[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201211323A - Cyanide based electrolytic gold plating solution and plating method using same - Google Patents

Cyanide based electrolytic gold plating solution and plating method using same Download PDF

Info

Publication number
TW201211323A
TW201211323A TW100110124A TW100110124A TW201211323A TW 201211323 A TW201211323 A TW 201211323A TW 100110124 A TW100110124 A TW 100110124A TW 100110124 A TW100110124 A TW 100110124A TW 201211323 A TW201211323 A TW 201211323A
Authority
TW
Taiwan
Prior art keywords
gold
plating bath
salt
concentration
acid
Prior art date
Application number
TW100110124A
Other languages
Chinese (zh)
Inventor
Hiroshi Nakamura
Original Assignee
N E Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N E Chemcat Corp filed Critical N E Chemcat Corp
Publication of TW201211323A publication Critical patent/TW201211323A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Disclosed is a cyanide based electrolytic gold plating solution characterized by containing a dicyanoaurate (I) alkali salt or dicyanoaurate (I) ammonium salt such that the gold concentration is 1.0 - 5.0 g/L, crystal adjuster, conductive salt, buffer and deposition accelerator formed from one of either a sulfite alkali salt and sulfite ammonium salt such that sulfite ions amount to 0.1 mg/L - 18 g/L.

Description

201211323 六、發明說明 【發明所屬之技術領域】 本發明關於一種氰系電解鏟金浴及使用其之電鍍方 法’係在使鍍金被膜形成在BGA(Ball Grid Array)配線基 板等印刷配線基板、或1C封裝、矽或化合物晶圓等電子 工業零件時適合使用。 【先前技術】 使用氰系電解鍍金浴所形成的鍍金被膜,被廣泛使用 於主要如印刷配線基板、以及其他如1C封裝或LSI封 裝、LC驅動1C等的精密電子機器零件。該等精密電子機 器零件所使用的鑛金被膜需要具有高導線接合性或焊接接 合性、耐熱性。鍍金被膜的平滑性與金純度爲影響該等特 性的重要因素。爲了形成該等特性經過改善後的鍍金被 膜,使用了鉈或鉛等結晶調整劑(專利文獻1 -3)。 氰系電解鍍金浴中的金濃度一般而言爲8〜10g/L。 金濃度只要在此範圍內,即可得到9 5 %左右的陰極電流效 率。但是若鍍浴中的金濃度降低至4g/L以下,則陰極電 流效率顯著降低,生產性惡化。另外,因爲陰極電流效率 的降低,隨著氫氣的產生會發生副反應。受其影響而會發 生電鍍燒焦,或發生以阻劑剝離爲主要原因的鍍金被膜的 異常析出。其結果,會發生電路圖型的短路、電鑛被膜的 剝離,在後續步驟中的接合不良等狀況。 降低鑛浴中的金濃度,在降低電鍍的操作成本方面爲 -5- 201211323 有效的。但是’若使鍍浴中的金濃度降得太低,則陰極電 流效率降低,而使上述問題發生。 以往的氰系電解鍍金浴,若在陰極電流密度爲0>1〜 0· 3 A/dm2的範圍內使用,則電鍍均厚能力變高。其理由是 因爲在實際操作中,在陰極電流密度爲0.1〜0.3 A/dm2的 範圍內可進行適合的電鍍。但是在鍍浴中的金濃度低於 5g/L的情況下,在陰極電流密度爲〇.1〜〇.5A/dm2的範圍 內’特別是在0.1〜0.3 A/dm2的範圍內,無法以超過90% 的陰極電流效率進行電鍍。 [先前技術文獻] [專利文獻] 專利文獻1:日本特開平2-247397號公報 專利文獻2:日本特許第3139213號公報 專利文獻3:日本特開平21-280867號公報 【發明內容】 [發明所欲解決之課題] 本發明所欲解決之課題在於提供一種氰系電解鍍金浴 及使用其之電鍍方法,即使鍍浴中的金濃度爲5 g/L以下 的低金濃度,陰極電流密度也會在0.01〜1 .5 A/dm2的範 圍內’而能夠以高陰極電流效率形成平滑的鍍金被膜。本 發明進一步所欲解決的課題在於提供一種氰系電解鍍金浴 及使用其之電鍍方法,可形成電鍍均厚能力高、具有高導 線接合性或焊球接合性的鍍金被膜。 ⑧ -6- 201211323 [用於解決課題之方法] 本發明人等反覆檢討的結果,發現藉由在含二氰金(I) 酸鹼金屬鹽或二氰金(I)酸銨鹽、微量的結晶調整劑、傳 導鹽、緩衝劑,而且pH 3.5〜8.5的鍍金浴中,摻合: (1) 含有亞硫酸鹼金屬鹽、亞硫酸銨鹽之任一種以上的析 出促進劑、或 (2) 前述析出促進劑與乙二胺四醋酸鹽,可解決上述課 題。此外還發現此鍍金浴在陰極電流密度爲 〇.〇1〜 1 .5 A/dm2的範圍內,陰極電流效率及電鏟均厚能力高,在 被膜表面會形成平滑的鍍金被膜。並發現此鑛金被膜具有 與使用以往的氰系電解鍍金浴所形成的鍍金被膜同等導線 接合性、焊球接合性。 本發明人發現以上各點,而使本發明達到完成。 可解決上述課題的本發明如以下所記載。 [1] 一種氰系電解鏟金浴,其特徵爲含有: 二氰金(I)酸鹼金屬鹽或二氰金(I)酸銨鹽,以金濃度而計 爲 1 ·0 〜5.Og/L、 結晶調整劑、 傳導鹽、 緩衝劑、 亞硫酸鹼金屬鹽及亞硫酸銨鹽之任一種以上所構成之析出 促進劑,以亞硫酸離子而計係0.1 mg/L〜1 8 g/L。 本鍍金浴所含有的亞硫酸鹼金屬鹽或亞硫酸銨鹽,係 201211323 吸附在陰極的電鍍面,發揮析出促進劑的作用’而增加金 錯離子還原析出反應的活性點。其結果,認爲會使陰極界 限電流密度上昇,即使在鍍浴中的金濃度低的情況下’也 能夠維持高陰極電流效率。 另一方面,若摻合亞硫酸鹼金屬鹽或亞硫酸銨鹽超過 ’ 1 8 g/L,則認爲會自行授受質子而發揮析出抑制劑的作 用,因此有必要加以注意。 [2] —種氰系電解鑛金浴,其特徵爲含有: 二氰金(I)酸鹼金屬鹽或二氛金(I)酸銨鹽,以金濃度而計 係 1.0〜5.0g/L、 結晶調整劑、 傳導鹽、 緩衝劑、 由亞硫酸鹼金屬鹽及亞硫酸銨鹽之任一種以上所構成之析 出促進劑,以亞硫酸離子而計係〇.lmg/L〜18g/L、與 乙二胺四醋酸。 [3] 如[2]所記載之氰系電解鍍金浴,其中乙二胺四 醋酸之濃度係〇.lmg/L〜20g/L。 [4] 如Π]或[2]所記載之氰系電解鍍金浴,其中傳導 鹽係由檸檬酸鹽、蟻酸鹽所構成之群中所選出之1種以上 所構成,前述傳導鹽之濃度係100〜250g/L。 [5] 如Π]或[2]所記載之電解鍍金浴,其中結晶調整 劑係由鉈化合物或鉛化合物所構成,前述結晶調整劑之濃 度以鉈或鉛而計係0.1〜20mg/L。 ⑧ -8- 201211323 [6] 如[1]或[2]所記載之電解鍍金浴,其中緩衝劑係 由磷酸、硼酸、檸檬酸及該等鹽所構成之群中所選出之1 種以上所構成,前述緩衝劑之濃度係1〜300g/L。 [7] —種印刷配線基板之電鍍方法,其特徵爲:使用 如[1]或[2]所記載之氰系電解鍍金浴,在陰極電流密度 0.05〜0.5A/dm2、鍍浴ρΗ3·5〜8.5、鍍浴溫度55〜70°C下 進行電鍍。 [發明之效果] 本發明之氰系電解鍍金浴(以下亦稱爲「本鍍金浴」) 即使在低金濃度,陰極電流效率也很高。另外,本鍍金浴 可在被電鍍物形成均勻且緻密,並具有良好外觀的鑛金被 膜。本鍍金浴甚至還具有優異的液體安定性與液體壽命。 本鍍金浴即使金濃度在3 g/L以下,陰極電流效率也 不會降低。因此不會隨著氫氣的產生而發生副反應。其結 果,不會發生電鍍燒焦、或以阻劑剝離爲主要原因的鍍金 被膜異常析出。 本鍍金浴在電流密度爲〇.〇5〜0.5 A/dm2的全區,可 形成具有良好外觀的電鍍被膜。在因爲基板或電鍍裝置的 限制而使得陰極電流密度變小的情況下,仍然能夠使用本 鍍金浴。在以高電流密度使用本鍍金浴的情況下,可縮短 電鍍時間而提升生產性。 藉由本鍍金浴所形成的鍍金被膜,可使電鍍均厚能力 提高,並具有與使用以往的氰系電解鍍金浴所形成的鍍金 201211323 被膜同等的導線接合性、焊球接合性。 使用本鍍金浴所形成的鍍金被膜爲低應力且低硬度, 因此不會侵蝕光阻劑或基底層。 【實施方式】 以下針對本發明作詳細說明。 本鍍金浴其特徵爲:以二氰金(I)酸鹼金屬鹽或二氰 金(I)酸銨鹽爲金源, 在含有微量的結晶調整劑、 傳導鹽、與 緩衝劑而成,pH爲3.5〜8.5的鍍金浴中, (1) 摻合含亞硫酸鹼金屬鹽及亞硫酸銨鹽之任一種以上的 析出促進劑、或 (2) 在前述析出促進劑以外,再加上摻合乙二胺四醋酸 鹽。 就本鍍金浴所摻合的金源而言,可列舉二氰金(I)酸 之鹼金屬鹽或銨鹽。就鹼金屬鹽而言,可列舉Na、K等 鹼金屬鹽、或Ca等鹼土類金屬鹽。本鍍金浴中二氰金(I) 酸鹽的摻合量並未特別受到限制,而金含量係以1 〇〜 5.0g/L,2.0〜4.0g/L爲佳。2.0〜40g/L的金濃度在操作時 的經濟性最爲優異,故爲適合。金含量若未達l.〇g/L,則 在高陰極電流密度進行電鍍的情況下,會發生電鍍燒焦, 電鍍表面的平滑性容易惡化。 就本鍍金浴所摻合的結晶調整劑而言,可列舉鉈、 ⑧ -10- 201211323 鉛、鉍等水溶性鹽(例如硫酸鹽、硝酸鹽、有機酸鹽)等。 本鍍金浴所摻合的結晶調整劑的量,以各金屬而計爲0.1 〜20mg/L。特別是在鍍浴中的金濃度爲4g/L以下的情況 下,爲了得到高陰極電流效率,結晶調整劑的摻合量以各 金屬而計係以0.1〜5mg/L爲佳。 就本鍍金浴所摻合的傳導鹽而言,可列舉磷酸鹽、硫 酸鹽、硼酸鹽、檸檬酸鹽、草酸鹽、犠酸鹽等無機酸鹽或 有機酸鹽。亦可將該等兩種以上合倂使用。本鑛金浴中傳 導鹽的摻合量可適當地設定在鍍浴中的溶質不會因爲過飽 和而發生鹽類析出的範圍。傳導鹽的摻合量通常以5 0〜 250 g/L,100〜150 g/L爲佳。傳導鹽的摻合量若未達 5 Og/L,則會有鍍浴的傳導性低、電鑛均厚能力惡化、或 構成鍍浴的成分分解的情形。傳導鹽的摻合量若超過 2 5 Og/L,則會有在室溫發生鹽類析出、界限電流密度降 低,電鍍燒焦的情形。 就本鍍金浴所摻合的緩衝劑而言,可列舉磷酸、硼 酸、檸檬酸、蟻酸、苯二甲酸、酒石酸等無機酸或有機酸 及該等鹽。本鍍金浴中緩衝劑的摻合量可適當地設定在鍍 浴中的溶質不會因爲過飽和而發生鹽類析出的範圍。在例 如摻合磷酸鹽、硼酸、檸檬酸、酒石酸及該等鹽作爲緩衝 劑的情況下,其摻合量係以1〜3 0 0 g/L爲佳。緩衝劑的摻 合量若未達1 g/L ’則緩衝作用弱,浴安定性容易隨著pH 的降低而惡化。其結果’會有構成鍍浴的成分分解的情 形。緩衝劑的摻合量若超過3 0 0 g/ L,則會有在室溫發生 -11 - 201211323 鹽類析出、界限電流密度降低’發生電鍍燒焦的情形。 有時也會有傳導鹽與緩衝劑爲相同化合物的情形。在 此情況下,任何一者皆會發揮另一者的作用。 本鍍金浴必須摻合含亞硫酸鹼金屬鹽或亞硫酸銨鹽而 成的析出促進劑只要摻合亞硫酸鹼金屬鹽、亞硫酸銨鹽任 一種以上即可。本鍍金浴中析出促進劑的摻合量’以亞硫 酸離子而計係以〇.lmg/L〜18g/L,10mg/L〜10g/L爲佳, 0.1〜5g/L爲特佳。析出促進劑的摻合量以亞硫酸離子而 計若超過l〇g/L,則特別是在陰極電流密度爲〇.2A/dm2以 上的條件下,會有陰極電流效率降低,而發生電鍍燒焦的 情形。析出促進劑的摻合量以亞硫酸離子而計若超過 1 8 g/L,則在陰極電流密度範圍廣的條件下,會有發生上 述不正常現象的情形。 本鍍金浴,在前述析出促進劑以外,宜再加上摻合乙 二胺四醋酸鹽。在倂用前述析出促進劑與乙二胺四醋酸 鹽,特別是在陰極電流密度爲0.1〜0.5A/dm2的條件下, 可提高陰極電流效率,因此非常適合。本鍍金浴中乙二胺 四醋酸鹽的摻合量係以0.1〜20g/L,0.5〜5g/L爲佳。在 乙二胺四醋酸鹽的摻合量超過2 〇g/L的情況下,前述析出 促進劑與乙二胺四醋酸鹽的相乘效果達到界限,因此不符 合經濟效益。在乙二胺四醋酸鹽的摻合量超過3 0g/L的情 況下,會有界限電流密度降低,電鍍燒焦的情形。 本鍍金浴的pH通常以3.0〜10.0,3.5〜8.5爲佳。在 PH未達3.0的情況下,鍍浴顯著不安定。其結果,會有 ⑧ -12- 201211323 構成鍍浴的成分分解而產生金化合物沉澱的情形。在pH 超過1 0.0的情況下,會有發生界限電流密度降低,電鍍 燒焦的情形。另外,在印刷基板形成配線圖型所使用的遮 蔽材料被溶解的結果,會有無法形成目標配線圖.型的情 形》 就pH調整劑而言,可例示硫酸或磷酸等無機酸、檸 檬酸或各種羧酸、羥基羧酸等有機酸、氫氧化鈉或氫氧化 鉀、氨水等鹼。 使用本鍍金浴進行電鏟時的液溫係以40〜8 0 °C爲 佳,5 5〜7 0 °C爲較佳。 使用本鍍金浴進行電鍍時的電流密度爲 0.01〜 1 .5A/dm2。特別是在本鍍金浴的金濃度爲2〜4g/L的情況 下,電流密度係以〇.〇5〜0.5 A/dm2爲佳。 藉由使用本鍍浴進行電鍍,會消耗金源或構成鍍浴的 其他成分。本鍍金浴藉由補充金源或構成鍍浴的其他成 分,可進行3回合(將鍍浴中的金源全部消耗的情況定爲 1回合)以上的使用。 