TW201230099A - Manufacturing method, position measurement device and method, and label formation device and method for ceramic electronic components - Google Patents
Manufacturing method, position measurement device and method, and label formation device and method for ceramic electronic components Download PDFInfo
- Publication number
- TW201230099A TW201230099A TW100136253A TW100136253A TW201230099A TW 201230099 A TW201230099 A TW 201230099A TW 100136253 A TW100136253 A TW 100136253A TW 100136253 A TW100136253 A TW 100136253A TW 201230099 A TW201230099 A TW 201230099A
- Authority
- TW
- Taiwan
- Prior art keywords
- time
- calibration
- workpiece
- mark
- ray
- Prior art date
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Ceramic Capacitors (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Abstract
Description
201230099 六、發明說明: 【發明所屬之技術領域】 本發明涉及一種陶瓷電子零件的製造方法、位置測定 裝置和位置測定方法、以及標記形成裝置和標記形成方 法。更具體講,本發明所涉及的陶瓷電子零件的製造方法 用於例如在積層陶瓷電子零件的製造時所實施的陶瓷坯塊 (ceramic green block )的切斷工藝。 另外,本發明的位置測定裝置和方法以及標記形成裝 置和方法在例如積層陶瓷電子零件的製造時可以有效地利 用。即,本發明的位置測定裝置和位置測定方法例如用於 測定陶瓷坯塊内部的内部電極圖案的位置,本發明的標記 形成裝置和標記形成方法例如用於在陶瓷坯塊的切斷工藝 時,形成標出切斷位置的基準的基準標記。 【先前技術】 在製造積層陶究電容器等的積層陶兗電子零件時,通 常’要經過下列各工藝,即,將容 丨將多張印刷有内部電極圖幸 的陶瓷坯片(ceramic green sheet)藉屎厭杜 、 g een snee”槓層.壓接,以製造陶 塊’並將陶究培塊切斷爲描定 a 斷爲規疋的尺寸,以製造多片陶瓷生 晶片(ceramic green chip)。 在切斷陶瓷坯塊時,需要 古 兩晋褙確度网地切斷内部雷 案之間的間隙部,但是,内邻雷极“ 電極圓 .,± 内0卩電極圖案由於在製造陶瓷扛 塊時所實施的壓接的緣故而容 是坧 在變形的傾向。而且,由於 存 部電極圖案,因此,陶瓷坯 面看不到内 阀尤场塊的切斷需要高超的技術。 3 201230099 爲此,例如,專利文獻1中提出了下列方案,即,根 據對陶瓷述塊照射透過光線而獲得的内部電極圖案的影 像’求出陶瓷坯塊的切斷位置。 但是,專利文獻1所記載的方法具有切斷所需的時間 長的問題,其原因在於要進行以下各步驟,即,每次切斷 時,要將切斷位置資料儲存在記錄介質中,將陶瓷坯塊與 記錄介質一起搬運到切斷裝置,在切斷裝置上讀出切斷位 置資料進行位置對齊,然後切斷陶瓷坯塊。 另外在專利文獻1所記載的方法中,在使用X射線 作爲透過光線進行位置測定的情況下,有時會産生經時性 的測定偏差。圖17表示X射線照射裝置中所包含的典型的 X射線生成機構51。在X射線生成機構51中,從與陰極 52連接的燈絲、(filament)生成的電子53高速碰撞與陽極 54連接的乾55,由此,電子53的運動能量的—部分成爲χ 射線,但是剩下的運動能量變成熱量並絲55的溫度上 Π由於該溫度上升的緣故’㈣會變形,X射線生成點 《生移動。作爲其結果可以推測出:χ射線影像的令心座 標會向規定的方向移動,從而造成上述經時性的測定偏差。 馨於上述問題,例如,專利文獻2提出了如下方案. 即事先配置與識別Χ射線影像的照相機的 = =用識別標記,根據校正用識別標記所測量的= 爲:正用識別標記的照相機的相對位置爲已知的位置 (不會焚到熱的影響的位置) --# , Λ 差求出Χ射線生成點的 移動量校正作爲測定物件的工件的位置偏移。 4 201230099 但是’在專利文獻2所記裁的方法中, 叫n乃忐甲,有時不能測定 正確的位置。這是因爲:從識別校 仪止用識別標記開始到識201230099 VI. Description of the Invention: [Technical Field] The present invention relates to a method of manufacturing a ceramic electronic component, a position measuring device and a position measuring method, and a marking forming device and a marking forming method. More specifically, the method for producing a ceramic electronic component according to the present invention is used for, for example, a cutting process of a ceramic green block which is carried out at the time of manufacture of a laminated ceramic electronic component. Further, the position measuring apparatus and method of the present invention and the marking forming apparatus and method can be effectively utilized, for example, in the manufacture of laminated ceramic electronic parts. That is, the position measuring device and the position measuring method of the present invention are used, for example, to measure the position of the internal electrode pattern inside the ceramic compact, and the marking forming device and the marking forming method of the present invention are used, for example, in the cutting process of the ceramic compact, A fiducial mark that marks the reference of the cutting position is formed. [Prior Art] When manufacturing laminated ceramic electronic components such as laminated ceramic capacitors, it is usually necessary to go through the following processes, that is, to accommodate a plurality of ceramic green sheets printed with internal electrodes. By using 屎 Du, g een snee "bar layer. Crimp, to make pottery blocks" and cutting the pottery block into a size that is defined as a cut to produce a plurality of ceramic green chips (ceramic green chip) When cutting the ceramic briquettes, it is necessary to cut the gap between the internal mines in the ancient two Jinshen network, but the inner thunder pole "electrode circle., ± inner 0卩 electrode pattern due to the manufacture of ceramics The reason for the crimping performed at the time of the block is the tendency to be deformed. Further, since the electrode pattern is stored, it is not necessary to have a technique in which the ceramic blank does not have a cut of the inner valve. 3 201230099 For example, Patent Document 1 proposes a method of determining the cutting position of the ceramic green piece based on the image of the internal electrode pattern obtained by irradiating the ceramic block with the transmitted light. However, the method described in Patent Document 1 has a problem that the time required for cutting is long, because the following steps are performed, that is, the cutting position data is stored in the recording medium every time the cutting is performed, The ceramic compact is conveyed to the cutting device together with the recording medium, and the cutting position data is read out on the cutting device to be aligned, and then the ceramic compact is cut. Further, in the method described in Patent Document 1, when the position is measured using X-rays as transmitted light, a measurement variation with time may occur. Fig. 17 shows a typical X-ray generating mechanism 51 included in the X-ray irradiation apparatus. In the X-ray generating unit 51, the electrons 53 generated from the filament connected to the cathode 52 collide with the dry 55 connected to the anode 54 at a high speed, whereby the portion of the kinetic energy of the electron 53 becomes a ray, but The lower kinetic energy becomes heat and the temperature of the wire 55 is increased due to the temperature rise (4), and the X-ray generation point is "moving." As a result, it can be inferred that the centroid of the x-ray image is moved in a predetermined direction, thereby causing the above-described measurement deviation of the temporality. In addition to the above problems, for example, Patent Document 2 proposes a scheme in which the camera of the camera that recognizes and recognizes the x-ray image is == with the identification mark, and the measurement according to the correction identification mark is: the camera that is using the identification mark The relative position is a known position (the position where the influence of heat is not incinerated) --# , Λ The difference is obtained by correcting the movement amount of the ray generation point as the positional deviation of the workpiece as the object to be measured. 4 201230099 However, in the method described in Patent Document 2, n is a armor, and the correct position may not be measured. This is because: from the identification of the identification of the instrument to the identification mark
別工件爲止,存在使照相機移動等的時滞,在該期間内,X 射線生成裝置也繼續工作,靶的溫度繼續上升。即,與識 別校正用識別標記時點的偏移量相比,識別工件時點的偏 移量會稍微變大。 而且’在工件的應該測定的位置(座標)爲多個的情 況下’如果在識別校正用識別標記之後,按順序地識別工 件的各部位’則越是後敎的座標,其偏移量會變得越大。 爲了避免該問題’可以考慮每次都將照相機復原,從而重 新測定校正用識別標記的偏移量’但是,在這種情況下, 測定效率會降低。 專利文獻1 : JP特開2〇〇〇-2 1 680號公報 專利文獻2 . JP特開2003-254735號公報 【發明内容】 因此,本發明的目的是提供一種能夠解決上述課題的 陶瓷電子零件的製造方法。 本發明的其他目的是提供一種有效應用於上述陶瓷電 子零件的製造方法中的位置測定裝置以及位置測定方法。 本發明的另一其他目的是提供一種使用上述位置測定 裝置以及位置測定方法的、有效應用於例如積層陶瓷電子 零件的製造中的標記形成裝置以及標記形成方法。 本發明首先面向於積層陶瓷電子零件的製造方法。 本發明的積層陶瓷電子零件的製造方法的特徵爲,具 201230099 有: 準備陶瓷坯塊的步驟,哼 陶免述片,並具有彼此對向 柱塊具有破積層的多片 在内,配置有未燒成的内部電極圖:面以及第二主面,且 從第—主面側向陶咨ώ ,, 坯塊照射χ射線或紅外飨、-媒& 可透射光線,並通過設置 外線以樣的 射光線進行影像處理,生 /面側的攝影裝置對可透 驟; 生成内部電極圖案的影像資料的步 根據影像資料計算庫在 , |井馬在陶是坯塊的第一或 形成的成爲基準標記的位置 驟; +钻6己形成預定位置的步 在陶瓷坯塊的第一或第— 預定位置上,m隹 的上述基準標記形成 預疋位置上形成基準標記的步驟;和 加工步驟,根據基準標記, 工的步驟。 屬疋仃規疋的加 在形成上述基準標記的步驟中,優選通過照射雷射來 形成基準標記。 、町W射來 另外’上述規定的加工是指例 將陶瓷坯塊沿著陶瓷 坯片的積層方向切斷成規定的尺寸。 另外’本發明也適用於測定設置在主體内部的工件的 座標的位置測定裝置。 本發明的位置測定裝置具有: 載台,其用於放置主體; x射線照射裝置,其包括生成電子的陰極和通過由陰極 201230099There is a time lag for moving the camera or the like until the workpiece is finished. During this period, the X-ray generator continues to operate, and the temperature of the target continues to rise. That is, the amount of deviation of the point at which the workpiece is recognized is slightly larger than the offset of the point at which the identification mark for correction is recognized. Further, in the case where there are a plurality of positions (coordinates) to be measured of the workpiece, 'if the parts for the workpiece are sequentially identified after the identification mark for correction is recognized, the more the coordinates of the back are, the offset will be It gets bigger. In order to avoid this problem, it is conceivable to restore the camera every time to re-measure the offset amount of the correction identification mark. However, in this case, the measurement efficiency is lowered. [Patent Document 1] JP-A-2003-254735, JP-A-2003-254735, SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a ceramic electronic component capable of solving the above problems. Manufacturing method. Another object of the present invention is to provide a position measuring device and a position measuring method which are effectively applied to the above-described method for manufacturing a ceramic electronic component. Still another object of the present invention is to provide a marking forming apparatus and a marking forming method which are effectively applied to, for example, the manufacture of laminated ceramic electronic parts using the above-described position measuring apparatus and position measuring method. The present invention first faces a method of manufacturing a laminated ceramic electronic component. The method for producing a laminated ceramic electronic component according to the present invention is characterized in that: 201230099 includes: a step of preparing a ceramic compact, a enamel-free sheet, and a plurality of sheets having a split layer with respect to each other, and are disposed The internal electrode diagram of the firing: the surface