LCD display is how to emit light from a pixel. OLED pixels are emitters that emit light over a wide range of directions, and electrophoretic pixels are reflectors that reflect light over a wide range of directions. In accordance with the present invention, such emitters and reflectors are also referred to as diffuse emitters and diffuse reflectors, respectively. For a conventional (2D) display, an OLED display has a distinct advantage over an LCD display that requires a backlight and emits light with only a narrow beam without special measures. However, diffuse emission of OLED materials also poses a challenge because a large amount of light is recirculated inside the organic layer without being emitted, resulting in an inefficiency. For improvement, various solutions have been sought to improve the external coupling of light emitted from the OLED.
然而,2D顯示器之此改良實際上係3D自動立體OLED顯示器之一問題。用於增加光輸出之解決方案無法用於自動立體凸鏡狀顯示器中,因為意欲自一個凸鏡狀透鏡發射之光可在玻璃中反射至一鄰近透鏡。此降低反差且增加串擾。 However, this improvement in 2D displays is actually a problem with 3D autostereoscopic OLED displays. The solution for increasing the light output cannot be used in autostereoscopic mirror-like displays because light intended to be emitted from a convex mirror lens can be reflected in the glass to an adjacent lens. This reduces contrast and increases crosstalk.
諸如電泳顯示器及電潤濕顯示器之反射顯示器可導致類似於上文針對呈OLED顯示器之形式之發射顯示器所述之缺點。 Reflective displays such as electrophoretic displays and electrowetting displays can result in disadvantages similar to those described above for emissive displays in the form of OLED displays.
因此,存在對使用發射顯示器及反射顯示器之期望與對3D自動立體顯示器內之低串擾之期望之間的衝突。 Therefore, there is a conflict between the desire to use the emissive display and the reflective display and the desire for low crosstalk in the 3D autostereoscopic display.
根據本發明,提供一種自動立體顯示裝置,其包括:-一顯示配置,其包括一層堆疊;一自動立體透鏡配置,其包括該顯示配置上方之複數個透 鏡,其中複數個像素提供於每一透鏡下方。 According to the present invention, there is provided an autostereoscopic display device comprising: - a display configuration comprising a stack; an autostereoscopic lens arrangement comprising a plurality of transparent displays above the display configuration A mirror in which a plurality of pixels are provided under each lens.
-一光控制層,其介於該顯示配置與該自動立體透鏡配置之間,其中該光控制層具有低於該光控制層之每一側上之層之材料之一折射率。 a light control layer interposed between the display configuration and the autostereoscopic lens configuration, wherein the light management layer has a refractive index lower than a material of a layer on each side of the light control layer.
在本發明之一實施例中,該顯示配置係諸如一電致發光顯示器之一發射顯示器,舉例而言,一OLED顯示器。在本發明之另一實施例中,該顯示配置係諸如一電泳顯示器或一電潤濕顯示器之反射顯示器。 In one embodiment of the invention, the display configuration is an emission display such as an electroluminescent display, for example, an OLED display. In another embodiment of the invention, the display configuration is a reflective display such as an electrophoretic display or an electrowetting display.
該光控制層之功能係與該層內之一配置相比增加全內反射量,以便防止可對該透鏡材料中之波導產生影響之淺角度之光進入該透鏡材料。 The function of the light management layer increases the amount of total internal reflection compared to one of the layers to prevent light at a shallow angle that can affect the waveguide in the lens material from entering the lens material.
當該顯示配置係具有一頂部發射結構之一電致發光顯示配置時,該層堆疊可包括一鈍化層、一陰極層、一發光層及一陽極層,其中該鈍化層毗鄰該光控制層。該光控制層因此於一側上由該透鏡配置接觸且於另一側上由該電致發光顯示配置之該層堆疊中之最外部層接觸。 When the display configuration has an electroluminescent display configuration of a top emission structure, the layer stack may include a passivation layer, a cathode layer, a light emitting layer, and an anode layer, wherein the passivation layer is adjacent to the light control layer. The light management layer is thus contacted by the lens arrangement on one side and the outermost layer of the layer stack of the electroluminescent display configuration on the other side.
該光控制層較佳具有小於該透鏡配置之材料之折射率至少0.1之一折射率,以提供所期望之改良。此折射率差可大於0.2乃至大於0.3。 The light management layer preferably has a refractive index less than one of the refractive indices of the material of the lens configuration of at least 0.1 to provide the desired improvement. This refractive index difference can be greater than 0.2 or even greater than 0.3.
對於其他發射顯示配置或反射顯示配置,該光控制層可於一側上由該顯示配置之該層堆疊接觸且於另一側上由一裝置基板接觸。 For other emission display configurations or reflective display configurations, the light management layer can be stacked on one side by the layer of the display configuration and on the other side by a device substrate.
該光控制層因此較佳具有小於該基板之材料之折射率至少0.1之一折射率,以提供所期望之改良。此折射率差可 大於0.2乃至大於0.3。 The light management layer therefore preferably has a refractive index less than one of the refractive indices of the material of the substrate of at least 0.1 to provide the desired improvement. This refractive index difference can be More than 0.2 or even greater than 0.3.