本鍍金浴的基底材料,係經過打底鍍金,或藉由金濺 鍍而金屬化之物等,如果是可導電的物體則不選爲被電鍍 物。本鍍金浴可使用於使鍍金被膜形成在例如印刷配線基 板或1C封裝、矽晶圓、化合物晶圓等電子工業零件的情 況。特別是適合使用於使鍍金被膜形成在印刷配線基板的 情況。 -13- 201211323 [實施例] 以下藉由實施例及比較例,較具體地對本發明作說 明。本發明並不受下述實施例限定。 [測試片之製作] 將形成有膜厚5um光澤鎳被膜的0.1 dm2的黃銅板, 依序進行鹼脫脂、電解脫脂之後,以純水洗淨。將此黃銅 板浸漬於1 〇%硫酸之後,以純水洗淨。接下來,使用以下 所示配方的氰系電解金打底鍍浴,使鍍金被膜形成在此黃 銅板。電鍍條件爲 PH5.5、電鍍溫度50°C、電流密度 2A/dm2、電鍍時間30秒鐘。將形成有此鍍金被膜的黃銅 板以純水洗淨後,使其乾燥,製成測試片。將此測試片使 用於金膜厚的測定、導線拉伸測試及焊球剪切測試以外之 評估。 [氰系電解金打底鍍浴]201211323 VI. EMBODIMENT OF THE INVENTION [Technical Field] The present invention relates to a gold-clad electrolytic shovel gold bath and a plating method using the same, in which a gold-plated film is formed on a printed wiring board such as a BGA (Ball Grid Array) wiring board, or Suitable for use in electronic industrial parts such as 1C packages, germanium or compound wafers. [Prior Art] A gold-plated film formed by using a cyanide electrolytic gold plating bath is widely used for, for example, a printed wiring board and other precision electronic machine parts such as a 1C package, an LSI package, or an LC drive 1C. The gold film used for these precision electronic machine parts is required to have high wire bonding properties, solder joint properties, and heat resistance. The smoothness and gold purity of the gold-plated coating are important factors influencing these characteristics. In order to form a gold-plated film having improved properties, a crystal modifier such as ruthenium or lead is used (Patent Document 1 - 3). The gold concentration in the cyanide electrolytic gold plating bath is generally 8 to 10 g/L. As long as the gold concentration is within this range, a cathode current efficiency of about 95% can be obtained. However, if the gold concentration in the plating bath is lowered to 4 g/L or less, the cathode current efficiency is remarkably lowered, and the productivity is deteriorated. In addition, because of the decrease in cathode current efficiency, side reactions occur with the generation of hydrogen. Affected by this, electroplating scorching may occur, or abnormal deposition of a gold-plated film mainly caused by resist stripping may occur. As a result, a short circuit of the circuit pattern, peeling of the electrodeposited film, and a failure in the subsequent step may occur. Reducing the gold concentration in the mineral bath is effective in reducing the operating cost of electroplating to -5 - 201211323. However, if the concentration of gold in the plating bath is lowered too low, the cathode current efficiency is lowered, and the above problem occurs. In the conventional cyanide electrolytic gold plating bath, when the cathode current density is in the range of 0 gt; 1 to 0·3 A/dm 2 , the plating uniformity is high. The reason for this is because in actual operation, suitable plating can be performed in the range of a cathode current density of 0.1 to 0.3 A/dm2. However, in the case where the gold concentration in the plating bath is less than 5 g/L, in the range of the cathode current density of 〇.1 to 5.5 A/dm2, particularly in the range of 0.1 to 0.3 A/dm2, Electroplating is performed with over 90% cathode current efficiency. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Unexamined Patent Publication No. Hei. No. Hei. No. Hei. Problem to be Solved The problem to be solved by the present invention is to provide a cyanide electrolytic gold plating bath and a plating method using the same, even if the gold concentration in the plating bath is 5 g/L or less, the cathode current density is In the range of 0.01 to 1.5 A/dm 2 ', a smooth gold-plated film can be formed with high cathode current efficiency. A further object of the present invention is to provide a cyanide electrolytic gold plating bath and a plating method using the same, which can form a gold plating film having high plating thickness uniformity and high wire bonding property or solder ball bonding property. 8 -6- 201211323 [Method for Solving the Problem] The results of the review by the inventors of the present invention were found to be trace amounts by using an alkali metal salt of dicyandiamide (I) or ammonium dicyanate (I). a crystallizing agent, a conductive salt, a buffering agent, and a gold plating bath having a pH of 3.5 to 8.5, and blending: (1) a precipitation accelerator containing at least one of an alkali metal sulfite and an ammonium sulfite, or (2) The precipitation accelerator and ethylenediaminetetraacetate can solve the above problems. In addition, it has been found that the gold plating bath has a high cathode current efficiency and a high shovel thickness in the range of a cathode current density of 〇. 〇1 to 1.5 A/dm2, and a smooth gold-plated film is formed on the surface of the film. Further, it was found that the gold ore film has the same wire bonding property and solder ball bonding property as the gold plating film formed by the conventional cyanide electrolytic gold plating bath. The inventors have found the above points to achieve the completion of the present invention. The present invention which can solve the above problems is as follows. [1] A cyanide electrolytic shovel gold bath characterized by comprising: dicyandiamide (I) alkali metal salt or dicyandiamide (I) ammonium salt, which is 1·0 to 5. Og in terms of gold concentration. /L, a precipitation promoter composed of any one or more of a crystal modifier, a conductive salt, a buffer, an alkali metal sulfite, and an ammonium sulfite, and is 0.1 mg/L to 18 g/based on sulfite ions. L. The alkali metal sulfite or ammonium sulfite contained in the gold plating bath is adsorbed on the plating surface of the cathode by 201211323, and acts as a precipitation promoter to increase the activity point of the gold-donor reduction precipitation reaction. As a result, it is considered that the cathode limit current density is increased, and the high cathode current efficiency can be maintained even when the gold concentration in the plating bath is low. On the other hand, when an alkali metal sulfite or ammonium sulfite is added in an amount of more than > 18 g/L, it is considered that the protons are self-administered to function as a precipitation