and the second main surface, and from the side of the first main surface to the ceramics, the briquettes are irradiated with xenon rays or infrared rays, and the medium & transmits light, and is set by the outer line. The light is processed by the image, and the photographic device on the raw/face side is permeable; the step of generating the image data of the internal electrode pattern is calculated according to the image data, and the well or the ceramic is the first or formed of the slab Position of the fiducial mark; + step of forming the predetermined position of the drill 6 at the first or first predetermined position of the ceramic compact, the above-mentioned fiducial mark of m隹 forming a step of forming the fiducial mark at the pre-twist position; and processing step, According to the benchmark mark, the steps of the work. In the step of forming the above-mentioned fiducial mark, it is preferable to form a fiducial mark by irradiating a laser. In the case of the above-mentioned predetermined processing, the ceramic ingot is cut into a predetermined size along the lamination direction of the ceramic green sheet. Further, the present invention is also applicable to a position measuring device for measuring the coordinates of a workpiece provided inside the main body. The position measuring device of the present invention has: a stage for placing a main body; an x-ray irradiation device including a cathode for generating electrons and passing through a cathode 201230099
而產生x射線的靶,且向載台照射X 所生成的電子進行碰撞 射線, 置進行照射而透過位 生成主體内部的工件 ㈣裝置’㈣自X射線照射裝 於載臺上的主體的χ #線進行檢測, 的X射線影像資料;和 資料it — ^置其通過對從攝料置發送來的Χ射線影像 身枓進盯處理’來計算主體内部的工件的座標。 並且’爲了解決上述技術問題,運算裝置中儲存有曲 線狀的檢量線’該檢量線輯了 χ射線照射裝置啓動之後 :經過時間、貞由於靶的變形所産生的通過攝影裝置所獲 付的X射線影像的偏移量的關係、,運算裝置構成爲:根據 檢量線’ I出由於在工件的拍攝時點的㈣變形而產生的 通過攝影袭置所獲得的X射線影像的偏移量,並且在對該 ,移量進行校正之後,計算主體内部的工件的座標。以上 是本發明的位置測定裝置的第一特徵。 另外,在將通過描繪出X射線照射裝置啓動後的的經 過時間、與由於㈣變形所産生的由攝影裝置所獲得的Χ 射線影像的偏移量㈣係從而生成上述檢量線的這一操 作’經過幾天多次反復實施之後,發現檢量線具有良好的 再現性。 本發明的位置測定裝置的第二特徵在於,在上述載臺 上形成有校準標記’且按如下進行操作: (1)在X射線照射裝置啓動之後經過了不確定的時間 的第一時點(Τ1),利用攝影裝置拍攝校準標記,在運算 7 201230099 裝置中’根據所獲得的χ射線影像資料,求出校準標記的 第一時點(τ 1 )的座標(c 1 )。 ⑴在從第-時點(T1)起經過了確定的時間的第二 時點’利用攝影裝置再次拍攝校準標記,在運算裝 置中’根據所獲得% XI線影像資料,求出校準標記 二時點(Τ2)的座標(C2)。 $⑴在運算裝置中’求出具有與第—時點(η)的座 標(⑴和第二時點(Τ2)的座標(C2)的傾斜度相同的 傾斜度的檢量線上的位置,並求出與檢量線上的位置相庳 的檢量線上的基準時間(t3),接著,根據檢量線上的基; 時間(t3 ),求出實際的基準時間(丁3 )。 (4) 利用攝影裝置拍攝主體内部的工件,將工 射線影像資料的拍攝時點(Τχ)與實際的基準時間⑺) 之差,相加於檢量線上的基準時間⑴),求出檢量線 拍,時點(tx),接著,從檢.量線上的拍攝時點(⑷ 移量中減去檢量線上的基準時間(t3 )的偏移量。 (5) 在校正偏移量之後,計算主體内部的工件的座標。 另外,本發明也面向於測定配置在主體内 / 座標的位件的 ,本發明的位置測定方法具有:將主體放置在載臺上的 步驟,利用X射線照射裝置向主體照射χ射線的步驟利 用攝影裝置檢測透過主體的χ射線,.並生成主體内部的^ 件的X射線影像資料的步驟;以及通過對χ射線影像資 進仃處理’來計算出主體内部的工件的座標的步驟。' 8 201230099 上述x射線照射裝置包括生成電子的陰極和通過由上 述陰極所生成的電子進行碰撞而產生X射線的靶。 並且,爲了解決上述技術課題,本發明的位置測定方 法還具有生成曲線狀的檢量線的步驟,該曲線狀的檢量線 描緣了 X射線照射裝置啓動之後的經過時間、與由於 變形所産生的通過攝影裝置所獲得的χ射線影像的偏移量 2關係’計算卫件的座標的步驟包括:根據檢量線來求出 由於工件的拍攝時的歡的變形所產生的通過攝影裝置戶样 射線影像的偏移量,且在對該偏移量進行校正之後^ β异主體内部的工件的座標。以上爲本發明的位置測定方 法的第一特徵。 7饥直列疋方 本發明的位置測定方法的第二 上形有成校準標記,並且工=於,在上述載臺 下步驟:。 χ指工件的座標的步驟包括以. ⑴在X射線照射裝置啓動之後經過了不確定 的第一時點(T j ) 利用操 f間 „Wtb )利用攝影裝置拍攝校準標記,在Μ ^置中’根據所獲得的X射線影像資料,求 第-時點⑺)的座標(⑴的步驟。 …的 ⑺在從第一時點⑺)起經過 時點(Τ2 ),利用塭$绝苗a Α 疋的時間的第二 &用攝影裝置再次拍攝校準標記,在運墓鞋 ,根據所獲得的Χ射線影像資料 二時點(Τ2)的座標(C2)的步驟。 &礼3己的第 標(C1) *第運^置广,求出具有與第—時點(T1)的座 -日、點Τ2)的座標(C2)的傾斜度相同的 201230099 ::度的檢量線上的位置,並求出與檢量線上的位置相庫 量線上的基準時間(t3),接著,根據檢量線上 時間〇3),求出實際的基準時間(τ3)的步驟。 (4)利用攝影敦置拍攝主體内部的工件,將工件的χ 射線影像資料的拍攝時點(Τχ)與實際的基準時間( 之差、相加於檢量線上的基準時間⑻求出檢量線上的 拍攝時點㈤,接著,從檢量線上的拍攝時點(tx)的偏 移量中減去檢量線上的基準時間(⑴的偏移量的步驟。 (5 )在校正偏移量之接,▲本曾> _ 的步驟。 多量之後#主體内部的工件的座標 另外,本發明也面向于標記形成裝置,該裝置用於在 與配置在主體内部的工件的座標相關聯的位置上形成基準 標記。 本發明的標記形成裝置具有: 載台’其用於放置主體; X射線照射裝置,其包括生成電子的陰極和通過由陰極 所生成的電子進行碰撞而産生X射線的靶,並向載台照射X 射線; 攝影裝置,其對自x射線照射裝置照射而透過位於載 臺上的主體的X射線進行檢測,生成主體内部的工件的X 射線影像資料; 運算裝置,其通過對從攝影裝置發送來的χ射線影像 資料進行處理’來計算主體内部的工件的座標,並且根據 工件的座# ’計算成爲基準標記的位置的基準標記形成預 201230099 疋位置;和 基準標記形成機構,其在主體的通過運算裝置所計算 出的基準標記形成預定位置上,形成基準標記。 並且,在本發明的標記形成裝置的運算裝置中儲存有 曲線狀的檢量線,該檢量線描繪了 χ射線照射裝置啓動之 後的經過時間、與由於靶的變形所産生的通過攝影裝置所 獲侍的χ射線影像的偏移量的關係,運算裝i構成爲··根 據檢量線,求出由於在工件的拍攝時點的乾的變形而産生 的通過攝影裝置所獲得的X射線影像的偏移量,並且在對 該,移量進行校正之後,計算主體内部的工件的座標。以 上是本發明的標記形成裝置的第一特徵。 本發明的標記形成裝置的第二特徵在於,在载臺上形 =有杈準糕S己’且爲了計算工件的座標而進行如下所 操作: 的在x射線照射裝置啓動之後經過了不確定的時間 時點(τι) ’利用攝影裝置拍攝校準標記,在運算 第置中’根制獲得的X射線轉資料,以校準標 第—時點(丁1)的座標(C1)。 時點((2丄在從:一時點(Τ1)起經過了確定的時間的第二 置中,根據所獲㈣χ射線 裝 二時點⑽的座標(C2)e 父準標記的第 ⑺在運算裝置中,求出具有與 標(⑴和第二時點( .、⑺)的座 M (C2)的傾斜度相同的 201230099 傾斜度的檢量線上的位置,並求出與檢量線上的位置相應 的檢量線上的基準時間(t3),接著,根據檢量線上的基; 時間(t3 ),求出實際的基準時間(T3 )。 (4 )利用攝影裝置拍攝主體内部的工件,將工件的X 射線影像資料的拍攝時點(Τχ )與實際的基準時間⑺) 之差,相加於檢量線上的基準時間(t3),求出檢量線上的 拍攝時點(tx),接著,從檢量線上的拍攝時點(tx)的偏 移量中減去檢量線上的基準時間(t3 )的偏移量。 (5 )在校正偏移量之後,計算主體内部的工件的座標。 可以有效地使用本發明的標記形成裝置的是以下的情 ’况,即:例如,上述主體是由積層的多片陶瓷坯片構成、 且在内部配置有未燒成的内部電極圖案的陶瓷坯塊,上述 工件是内部電極圖案的情況。 在本發明的標記形成裝置中,優選載台構成爲能夠在 攝影裝置與基準標記形成機構之間移動。 另外’在本發明的標記形成裝置中,優選載台、χ射線 照射裝置、攝影裝置以及基準標記形成機構被收納 筐體内。 本發明還適用於在與配置在主體内部的工件的座標相 關聯的位置上形成基準標記的標記形成方法。 本發明的標記形成方法具有··將主體放置在載臺上的 步驟;利用X射線照射裝置向主體照射χ射線的步驟;利 用攝影裝置檢測透過主體的X射線,並生成主體内部的工 件的X射線影像資料的步驟;通過對X射線影像資料進行 12 201230099 處理’來計算主體内部的工件的座標,並且根據工件的座 標’計算成爲基準標記的位置的基準標記形成預定位置的 步驟;在主體上的基準標記形成預定位置上,形成基準標 記的步驟;以及根據基準標記,對主體進行規定的加工的 步驟。 上述X射線照射裝置包括生成電子的陰極和由上述陰 極所生成的電子進行碰撞而産生X射線的把。 並且’本發明的標記形成方法還具有生成曲線狀的檢 量線的步驟’該曲線狀的檢量線描繪了 X射線照射裝置啓 動之後的經過時間、與由於靶的變形所産生的通過攝影裝 置所獲得的X射線影像的偏移量的關係,計算工件的座標 的步驟包括:根據檢量線來求出由於工件的拍攝時點的靶 的變形所產生的通過攝影裝置所獲得的x射線影像的偏移 量’且在對該偏移f進行校正《後,言十算主體内部的工件 的座標的步,驟。以上爲本發明的標記形成方法的第—特徵。 本發明的標記形成方法的第二特徵在於,在上述載臺 上形成有校準標記,並且’計算工件的座標The X-ray target is generated, and the electrons generated by X are irradiated onto the stage to collide with the ray, and the workpiece is generated by the position of the through-body (4) device (4). The immersion of the body mounted on the stage from the X-ray is performed. The X-ray image data of the line is detected; and the data it is set to calculate the coordinates of the workpiece inside the body by processing the image of the X-ray image sent from the image. And 'in order to solve the above technical problem, a curve-shaped calibration curve is stored in the arithmetic device'. The calibration curve is compiled after the ray irradiation device is activated: the elapsed time, 贞 is obtained by the photographic device due to the deformation of the target The relationship between the amount of shift of the X-ray image and the calculation device is such that the offset of the X-ray image obtained by the imaging attack due to the (four) deformation of the point at the time of shooting of the workpiece is based on the calibration curve 'I And after correcting the shift amount, the coordinates of the workpiece inside the body are calculated. The above is the first feature of the position measuring device of the present invention. Further, this operation of generating the above-described calibration curve by drawing the amount of shift between the elapsed time after the X-ray irradiation device is activated and the X-ray image obtained by the imaging device due to the (4) deformation is generated. 'After several days of repeated implementation, the calibration curve was found to have good reproducibility. A second feature of the position measuring device of the present invention is that a calibration mark ' is formed on the stage and operates as follows: (1) A first time point when an indefinite time elapses after the X-ray irradiation device is started ( Τ1), the calibration mark is photographed by the photographing device, and in the calculation 7 201230099, the coordinates (c 1 ) of the first time point (τ 1 ) of the calibration mark are obtained based on the obtained x-ray image data. (1) At the second time point when the determined time has elapsed from the first time point (T1), the calibration mark is again captured by the photographing device, and in the arithmetic device, 'the calibration mark 2 is obtained based on the obtained % XI line image data (Τ2 ) coordinates (C2). $(1) In the arithmetic unit, 'determine the position on the calibration curve having the same inclination as the inclination of the coordinate (C2) of the coordinates ((1) and the second time point (Τ2) of the first time point (η), and obtain the position The reference time (t3) on the calibration curve that is opposite to the position on the calibration line, and then the actual reference time (D3) is obtained from the basis on the calibration line; time (t3). (4) Using the imaging device The workpiece inside the main body is photographed, and the difference between the shooting time point (Τχ) of the ray image data and the actual reference time (7) is added to the reference time (1) on the calibration line, and the calibration line beat is obtained. The time point (tx) is obtained. Then, the offset of the reference time (t3) on the calibration line is subtracted from the shooting time point on the inspection line ((4) shift amount. (5) After correcting the offset amount, the coordinates of the workpiece inside the body are calculated. Further, the present invention is also directed to measuring a position member disposed in a body/coordinate, and the position measuring method of the present invention has a step of placing a main body on a stage, and a step of irradiating the main body with x-rays by an X-ray irradiation device Photography device detects through the subject The step of ray, and generating X-ray image data of the inside of the body; and the step of calculating the coordinates of the workpiece inside the body by processing the χ ray image. ' 8 201230099 The above x-ray irradiation device includes A cathode that generates electrons and a target that generates X-rays by colliding with electrons generated by the cathode. Further, in order to solve the above-described technical problems, the position measuring method of the present invention further has a step of generating a curve-shaped calibration curve, the curve The shape of the calibration curve is related to the elapsed time after the X-ray irradiation device is activated, and the offset 2 of the x-ray