在這兩種情況下,該光控制層較佳亦具有小於該顯示配置之外部層至少0.1之一折射率,以提供全內反射出現於其處之一表面。此外,此折射率差可大於0.2乃至大於0.3。 In either case, the light management layer preferably also has a refractive index that is less than at least 0.1 of the outer layer of the display configuration to provide a surface at which total internal reflection occurs. Furthermore, this refractive index difference can be greater than 0.2 or even greater than 0.3.
該透鏡配置較佳包含玻璃,儘管其可改為包括一透明聚合物或其他透明材料。該光控制層可包括空氣,且因此提供一間隔物陣列。該光控制層可改為包括具有所期望(低)折射率之一固態層,從而不需要間隔物。 The lens arrangement preferably comprises glass, although it may instead comprise a transparent polymer or other transparent material. The light management layer can include air and thus provide an array of spacers. The light management layer can instead comprise a solid layer having one of the desired (low) refractive indices so that no spacers are needed.
該自動立體透鏡配置可包括沿一像素行方向延伸或向像素行方向傾斜成一銳角之複數個凸鏡狀透鏡,其中每一透鏡覆蓋複數個像素行。 The autostereoscopic lens configuration may include a plurality of convex mirror lenses extending in a row direction of a pixel or inclined to an acute angle in a row direction of the pixel, wherein each lens covers a plurality of rows of pixels.
若該顯示配置係一電致發光顯示配置,則該顯示器之該層堆疊較佳包括一陰極層、一發光層及一陽極層,其中該陰極層毗鄰該光控制層,且包括一ITO層。此界定具有一透明頂部陰極之一頂部發射顯示器。然而,本發明亦可應用於其他類型之發射顯示器及反射顯示器。 If the display configuration is an electroluminescent display configuration, the layer stack of the display preferably includes a cathode layer, a light emitting layer and an anode layer, wherein the cathode layer is adjacent to the light control layer and includes an ITO layer. This defines a top emission display with a transparent top cathode. However, the invention is also applicable to other types of emissive displays and reflective displays.
本發明亦提供一種顯示立體影像之方法,該方法包括:-使用包括一層堆疊之一顯示配置來產生一像素化影像;-使該像素化影像之光透過一光控制層至一自動立體透鏡配置,其中該光控制層具有低於該光控制層之相對側上之材料之折射率之一折射率。 The present invention also provides a method for displaying a stereoscopic image, the method comprising: - generating a pixelated image using a display configuration comprising a stack; - passing the pixelated image light through a light control layer to an autostereoscopic lens configuration Wherein the light management layer has a refractive index that is lower than a refractive index of a material on an opposite side of the light management layer.
現將參照附圖僅以實例方式闡述本發明之一實施例,其中:本發明提供使用一顯示配置及一自動立體透鏡配置之一自動立體顯示裝置。在該顯示配置與該透鏡配置之間提供具有低於周圍材料層之一折射率之一光控制層。此藉由在光進入該透鏡配置之前增加淺角度(靠近顯示器之平面)之全內反射來減少該透射配置中之波導。 An embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which the invention provides an auto-stereoscopic display apparatus using a display configuration and an autostereoscopic lens configuration. A light control layer having a refractive index lower than one of the surrounding material layers is provided between the display configuration and the lens configuration. This reduces the waveguide in the transmissive configuration by increasing the total internal reflection of the shallow angle (near the plane of the display) before the light enters the lens configuration.
在下文中,將根據係一發射顯示器之一實例之一電致發光顯示器來闡述本發明之實施例。熟習此項技術者將理解,本發明不僅可應用於包括任一類型之發射顯示器之基於凸鏡狀透鏡之自動立體顯示配置中,而且可應用於包括任一類型之反射顯示器之基於凸鏡狀透鏡之自動立體顯示配置,因為在所有此等顯示類型中光將在很寬之方向範圍內自一像素引導(經由發射或經由反射)至該凸鏡狀透鏡。 In the following, embodiments of the invention will be elucidated in accordance with an electroluminescent display of one of the examples of an emissive display. Those skilled in the art will appreciate that the present invention is applicable not only to auto-stereoscopic display configurations based on convex mirror lenses including any type of emissive display, but also to lenticular shapes including reflective displays of any type. The autostereoscopic display configuration of the lens, as in all such display types the light will be directed (via emission or via reflection) from a pixel to the convex mirror lens over a wide range of directions.
下文將首先闡述一已知3D自動立體顯示器之基本操作。 The basic operation of a known 3D autostereoscopic display will first be explained below.
圖1係使用一LCD面板來產生影像之一已知直接視像自動立體顯示裝置1之一示意性透視圖。已知裝置1包括用作一空間光調變器以產生顯示之主動矩陣類型之一液晶顯示面板3。 1 is a schematic perspective view of one of the known direct-view autostereoscopic display devices 1 using an LCD panel to produce an image. The known device 1 comprises a liquid crystal display panel 3 which is used as a spatial light modulator to produce a display active matrix type.