inhibitor, and therefore it is necessary to pay attention. [2] A cyanide electrolytic gold bath characterized by: dicyandiamide (I) alkali metal salt or di-nuclear acid (I) ammonium salt, 1.0 to 5.0 g/L in terms of gold concentration a crystallization modifier, a conductive salt, a buffering agent, a precipitation accelerator composed of any one or more of an alkali metal sulfite and an ammonium sulfite, and a sulfite ion of l.1 mg/L to 18 g/L, With ethylenediaminetetraacetic acid. [3] The cyanide electrolytic gold plating bath as described in [2], wherein the concentration of ethylenediaminetetraacetic acid is 〇.lmg/L to 20g/L. [4] The cyanide electrolytic gold plating bath according to [2], wherein the conductive salt is one or more selected from the group consisting of citrate and formic acid salt, and the concentration of the conductive salt is It is 100~250g/L. [5] The electrolytic gold plating bath according to [2], wherein the crystal modifier is composed of a ruthenium compound or a lead compound, and the concentration of the crystallization modifier is 0.1 to 20 mg/L in terms of bismuth or lead. [8] The electrolytic gold plating bath according to [1] or [2], wherein the buffering agent is one or more selected from the group consisting of phosphoric acid, boric acid, citric acid, and the like. The concentration of the buffer is 1 to 300 g/L. [7] A method of electroplating a printed wiring board, characterized in that the cyanide electrolytic gold plating bath according to [1] or [2] is used, and the cathode current density is 0.05 to 0.5 A/dm2, and the plating bath is ρΗ3·5. ~8.5, plating bath temperature 55~70 °C for electroplating. [Effects of the Invention] The cyanide electrolytic gold plating bath of the present invention (hereinafter also referred to as "the present gold plating bath") has a high cathode current efficiency even at a low gold concentration. In addition, the gold plating bath can form a uniform gold film which is uniform and dense in the object to be plated and has a good appearance. This gold-plated bath even has excellent liquid stability and liquid life. Even if the gold concentration is below 3 g/L, the gold plating bath will not decrease the cathode current efficiency. Therefore, side reactions do not occur with the generation of hydrogen. As a result, the gold plating film which is not caused by the electroplating or the peeling of the resist is not precipitated abnormally. The gold plating bath can form a plating film having a good appearance in a region where the current density is 〇.〇5 to 0.5 A/dm2. The gold plating bath can still be used in the case where the cathode current density becomes small due to the limitation of the substrate or the plating apparatus. When the gold plating bath is used at a high current density, the plating time can be shortened to improve productivity. By the gold plating film formed by the gold plating bath, the plating thickness can be improved, and the wire bonding property and the solder ball bonding property equivalent to the gold plating 201211323 film formed by the conventional cyanide electrolytic gold plating bath can be obtained. The gold-plated film formed using the present gold plating bath is low in stress and low in hardness, and thus does not erode the photoresist or the underlying layer. [Embodiment] Hereinafter, the present invention will be described in detail. The gold plating bath is characterized in that: dicyandiamide (I) acid alkali metal salt or dicyandiamide (I) ammonium salt is used as a gold source, and contains a trace amount of a crystal modifier, a conductive salt, and a buffer, and the pH is In the gold plating bath of 3.5 to 8.5, (1) blending one or more precipitation accelerators containing an alkali metal sulfite and an ammonium sulfite salt, or (2) adding a blending agent in addition to the above-mentioned precipitation accelerator Ethylenediamine tetraacetate. As the gold source to be blended in the gold plating bath, an alkali metal salt or an ammonium salt of dicyandiamide (I) acid can be cited. The alkali metal salt may, for example, be an alkali metal salt such as Na or K or an alkaline earth metal salt such as Ca. The blending amount of the dicyandiamide (I) acid salt in the gold plating bath is not particularly limited, and the gold content is preferably from 1 〇 to 5.0 g/L, and more preferably from 2.0 to 4.0 g/L. The gold concentration of 2.0 to 40 g/L is most excellent in economical operation, so it is suitable. If the gold content is less than 〇g/L, plating is performed at a high cathode current density, and electroplating scorching occurs, and the smoothness of the plating surface is likely to deteriorate. Examples of the crystal modifier to be blended in the gold plating bath include water-soluble salts (for example, sulfates, nitrates, and organic acid salts) such as cesium, 8 -10-201211323, and lead. The amount of the crystal modifier to be blended in the gold plating bath is 0.1 to 20 mg/L in terms of each metal. In particular, when the gold concentration in the plating bath is 4 g/L or less, in order to obtain high cathode current efficiency, the blending amount of the crystal modifier is preferably 0.1 to 5 mg/L for each metal. The conductive salt to be blended in the gold plating bath may, for example, be a mineral acid salt or an organic acid salt such as a phosphate, a sulfate, a borate, a citrate, an oxalate or a citrate. These two or more types may also be used in combination. The blending amount of the conductive salt in the gold bath of the present invention can appropriately set the range in which the solute in the plating bath does not cause salt precipitation due to supersaturation. The blending amount of the conductive salt is usually from 50 to 250 g/L, preferably from 100 to 150 g/L. When the blending amount of the conductive salt is less than 5 Og/L, the conductivity of the plating bath is low, the ability to thicken the electric ore is deteriorated, or the components constituting the plating bath are decomposed. When the blending amount of the conductive salt exceeds 25 Og/L, salt precipitation occurs at room temperature, the boundary