image obtained by the imaging device due to the deformation. The step of calculating the coordinates of the guard includes: The amount of the offset of the image of the image-forming ray image caused by the deformation of the workpiece during the shooting of the workpiece, and the coordinate of the workpiece inside the different body after the correction of the offset amount is obtained. The first feature of the position measuring method of the present invention is the first feature of the position measuring method of the present invention. The quasi-marking, and the work = in, under the above-mentioned stage steps: The step of referring to the coordinates of the workpiece includes: (1) After the start of the X-ray irradiation device, an indeterminate first time point (T j ) is utilized. „Wtb】Use the photographic device to take the calibration mark, and set the coordinates of the first-time point (7) according to the obtained X-ray image data (step of (1). (7) at the first time point (7)) From the time point (Τ2), use the second & time of the 绝$绝苗 a Α 用 to take the calibration mark again with the photographic device, in the tombstone, according to the obtained Χ ray image data at 2 o'clock (Τ 2) coordinates Step (C2) & ritual 3 (C1) * The first movement is set to obtain the inclination of the coordinate (C2) having the seat-day and point Τ2 of the first-time point (T1) The same 201230099: degree of the position on the calibration line, and the reference time (t3) on the line of the position on the calibration line is obtained, and then the actual reference time is obtained from the time line 〇3) on the calibration line. Step of (τ3). (4) Using the camera to capture the workpiece inside the main body, the difference between the shooting time point (Τχ) of the χ-ray image data of the workpiece and the actual reference time (the difference between the reference time and the reference time (8) added to the calibration line is obtained on the calibration line. At the time of shooting (5), the reference time of the calibration line (step of the offset of (1) is subtracted from the offset of the shooting time point (tx) on the calibration line. (5) After correcting the offset amount, ▲The procedure of the previous > _. After a large amount of #the coordinates of the workpiece inside the body. In addition, the present invention also faces the marking forming device for forming a reference at a position associated with the coordinates of the workpiece disposed inside the body. The mark forming device of the present invention has: a stage for placing a main body; and an X-ray irradiation device including a cathode for generating electrons and a target for generating X-rays by collision of electrons generated by the cathode, and carrying Irradiating X-rays; the photographing device detects X-rays transmitted from the main body on the stage by irradiation from the x-ray irradiation device, and generates X-ray image data of the workpiece inside the main body; The arithmetic unit calculates a coordinate of the workpiece inside the main body by processing the ray-ray image data transmitted from the photographing device, and calculates a reference mark forming a pre-201230099 疋 position based on the position of the reference mark of the workpiece; And a reference mark forming mechanism that forms a reference mark at a predetermined position where the reference mark is calculated by the arithmetic unit of the main body, and stores a curve-shaped calibration line in the arithmetic unit of the mark forming device of the present invention, The calibration curve depicts the relationship between the elapsed time after the activation of the x-ray irradiation device and the amount of shift of the x-ray image obtained by the imaging device due to the deformation of the target, and the calculation device i is configured as Calculating the amount of shift of the X-ray image obtained by the photographing device due to the dry deformation of the point at the time of photographing of the workpiece, and calculating the coordinates of the workpiece inside the body after correcting the shift amount The above is the first feature of the marking forming device of the present invention. The second special feature of the marking forming device of the present invention. In the case where the shape of the workpiece is calculated on the stage, and the coordinates of the workpiece are calculated, the following operation is performed: After the start of the x-ray irradiation device, an indefinite time (τι) is taken. The calibration mark is used to calculate the X-ray data obtained by the root system to calibrate the coordinates of the target-time (D1). (2) After passing from: one hour (Τ1) In the second setting of the determined time, according to the obtained (four) χ ray, the coordinates (C2) of the second time point (10) and the (7) of the father's standard mark are found in the arithmetic device, and the target ((1) and the second time point (., (7)) are obtained. The seat M (C2) has the same inclination on the calibration line of the 201230099 inclination, and obtains the reference time (t3) on the calibration curve corresponding to the position on the calibration line, and then, based on the calibration line Base; time (t3), find the actual reference time (T3). (4) The workpiece in the main body is photographed by the photographing device, and the difference between the photographing time point (Τχ) of the X-ray image data of the workpiece and the actual reference time (7) is added to the reference time (t3) on the calibration line to obtain The shooting time point (tx) on the calibration line, and then the offset amount of the reference time (t3) on the calibration line is subtracted from the offset amount of the shooting time point (tx) on the calibration line. (5) After correcting the offset, calculate the coordinates of the workpiece inside the body. The marking forming apparatus of the present invention can be effectively used in the case where the main body is a ceramic blank composed of a plurality of laminated ceramic green sheets and having an unfired internal electrode pattern disposed therein. Block, the case where the above workpiece is an internal electrode pattern. In the marking forming apparatus of the present invention, it is preferable that the stage is configured to be movable between the photographing device and the reference mark forming mechanism. Further, in the marking forming apparatus of the present invention, it is preferable that the stage, the xenon irradiation device, the imaging device, and the reference mark forming mechanism are housed in the casing. The present invention is also applicable to a mark forming method of forming a fiducial mark at a position associated with a coordinate of a workpiece disposed inside a main body. The mark forming method of the present invention includes a step of placing a main body on a stage, a step of irradiating the main body with x-rays by an X-ray irradiation device, and detecting an X-ray transmitted through the main body by the photographing device to generate an X of the workpiece inside the main body. a step of forming a predetermined position by calculating a coordinate of the workpiece inside the body by performing 12 201230099 processing on the X-ray image data, and calculating a reference mark as a position of the reference mark according to the coordinate of the workpiece; The reference mark forms a predetermined position to form a reference mark; and the step of performing predetermined processing on the main body based on the reference mark. The X-ray irradiation apparatus includes a cathode that generates electrons and a pair that collides with electrons generated by the cathode to generate X-rays. And 'the mark forming method of the present invention further has a step of generating a curve-shaped calibration curve' which depicts an elapsed time after activation of the X-ray irradiation device and a passing imaging device due to deformation of the target The step of calculating the coordinates of the obtained X-ray image and calculating the coordinates of the workpiece includes: determining the x-ray image obtained by the photographing device due to the deformation of the target at the time of shooting of the workpiece based on the calibration curve After the offset 'and the correction of the offset f, the ten steps of the workpiece inside the body are calculated. The above is the first feature of the mark forming method of the present invention. A second feature of the mark forming method of the present invention is that a calibration mark is formed on the stage, and 'the coordinates of the workpiece are calculated