顯示面板3具有配置成列及行之一正交顯示像素5陣列。 為清楚起見,圖中只顯示少量顯示像素5。實際上,顯示面板3可包括約一千列及數千行顯示像素5。 The display panel 3 has an array of orthogonal display pixels 5 arranged in columns and rows. For the sake of clarity, only a small number of display pixels 5 are shown in the figure. In fact, the display panel 3 may include about one thousand columns and thousands of rows of display pixels 5.
共同用於自動立體顯示器中之液晶顯示面板3之結構係完全習用的。特定而言,面板3包括一對間隔開之透明玻 璃基板,其間提供有一對準扭轉向列型液晶或其他液晶材料。該等基板在其面向表面上承載透明氧化銦錫(ITO)電極圖案。偏振層亦提供於該等基板之外表面上。 The structure of the liquid crystal display panel 3 commonly used in the autostereoscopic display is completely conventional. In particular, panel 3 includes a pair of spaced apart transparent glass The glass substrate is provided with an aligned twisted nematic liquid crystal or other liquid crystal material. The substrates carry a transparent indium tin oxide (ITO) electrode pattern on their facing surfaces. A polarizing layer is also provided on the outer surface of the substrates.
每一個顯示像素5包括該等基板上之相對電極,其間具有介入液晶材料。顯示像素5之形狀及佈局取決於該等電極之形狀及佈局。顯示像素5由間隙彼此規則地間隔開。 Each of the display pixels 5 includes opposing electrodes on the substrates with intervening liquid crystal material therebetween. The shape and layout of the display pixels 5 depend on the shape and layout of the electrodes. The display pixels 5 are regularly spaced apart from each other by the gap.
每一個顯示像素5與諸如一薄膜電晶體(TFT)或薄膜二極體(TFD)之一切換元件相關聯。該等顯示像素經操作以藉由向該等切換元件提供定址信號來產生顯示,且熟習此項技術者將知曉適合定址方案。 Each display pixel 5 is associated with a switching element such as a thin film transistor (TFT) or a thin film diode (TFD). The display pixels are operative to produce a display by providing addressing signals to the switching elements, and those skilled in the art will be aware of suitable addressing schemes.
顯示面板3由一光源7照射,在此情形下,光源7包括一在顯示像素陣列之區域上方延伸之平面型背光。來自光源7之光經指引透過顯示面板3,其中個別顯示像素5經驅動以調變該光並產生顯示。 The display panel 3 is illuminated by a light source 7, in which case the light source 7 includes a planar backlight extending over the area of the display pixel array. Light from source 7 is directed through display panel 3, with individual display pixels 5 being driven to modulate the light and produce a display.
顯示裝置1亦包括一配置於顯示面板3之顯示側上方之凸鏡狀薄層9,凸鏡狀薄層9實施一視像形成功能。凸鏡狀薄層9包括一行平行於彼此延伸之凸鏡狀元件11,為清楚起見,僅以誇大尺寸顯示該等凸鏡狀元件中之一者。 The display device 1 also includes a convex mirror-like layer 9 disposed above the display side of the display panel 3. The convex mirror-like layer 9 performs a video forming function. The convex mirror-like layer 9 comprises a row of convex mirror-like elements 11 extending parallel to one another, for clarity, one of the convex mirror-like elements is shown only in an exaggerated size.
凸鏡狀元件11在此特定實例中係呈凸面圓柱透鏡形式,且其用作一光輸出指引構件以向位於顯示裝置1前面之一使用者之眼睛提供來自顯示面板3之不同影像或視像。 The convex mirror element 11 is in the form of a convex cylindrical lens in this particular example and serves as a light output directing member to provide different images or images from the display panel 3 to the eyes of a user located in front of the display device 1. .
該裝置具有控制該背光及該顯示面板之一控制器13。 The device has a controller 13 that controls the backlight and the display panel.
圖1中所示之自動立體顯示裝置1能夠沿不同方向提供若干個不同透視圖。特定而言,每一個凸鏡狀元件11上覆每 一列中之一小群組之顯示像素5。凸鏡狀元件11沿一不同方向投影一群組中之每一個顯示像素5,從而形成若干個不同視像。隨著使用者的頭部自左向右移動,他/她的眼睛將依次接收該若干個視像中之不同視像。 The autostereoscopic display device 1 shown in Fig. 1 is capable of providing several different perspective views in different directions. In particular, each convex mirror element 11 is overlaid Display pixel 5 of a small group in one column. The convex mirror element 11 projects each of the display pixels 5 in a group in a different direction, thereby forming a plurality of different videos. As the user's head moves from left to right, his/her eyes will sequentially receive different ones of the plurality of videos.
在一LCD面板之情況下,亦必須與上文所述之陣列結合使用一光偏振構件,此乃因液晶材料係雙折射的,其中光折射率切換僅適用於一特定偏振之光。該光偏振構件可提供為該顯示面板或該裝置之成像配置之部分。 In the case of an LCD panel, a light polarizing member must also be used in conjunction with the array described above because the liquid crystal material is birefringent, wherein the light index switching is only applicable to a particular polarized light. The light polarizing member can be provided as part of the display panel or the imaging configuration of the device.