current density is lowered, and plating is burnt. The buffering agent to be blended in the gold plating bath may, for example, be an inorganic acid or an organic acid such as phosphoric acid, boric acid, citric acid, formic acid, phthalic acid or tartaric acid, or the like. The blending amount of the buffer in the gold plating bath can be appropriately set in a range in which the solute in the plating bath does not cause salt precipitation due to supersaturation. In the case where, for example, phosphate, boric acid, citric acid, tartaric acid, and the like are blended as a buffer, the blending amount is preferably 1 to 300 g/L. If the amount of the buffer is less than 1 g/L', the buffering effect is weak, and the bath stability is likely to deteriorate as the pH is lowered. As a result, there is a case where the components constituting the plating bath are decomposed. When the amount of the buffer to be added exceeds 30,000 g/L, there is a case where salt precipitation occurs at room temperature -11 - 201211323, and the limit current density decreases. Sometimes there are cases where the conductive salt and the buffer are the same compound. In this case, either one will play the role of the other. In the present gold plating bath, it is necessary to blend a sulfite-containing alkali metal salt or an ammonium sulfite salt to form a precipitation promoter as long as it is blended with at least one of an alkali metal sulfite salt and an ammonium sulfite salt. The amount of the precipitation promoter to be added in the gold plating bath is preferably from 1 mg/L to 18 g/L, more preferably from 10 mg/L to 10 g/L, and particularly preferably from 0.1 to 5 g/L, based on the sulfite ion. When the amount of the precipitation promoter is more than 10 μg/L in terms of sulfite ions, particularly when the cathode current density is 〇.2 A/dm 2 or more, the cathode current efficiency is lowered and electroplating is generated. The situation of coke. When the amount of the precipitation promoter blended exceeds 18 g/L by the sulfite ion, the above abnormality may occur under a wide range of the cathode current density. In the present gold plating bath, in addition to the above-mentioned precipitation promoter, it is preferable to further incorporate ethylenediaminetetraacetate. The use of the above-mentioned precipitation promoter and ethylenediaminetetraacetate, particularly at a cathode current density of 0.1 to 0.5 A/dm2, can improve the cathode current efficiency, and is therefore very suitable. The blending amount of ethylenediamine tetraacetate in the gold plating bath is preferably 0.1 to 20 g/L, preferably 0.5 to 5 g/L. In the case where the blending amount of ethylenediaminetetraacetate exceeds 2 〇g/L, the synergistic effect of the above-mentioned precipitation promoter and ethylenediaminetetraacetate is limited, and thus it does not meet economic benefits. When the blending amount of ethylenediaminetetraacetate exceeds 30 g/L, there is a case where the limit current density is lowered and electroplating is burnt. The pH of the gold plating bath is usually 3.0 to 10.0 and 3.5 to 8.5. In the case where the pH is less than 3.0, the plating bath is significantly unstable. As a result, there is a case where the components constituting the plating bath are decomposed and the gold compound is precipitated in 8 -12 to 201211323. When the pH exceeds 1 0.0, there is a case where the limit current density is lowered and the plating is burnt. In addition, as a result of the dissolution of the shielding material used to form the wiring pattern on the printed circuit board, the target wiring pattern may not be formed. The pH adjusting agent may, for example, be a mineral acid such as sulfuric acid or phosphoric acid or citric acid or An organic acid such as a carboxylic acid or a hydroxycarboxylic acid, or a base such as sodium hydroxide, potassium hydroxide or ammonia. The liquid temperature at the time of using the gold plating bath for the shovel is preferably 40 to 80 ° C, and preferably 5 5 to 70 ° C. The current density at the time of electroplating using this gold plating bath was 0.01 to 1.5 A/dm2. In particular, in the case where the gold concentration of the gold plating bath is 2 to 4 g/L, the current density is preferably 〜. 5 to 0.5 A/dm 2 . By using the plating bath for electroplating, the gold source or other components constituting the plating bath are consumed. This gold plating bath can be used for three rounds (all rounds of the gold source in the plating bath is set to one round) by supplementing the gold source or other components constituting the plating bath. The base material of the gold plating bath is metallized by gold plating or metallized by gold sputtering, and is not selected as an electroplated object if it is an electrically conductive object. The gold plating bath can be used to form a gold plating film on, for example, a printed wiring substrate or an electronic industrial component such as a 1C package, a germanium wafer, or a compound wafer. In particular, it is suitably used in the case where a gold plating film is formed on a printed wiring board. -13-201211323 [Examples] Hereinafter, the present invention will be specifically described by way of examples and comparative examples. The invention is not limited by the following examples. [Production of test piece] A 0.1 dm2 brass plate having a 5 μm gloss nickel coating film was formed, followed by alkali degreasing and electrolytic degreasing, followed by washing with pure water. The brass plate was immersed in 1% sulfuric acid and washed with pure water. Next, a gold plating film was formed on the copper plate using a cyanide electrolytic gold primer bath of the following formulation. The plating conditions were pH 5.5, plating temperature 50 ° C, current density 2 A/dm 2 , plating time 30 seconds. The brass plate on which the gold-plated film was formed was washed with pure water and then dried to prepare a test piece. This test piece was used for evaluation other than gold film thickness measurement, wire tensile test, and solder ball shear test. [Cyanide Electrolytic Gold Priming Bath]