下步驟: 外匕祜U (1)在X射線照射裝置啓動之後經過了不 的第一賠1¾ f τ〗、. 確&的時間 、·‘ ,利用攝影裝置拍攝校準標記, 裝置中’根據所獲得的x射線影像資料, 第-時點(川的座標(⑴的步驟。"標s己的 ⑺在從第一時點⑺)起經過了確定的 ’點⑺)’利用攝影裝置再次拍攝校準標記,在運算^ 13 201230099 置中,根據所獲得的X射線影像資料,求出校準標 一時點(T2)的座標(C2)的步驟。 、 ⑺在運算裝置中,求出具有與第一 :二…第二時點⑽的座標(⑺的傾斜度相同: 的檢量線上的基準:二:與檢量線上的位置相應 a…、 子間⑺),接者’根據檢量線上的基準 寺間〇3),求出實際的基準時間(T3)的步驟。 ⑷利用攝影裳置拍攝主體内部的工件, 射線影像資料的拍攝時點(Τχ)與實際的基準時間(= 於檢量線上的基準時間⑻,求出檢量線上的 移:中=著,從檢量線上的拍攝時點㈤的偏 減去檢置線上的基準時間⑻的偏移量的步驟。 的步在校正偏移量之後’計算主體内部的工件的座標 在本發明的標記形成方法中,優選上述規定的力… 曰在與工件的位置相關聯的位置上切斷主體。 疋 根據本發明的積層陶瓷電子零件的製造方法,由於Β ===塊照射可透射光線所獲得的内部電極圖案的 IS:::基準標記形成預定位置,在該基準標記形 形成基準標圮,然後,根據該基準標記,對 /塊進行切斷等規定的加工。因此,能夠提 疋的加工的位置精確度。 規 由二卜’根據本發明的積層陶究電子零件的製造方法, '疋在陶瓷坯塊上形成成爲應進行規定的加工的位置的 14 201230099 指標的基準標 加工位置資料 的時間。 記’因此,無需在每次規定的加工時都讀出 進行位置對齊。因此,能夠縮短加工所需要 置和本::?位置測定裝置和方法、以及標記形成裝 性的變妒,“疋基於事先生成的檢量線,預測靶的經時 校正影㈣偏移量,並對該偏移量進行 古 '更δ十异出工件的座標,因此,能夠進行精確产 阿的位置測定,所以,能夠進行位置精確度高的標記形成。 而且,根據本發明的位置測定裝置和彳法、以及 形成裝置和方法,由於是在載臺上形成校準標記,因:: 在位置測定或標記形成時,校準標記的識別只需要測定開 :寺和:過特定時間後最少兩次。因此,校準標記的識別 只需要花費最小限度的時間即可,能夠提高測定效率。 【實施方式】 以下,對作爲使用本發明的積層陶瓷電子零件的一個 例子的積層陶瓷電容器進行說明。 如圖1到圖3所示’積層陶瓷電容器1具有零件主體2。 零件主體2大致呈長方體形狀,且具有:彼此對向的i對 主面3以及4 ;彼此對向的1對側面5以及6 ;和彼此對向 的1對端面7以及8。 如圖2所示,零件主體2具有積層結構,該積層結構 由在主面3以及4的方向上延伸並且在與主面3以及4正 交的方向上積層的多層陶瓷層9、和沿著陶瓷層9之間的介 面形成的多對第一以及第二内部電極1〇以及u構成。 15 201230099 如圖3中所示’第一内部電極ι〇具有:隔著 與第二内部電極丨丨對向的 是層9 m…山 部2;以及從對向部。向 14 =被引出’並在該端部形成露出端13的引出邻 14。另外,關於第一内部電 出邛 ^ 1〇的平面形狀,從將側面5 …之間連接的寬度方向來看,引出部 部12的寬度相比,逐漸地變窄。 又與對向 ★在圖3中用虛線所示的第二内部電極U也同. :丄陶…與第-内部電極1。對向的對向部15二及從 W 15向第一端面8被引出,並在該 二引出部-第二内部電極U具有與上述第一内:; 10對稱的平面形狀。 如上所述,第一内部電極10的對向部12和第二内部 電極11的對向部15隔著衫層9而彼此對向,由此 一向P 12以及15之間顯現電特性。即,在該積層陶瓷 電各器1的情況下,形成靜電電容。 而且,積層陶究電容器i還具有以與内部電極1〇以及 11的各自的露出端13以及16分別電連接的方式,在零件 主體2的至少丨對的端φ 7以及8上分別形成的外部電極 18以及19。在本實施方式中,外部電極18以及19具有繞 到主面3以及4和側面5以& 6的各一部分的部分。、 作爲用於内部電極1G以及i i的導電材料,能夠使用 例如Ni、Cu、Ag、Pd、Ag_pd合金以及Au等。内部電極 10以及"的各自厚度優選爲〇3〜2〇μιη。 作爲構成陶竟層9的陶究材料,能夠使用以例如 16 201230099 * BaTi03、CaTi〇3、SrTi03、CaZrO ^ a + , v laucj3荨爲主成分的電介質陶 竞。根據需要’ t電介質陶究中添加Mn化合物、%化合 物、Si化合物、Co化合物、Ni化合物以及稀土類元素化^ 物等的副成分。 另外,雖然應用本發明的不局限於積層陶瓷電子零 件,但在應用於積層陶究電子零件的情況下,也能夠適用 於積層陶瓷電容器以外的積層陶瓷電子零件中。作爲構成 陶瓷層9的陶瓷材料,在積層陶瓷電子零件是例如壓電零 件的情況下,能夠使用PZT系陶瓷等的壓電體陶瓷,在熱 敏電阻的情況下’能夠使用尖晶石系陶瓷等的半導體陶兗。 雖然圖中沒有顯示,但是外部電極17以及18優選由 基底層和在基底層上形成的電鍍層構成。作爲用於基底層 的導電材料,能夠使用例如Cu、Ni ' Ag、Pd、Ag-Pd合金 以及Au等。基底層可以通過使用將導電性糊膏塗敷在未燒 成的零件主體2上並與零件主體2同時燒成的共燃法而形 成’也可以通過使用將導電性糊.膏塗敷在燒成後的零件主 體2上並燒接的後燒法而形成。或者,基底層既可以通過 直接電鑛形成,也可以通過使包含熱硬化性樹脂的導電性 樹脂硬化而形成。 基底層的厚度優選最厚的部分是10〜5〇μηι。 作爲構成在基底層上所形成的電鍍層的金屬,能夠使 用從例如 Cu、Ni、Sn、Pb、Au、Ag、Pd、Bi 以及 Ζη 中選 擇的一種金屬或包含該金屬的合金。電錢層可以由多層構 成。如上所述,在電鐘層是由多層構成的情況下,優選是 17 201230099 鑛Ni以及其上面的锻Sn的兩層結構。另外,電锻膜的厚 度優選每一層爲1〜15μιη。 在基底層與電鍍層之間可以形成用於緩和應力的導電 性樹脂層。 接下來,對上述積層陶究電容器!的製造方法進行說 明。 首先,分別準備:應成爲陶瓷層9的陶瓷坯片、用於 内部電極1〇和"的導電性糊膏、以及用於外部電極18和 19的導電性糊膏。在這些陶瓷坯片以及導電性糊膏中含有 點、。劑以及*劑’而作爲這些點結劑以及溶劑,能夠分別 使用公知的有機粘結劑以及有機溶劑。 接下來,如圖4所示 法等以規定的圖案來印刷 成了應分別成爲内部電極 22的陶瓷坯片21。 ’在陶瓷坯片21上使用絲網印刷 導電性糊膏。由此,能夠獲得形 工〇以及11的多個内部電極圖案 圖4圖示出:在内部電極圖案22的長度方向(圖4 的左右方向)上延伸的預定切斷線23以及在與其正交的 度方向(圖4中的上下方向)上延伸的預定切斷線24。 莞&片21具有·在後面要提到的積層步驟 上述預定切斷線23以及24切斷甘.隹―八& 通過& 4切斷並進仃分割,而能夠取 用於多個積層陶莞電容器1的零件主體2的尺寸。圖4j 不的預^切斷線23以及24是在積層步驟之前的設計階」 被確定的,在實施用於緙γ你 貝&用於獲付後面要提到的陶瓷坯塊27 層以及Μ接步驟之後,” _27有時也會沿著與預^ 18 201230099 斷線23以及24不同的切斷線被切斷。關於該用於實際 切斷的虛擬切斷線的確定方法,後面將會進行闡述。、 另外,由於作圖時的問題,在圖4所示的陶瓷坯片h 上形成的内部電極圖案22的數量比實際的情況少。 在陶瓷坯片21的彼此對向的邊的各中央部附近分別形 成校正用標記25a以及25be校正用標記25a以及2讣是使 用與形成上述内部電極圖案22的導電性糊膏相同的導=性 糊膏’在内部電極圖案22的印刷的同時形成的。因此,内 :電極圖案22與校正用標記25a以及25b的位置關係爲恒 疋。校正用標記25a以及25b最終不會留在作爲產 陶瓷電容器1上。 ^ 另外,在圖4中,在(A)和(B)中表示陶究堪片以, 是爲了在對後面要提到的積層步驟進行說明時方便,(A) 所示的陶瓷坯片21和⑻所示的陶瓷坯片21除了圖中所 示的方向不同,彼此是相同的。 上圖4所示的校正用標記…以及25b,可以與圖$所示 的校正用標記26進行置換。圖5所示的校正用標記26是 通過將位於兩端的列的内部電極圖案22的一部分進行反白 而形成的。另外’雖然圖5所示的内部電極圖案22與圖4 所示的内部電極圖f 22形狀不同,但這不是本質性的特 '圖5所不的内部電極圖案22可以理解爲形狀被簡 地表示。 :接下來,將規定張數的未印刷内部電極圖案的外層用 陶究赵片積層,在其上面按順序積層已印刷了® 4所示的 19 201230099 内部電極圓案22的 外層用陶瓷,在其上面積層規定張數的 〇乃’以製造陶穿抹 將印刷了内部雷 £ &塊27 (參照g 10等卜在 電極圓案22的陶瓷链# ? _ (Λ)所示的方J无坯片21進仃積層時,圖4 陶心π:…1與圖⑼所示的方向的 爲了提円上述積層步驟後的操作性,彳I ,ϋ / 27的下表面箱m ⑨的播作&,優選在陶瓷坯塊 預先枯貼發泡剝離片等的粘結片。 向』了來’利用等㈣機等手段將陶⑽2、積層方 標記步驟所獲得的陶⑽27利用圖6所示的 主體是㈣31進行處理。在本發明中被作爲測定物件的 瓷坯塊27,在其内部配置的内部電極 配置在主體内部的工件。 韦22成爲 史丁己形成裝置3 1具有:載台32、X射線照射裝置33、 攝景:裝置34、影像處理·運算裝置35和標記形成機構36。 在‘圮形成裝置3 1中預先設定了機械性絕對座標。在標記 形j裝置31中,優選至少將載台32、X射線照射裝置33、 攝影裝£ 34卩及標記形成機構36 I納在一個筐體中。另 外,在圖6中,雖然表示了三個載台32,但這並不是說存 在三個載台32 ’而是表示一個載台32移動能獲取的三個位 置。另外’圖中雖然表示了與標記形成裝置31相鄰的切斷 裝置37’但關於切斷裝置37的詳細内容,後面將進行闡述。 載台3 2在行以及列方向(X以及γ方向)上可以移動, 並且在水平面上也能夠90。旋轉。如圖10所示,在載台32 20 201230099 上形成有权準標記29 〇校準栌纪29 I w办丨丄 ^ ^ ^ 杈早‘兄29疋U例如將氧化鋁片刻 成十子形狀的結構而形成的。 射線』射裴置33配置在位於初始位置的 mi7’x射線照射裝置33具有上述X射線生成機 圖17所不,X射線生成機構51包括生 和碰撞從陰極52高速發射的電子53的乾Μ。從 曰姑一, 商速地碰撞乾55,由此,其運動能 1、彳刀作A X射線38而被照射至,!载台32的方向。 另外X射線38的照射方向也可以是與圖示的方向相 反的從上到下的方向。 攝〜裝置34配置在位於初始位置的載台32的上方, ^檢測透過陶Μ塊27的Χ射線38。作爲攝影裝置34, 旎夠使用區域感測器型照相機。 、々像處理運算裝置35與攝影裝置34連接。影像處理· 運算裝置35由例如cpu以及記憶體構成,且具有影像處理 功能和運算m像處理.運算裝置35首先根據其影像 处理功此對用攝影裝置34檢測出的X射線38進行影像處 田進行該影像處理時,例如,通過二進位化或邊緣檢 測等’如目7戶斤示’生成包括黑色圖案(影線部分)和白 色圖案的影像資料。更詳細地講,通過透過m塊”的 Χ射線38所獲得的影像’如圖8所示,在應成爲内部電極 圖案22的内部電極1G以及11的對向部12以及1 5的部分 相重叠的區域中最濃;在應成爲引出部14以及17的部分 21 201230099 相重疊的區域中,爲由 22的…“ ’·、曰,的濃度,在不存在内部電極圖案 22的Q域中最簿。^^ L、+、…μ上 在上述影像處理中,將應成 的内部電極Η)以及U的對向…及15的部分= 2區域作爲黑色圖案,將除此以外的區域作爲白色圖案, 像14樣生成影像資料。 ’、 另外’關於圓4所示的校正用標記25a以及25b,由於 與應成爲内部電極圖案22的對向部12以及15的部分且有 相同的相重疊程度,所以作爲黑色圖案而被識別。在使用 圖5所不的校正用標記26的情況下’作爲白色圖案被識別。 另外,圖7等所示的内部電極圖案22與校正用標記25a 以及25b,分別是通過内部電極圖案22與校正用標記^ 、及25b所獲侍的影像,並不是内部電極圖案η與校正用 :記…以及25b本身。但是,爲了便於說明,對内部電極 圓案的影像也使用“22”的參照符號,另外,對校正用標 A25a^25b@各自㈣像也使用“25a”以及“ 25b ”的 參照符號。 另外,在影像處理.運算裝置35所具有的記憶體中, 儲存有曲線狀的檢量線’其用於料出:χ射線照射裝置 33啓動之後的經過時間與由於乾55的變形所産生的通過攝 :裝置34所獲得的X射線影像的偏移量的關係。圖14表 示檢量線的一個例子。萁Λ J ^另外,雖然只要檢量線與X以及γ 方向的任意-個方向對應就足夠,但也可以以與兩個方向 都對應的方式準備兩條檢量線。 影像處理·運算裝置35的構成方式爲:根據上述檢量 22 201230099 =來求出内部電極圖案22的實際的拍攝時點的χ射線 的偏移量’在對該偏移量進行校正之 圖案22的座標。 ^十算出内部電極 接下來’影像處理.運算裝置35根據其運算 上 述影像資料進行運算處理,並將由影像資料所獲得的位置 資成、即與基準標記形成預定位置相關的資 形f構36,上述基準標記形成預定位置成爲表*對= 坯塊27戶斤實施的切斷的位置的基 及圖⑴的位置。 9(參照圖12以 標記形成機構36與影像處理.運算裝置35連接, 由影像處理.運算裝置35發送來的位置資訊、即與基準X標 5己形成預定位置相關的資訊,在陶瓷坯塊27的上方主面: 形成基準標記39。 上 基準標記39的形成能夠使用下列方法:通過照 而^成爲基準標記39的由細溝構成的切痕的方法、通: 敲擊形成成爲基準標記39的擊打痕㈣方法 =來印刷基準標記39的方法等。特別是在使用雷二 ㈣情況下,與印刷法相比,形成基準標㈣所需的面積 因此,此擴大内部電極圖案22的可形成的面積 能增加每個陶Μ塊的獲取個數1外,圖12以 所示的基準標記39爲十字 射形成的—㈣狀’所針對的就是通過雷射照 以下’參照圖15對標記形成裝置31的操作、即用 記形成裝置31進行的位置測定方法以及標記形成方法^ 23 201230099 說明。 ⑴作爲準備階段’將 裝置31所具有的載台32上。 置在彳^己形成 2)啓動位於載台32的下方的X射線 b的步驟S1)。由,+,% ·*衣置33(圖 27照射X射線3:1:射線照射裝置33向m塊 攝影裝置34來偽 通過配置在載台32的上方的 檢測透過陶究堪塊27的χ射線38的狀態。 間㈣)在X射線照射裝置33啓動之後經過不確定的時 夺』(T1),用攝影裝置34拍攝校準 影像處理‘運算奘署U 士上 十知η己29,在 中’根據所獲得的X射線影像資料, 準軚記29的第-時點⑺)的座標(C1)(圖15 的步驟S2)。該座標(⑴是絕對座標。 在第—時點(Τ1)之後經過確定的時間的第二時 : ,用攝影裝置34再次拍攝校準標記29,在影像. ,算裝置35中,根據所獲得的χ射線影像資料,求出校準 心。己29的第二時點(丁2 )的座標(C2 )(圖15的步驟μ )。 該座標(C2)是絕對座標。上述確^的時間例如設爲1〇〜 40秒。 (5 )在影像處理.運算裝置35中,如圓〗6所示,求 出第-時點(τι)的座標(c 1)和第二時點(T2)的座標 (C2)。在圖16中,第一時點(Τ1)與第二時點(仞)之 差用ΔΤ表示’座標(C1)與座標(C2)之差用表示。 (6 )在影像處理.運算裝置3 5中’如圖14所示,求 出具有與第—時點(τι)的座標(ci)和第二時點(T2) 24 201230099 的座標(C2 )的傾斜度相同 » ^ j 1貝针度的直線、與曲線狀的檢 量線相接的點(C3 )。即,求屮 水出具有與座標(C1)和座標 C C2 )的傾斜度相同傾斜洚 “貝斜度的檢量線上的位置(C3)。並 二t與該檢f線上的位置(C3)相應的檢量線的基準 然後’根據檢#線的基準時 際的基準時間(丁U , tL 買 。由此,能夠知道當前在檢量線的哪 個時間帶在進行處理。 在此重要的是:不將成爲基準的第一 射線照射裝置33的啓動時間, 乍舄 笛一 n± , 幻㈣時間,而求出座標的傾斜度。在將 =⑺)作爲啓動時間而根據從該時間經過的時間 = 移量的情況下,如果不將χ射線照射裝置33關掉 並使其元全冷卻,則χ> ^ P則不鲍進仃校正,因此,測定效率降低。 例如’必須待機3〇分鐘左 Υ ^ , 右另一方面,根據本實施方式, 門、射線照射裝置33長時間關掉,即使在以比較短的 反復進行開啓/關掉的狀態下,也能夠進行校正’因此, 測定效率高。 此 1且’類似地,由於第__ gjt wjl / τι、·《 a* 弟時點(Tl)和第二時點(T2) β 、時間間隔很微小,因此,可 一睹it m、+ J U看作T1-T3,以確定第 夺(τι)來代替實際的基準時間(Τ3)。 (7 )用攝影裝置34來檢測校正用標記25a以及 15的步驟4)。在岑德卢 C圖 )“像處理.運异裝置35進行的影像處理 盾。圖1〇所示,將-個校正用標記25a作爲相對座標 …點’將從該校正用標|& 25a連接另_個校正用標記以 的方向作爲X軸,從而規定相對座標(X,Y)。由此,At U 月t* 25 201230099 夠以校正用標記2 5 a作爲©點,—莫々 相斟亦择, 馬原點疋義各内部電極圖案22的 相對座標(X,Y)。另外,如圖u所 案22的 (X,Y)在旋轉方向上發 4相對座標 :於機械性絕對座標的坐標軸,相對座標(x,;;=:: 軸奴轉偏移到了什麼程度。 的坐私 (8)通過攝影裝置 像處理.運算裝置35… 電極圖案22,在影 (圖15的步驟S5)e成内部電極圖案22的影像資料 識別當3 =影像處理時,無需將内部電極圖案22全部 圖宰及列时❹列成料狀的内部電極 圖案22中的位於邊緣 电不 已足夠。例如,如圖9所 部電極圖案22就 極圄茔” 斤不,只對位於沿著排列了内部電 邊緣的四個邊的部分上的㈣電極圓宰 22與位於各邊的垂首- 系 μ 直—4刀線上的内部電極圖案22的合計 33個内部電極圖案22進行影像識別就^夠。 …十 計算=内=象處理.運算裝置35中,根據檢量線來 亟圖案22的X射線影像資料時的X射線 :像的偏移量,在對偏移量進行校正之後,計算出陶= 7内。(I的各内部電極圖案22的座標。這樣,如果知道 白攝内部電極圖案22的時點,則能夠以檢量線爲基礎預測 偏移量。因此’能夠進行精確度高的位置測定。 詳’也°冓通過攝影裝置34來拍攝内部電極圖案 L將内部電極圓案22的拍攝時點(τχ)與實際的基準時 間(Τ3)之差,相加於檢量線的基準時間(〇 ,求出檢量 26 201230099 線的f攝時點(tX ) ’接T來,從檢量線的拍攝時點(tx)的 偏移罝t減去檢量線的基準時間(⑴的偏移量。然後,在 對》亥偏移里進仃校正之後,計算出陶瓷坯塊27内部的各内 部電極圖案22的座標。 一 k樣首先求出各内部電極圖案22的相對座標,針對 =些座標,添加以校準標記29爲基礎的X射線影像的偏移 量的校正’再添加上述以校正用標記25a以及25b爲基礎的 =轉偏移里的%c正’最終求出各内部電極圖案Μ的絕對座Next step: The outer cymbal U (1) passes the first compensation after the X-ray irradiation device is started, and the time of the correct & time, ·', the calibration mark is photographed by the photographic device, The obtained x-ray image data, the first-time point (the coordinates of Sichuan (step of (1). " the standard (7) passed the determined 'point (7)) from the first point (7)) The calibration mark is set in the operation ^ 13 201230099, and the coordinate (C2) of the calibration target time (T2) is obtained based on the obtained X-ray image data. (7) In the arithmetic unit, the coordinates of the first to second points (10) (the same as the inclination of (7): the reference on the calibration curve: two: the position on the calibration line corresponding to a..., sub-interval (7)), the procedure of obtaining the actual reference time (T3) based on the reference between the reference temples on the check line (3). (4) Using the photographic apparatus to shoot the workpiece inside the main body, the shooting time point (Τχ) of the radiographic data and the actual reference time (= the reference time on the calibration line (8), and the displacement on the calibration line: The step of subtracting the offset of the reference time (8) on the line at the shooting time point (5) on the measuring line. The step of calculating the offset of the workpiece inside the body after correcting the offset is in the marking forming method of the present invention, preferably The force specified above 切断 cuts the body at a position associated with the position of the workpiece. 