圖2展示上文所述之一凸鏡狀型成像配置之操作之原理且展示背光20、諸如一LCD之顯示裝置24及凸鏡狀陣列28。圖2展示凸鏡狀配置28如何將不同像素輸出引導至三個不同空間位置22'、22"、22'''。此等位置皆處於其中所有視像皆不同之一所謂視角錐。該等視像在由透過毗鄰透鏡之像素光產生之其他視角錐中重複。空間位置23'、23"、23'''處於下一視角錐中。 2 shows the principle of operation of one of the convex mirror-like imaging configurations described above and shows a backlight 20, a display device 24 such as an LCD, and a convex mirror array 28. Figure 2 shows how the lenticular configuration 28 directs different pixel outputs to three different spatial locations 22', 22", 22"'. These locations are all in one of the so-called viewing cones in which all of the images are different. The video is repeated in other viewing cones produced by the pixel light transmitted through the adjacent lens. The spatial locations 23', 23", 23"' are in the next viewing cone.
使用OLED顯示器免除需要單獨背光及若干偏振器。OLED有望成為未來之顯示技術。然而,當前關於OLED顯示器之一問題係從該裝置中之光提取。在不採取任何措施之情況下,從OLED中之光提取可低到20%。 The use of an OLED display eliminates the need for a separate backlight and several polarizers. OLED is expected to become the display technology of the future. However, one of the current problems with OLED displays is the extraction of light from the device. Light extraction from OLEDs can be as low as 20% without any action.
圖3示意性地展示一OLED顯示器之一單個像素之結構,且呈一反向發射結構(亦即,經由該基板)之形式。 Figure 3 is a schematic illustration of the structure of a single pixel of an OLED display in the form of a reverse emitting structure (i.e., via the substrate).
該顯示器包括一玻璃基板30、一透明陽極32、一光發射層34及一鏡像陰極36。 The display includes a glass substrate 30, a transparent anode 32, a light emitting layer 34, and a mirror cathode 36.
線表示光可在自有機層中之一點38發射時選擇之路徑。
當光自源發射時,其可沿各個方向行進。當光達到自一層至另一層之轉變時,該等層中之每一者之折射率之間的差確定該光是否可逸出一層且進入下一層。該折射率取決於該材料中之光速且由斯涅耳(Snell)定律表示:
v=速度(米/秒) v=speed (m/s)
n=折射率(無單位) n = refractive index (no unit)
在圖3之實例中,形成光發射層34之有機材料之折射率為高(n=1.8)而玻璃之折射率為1.45。 In the example of FIG. 3, the organic material forming the light-emitting layer 34 has a high refractive index (n = 1.8) and the refractive index of the glass is 1.45.
當自具有一高折射率之一材料行進至具有一低折射之一材料之光之入射角足夠大時,光無法離開該材料。當有機材料進入玻璃時,入射角為臨界角且由α=arcsin(n2/n1)表示。此表示54度。 When the angle of incidence from light having a material having a high refractive index to a material having a material having a low refraction is sufficiently large, light cannot leave the material. When the organic material enters the glass, the angle of incidence is a critical angle and is represented by α = arcsin (n2 / n1). This represents 54 degrees.
因此,很明顯,大量產生於有機層中之光從不離開該層而是保持在其中其被重新吸收且驅動另一光子發射或變成熱量之材料內部。 Thus, it is apparent that a large amount of light generated in the organic layer never leaves the layer but remains inside the material in which it is reabsorbed and drives another photon to emit or become heat.
確實離開該有機層且進入該玻璃基板之光亦如此。大量光無法在玻璃與空氣介面處離開玻璃。 The same is true for light that leaves the organic layer and enters the glass substrate. A large amount of light cannot leave the glass at the glass and air interface.
人們已提出用於確保自有機層發出之光耦合至玻璃中及用於將自玻璃發出之光耦合至空氣中之若干解決方案。 Several solutions have been proposed for ensuring that light emitted from the organic layer is coupled into the glass and used to couple light emitted from the glass into the air.
D.S.Mehta等人之論文「Light out-coupling strategies in organic light emitting devices」(Proc.of ASID'06,8-12 Oct,New Delhi)給出對各種解決方案之概述。 An overview of various solutions is given in the paper "Light out-coupling strategies in organic light emitting devices" by D.S. Mehta et al. (Proc. of ASID '06, 8-12 Oct, New Delhi).
雖然OLED裝置通常係底部發射裝置,且透過該玻璃基板發射光,但另一方法係實施OLED堆疊頂部發射以使得光發射透過一透明陰極且一薄囊封層而不透過該玻璃基板。一般而言,用以增加光提取之不同方法更(或僅)適用於頂部發射OLED結構或底部發射OLED結構 While OLED devices are typically bottom emitting devices and emit light through the glass substrate, another method implements top emission of the OLED stack such that light is transmitted through a transparent cathode and a thin encapsulant layer is not transmitted through the glass substrate. In general, different methods for increasing light extraction are more (or only) suitable for top-emitting OLED structures or bottom-emitting OLED structures.