二氛金(I)酸鉀(以金濃度而計) lg/L 第二磷酸鉀 80g/LSecond gold (I) potassium (in terms of gold concentration) lg / L potassium second potassium 80g / L

檸檬酸 20g/LCitric acid 20g/L

檸檬酸鉀 40g/LPotassium citrate 40g/L

[氰系電解鍍金之步驟] 使用各實施例所示的鍍液,使鍍金被膜形成在B G A 面板及前述測試片(以下亦將該等稱爲「被電鍍物」)上。 ⑧ -14- 201211323 電鍍步驟如同以下所述。首先測定被電镀物的質量,依序 進行鹼脫脂、電解脫脂,並以純水洗淨。然後浸漬於1 0% 硫酸,並以純水洗淨。接下來使用各實施例、比較例所示 的各氰系電解金鍍液,以各實施例、比較例所示的電鍍條 件使鑪金被膜形成在被電鍍物上。然後以純水洗淨,並使 其乾燥,測定被電鍍物的質量。電鑛皆在1 OOOmL燒杯內 進行。另外’氰系電解金鍍液之陰極電流密度與電鑛時間 如同表1所述。 [表1] 陰極電流密度(A/d nf) 0.0 5 0. 1 0 . 2 0 . 3 0. 4 電鍍時間(分鐘) 18 9 4. 5 3 2 . 2 5 [陰極電流效率(CE)] 藉由測定在電鍍前後測試片的質量,求得析出至測試 片的金的質量。將所析出金的質量除以理論析出質量,並 以百分率表示。金的理論析出質量是由電量而計算出來。 [藉由導線拉伸測試進行的評估] 使用形成有藉由上述電鍍步驟所得到的鍍金被膜的各 BGA面板進行導線拉伸測試。在BGA面板已形成了複數 個圖型,使用其中相鄰的兩個圖型作爲測試用圖型。在此 兩個測試用圖型之中,在任意18處如同以下所述的方式 進行導線拉伸測試。首先’在直徑1密耳(〇·00 1英吋)的 金導線的第1點(一端)施加50gf的荷重,以〇.〇5瓦的輸 -15- 201211323 出在15(TC的溫度保持0.05秒鐘,而壓接於BGA面板的 第1圖型。另一方面,在金導線的第2點(另一端)施加 100gf的荷重,以0.1瓦的輸出在150t的溫度保持〇.1秒 鐘,壓接於BGA面板的第2圖型(與第1圖型相鄰的圖 型)。然後使用K&S製1 48 8PLUS測定壓接之後導線的拉 伸強度。標準荷重採用Serial NO.926-L-LAB-102。 [藉由焊球剪切測試進行的評估] 使用形成有藉由上述電鍍步驟所得到的鍍金被膜的 BGA面板進行焊球剪切測試。在BGA面板已形成了複數 個圖型,使用其中任意兩個圖型作爲測試用圖型。此測試 用圖型之中,在任意1〇處藉著如以下所述的方式進行焊 球剪切測試。首先,將焊劑塗佈在形成於BGA面板的鍍 金被膜上。於其上附著直徑〇.45mm的焊球(焊球合金規格 SAC305)。在大氣中以150 °C (60秒鐘)〜180 °C (30秒鐘)〜 245°C(63秒鐘)〜100°C(60秒鐘)對此BGA面板進行迴焊 處理,使焊球接合在BGA面板。在將接合的焊球與BGA 面板的界面至焊球頂點的高度取1 /4高度的位置,實行刮 痕測試(參照圖2)。刮痕速度定爲lOOpm/sec。測定係採 用 Technoalpha 公司製的 XYZTEC 系列,型號 CONDOR70-3。將結果以強度(N)與斷裂模式(良或不良)表 示。 [電鍍均厚能力(CV)的評估] -16- 201211323 使用形成有藉由上述電鍍步驟所得到的鍍金被膜的 BGA面板進行金膜厚的測定。在BGA面板形成了複數個 圖型,使用其中任意兩個圖型作爲測試用圖型。在各測試 用圖型中,表側(晶片側)、背側(錫球側)的各4處測定金[Step of Cyanide Electroless Gold Plating] Using the plating solution shown in each of the examples, a gold plating film was formed on the B G A panel and the test piece (hereinafter also referred to as "electrodeposited material"). 8 -14- 201211323 The plating procedure is as follows. First, the mass of the object to be plated is measured, and alkali degreasing and electrolytic degreasing are sequentially performed, and washed with pure water. It was then immersed in 10% sulfuric acid and washed with pure water. Next, using each of the cyanide electrolytic gold plating solutions shown in the respective Examples and Comparative Examples, a gold alloy film was formed on the object to be plated by the plating conditions shown in the respective Examples and Comparative Examples. Then, it was washed with pure water and dried, and the mass of the plated material was measured. The electric ore was carried out in a 10,000 mL beaker. Further, the cathode current density and the ore time of the 'cyanide electrolytic gold plating bath are as shown in Table 1. [Table 1] Cathodic current density (A/d nf) 0.0 5 0. 1 0 . 2 0 . 3 0. 4 Plating time (minutes) 18 9 4. 5 3 2 . 2 5 [Cathode current efficiency (CE)] The mass of gold deposited to the test piece was determined by measuring the quality of the test piece before and after electroplating. The mass of the precipitated gold is divided by the theoretical precipitation mass and expressed as a percentage. The theoretical precipitation quality of gold is calculated from the amount of electricity. [Evaluation by Wire Tensile Test] The wire tensile test was carried out using each of the BGA panels formed with the gold plating film obtained by the above plating step. A plurality of patterns have been formed on the BGA panel, and two adjacent patterns are used as test patterns. Among the two test patterns, the wire tensile test was performed at any 18 manner as described below. First, apply a load of 50gf at point 1 (one end) of a gold wire with a diameter of 1 mil (〇·00 1 inch) to 〇.〇5 watts of -15-201211323 at 15 (TC temperature retention) 0.05 seconds, and crimped to the first pattern of the BGA panel. On the other hand, a load of 100 gf is applied at the second point (the other end) of the gold wire, and the output of 0.1 watt is maintained at a temperature of 150 t for 1 second. The bell is crimped to the second pattern of the BGA panel (the pattern adjacent to the first pattern). Then the tensile strength of the wire after crimping is measured using K&S 1 48 8PLUS. The standard load is Serial NO. 926-L-LAB-102. [Evaluation by solder ball shear test] The ball ball shear test was performed using a BGA panel formed with a gold-plated film obtained by the above plating step. A plurality of BGA panels have been formed. For each pattern, use any two of the patterns as the test pattern. In this test pattern, the solder ball shear test is performed at any 1〇 by the method described below. First, the flux is coated. The cloth is formed on the gold-plated film formed on the BGA panel, and a solder ball with a diameter of 〇45 mm is attached thereto (solder ball alloy) Specification SAC305). Reflow the BGA panel in the atmosphere at 150 °C (60 seconds) ~ 180 °C (30 seconds) ~ 245 °C (63 seconds) ~ 100 °C (60 seconds) The solder ball is bonded to the BGA panel. The scratch test is performed at a position where the height of the solder ball and the BGA panel is 1/4 of the height of the solder ball apex (see Fig. 2). The scratch speed is set to lOOpm/sec. The measurement system was made by Technoalpha's XYZTEC series, model CONDOR70-3. The results were expressed in terms of strength (N) and fracture mode (good or bad). [Evaluation of plating thickness (CV)] -16- 201211323 The thickness of the gold film was measured using a BGA panel formed with the gold plating film obtained by the above plating step. A plurality of patterns were formed on the BGA panel, and any two of the patterns were used as the test pattern. In the pattern, gold is measured at each of the front side (wafer side) and the back side (tin ball side).