制造 The method of manufacturing a laminated ceramic electronic component according to the present invention, since the Β === block illuminates the internal electrode pattern obtained by transmitting the light IS::: The reference mark is formed at a predetermined position, and the reference mark is formed into a reference mark, and then predetermined processing such as cutting the block is performed based on the reference mark. Therefore, the positional accuracy of the machining can be improved. According to the method for manufacturing an electronic component for laminated ceramics according to the present invention, '疋 is formed on a ceramic compact to be a position to be subjected to a predetermined processing 14 201230099 The time when the target datum is used to process the position data. Therefore, it is not necessary to read the position alignment every time the specified machining is performed. Therefore, it is possible to shorten the need for machining and the following:: position measuring device and method, and mark formation The change of the suitability, "疋 based on the previously generated calibration curve, predicting the time-corrected shadow of the target (4) offset, and the coordinates of the offset are performed on the offset, so that Since the position measurement of the precise production is performed, it is possible to perform mark formation with high positional accuracy. Moreover, according to the position measuring apparatus and the squeezing method of the present invention, and the forming apparatus and method, since the calibration mark is formed on the stage, since: : When position measurement or mark formation, the identification of the calibration mark only needs to be measured: Temple and: At least twice after a certain time. Therefore, the identification of the calibration mark only takes a minimum time, which can improve the measurement efficiency. [Embodiment] Hereinafter, a multilayer ceramic capacitor as an example of a laminated ceramic electronic component of the present invention will be described. The laminated ceramic capacitor 1 shown in Figs. 1 to 3 has a component body 2. The component body 2 has a substantially rectangular parallelepiped shape and has i-pair main faces 3 and 4 opposed to each other; a pair of side faces 5 and 6 opposed to each other. And a pair of end faces 7 and 8 opposed to each other. As shown in Fig. 2, the part body 2 has a laminated structure extending in the direction of the main faces 3 and 4 and orthogonal to the main faces 3 and 4 The multilayer ceramic layer 9 laminated in the direction and the plurality of pairs of first and second internal electrodes 1 〇 and u formed along the interface between the ceramic layers 9 are formed. 15 201230099 'The first internal electrode as shown in FIG. The ι〇 has: a layer 9 m...the mountain portion 2 is opposed to the second inner electrode ;; and a leading portion 14 from the opposite portion to the 14=extracted 'and the exposed end 13 is formed at the end portion . Further, the planar shape of the first internal electric discharge 邛 1 〇 is gradually narrowed as compared with the width of the lead portion 12 as viewed from the width direction in which the side faces 5 are connected. Further, the second inner electrode U shown by a broken line in Fig. 3 is also the same as the first inner electrode 1. The opposing facing portion 15 is led out from the W 15 toward the first end face 8, and the second lead-out portion - the second internal electrode U has a planar shape symmetrical with the first inner portion; As described above, the opposing portion 15 of the first internal electrode 10 and the opposing portion 15 of the second internal electrode 11 face each other with the jersey layer 9 interposed therebetween, whereby electrical characteristics are exhibited between the P 12 and 15 in the first direction. That is, in the case of the laminated ceramic electric device 1, an electrostatic capacitance is formed. Further, the laminated ceramic capacitor i further has an outer portion formed on at least the opposite ends φ 7 and 8 of the component body 2 so as to be electrically connected to the respective exposed ends 13 and 16 of the internal electrodes 1 and 11 respectively. Electrodes 18 and 19. In the present embodiment, the outer electrodes 18 and 19 have portions that surround the main faces 3 and 4 and the side faces 5 with portions of & As the conductive material for the internal electrodes 1G and i i , for example, Ni, Cu, Ag, Pd, Ag_pd alloy, Au, or the like can be used. The respective thicknesses of the internal electrodes 10 and " are preferably 〇3 to 2〇μιη. As the ceramic material constituting the ceramic layer 9, a dielectric ceramics having, for example, 16 201230099 * BaTi03, CaTi〇3, SrTi03, CaZrO ^ a + , v laucj3 荨 as a main component can be used. An auxiliary component such as a Mn compound, a % compound, a Si compound, a Co compound, a Ni compound, and a rare earth element is added as needed. Further, although the present invention is not limited to laminated ceramic electronic parts, it can be applied to laminated ceramic electronic parts other than laminated ceramic capacitors when applied to laminated ceramic parts. When the ceramic green component is, for example, a piezoelectric component, a piezoelectric ceramic such as PZT ceramic can be used, and in the case of a thermistor, a spinel ceramic can be used. Semiconductor semiconductors. Although not shown in the drawings, the external electrodes 17 and 18 are preferably composed of a base layer and a plating layer formed on the base layer. As the conductive material for the underlayer, for example, Cu, Ni'Ag, Pd, Ag-Pd alloy, Au, or the like can be used. The base layer can be formed by applying a co-firing method in which a conductive paste is applied to the unfired component main body 2 and simultaneously fired with the component main body 2, and it is also possible to apply a conductive paste. The formed part body 2 is formed by a post-burning method of baking. Alternatively, the underlayer may be formed by direct electrowinning or by hardening a conductive resin containing a thermosetting resin. The thickness of the base layer is preferably 10 to 5 μm. As the metal constituting the plating layer formed on the underlayer, a metal selected from, for example, Cu, Ni, Sn, Pb, Au, Ag, Pd, Bi, and Ζη, or an alloy containing the metal can be used. The money layer can be composed of multiple layers. As described above, in the case where the electric clock layer is composed of a plurality of layers, it is preferably a two-layer structure of 17 201230099 mineral Ni and forged Sn thereon. Further, the thickness of the electrically wrought film is preferably from 1 to 15 μm per layer. A conductive resin layer for relieving stress may be formed between the base layer and the plating layer. Next, the above-mentioned laminated ceramic capacitors! The manufacturing method is explained. First, a ceramic green sheet to be the ceramic layer 9, a conductive paste for the internal electrodes 1 and ", and a conductive paste for the external electrodes 18 and 19 are separately prepared. These ceramic green sheets and conductive pastes contain dots. As the agent and the solvent, a known organic binder and an organic solvent can be used as the above-mentioned agent and the solvent. Next, as shown in Fig. 4, the ceramic green sheet 21 to be the internal electrode 22 is printed in a predetermined pattern. A conductive paste was screen printed on the ceramic green sheet 21. Thereby, a plurality of internal electrode patterns capable of obtaining the shaped workpieces and 11 are illustrated in FIG. 4: a predetermined cutting line 23 extending in the longitudinal direction of the internal electrode pattern 22 (the horizontal direction in FIG. 4) and orthogonal thereto A predetermined cutting line 24 extending in the direction of the direction (up and down direction in Fig. 4). The wan & sheet 21 has a laminating step to be mentioned later, and the predetermined cutting lines 23 and 24 are cut off by the smashing and smashing and splitting, and can be used for a plurality of layers. The size of the part body 2 of the ceramic capacitor 1. Figure 4j: The pre-cut lines 23 and 24 are determined at the design stage before the lamination step, and are implemented for 缂γ你贝& for the payment of the 27 layers of the ceramic briquettes to be mentioned later and After the splicing step, _27 is sometimes cut along a cutting line different from the pre- 18 201230099 broken lines 23 and 24. Regarding the determination method of the virtual cutting line for actual cutting, Further, the number of internal electrode patterns 22 formed on the ceramic green sheet h shown in Fig. 4 is smaller than the actual case due to the problem in patterning. The opposite sides of the ceramic green sheets 21 are opposite to each other. The correction marks 25a and 25be are respectively formed in the vicinity of the central portion, and the correction marks 25a and 2b are printed on the internal electrode pattern 22 using the same conductivity paste as the conductive paste forming the internal electrode pattern 22. Therefore, the positional relationship between the inner electrode pattern 22 and the correction marks 25a and 25b is constant. The correction marks 25a and 25b are not left as the ceramic-producing capacitor 1. Finally, in Fig. 4 , expressed in (A) and (B) In order to explain the lamination steps to be mentioned later, the ceramic green sheets 21 shown in (A) and the ceramic green sheets 21 shown in (8) are different from each other in the direction shown in the drawing. The correction marks ... and 25b shown in Fig. 4 can be replaced with the correction marks 26 shown in Fig. $. The correction mark 26 shown in Fig. 5 is an internal electrode by a column at both ends. A part of the pattern 22 is formed by whitening. In addition, although the internal electrode pattern 22 shown in FIG. 5 is different from the internal electrode pattern f22 shown in FIG. 4, this is not essential. The internal electrode pattern 22 can be understood as a shape which is simply indicated. Next, the outer layer of the predetermined number of unprinted internal electrode patterns is laminated with a ceramic layer on which the layers 4 are printed in order. 