下文主要基於使用頂部發射OLED顯示器來闡述本發明。然而,本發明背後之基本原理亦可適用於一底部發射OLED顯示器,且所有實施例皆可適用於頂部發射OLED結構及底部OLED結構。 The invention is set forth below primarily on the basis of the use of a top emitting OLED display. However, the basic principles behind the present invention are also applicable to a bottom-emitting OLED display, and all embodiments are applicable to a top-emitting OLED structure and a bottom OLED structure.
雖然已知解決方案有助於針對照明應用及針對2D顯示器使光提取效率提高多達80%,但其不提供對自動立體顯示器之較佳解決方案。當在該OLED顯示器上裝配一凸鏡狀透鏡以形成一自動立體TV時出現一問題。甚至對於一頂部發射OLED,光仍將注入至一相對厚的玻璃層中,從而引起上文所強調提示之問題,且大量光將在該玻璃中保持處於波導模式下。大體上,與一底部發射OLED相比,使用一凸鏡狀透鏡改良自該玻璃至空氣中之光提取,但對於一3D顯示器,此具有降低對比度及增加串擾之副作用。此係對於3D顯示器之一特定問題。對於2D顯示器,在許多情況下,毗鄰像素將顯示相同色彩(亦即,一螢幕之白色或彩色區域、單色之線等)以便若任何光自一鄰近像素逸出,則此將僅增加所期望之色彩。然而,在一3D顯示器中,毗鄰像素通常彼此不具有任何關係,因為毗鄰像素屬於不同視像且通常將具有不同色彩含量。因此,若任何光 自一鄰近像素逸出,則此將嚴重影響影像之品質。 While known solutions help to improve light extraction efficiency by up to 80% for lighting applications and for 2D displays, they do not provide a better solution for autostereoscopic displays. A problem arises when a lenticular lens is mounted on the OLED display to form an autostereoscopic TV. Even for a top-emitting OLED, light will still be injected into a relatively thick layer of glass, causing the problems highlighted above, and a large amount of light will remain in the waveguide mode in the glass. In general, a convex mirror lens is used to improve light extraction from the glass to the air compared to a bottom emitting OLED, but for a 3D display, this has the side effect of reducing contrast and increasing crosstalk. This is a specific issue for one of the 3D displays. For 2D displays, in many cases, adjacent pixels will display the same color (ie, a white or colored area of a screen, a line of monochrome, etc.) so that if any light escapes from a neighboring pixel, this will only increase The color of expectations. However, in a 3D display, adjacent pixels typically do not have any relationship to each other because adjacent pixels belong to different views and will typically have different color content. So if any light This will seriously affect the quality of the image when it escapes from a neighboring pixel.
此外,大量光仍將在該玻璃中保持處於波導模式下。此之部分將被重新吸收。 In addition, a large amount of light will remain in the waveguide mode in the glass. This part will be reabsorbed.
圖4展示當將一凸鏡狀透鏡應用於一頂部發射結構時如何影響光路徑。該頂部發射結構包括一玻璃基板40、鏡像陽極42、界定像素44之光發射層及一透明陰極46。一密封與鈍化層48介於陰極46與玻璃凸鏡狀陣列49之間。 Figure 4 shows how the light path is affected when a convex mirror lens is applied to a top emission structure. The top emission structure includes a glass substrate 40, a mirrored anode 42, a light emitting layer defining a pixel 44, and a transparent cathode 46. A sealing and passivation layer 48 is interposed between the cathode 46 and the glass mirror array 49.
如圖4中所圖解說明,光產生於該有機層中且有些光進入凸鏡狀配置49之玻璃。該光中有些光將藉助內反射50在該玻璃中保持處於波導模式下並進入一鄰近視像(或像素/子像素)之光學路徑。此處,該光可被反射回來且經由透鏡(如針對光線52所示)離開且其可在該像素中被重新吸收。 As illustrated in Figure 4, light is generated in the organic layer and some of the light enters the glass of the convex mirror configuration 49. Some of the light will remain in the waveguide mode by the internal reflection 50 and enter an optical path of a neighboring view (or pixel/subpixel). Here, the light can be reflected back and exited via a lens (as shown for light ray 52) and it can be reabsorbed in the pixel.
若該光不離開鄰近視像之透鏡,則其將形成串擾。 If the light does not leave the lens of the adjacent view, it will form a crosstalk.
本發明提供其中在該凸鏡狀透鏡與具有一低折射率之OLED之間引入一層之一解決方案。 The present invention provides a solution in which a layer is introduced between the convex mirror lens and an OLED having a low refractive index.
圖5展示其中該層包括空氣之本發明之一實例。如所示,空氣層50介於頂部陰極46與凸鏡狀透鏡陣列49之間。 Figure 5 shows an example of the invention in which the layer comprises air. As shown, the air layer 50 is interposed between the top cathode 46 and the convex mirror lens array 49.
具有一大入射角之光線從該空氣介面反射回來進入該發光材料層。結果係較少光在該凸鏡狀薄層之玻璃內部保持處於波導模式下,因此其減少鄰近視像之間的串擾。 Light having a large angle of incidence is reflected back from the air interface into the layer of luminescent material. As a result, less light remains in the waveguide mode inside the glass of the convex mirror-like layer, thus reducing crosstalk between adjacent views.