膜厚(參照圖1)。藉由下述式(1)算出CV値(%) ’以此CV 値作爲電鍍均厚能力的指標。 [數1] CV 値(%) = 1 〇 〇 X α/Ε · · ·式(1) f tr ...:標準差 (E. · ·鍍金被膜的膜厚平均値 [金膜厚的測定] 使用螢光X射線膜厚計SFT-9200(Seik〇電子)進行測 定。 [實施例1] 以表2所示電鍍條件,使用下述組成的鍍浴’使鍍金 被膜分別形成在測試片及B G A面板。Film thickness (see Figure 1). CV 値 (%) ' was calculated by the following formula (1), and CV 値 was used as an index of plating uniformity. [Number 1] CV 値 (%) = 1 〇〇X α / Ε · · · Formula (1) f tr ...: Standard deviation (E. · · Thickness of film thickness of gold-plated film 値 [Determination of gold film thickness The measurement was carried out using a fluorescent X-ray film thickness meter SFT-9200 (Seik 〇 electron). [Example 1] The gold plating film was formed on the test piece by using the plating bath of the following composition in the plating conditions shown in Table 2; BGA panel.

二氰金(I)酸鉀(以金濃度而計)3g/LPotassium dicyanate (I) potassium (in terms of gold concentration) 3g/L