19 201230099 The outer layer of the internal electrode case 22 is made of ceramics, and the number of sheets on the upper layer of the surface is specified by the manufacturer. The inner thunder will be printed with the inner thunder and the block 27 (refer to g 10 etc. in the electrode case 22) Ceramic chain # ? _ (Λ) shown square J When the green sheet 21 enters the entangled layer, in the direction shown in Fig. 4, the center of the π:...1 and the figure (9), in order to improve the operability after the above-mentioned lamination step, the lower surface box m 9 of 彳I, ϋ / 27 is broadcasted. It is preferable to adhere the adhesive sheet such as the foamed release sheet to the ceramic compact in advance. The ceramic (10) 27 obtained by the step of marking the ceramics (10) 2 and the laminated layer is used as shown in FIG. The main body is processed by (d) 31. In the present invention, the porcelain billet 27 as the measuring object, the internal electrode disposed inside the workpiece is disposed in the workpiece inside the main body. The Wei 22 becomes the Stinger forming device 3 1 having the stage 32 The X-ray irradiation device 33, the photographic device 34, the image processing/computing device 35, and the mark forming mechanism 36. A mechanical absolute coordinate is set in advance in the 圮 formation device 31. In the marking device j, at least the stage 32, the X-ray irradiation device 33, the photographing device 34, and the mark forming mechanism 36 are preferably housed in one housing. Further, in Fig. 6, although three stages 32 are shown, this does not mean that there are three stages 32' but a position where one stage 32 can be moved. Further, although the cutting device 37' adjacent to the mark forming device 31 is shown in the drawing, the details of the cutting device 37 will be described later. The stage 3 2 is movable in the row and column directions (X and γ directions) and can also be 90 in the horizontal plane. Rotate. As shown in Fig. 10, on the stage 32 20 201230099, the right mark is formed. 29 〇 栌 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 And formed. The ray emitter 33 is disposed at the initial position of the mi7' x-ray irradiation device 33 having the above-described X-ray generator, and the X-ray generation mechanism 51 includes the dryness of the electrons 53 emitted and collided from the cathode 52 at a high speed. . From the Auntie Gu, the commercial collision of the dry 55, thus, its sports energy 1, the sickle as A X-ray 38 was irradiated to! The direction of the stage 32. Further, the irradiation direction of the X-rays 38 may be a top-to-bottom direction opposite to the direction shown. The camera unit 34 is disposed above the stage 32 located at the initial position, and detects the x-rays 38 transmitted through the pottery block 27. As the photographing device 34, an area sensor type camera is used. The image processing arithmetic unit 35 is connected to the photographing unit 34. The video processing/computing device 35 is composed of, for example, a CPU and a memory, and has a video processing function and an arithmetic m image processing. The arithmetic unit 35 first performs image processing on the X-rays 38 detected by the imaging device 34 based on the image processing function. When the image processing is performed, for example, image data including a black pattern (hatched portion) and a white pattern is generated by a binary or edge detection. More specifically, the image obtained by transmitting the x-ray "irradiation 38" overlaps the portions of the opposing portions 12 and 15 of the internal electrodes 1G and 11 which should be the internal electrode patterns 22 as shown in FIG. The region is the strongest; in the region where the portion 21 201230099 which should be the lead portions 14 and 17 overlap, the concentration of "..., 曰, by 22, is the most in the Q region where the internal electrode pattern 22 is not present. book. ^^ L, +, ... μ in the above image processing, the internal electrode Η) and the opposite part of U and the part = 2 of the U = 2 are black patterns, and the other areas are white patterns. Generate image data like 14 samples. Further, the correction marks 25a and 25b shown by the circle 4 are recognized as the black pattern because they overlap with the portions of the opposing portions 12 and 15 which should be the internal electrode patterns 22. When the correction mark 26 not shown in Fig. 5 is used, 'as a white pattern is recognized. Further, the internal electrode pattern 22 and the correction marks 25a and 25b shown in FIG. 7 and the like are images obtained by the internal electrode pattern 22 and the correction marks ^ and 25b, respectively, and are not used for the internal electrode pattern η and the correction. : Remember... and 25b itself. However, for convenience of explanation, the reference numeral of "22" is also used for the image of the internal electrode case, and the reference symbols of "25a" and "25b" are also used for the respective (4) images of the calibration mark A25a^25b@. Further, in the memory of the image processing/computing device 35, a curve-shaped calibration curve 'is stored for the elapsed time after the start of the x-ray irradiation device 33 and the deformation due to the dry 55 are generated. The relationship between the offset amounts of the X-ray images obtained by the device 34 is taken. Figure 14 shows an example of a calibration curve.萁Λ J ^ In addition, it is sufficient that the calibration curve corresponds to any one of the X and γ directions, but two calibration lines may be prepared in a manner corresponding to both directions. The video processing/computing device 35 is configured to obtain the offset amount of the x-ray at the actual imaging time point of the internal electrode pattern 22 based on the detection amount 22 201230099 = the pattern 22 for correcting the offset amount. coordinate. ^10 calculating the internal electrode next 'image processing. The arithmetic unit 35 performs arithmetic processing based on the calculation of the image data, and acquires the position obtained by the image data, that is, the shape associated with the reference mark forming predetermined position. The reference mark forming predetermined position is the base of the position where the table is aligned with the blank portion 27 and the position of the figure (1). 9 (refer to FIG. 12, the mark forming mechanism 36 is connected to the image processing and computing device 35, and the position information transmitted by the image processing and computing device 35, that is, the information related to the predetermined position of the reference X mark 5 is formed in the ceramic compact. The upper main surface of 27: The reference mark 39 is formed. The upper reference mark 39 can be formed by the following method: a method of forming a cut by the narrow groove by the reference mark 39, and a tapping is formed as the reference mark 39. Strike mark (four) method = method of printing the reference mark 39, etc. Especially in the case of using Ray II (four), the area required to form the reference mark (4) is formed in comparison with the printing method. Therefore, the enlarged internal electrode pattern 22 can be formed. The area can increase the number of acquisitions of each pottery block. Figure 12 is formed by the reference mark 39 shown in the figure. The (four) shape is aimed at forming the mark by laser. The operation of the apparatus 31, that is, the position measuring method by the recording forming apparatus 31, and the marking forming method are described in 201230099. (1) As a preparation stage, the stage 32 of the apparatus 31 is placed.彳^ has been formed 2) Step S1) of starting the X-ray b located below the stage 32. From, +, %, * clothes 33 (Fig. 27, irradiation X-ray 3:1: the radiation irradiation device 33 is pseudo-passed by the m-block imaging device 34 and disposed above the stage 32. The state of the ray 38. (4)) After the X-ray irradiation device 33 is activated, after an indeterminate time lapse (T1), the photographic device 34 is used to capture the calibrated image processing. 'According to the obtained X-ray image data, the coordinates (C1) of the first-time point (7) of the record 29 (step S2 of Fig. 15). The coordinate ((1) is an absolute coordinate. The second time after the determined time elapses after the first time point (Τ1): the calibration mark 29 is again photographed by the photographing device 34, in the image, the calculation device 35, according to the obtained flaw The ray image data is used to obtain the coordinate (C2) of the second time point (D2) of the calibration point 29 (step μ of Fig. 15). The coordinate (C2) is an absolute coordinate. The time of the above determination is set to, for example, 1 〇~ 40 seconds. (5) In the image processing and arithmetic unit 35, the coordinates (c1) of the first-time point (τι) and the coordinates (C2) of the second time point (T2) are obtained as indicated by the circle 6. In Fig. 16, the difference between the first time point (Τ1) and the second time point (仞) is represented by ΔΤ as the difference between the 'coordinates (C1) and the coordinates (C2). (6) In image processing, arithmetic device 3 5"', as shown in Fig. 14, the inclination (the coordinates of the coordinates (ci) and the second time (T2) 24 201230099 with the coordinate (C2) of the first time point (τι) is the same as » ^ j 1 pin a straight line, a point (C3) that meets the curve-shaped calibration curve. That is, the water spurt has the same inclination as the coordinate (C1) and the coordinate C C2 ). The position on the checkpoint line (C3). And the reference point of the calibration curve corresponding to the position (C3) on the check f line is then 'according to the base time reference time of the check# line (D, U, tL buy. Therefore, it is possible to know which time zone of the calibration curve is currently being processed. It is important that the start time of the first radiation irradiation device 33 that is the reference is not used, and that the flute is n±, imaginary (four) time, The inclination of the coordinates is obtained. When ?