層50可係具有一低折射率之任一材料。在此上下文中,一「低」折射率係低於相對側上之層之材料,以便界定一臨界角且存在增加之全內反射之折射率。 Layer 50 can be any material having a low refractive index. In this context, a "low" index of refraction is lower than the material of the layer on the opposite side in order to define a critical angle and there is an increased refractive index of total internal reflection.
舉例而言,鈍化層48可係玻璃或具有處於1.3至1.6之範圍內之一折射率之聚碳酸酯。1.0之空氣之較低折射率意味該臨界角處於38度至50度之範圍內,以便陡於該臨界角之所有光皆將在該空氣介面處被內部反射且藉此被阻止進入該凸鏡狀陣列之玻璃。 For example, passivation layer 48 can be a glass or a polycarbonate having a refractive index in the range of 1.3 to 1.6. A lower refractive index of the air of 1.0 means that the critical angle is in the range of 38 to 50 degrees so that all light steeper than the critical angle will be internally reflected at the air interface and thereby prevented from entering the convex mirror. An array of glass.
在該空氣層與該凸鏡狀陣列之玻璃之間的介面處將不存在內反射,此乃因存在一折射率增大。 There will be no internal reflection at the interface between the air layer and the glass of the convex mirror array, due to the presence of an increase in refractive index.
鈍化層48之折射率可低於該OLED堆疊之頂部層46之折射率。 The refractive index of passivation layer 48 can be lower than the refractive index of top layer 46 of the OLED stack.
該臨界角越低,則可在該透鏡之材料內波導之光之減少就越大。一較低臨界角係藉由具有一更大折射率差而獲得。 The lower the critical angle, the greater the reduction in light that can be waveguided within the material of the lens. A lower critical angle is obtained by having a larger refractive index difference.
隨著該電致發光顯示堆疊與該凸鏡狀陣列之玻璃之間的直接接觸(如同在一習用配置中一樣),已存在全內反射出現於其處之一邊界。為增加針對其出現內反射之角範圍並藉此減少波導,該額外材料層應具有低於該凸鏡狀陣列之材料之一折射率。該額外材料層亦需要具有低於該電致發光顯示堆疊之接觸層之一折射率,以便形成一全內反射邊界。 As the electroluminescent display stack is in direct contact with the glass of the convex mirror array (as in a conventional configuration), there is already a boundary at which total internal reflection occurs. In order to increase the angular extent for which internal reflection occurs and thereby reduce the waveguide, the additional material layer should have a refractive index lower than that of the material of the convex mirror array. The additional layer of material also needs to have a refractive index lower than one of the contact layers of the electroluminescent display stack to form a total internal reflection boundary.
因此,該額外材料具有低於該鈍化層(或在不需要鈍化層之情況下該陰極)之一折射率以形成一全內反射表面及低於該凸鏡狀透鏡之折射率之折射率以形成與不具有任何額外材料層之情況相比對波導之抑制之改良。 Therefore, the additional material has a refractive index lower than a refractive index of the passivation layer (or the cathode without a passivation layer) to form a total internal reflection surface and a refractive index lower than a refractive index of the convex mirror lens. An improvement in the suppression of the waveguide compared to the case without any additional material layer is formed.
若該凸鏡狀陣列係玻璃,則其通常將具有1.45之一折射 率,且該額外材料層較佳應具有1.35或更小之一折射率。 If the convex mirror array is a glass, it will typically have a refraction of 1.45. The rate, and the additional material layer should preferably have a refractive index of 1.35 or less.
更一般地說,該額外層之折射率應低於該凸鏡狀材料(其可係一聚合物而不是玻璃)之折射率至少0.1且低於與該額外材料層接觸之顯示面板之層(在該額外材料層與該凸鏡狀陣列之相對側上)之折射率至少0.1。 More generally, the additional layer should have a refractive index lower than the refractive index of the convex mirror material (which may be a polymer rather than glass) of at least 0.1 and lower than the layer of the display panel in contact with the additional material layer ( The refractive index on the opposite side of the additional material layer from the convex mirror array is at least 0.1.
該折射率可更佳低於該額外材料層之兩個相對側上之層之折射率0.2、0.3或0.4以上。 The refractive index may be better than the refractive index of 0.2, 0.3 or more of the layers on the opposite sides of the additional material layer.
額外材料層50之厚度並不重要,但越薄越好。類似於該等OLED層之厚度之一厚度係適合的(數百奈米),但使該厚度增大超過該光之波長可係更可取的,舉例而言增大至1 μm至50 μm之範圍。 The thickness of the additional material layer 50 is not critical, but the thinner the better. A thickness similar to one of the thicknesses of the OLED layers is suitable (hundreds of nanometers), but it may be preferable to increase the thickness beyond the wavelength of the light, for example, to increase to 1 μm to 50 μm. range.