檸檬酸 15g/LCitric acid 15g/L

檸檬酸鉀 125g/LPotassium citrate 125g/L

蟻酸鉀 100g/LPotassium formate 100g/L

亞硫酸鈉 2g/L 硫酸鉈(以鉈濃度而計) 0.5mg/L 所得到的鍍金被膜的膜厚爲0.70〜〇.75μιη,且爲均勻 -17- 201211323 的半光澤狀。如同表2所示,在陰極電流密度爲〇.05〜 0.4 A/dm2的範圍內,陰極電流效率、膜厚變異係數、導線 拉伸測試及焊球剪切測試的結果良好。 [表2】 陰極電流密度(A/dm2) 0. 0 5 0 . 1 0 . 2 0. 3 0. 4 電鍍 條件 鍍浴pH 6. 3 同左 同左 同左 同左 鍍浴醜 6 5 同左 间左 同左 同左 攪拌 中 同左 同左 同左 同左 (300rpm) 陰極電流效率(CE)(%) 9 4 9 7 10 0 9 8 9 8 膜厚變異係數(CV値)1表面 3 . 8 3 . 7 3 . 9 3 . 9 4. 0 評估 (%)|背面 3 · 2 3 . 3 3 . 2 3 . 3 3. 4 結果 導線拉伸強度 (gf) 6·0 〜8·5 (斷裂模式) (良) 同左 同左 同左 同左 焊接剪切強度 (N) (斷裂模式) 8·0〜 10.0 (良) 同左 同左 同左 同左 [比較例1 ] 以表3所示的電鍍條件,使用下述組成的鍍浴,使鍍 金被膜分別形成在測試片及B G A面板。 二氰金(I)酸鉀(以金濃度而計) 3g/L 檸檬酸 15g/L 檸檬酸鉀 125g/L 蟻酸鉀 100g/L 硫酸鉈(以鉈濃度而計) 0.5mg/L -18- 201211323 所得到的鍍金被膜的膜厚爲0.40〜〇.70ym,而且呈均 勻的半光澤狀。陰極電流效率、膜厚變異係數、導線拉伸 測試及焊球剪切測試的結果如同表3所示。特別是在陰極 電流密度爲〇 . 1 A/dm2以下的條件下,陰極電流效率低。 在陰極電流密度爲〇.〇5A/dm2及〇.lA/dm2的條件下,陰 極電流效率低,因此未實施導線拉伸測試及焊球剪切測 試。 [表3] 電鍍 條件 陰極電流密度(A/dm〇 0.0 5 0. 1 0· 2 0. 3 0. 4 鍍浴pH 6. 3 同左 同左 同左 同左 鍍浴溫度(°C) 6 5 同左 同左 同左 同左 攪拌 中 (300rpm) 同左 同左 同左 同左 評估 結果 陰極電流效率(CE)(%) 6 7 8 4 9 0 9 3 9 7 膜厚變異係數(CV値)|表面 4. 6 4. 0 4. 2 4. 1 6, 1 (%)丨背面 4. 3 4. 3 4. 3 4. 6 4. 7 導線拉伸強度 (gf) (斷裂模式) 未實施 同左 6.0〜 8.0 (良) 同左 同左 焊接剪切強度 (N) (斷裂模式) 未實施 同左 7.0〜 10.5 (良) 同左 同左 [實施例2] 以表4所示的電鍍條件’使用下述組成的鍍浴’使鍍 金被膜分別形成在測試片及BGA面板° -19 - 201211323Sodium sulfite 2 g/L barium sulfate (calculated as cerium concentration) 0.5 mg/L The obtained gold-plated film has a film thickness of 0.70 to 75.75 μm, and is semi-glossy of uniform -17-201211323. As shown in Table 2, the results of the cathode current efficiency, the film thickness variation coefficient, the wire tensile test, and the solder ball shear test were good in the range of the cathode current density of 〇.05 to 0.4 A/dm2. [Table 2] Cathodic current density (A/dm2) 0. 0 5 0 . 1 0 . 2 0. 3 0. 4 Plating conditions Plating bath pH 6. 3 Same as left and left left with left left plating bath Ugly 6 5 Same as left left and left left Stirring in the same left and left as the left and left (300 rpm) Cathodic current efficiency (CE) (%) 9 4 9 7 10 0 9 8 9 8 Film thickness coefficient of variation (CV値) 1 Surface 3. 8 3 . 7 3 . 9 3 . 9 4. 0 Evaluation (%)|Back 3 · 2 3 . 3 3 . 2 3 . 3 3. 4 Result Wire Tensile Strength (gf) 6·0 ~8·5 (Fracture Mode) (Good) Same as Left and Left Left Welding shear strength (N) (breaking mode) 8·0 to 10.0 (good) Same as left and left, same as left and left [Comparative Example 1] With the plating conditions shown in Table 3, the gold plating film was formed using the plating bath of the following composition. In test strips and BGA panels. Potassium dicyanate (I) potassium (in terms of gold concentration) 3g/L citric acid 15g/L potassium citrate 125g/L potassium formate 100g/L barium sulfate (calculated as cesium concentration) 0.5mg/L -18- The gold-plated film obtained in 201211323 has a film thickness of 0.40 to 7070 μm and has a uniform semi-gloss. The results of cathode current efficiency, film thickness variation coefficient, wire tensile test and solder ball shear test are shown in Table 3. In particular, the cathode current efficiency is low under the condition that the cathode current density is 〇 1 A/dm 2 or less. Under the condition that the cathode current density is 〇.〇5A/dm2 and 〇.lA/dm2, the cathode current efficiency is low, so the wire tensile test and the solder ball shear test are not performed. [Table 3] Electroplating conditions Cathodic current density (A/dm 〇 0.0 5 0. 1 0· 2 0. 3 0. 4 Plating bath pH 6. 3 Same as left and left with left and left left plating bath temperature (°C) 6 5 Same as left and left Same as left stirring (300 rpm) Same as left and left as the same as left and left. Results of cathode current efficiency (CE) (%) 6 7 8 4 9 0 9 3 9 7 Film thickness coefficient of variation (CV値)|Surface 4. 6 4. 0 4. 2 4. 1 6, 1 (%) 丨 back 4. 3 4. 3 4. 3 4. 6 4. 7 Tensile strength (gf) (fracture mode) Not implemented with the left 6.0~ 8.0 (good) Same left and left welding shears Shear strength (N) (breaking mode) is not performed with the left side 7.0 to 10.5 (good) Same as left and left [Example 2] The plating conditions shown in Table 4 'the plating bath using the following composition' were used to form the gold plating film on the test piece, respectively. And BGA panel ° -19 - 201211323

二氰金(I)酸鉀(以金濃度而計) 3g/LPotassium dicyanate (I) potassium (in terms of gold concentration) 3g/L

檸檬酸 15g/LCitric acid 15g/L

檸檬酸鉀 125g/LPotassium citrate 125g/L

蟻酸鉀 100g/LPotassium formate 100g/L

亞硫酸鉀 2.4g/LPotassium sulfite 2.4g/L

蟻酸鉈(以鉈濃度而計) lmg/L 所得到的鍍金被膜的膜厚爲0.70〜0.75μιη,而且呈均 勻的半光澤狀。如同表4所示,在陰極電流密度爲〇.05〜 0.4A/dm2的範圍內’陰極電流效率、膜厚變異係數、導線 拉伸測試及焊球剪切測試的結果良好。 [表4] 電鍍 條件 陰極電流密度(A/dm〇 0.0 5 0. 1 0 . 2 0. 3 0· 4 鍍浴pH 6 . 3 同左 同左 同左 同左 鍍浴灘(1C) 6 5 同左 同左 同左 同左 攪拌 中 (300rpm) 同左 同左 同左 同左 評估 結果 陰極電流效率(CE) (%) 9 6 9 9 10 0 10 0 9 8 娜變異係數(CV値)丨表面 3. 7 2. 7 3. 0 4. 2 4. 0 (%)丨背面 3. 6 2. 4 3. 4 3. 4 4. 2 導線拉伸強度 (gf) 慚裂模式) 6.0 〜8.5 (良) 同左 间左 同左 同左 焊接剪切強度 (N) (斷裂模式) 8.0〜 10.0 (良〉 同左 同左 同左 同左 -20- 201211323 [實施例3] 以表5所示的電鍍條件,使用下述組成的銨浴,使鍍 金被膜分別形成在測試片及BGA面板。The formic acid bismuth (calculated as the cerium concentration) has a film thickness of 0.70 to 0.75 μm, and a uniform semi-gloss. As shown in Table 4, the results of the cathode current efficiency, the film thickness variation coefficient, the wire tensile test, and the solder ball shear test were good in the range of the cathode current density of 〇.05 to 0.4 A/dm2. [Table 4] Electroplating conditions Cathodic current density (A/dm 〇 0.0 5 0. 1 0 . 2 0. 3 0· 4 Plating bath pH 6. 3 Same as left and left with left and left left bathing beach (1C) 6 5 Same as left and left with left and left Stirring (300 rpm) Same as left and left as the left and left. Evaluation of cathode current efficiency (CE) (%) 9 6 9 9 10 0 10 0 9 8 Na coefficient of variation (CV値) 丨 Surface 3. 7 2. 7 3. 0 4. 2 4. 0 (%) 丨 back 3. 6 2. 4 3. 4 3. 4 4. 2 wire tensile strength (gf) split mode) 6.0 ~ 8.5 (good) with left left left with left and left welding shear strength (N) (Fracture mode) 8.0 to 10.0 (good) Same as left and left with the same left and left -20 - 201211323 [Example 3] Using the ammonium bath of the following composition, the gold plating film was formed in the test under the plating conditions shown in Table 5 Film and BGA panels.