(7)) is used as the activation time and the time elapsed from the time = the amount of shift, if the x-ray irradiation device 33 is not turned off and the element is completely cooled, then χ> ; ^ P is not corrected, therefore, the measurement efficiency is lowered. For example, 'must wait 3 minutes left Υ ^ , and on the other hand, according to the present embodiment, the door and the radiation illuminating device 33 are turned off for a long time, even in In the state of being turned on/off in a relatively short repetition, it is also possible to perform the correction. Therefore, the measurement efficiency is high. This 1 and 'similarly, due to the __gjt wjl / τι, · a* TIME (Tl) And the second time point (T2) β, the time interval is very small Therefore, it can be regarded as T1-T3, and the first (τι) is replaced by the actual reference time (Τ3). (7) The detecting means 34 is used to detect the correction marks 25a and 15 Step 4). In the Judelu C map) "image processing shields performed by the processing. As shown in FIG. 1A, the correction mark 25a is used as a relative coordinate...the point 'the direction in which the other calibration mark is connected from the correction mark|& 25a is taken as the X-axis, thereby defining the relative coordinate (X, Y). Therefore, At U month t* 25 201230099 is enough to use the correction mark 2 5 a as the © point, and the relative coordinates (X, Y) of the internal electrode patterns 22 of the horse origin point are selected. In addition, (X, Y) of the case 22 in Fig. 22 sends 4 relative coordinates in the direction of rotation: on the coordinate axis of the mechanical absolute coordinates, the relative coordinates (x, ;; =:: to what extent the axis slave shifts to the extent The smuggling (8) is processed by the photographing device image processing device 35... The electrode pattern 22, in the image (step S5 of Fig. 15) e, the image data of the internal electrode pattern 22 is recognized. When 3 = image processing, there is no need to internalize When the electrode patterns 22 are all patterned and arranged, the edge electrode is not sufficient in the internal electrode pattern 22. For example, as shown in FIG. 9, the electrode pattern 22 is extremely sturdy. The total internal 33 electrode patterns 22 of the internal electrode patterns 22 on the portions of the four sides of the inner electric edge are arranged to be image-recognized by the total of the internal electrode patterns 22 on the vertical-to-four lines of the respective sides. ^10. The calculation is performed. In the arithmetic unit 35, the X-ray image of the X-ray image of the pattern 22 is measured by the calibration line, and the offset of the image is corrected after the offset is corrected. Calculate the coordinates of each internal electrode pattern 22 of the ceramics = 7 (in this case, If the time point of the white-shot internal electrode pattern 22 is known, the offset amount can be predicted based on the calibration curve. Therefore, it is possible to perform position measurement with high accuracy. Detailedly, the internal electrode pattern L is photographed by the photographing device 34. The difference between the shooting time point (τχ) of the internal electrode circle 22 and the actual reference time (Τ3) is added to the reference time of the calibration curve (〇, the detection time 26 201230099 line f-time point (tX) is determined' Connect T to subtract the reference time of the calibration line from the offset 罝t of the calibration line (tx) (the offset of (1). Then, after correcting the correction in the offset, calculate The coordinates of the internal electrode patterns 22 in the inside of the ceramic green piece 27. First, the relative coordinates of the internal electrode patterns 22 are obtained, and the offset of the X-ray image based on the calibration marks 29 is added for some coordinates. Correction 'addition of the above-mentioned %c positive in the =verting offset based on the correction marks 25a and 25b' finally obtains the absolute seat of each internal electrode pattern Μ
物件座標測定值 真正的物件座蟬 ,參照表1並根據具體例對上述圖.15的步驟S1〜S5進 :說明。首先,如“標記檢測⑴,,所示,在啓動χ射線 射裝置33之後的10秒後的第一時點⑺),檢測校準 標記29所求出的座標(C1)爲“〇 〇i〇mm” 。 接下來m票記檢測(2) ”所示,在啓動X射線照 ’裝置33之後的2G秒後的第—時點(T2)檢測校準標記 9所求出的座標(C2)爲“〇 〇2〇mm” 。 27 201230099 將這些測定結果代入以下公式 t3 = a/ { (C2-C1) / (T2-T1) ) ·_.[式 1] 則求出“檢量線上的基準時間(t3 ) ” ,該“檢量線上 的基準時間(t3 )”相當於具有與第一時點(T1 )的座標(C1、 和第二時點(T2 )的座標(C2 )的傾斜度相同傾斜度的直 線、與曲線狀的檢量線相接的點(C3 )。在該具體例子中, “檢量線上的基準時間(t3)爲“22秒”。 另外,0:是用Object coordinate measurement value The real object coordinate 蝉, refer to Table 1 and according to the specific example, the steps S1 to S5 of the above-mentioned Fig. 15 are described: First, as shown in "mark detection (1), the first time point (7) 10 seconds after the start of the x-ray radiation device 33), the coordinates (C1) obtained by detecting the calibration mark 29 are "〇〇i〇". "m". Next, as shown in the m ticket detection (2)", the coordinate (C2) obtained by detecting the calibration mark 9 at the first time (T2) after 2G seconds after the start of the X-ray device 33 is " 〇〇 2〇mm”. 27 201230099 Substituting these measurement results into the following formula t3 = a/ { (C2-C1) / (T2-T1) ) ·_.[Formula 1] Find the "reference time on the calibration line (t3)", which The reference time (t3) on the calibration line corresponds to a straight line having the same inclination as the inclination of the coordinates (C1) of the first time point (T1) and the coordinate (C2) of the second time point (T2), and a curved line The point where the calibration curve meets (C3). In this specific example, "the reference time (t3) on the calibration line is "22 seconds". In addition, 0: is used
An = a [log [t 3+ (Tx-T1) ) ~l〇gt 3] …[式 2;) 這一對數曲線來表示檢量線時的傾斜係數,在圖14所 示的檢量線的情況下’ “檢量線上的傾斜係數(α ),,是 “ 0.022” 。 接下來,如“從啓動開始的拍攝時點(Τχ ),,所示, 如果在“310秒”之後進行内部電極圖案22的測定,則通 過將Τχ=31〇代入上述公式2,求得“〇 〇59mm,,作爲‘校 正值(An),’ 。 ’” 义 並且,如果“物件座標測定值(Χη)”是“丨〇〇〇職”, 則通過將“校正值(An)”的“〇·〇59_,,與其相加,而求 出l.〇59mm作爲“真正的物件座標”。 ,:9)如上所述’在求出各内部電極圖案η的絕對座 標之後,關掉X射線照射裴置33 Γ 衣直h C圖15...步驟S6)。 (1〇)在影像處理.運算裝置3 _ , 置35中,根據内部電極圖 案22的相對座標(χ,γ)來計算出 ,Λ ^ ,. ™ + 2所不的虛擬切斷線 40的位置。此時,如圖13所示, ^在内部電極圖案22中産 28 201230099 生變形的情況下’計算該變形,並計算出在與内部電極圖 案22之間能夠確保最大間隔的虛擬切斷線4〇的位置。 上述虛擬切斷線40的兩端成爲基準標記形成預定位 置。根據基準標記形成預定位置的相對座標來計算出基準 標記形成預定位置的機械性絕對座標。此時,也進行旋轉 偏移量的校正。另外,載台32的移動距離也得到反映。 (1 1 )移動載台32,從而將陶瓷坯塊27移動到圖6所 示的標記形成機構36,如圖12以及圖13所示,在基準標 記形成預定位置上形成基準標記39(圖15的步驟S7)。 基準標記39形成在陶瓷坯塊27的上方主面上的外周 緣上。在本實施方式中,如上所述,基準標記39是十字形 狀’通過雷射照射而形成。 另外,基準標記39有時不會按照原來指定的座標那樣 形成。這是因爲:在標記形成裝置3丨内部,在有χ射線照 射裝置33的部位發生了熱膨脹的情況下,攝影裝置34與 標記形成機構36之間的距離會發生微小的變化。 標記39是在與本來的基準標記 的 利 爲了校正該熱膨脹引起的偏移,例如,在標記形成機 構36中,首先只形成一個基準標記39。而且,該一個基準 記39的形成預定位置相隔開An = a [log [t 3+ (Tx-T1) ) ~ l〇gt 3] ... [Formula 2;) This logarithmic curve represents the slope coefficient at the calibration curve, in the calibration curve shown in Figure 14. In the case of ''the tilt coefficient (α) on the calibration line, it is "0.022". Next, as shown in "From the start of shooting (Τχ), as shown, if the internal electrode is performed after "310 seconds" For the measurement of the pattern 22, by substituting Τχ = 31 入 into the above formula 2, "〇〇59 mm is obtained as the 'correction value (An), '. '" and if "object coordinate measurement value (Χη)" It is "defective", and by adding "〇·〇59_ of the correction value (An)", it is added to find l.〇59mm as the "true object coordinate". , :9) As described above, after the absolute coordinates of the respective internal electrode patterns η are obtained, the X-ray irradiation device 33 is turned off, and the film is directly h C (Fig. S6). (1) In the image processing, the arithmetic device 3 _ , in the 35, the position of the virtual cut line 40 which is not Λ ^ , . TM + 2 is calculated from the relative coordinates (χ, γ) of the internal electrode pattern 22. As shown in FIG. 13, ^ when the internal electrode pattern 22 is produced 28 201230099, the deformation is calculated, and the position of the virtual cutting line 4 能够 which can ensure the maximum interval between the internal electrode pattern 22 and the internal electrode pattern 22 is calculated. Both ends of the virtual cutting line 40 form a predetermined position for forming a reference mark. The relative coordinates of the predetermined position are formed by the reference mark to calculate a mechanical absolute coordinate at which the reference mark is formed at a predetermined position. At this time, the correction of the rotational offset amount is also performed. Further, the moving distance of the stage 32 is also reflected. (1 1) The stage 32 is moved to move the ceramic compact 27 to the mark forming mechanism 36 shown in Fig. 6, as shown in Figs. 12 and 13, The reference mark 39 is formed at a predetermined position of the mark formation (step S7 of Fig. 15). The reference mark 39 is formed on the outer peripheral edge of the upper main surface of the ceramic compact 27. In the present embodiment, as described above, the reference mark 39 is The cross shape 'is formed by laser irradiation. In addition, the reference mark 39 may not be formed in accordance with the originally designated coordinates. This is because inside the mark forming device 3, When the portion where the X-ray irradiation device 33 is thermally expanded, the distance between the imaging device 34 and the mark forming mechanism 36 slightly changes. The mark 39 is caused by correcting the thermal expansion with respect to the original reference mark. Offset, for example, in the mark forming mechanism 36, first only one reference mark 39 is formed. Moreover, the predetermined position of the one reference mark 39 is spaced apart.
量。接下來, 接下來,再使載台32回到標記形成機構%,在已修改 了上述偏弟容吾沾成祕L τΐ4 J_、.the amount. Next, next, the stage 32 is returned to the mark forming mechanism %, and the above-mentioned biased brothers have been modified to form a secret L τΐ4 J_.