可在將該凸鏡狀薄層施加至該OLED顯示器上時之生產期間插入具有一低折射率之材料。若該材料由空氣組成,則可使用間隔物來維持該凸鏡狀薄層與該OLED顯示器之間的一均勻距離。此等間隔物在圖5中示意性地展示為52。該等間隔物可如所示位於每一透鏡邊界處或者其可不太頻繁地提供。該等間隔物可係吸收的,且其亦可延伸至鈍化層48中以阻斷層48內之光波導。 A material having a low refractive index can be inserted during production of the convex thin layer on the OLED display. If the material consists of air, a spacer can be used to maintain a uniform distance between the convex thin layer and the OLED display. These spacers are shown schematically as 52 in FIG. The spacers may be located at each lens boundary as shown or they may be provided less frequently. The spacers may be absorptive and may also extend into the passivation layer 48 to block the optical waveguides within layer 48.
代替使用空氣,可使用具有接近空氣之1.0之折射率之一低折射率之另一材料,諸如氣凝膠。更一般地說,可使用可係SiO2及TiO2梯度膜、SiO2之奈米棒、特氟綸等之具有至少低於周圍層之一折射率之任一材料。 Instead of using air, another material having a low refractive index close to one of the refractive indices of 1.0, such as an aerogel, can be used. More generally, any material having a gradient of SiO2 and TiO2, a nanorod of SiO2, Teflon or the like having at least a lower refractive index than the surrounding layer can be used.
本發明之解決方案有點不合常理,因為通常需要很大努力以確保該凸鏡狀薄層至該顯示器之很緊層壓。對於 OLED顯示器,本發明涉及將減少自該OLED之光提取之一空氣間隙或其他材料間距引入至該凸鏡狀透鏡中以減少串擾。 The solution of the present invention is somewhat unreasonable because much effort is often required to ensure a very tight lamination of the convex mirror-like layer to the display. for OLED display, the present invention relates to introducing an air gap or other material spacing that reduces light extraction from the OLED into the convex mirror lens to reduce crosstalk.
上述實例係針對頂部發射顯示器。本發明亦可應用於一底部發射顯示器。 The above examples are for a top emission display. The invention can also be applied to a bottom emission display.
圖6展示底部發射顯示器。基板40介於透鏡配置49與顯示堆疊之間。該顯示堆疊包括一透明陽極42、發光層44及一鏡像陰極46。在此情況下,該陽極係透明的。一鈍化層48位於陰極46上方之堆疊(相對於基板40)之頂部上。陽極42與在此實例中展示為一固體之額外光控制層50直接接觸。 Figure 6 shows a bottom emission display. The substrate 40 is interposed between the lens arrangement 49 and the display stack. The display stack includes a transparent anode 42, a luminescent layer 44, and a mirrored cathode 46. In this case, the anode is transparent. A passivation layer 48 is located on top of the stack (relative to substrate 40) above cathode 46. The anode 42 is in direct contact with the additional light management layer 50 shown as a solid in this example.
該陽極可(舉例而言)為具有大約1.7之一折射率之ITO。 The anode can be, for example, an ITO having a refractive index of about 1.7.
該額外層提供與將該電致發光顯示堆疊(特定而言該陽極)與基板40直接接觸之情況下出現之內反射量相比較增加內反射量之相同功能。 This additional layer provides the same function of increasing the amount of internal reflection compared to the amount of internal reflection that occurs when the electroluminescent display stack, in particular the anode, is in direct contact with the substrate 40.
通過對圖式、所揭示內容及隨附申請專利範圍之研究, 熟習此項技術者可理解且在實踐提出專利申請的本發明時實施所揭示實施例之各種變化形式。在申請專利範圍中,字組「包含」不排除其他元件及步驟,且不定冠詞「一」或「一個」不排除複數。在相互不同之附屬請求項中所述之某些措施之單純事實並不表明不能有利地使用此等措施之組合。申請專利範圍中之任何參考符號不應視為限制本發明範疇。 Through the study of the schema, the disclosure and the scope of the accompanying patent application, Various variations of the disclosed embodiments can be implemented by those skilled in the art and in the practice of the present invention. In the scope of the patent application, the word "comprising" does not exclude other elements and steps, and the indefinite article "a" or "an" does not exclude the plural. The mere fact that certain measures are recited in the <RTIgt; Any reference signs in the patent application should not be construed as limiting the scope of the invention.