29 201230099 置34拍攝的形狀,即優選能夠用χ射線檢測出的形狀。因 通過、同使用攝影裝置34,能夠實現標記形成裝置3 1 的、:尘化以及成本降低。例如’通過控制刻下基準標記39 木又此夠3周整爲能用X射線檢測出的程度。 作爲圖15所示的流程圖的變形例,可以利用校準標記 檢測〇)步驟S2與校準標記檢測⑺步驟S3之間:等 待時間來實施内部電極圖案測定步驟Μ的―部分、例如 33個内。p電極圖案22中的幾個内部電極圖案u的測定步 驟另外,校正用標記檢測步驟S4也同樣可以利用校準俨 記檢測⑴步驟S2與校準標記檢測⑺步驟s3之心 等待時間來實施,或者,也^在校準標記㈣⑴ S2之前實施。 ’ ,在如上所述通過標記形成裝置31形成基準標記39之 後’對陶瓷坯塊27進行規定的加工,更具體講,利用圖6 所示的切斷裝置37實施切斷加工。即,將載台32與陶兗 塔塊27 -同移送到切斷裝置37,用切斷刀41切斷陶究述 塊27’獲得成爲積層陶£電容器i的零件主體以多片陶 瓷生晶片。 在切斷裝置37中,利用切斷用攝影裝置42 準標記39’且將其影像資料發送到七刀斷用影像處理·運算裝 置❿計算出虛擬切斷線4〇的位置。μ,由於應分析的 影像資料的量很少,因此處理速度很快。 然後,燒成陶瓷生晶片,獲得經燒成後的零件主體2。 接下來’通過在零件…的兩個端面塗覆導電性糊膏並 201230099 獲得積層陶瓷電 進行燒接’從而形成外部電極! 8以及1 9, 容器1。 雖然作爲基準標記形成後 但也能夠進行位置對齊、 另外,在上述實施方式中 的加工舉出了切斷加工的例子 通孔形成以及其他的加工。 L圓式簡單說明】 圆1是表示作爲㈣本發明的積層陶究電子零件的_ 個例子的積層陶瓷電容器丨的外觀的立體圖。 圖2是沿著圖!的a_A線的剖視圖。 件主二3是表示圖1所示的積層陶究電容器1所具有的零 件主體2的内部結構的俯視、圖。 準備:4疋表不爲了製造圖1所示的積層陶瓷電容器1而 丰備成内部電極圖案22的陶究枉片21的俯視圖。 开:疋表不作爲圖4所示的校正用標記25a、25b的變 /歹1 、杈正用標記2 6的放大俯視圖。 圖6是將本發明的一個實施方式的包括位 的標記形成裝置31和切斷穿 疋衮置 圖。 刀斷裝置37问時圖解性表示的主視 示通過用圖6所示的標記形成裝置31所身 的攝衫裝置34進行影像處理, _、 … ^ , 而被—進位化的陶兗堪堍 的檢測影像。 充还塊 二進位化的檢測影像而 2 7的影像的一部分放 圖8是爲了獲得圖7所示的被 將通過攝影裝置34拍攝的陶瓷坯塊 大表示的圖。 31 201230099 、圖9疋與圖7對應的圖,是如果被圖6所示的標記形 成裝置3 1所具有的影像處理運算裝置所影像識別,則 將充分的内部電極圖案22抽出表示的圖。 圖是表示將陶莞赵塊27放置在0 6所示的載台32 上的狀態的俯視圖。 圓11疋與圖10對應的圖,表示在放置在載台32上的 陶究链塊27上産生旋轉偏移的狀態。 圖12是表示在圖7所示的陶瓷坯塊27上形成了基準 標記39的狀態的檢測情形的圖。 圖13是用於說明爲了計算圖12所示的基準標記39的 形成預定位置,而考慮了内部電極圖案22的變形來求出虛 擬切斷線40的方法的圖。 圖14是表示在本發明中使用的檢量線的一個例子的 圖。 圖15是表示圖6所示的標記形成裝置31的動作的_ 個例子的流程圖。 圖16是表示通過圖6所示的標記形成裝置31求出的 校準標記29的第一時點的座標和第二時點的座標的傾斜度 的圖。 圖17是表示X射線照射裝置中所包含的典型的χ射線 生成機構5 1的圖。 【主要元件符號說明】 1 積層陶瓷電容器 2 零件主體 32 201230099 9 陶瓷層 10、 11 内部電極 12、 15 對向部 14、 17 引出部 21 陶瓷坯片 22 内部電極圖案 23、 24 預定切斷線 27 陶瓷坯塊 29 校準標記 31 標記形成裝置 32 載台 33 X射線照射裝置 34 攝影裝置 35 影像處理·運算裝置 36 標記形成機構 37 切斷裝置 38 X射線 39 基準標記 40 虛擬切斷線 41 切斷刀 42 切斷用攝影裝置 43 切斷用影像處理·運算裝置 51 X射線生成機構 52 陰極 33 201230099 53 電子 55 靶 3429 201230099 The shape photographed by 34 is preferably a shape that can be detected by x-rays. By using and using the photographing device 34, it is possible to achieve dusting and cost reduction of the mark forming device 3 1 . For example, by controlling the marking mark 39, it is enough for 3 weeks to be detected by X-rays. As a modification of the flowchart shown in Fig. 15, it is possible to detect between the step S2 and the calibration mark detection (7) step S3 by using the calibration mark: wait for the time to perform the "partial portion" of the internal electrode pattern measuring step 例如, for example, 33. In the measurement step of the several internal electrode patterns u in the p-electrode pattern 22, the calibration mark detection step S4 can also be performed by using the calibration mark detection (1) step S2 and the calibration mark detection (7) step s3 heart waiting time, or Also ^ is implemented before the calibration mark (4) (1) S2. After the reference mark 39 is formed by the mark forming device 31 as described above, the ceramic green piece 27 is subjected to predetermined processing, and more specifically, the cutting process is performed by the cutting device 37 shown in Fig. 6. In other words, the stage 32 is transferred to the cutting device 37 together with the pottery tower block 27, and the cutting block 41 is cut by the cutting blade 41 to obtain a part body which is a laminated ceramic capacitor i. . In the cutting device 37, the cutting device 38 is used to mark the mark 39' and the image data is sent to the seven-knife image processing/calculation device to calculate the position of the virtual cutting line 4〇. μ, because the amount of image data that should be analyzed is small, the processing speed is fast. Then, the ceramic green wafer is fired to obtain the fired component body 2 . Next, an external electrode is formed by applying a conductive paste on both end faces of the part... and obtaining a laminated ceramic electric charge at 201230099 to be fired! 8 and 19, container 1. The position alignment can be performed after the formation of the reference mark, and the processing in the above embodiment is an example of the cutting process, the formation of the through hole, and other processing. A simple example of the L-circle is a perspective view showing the appearance of the multilayer ceramic capacitor _ as an example of the laminated ceramic electronic component of the present invention. Figure 2 is along the map! A cross-sectional view of the a_A line. The main member 2 is a plan view and a plan view showing the internal structure of the component body 2 included in the laminated ceramic capacitor 1 shown in Fig. 1 . Preparation: A plan view of the ceramic sheet 21 in which the internal electrode patterns 22 are formed in order to produce the multilayer ceramic capacitor 1 shown in Fig. 1 . The open table is not an enlarged plan view of the change/歹1 of the correction marks 25a and 25b and the mark 26 of the correction shown in Fig. 4 . Fig. 6 is a view showing a mark forming device 31 including a bit and a cut-through pattern according to an embodiment of the present invention. The main view shown schematically by the knife breaking device 37 is subjected to image processing by the camera device 34 of the mark forming device 31 shown in Fig. 6, _, ... ^, and the 进 进 兖 兖 兖Detection image. A part of the image of the 27-bit image is reproduced. Fig. 8 is a view showing the large size of the ceramic block to be imaged by the imaging device 34 shown in Fig. 7 . 31 201230099, Fig. 9A and Fig. 7 are diagrams showing a sufficient internal electrode pattern 22 when the image processing arithmetic unit included in the mark forming apparatus 31 shown in Fig. 6 recognizes the image. The figure is a plan view showing a state in which the Tao Wan Zhao 27 is placed on the stage 32 shown by 0.6. A diagram corresponding to Fig. 10 of the circle 11A shows a state in which a rotational shift occurs on the ceramic chain block 27 placed on the stage 32. Fig. 12 is a view showing a state of detection in a state in which the reference mark 39 is formed on the ceramic compact 27 shown in Fig. 7. Fig. 13 is a view for explaining a method of obtaining the virtual cut line 40 in consideration of the deformation of the internal electrode pattern 22 in order to calculate the predetermined position of the reference mark 39 shown in Fig. 12 . Fig. 14 is a view showing an example of a calibration curve used in the present invention. Fig. 15 is a flowchart showing an example of the operation of the mark forming device 31 shown in Fig. 6. Fig. 16 is a view showing the coordinates of the coordinates of the first time point of the calibration mark 29 and the coordinates of the second time point obtained by the mark forming device 31 shown in Fig. 6. Fig. 17 is a view showing a typical xenon ray generating mechanism 5 1 included in the X-ray irradiation apparatus. [Description of main component symbols] 1 Multilayer ceramic capacitor 2 Part body 32 201230099 9 Ceramic layer 10, 11 Internal electrode 12, 15 Opposing portion 14, 17 Lead portion 21 Ceramic green sheet 22 Internal electrode pattern 23, 24 Predetermined cutting line 27 Ceramic briquette 29 calibration mark 31 mark forming device 32 stage 33 X-ray irradiation device 34 imaging device 35 image processing/computing device 36 mark forming mechanism 37 cutting device 38 X-ray 39 reference mark 40 virtual cutting line 41 cutting knife 42 Cutting imaging device 43 Cutting image processing/computing device 51 X-ray generating mechanism 52 Cathode 33 201230099 53 Electron 55 Target 34
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010246275 | 2010-11-02 | ||
JP2010258453 | 2010-11-19 | ||
JP2011215095A JP5776473B2 (en) | 2010-11-02 | 2011-09-29 | Position measuring apparatus and method, and mark forming apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201230099A true TW201230099A (en) | 2012-07-16 |
TWI578348B TWI578348B (en) | 2017-04-11 |
Family
ID=46505563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100136253A TWI578348B (en) | 2010-11-02 | 2011-10-06 | Method for manufacturing ceramic electronic parts, position measuring apparatus and method, and marking forming apparatus and method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5776473B2 (en) |
TW (1) | TWI578348B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5776473B2 (en) * | 2010-11-02 | 2015-09-09 | 株式会社村田製作所 | Position measuring apparatus and method, and mark forming apparatus and method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6291243U (en) * | 1985-11-28 | 1987-06-11 | ||
JPH058107A (en) * | 1991-07-04 | 1993-01-19 | Japan Steel Works Ltd:The | Temperature drift compensation method for reference hole drilling machine for multiple layer substrate |
JP2001005854A (en) * | 1999-06-24 | 2001-01-12 | Osaka Gas Co Ltd | Control panel simulator and control panel simulation method |
JP3374114B2 (en) * | 2000-03-02 | 2003-02-04 | 理学電機工業株式会社 | X-ray fluorescence analyzer |
JP2002009451A (en) * | 2000-06-21 | 2002-01-11 | Matsushita Electric Ind Co Ltd | Manufacturing method and apparatus for printed circuit board |
JP2002005854A (en) * | 2000-06-23 | 2002-01-09 | Matsushita Electric Ind Co Ltd | Position measuring method and apparatus for object |
JP3951744B2 (en) * | 2002-02-28 | 2007-08-01 | 松下電器産業株式会社 | Position measuring apparatus and method |
JP2004074217A (en) * | 2002-08-19 | 2004-03-11 | Ono Sokki Co Ltd | Marking device |
JP2007315834A (en) * | 2006-05-24 | 2007-12-06 | Shimadzu Corp | Fluoroscopic apparatus |
JP4506992B2 (en) * | 2007-03-23 | 2010-07-21 | Tdk株式会社 | Cutting method of sheet laminate |
JP5776473B2 (en) * | 2010-11-02 | 2015-09-09 | 株式会社村田製作所 | Position measuring apparatus and method, and mark forming apparatus and method |
-
2011
- 2011-09-29 JP JP2011215095A patent/JP5776473B2/en active Active
- 2011-10-06 TW TW100136253A patent/TWI578348B/en active
Also Published As
Publication number | Publication date |
---|---|
JP2012124461A (en) | 2012-06-28 |
TWI578348B (en) | 2017-04-11 |
JP5776473B2 (en) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10714263B2 (en) | Multilayer ceramic capacitor | |
JP6717238B2 (en) | Power module substrate with heat sink | |
KR101538276B1 (en) | Multilayer ceramic capacitor | |
CN1168960C (en) | Micro-bridge structure | |
TW200302341A (en) | Method and apparatus for measuring thickness of thin film | |
HRP20191411T1 (en) | Method for making protective garments | |
KR101528430B1 (en) | Multilayer ceramic capacitor | |
TW201702553A (en) | Three-dimensional measurement device whereby higher-precision measurement can be achieved within a shorter time when performing three-dimensional measurement using a phase shift method | |
JP6821218B2 (en) | Bonding equipment | |
TW201241387A (en) | Furnace wall shape measuring device, furnace wall shape measuring system and furnace wall shape measuring method | |
JP2010025799A (en) | Apparatus for detecting boundary of covering film | |
TW201230099A (en) | Manufacturing method, position measurement device and method, and label formation device and method for ceramic electronic components | |
TWI521183B (en) | Height measuring apparatus | |
US9470635B2 (en) | System of measuring warpage and method of measuring warpage | |
TWI628730B (en) | Apparatus and method to measure temperature of 3d semiconductor structures via laser diffraction | |
JP4506992B2 (en) | Cutting method of sheet laminate | |
CN102568825B (en) | Method for manufacturing ceramic electronic component, apparatus and method for position determination, and apparatus and method for marker formation | |
JP6773884B2 (en) | Semiconductor device, laminate and method of manufacturing semiconductor device and method of manufacturing laminate | |
JP5077093B2 (en) | Round bar number counting device and round bar number counting method | |
TW451173B (en) | Element and method to manufacture these elements | |
CN110073186B (en) | Infrared image sensor | |
WO2017016029A1 (en) | Photograph shooting method and device | |
CN106454334A (en) | Device for measuring exposure time of X-ray framing camera | |
CN107478336B (en) | Terahertz imaging array chip and preparation method thereof, imaging system | |
JP2010245301A (en) | Visual inspection method, and visual inspection auxiliary device for wafer |