1‧‧‧顯示裝置/直接視像自動立體顯示裝置 1‧‧‧Display device/direct view autostereoscopic display device
3‧‧‧顯示面板/液晶顯示面板 3‧‧‧Display panel/LCD panel
5‧‧‧顯示像素 5‧‧‧ Display pixels
7‧‧‧光源 7‧‧‧Light source
9‧‧‧凸鏡狀薄層 9‧‧‧ convex mirror-like thin layer
11‧‧‧凸鏡狀元件 11‧‧‧ convex mirror elements
13‧‧‧控制器 13‧‧‧ Controller
20‧‧‧背光 20‧‧‧ Backlight
22'‧‧‧空間位置 22'‧‧‧ Space location
22"‧‧‧空間位置 22"‧‧‧ Space location
22'''‧‧‧空間位置 22'''‧‧‧ Space Location
23'‧‧‧空間位置 23'‧‧‧ Space location
23"‧‧‧空間位置 23"‧‧‧ Space location
23'''‧‧‧空間位置 23'''‧‧‧ Space location
24‧‧‧顯示裝置/柱狀配置 24‧‧‧Display device / column configuration
28‧‧‧凸鏡狀陣列 28‧‧‧ convex mirror array
30‧‧‧玻璃基板 30‧‧‧ glass substrate
32‧‧‧透明陽極 32‧‧‧Transparent anode
34‧‧‧光發射層 34‧‧‧Light emitting layer
36‧‧‧鏡像陰極 36‧‧‧Mirror cathode
38‧‧‧點 38‧‧‧ points
40‧‧‧玻璃基板/裝置基板 40‧‧‧Glass substrate/device substrate
42‧‧‧鏡像陽極/透明陽極/陽極層 42‧‧‧Mirror anode/transparent anode/anode layer
44‧‧‧像素/發光層 44‧‧‧pixel/lighting layer
46‧‧‧頂部陰極/頂部層/透明陰極/陰極層/鏡像陰極 46‧‧‧Top Cathode/Top Layer/Transparent Cathode/Cathode Layer/Mirror Cathode
48‧‧‧鈍化層/密封與鈍化層 48‧‧‧ Passivation layer/sealing and passivation layer
49‧‧‧凸鏡狀配置/自動立體透鏡配置 49‧‧‧ convex mirror configuration / autostereo lens configuration
50‧‧‧內反射/空氣層/層/額外材料層/額外光控制層 50‧‧‧Internal reflection/air layer/layer/extra material layer/extra light control layer
52‧‧‧光線/間隔物 52‧‧‧Light/spacer
圖1係一已知自動立體顯示裝置之一示意性透視圖;圖2展示一凸鏡狀陣列如何將不同視像提供至不同空間位置;圖3示意性地展示一OLED顯示器之一單個像素之結構,且呈一反向發射結構之形式;圖4展示當將一凸鏡狀透鏡應用於一頂部發射結構時如何影響光路徑;圖5展示根據本發明之一第一像素結構實例;及圖6展示根據本發明之一第二像素結構實例。 1 is a schematic perspective view of a known autostereoscopic display device; FIG. 2 shows how a convex mirror array provides different views to different spatial positions; FIG. 3 schematically shows a single pixel of an OLED display. Structure, and in the form of a reverse emission structure; Figure 4 shows how the light path is affected when a convex mirror lens is applied to a top emission structure; Figure 5 shows an example of a first pixel structure in accordance with the present invention; 6 shows an example of a second pixel structure in accordance with one aspect of the present invention.
40‧‧‧玻璃基板/裝置基板 40‧‧‧Glass substrate/device substrate
42‧‧‧鏡像陽極/透明陽極/陽極層 42‧‧‧Mirror anode/transparent anode/anode layer
44‧‧‧像素/發光層 44‧‧‧pixel/lighting layer
46‧‧‧頂部陰極/頂部層/透明陰極/陰極層/鏡像陰極 46‧‧‧Top Cathode/Top Layer/Transparent Cathode/Cathode Layer/Mirror Cathode
48‧‧‧鈍化層/密封與鈍化層 48‧‧‧ Passivation layer/sealing and passivation layer
49‧‧‧凸鏡狀配置/自動立體透鏡配置 49‧‧‧ convex mirror configuration / autostereo lens configuration
50‧‧‧內反射/空氣層/層/額外材料層/額外光控制層 50‧‧‧Internal reflection/air layer/layer/extra material layer/extra light control layer
52‧‧‧光線/間隔物 52‧‧‧Light/spacer
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11016810 | 2011-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201314267A true TW201314267A (en) | 2013-04-01 |
Family
ID=48802480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101119231A TW201314267A (en) | 2011-05-30 | 2012-05-29 | Autostereoscopic display device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201314267A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107884940A (en) * | 2017-11-28 | 2018-04-06 | 腾讯科技(深圳)有限公司 | Display module, head-mounted display apparatus and image stereo display method |
-
2012
- 2012-05-29 TW TW101119231A patent/TW201314267A/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107884940A (en) * | 2017-11-28 | 2018-04-06 | 腾讯科技(深圳)有限公司 | Display module, head-mounted display apparatus and image stereo display method |
US11064187B2 (en) | 2017-11-28 | 2021-07-13 | Tencent Technology (Shenzhen) Company Limited | Display module, head mounted display, and image stereoscopic display method and apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11314103B2 (en) | Autostereoscopic display device | |
TWI595266B (en) | Autostereoscopic display device | |
TWI608253B (en) | Autostereoscopic display device and driving method | |
US20140078274A1 (en) | Autostereoscopic display device | |
TWI521239B (en) | Autostereoscopic display device | |
TW201314268A (en) | Autostereoscopic display device | |
US20150241711A1 (en) | 3d display apparatus | |
KR102146962B1 (en) | Display device with directional control of the output, and a backlight for such a display device | |
TW201314267A (en) | Autostereoscopic display device | |
JP2009157301A (en) | Electro-optical device | |
WO2012164496A1 (en) | Autostereoscopic display device | |
TW201303371A (en) | Autostereoscopic display device | |
KR20170084644A (en) | stereoscopic transparent display device |