二氰金(I)酸鉀(以金濃度而計) 3g/LPotassium dicyanate (I) potassium (in terms of gold concentration) 3g/L

檸檬酸 15g/LCitric acid 15g/L

檸檬酸鉀 225 g/LPotassium citrate 225 g/L

亞硫酸鈉 2g/LSodium sulfite 2g/L

乙二胺四醋酸鈉 4.4g/LSodium ethylenediaminetetraacetate 4.4g/L

硝酸鉈(以鉈濃度而計) 5mg/L 所得到的鍍金被膜的膜厚爲0.70〜〇.75μιη,而且呈均 勻的半光澤狀》如同表5所示,在陰極電流密度爲〇.05〜 0_4A/dm2的範圍內’陰極電流效率、膜厚變異係數、導線 拉伸測試及焊球剪切測試的結果良好。 201211323 [表5] 陰極電流密度(A/dmO 0.0 5 0. 1 0· 2 0. 3 〇· 4 鍍浴pH 6. 3 同左 同左 同左 同左 電鍍 條件 鍍浴酿(t) 6 5 同左 同左 同左 同左 攪拌 中 同左 同左 同左 同左 (300rpm) 陰極職效率(CE)(%) 9 4 9 9 10 0 10 0 9 9 驅變異係數(CV値)i表面 3. 9 3. 8 4. 0 4. 0 4 . 1 (%)丨背面 3 . 4 3. 6 3. 4 3. 7 3. 8 結果 導線拉伸強度 (gf) 6.0 〜8·5 (斷裂模式) (良) 同左 同左 同左 同左 焊接剪切強度 (N) 8.0〜 (斷裂模式) 10.0 (良) 同左 同左 同左 同左 [實施例4] 以表6所示的電鍍條件,使用下述組成的鍍浴,使鍍 金被膜分別形成在測試片及B G A面板。Cerium nitrate (calcium concentration) 5 mg/L The thickness of the gold-plated film obtained is 0.70 to 75.75 μm, and is uniform and semi-glossy. As shown in Table 5, the cathode current density is 〇.05~ The results of 'cathode current efficiency, film thickness variation coefficient, wire tensile test and solder ball shear test in the range of 0_4A/dm2 were good. 201211323 [Table 5] Cathodic current density (A / dmO 0.0 5 0. 1 0 · 2 0. 3 〇 · 4 plating bath pH 6. 3 with left and left with the same left and left plating conditions plating bath (t) 6 5 with the same left and left with the left Stirring in the same left and left with the same left and left (300rpm) Cathode efficiency (CE) (%) 9 4 9 9 10 0 10 0 9 9 Drive coefficient of variation (CV値) i surface 3. 9 3. 8 4. 0 4. 0 4 1 (%)丨Back 3. 4 3. 6 3. 4 3. 7 3. 8 Result Wire Tensile Strength (gf) 6.0 〜8·5 (Fracture Mode) (Good) Same as Left Left Same Left Left Same Left Welding Strength (N) 8.0~ (Fracture mode) 10.0 (Good) Same as left and left, same as left and left [Example 4] With the plating conditions shown in Table 6, the gold plating film was formed on the test piece and the BGA panel, respectively, using the plating bath of the following composition. .

二氰金(I)酸鉀(以金濃度而計) 2g/LPotassium dicyanate (I) potassium (in terms of gold concentration) 2g/L

檸檬酸 15g/LCitric acid 15g/L

檸檬酸鉀 275 g/LPotassium citrate 275 g/L

亞硫酸鈉 1 g / LSodium sulfite 1 g / L

乙二胺四醋酸鈉 4,4g/LSodium ethylenediaminetetraacetate 4,4g/L

硫酸鉈(以鉈濃度而計) lmg/L 所得到的鍍金被膜的膜厚爲〇6〇〜〇.7〇lJm,而且呈均 勻的半光澤狀。如同表6所示,在陰極電流密度爲〇〇5〜 ⑧ -22- 201211323 0.2 A/dm2的範圍內’陰極電流效率、膜厚變異係數、導線 拉伸測試及焊球剪切測試的結果良好。 [表6] 陰極電流密度 (A/dm2) 0. 05 0. 1 0.2 電鍍 條件 鍍浴pH 6 . 3 同左 同左 鍍浴溫度(t) 6 5 同左 同左 攪拌 中 同左 同左 (300rpm) 陰極電流效率 (CE) (%) 9 5 9 8 9 2 膜厚變異係數(cv値)i表面 3 . 8 3 . 9 4, 2 評估 結果 (%)丨背面 3 . 2 3 . 5 4. 5 導線拉伸強度 (gf) 6.0〜8.5 (斷裂模式) (良) 同左 同左 焊接剪切強度 (N) 7.0〜 (斷裂模式) 10.0 (良) 同左 同左 [比較例2] 以表7所示的電鍍條件,使用下述組成的鍍浴,分別 在測試片及B G A面板使鍍金被膜形成。 二氰金(I)酸鉀(以金濃度而計) 3g/L 檸檬酸 15g/L 檸檬酸鉀 225g/L 亞硫酸鈉 20g/L -23- 201211323Barium sulfate (calculated as cerium concentration) The film thickness of the gold-plated film obtained by lmg/L is 〇6〇~〇.7〇lJm, and is uniform and semi-glossy. As shown in Table 6, the results of cathode current efficiency, film thickness variation coefficient, wire tensile test and solder ball shear test are good in the range of cathode current density 〇〇5~ 8 -22- 201211323 0.2 A/dm2. . [Table 6] Cathodic current density (A/dm2) 0. 05 0. 1 0.2 Plating conditions Plating bath pH 6. 3 Same left left plating bath temperature (t) 6 5 Same as left and left stirring in the same left and left (300 rpm) Cathodic current efficiency ( CE) (%) 9 5 9 8 9 2 Film thickness coefficient of variation (cv値) i Surface 3. 8 3 . 9 4, 2 Evaluation result (%) 丨 Back 3. 2 3 . 5 4. 5 Wire tensile strength (gf) 6.0 to 8.5 (fracture mode) (good) Same as left and left welding shear strength (N) 7.0~ (fracture mode) 10.0 (good) Same as left and left [Comparative Example 2] Under the plating conditions shown in Table 7, use The plating bath of the composition was formed into a gold-plated film on the test piece and the BGA panel, respectively. Potassium dicyanate (I) potassium (in terms of gold concentration) 3g/L citric acid 15g/L potassium citrate 225g/L sodium sulfite 20g/L -23- 201211323

蟻酸鉈(以鉈濃度而計) 1 mg/L 所得到的鍍金被膜的膜厚爲0.30〜0.65 μιη。在陰極電 流密度爲〇.〇5〜0.3 A/dm2的範圍內呈均勻的半光澤狀。 在陰極電流密度爲 〇.4A/dm2的條件下,發生了電鍍燒 焦。陰極電流效率、膜厚變異係數如同表7所示,在陰極 電流密度爲0.2A/dm2以上的條件下觀察到惡化的情形。 另外,在比較例2中未實施導線拉伸測試及焊球剪切測 試。 [表7] 陰極電流密度(A/dm,) 0.0 5 0 . 1 0. 2 0. 3 0, 4 電鍍 鍍浴pH 6. 3 间左 同左 同左 同左 條件 鍍浴溫度oc) 6 5 同左 同左 同左 同左 攪拌 中 同左 同左 同左 同左 (300rpm) 陰極電流效率(CE)(%) 9 2 9 0 8 2 7 2 6 2 結果 膜庳變異係數(CV値)1表面 4. 2 3 . 4 5 . 2 6. 5 5 . 8 (%)|背面 4. 4 2. 8 5. 3 8 . 7 9 . 6 [比較例3 ] 以表8所示的電鍍條件,使用下述組成的鍍浴,分別 在測試片及B GA面板使鍍金被膜形成。The formic acid bismuth (calculated as cerium concentration) 1 mg/L The thickness of the gold-plated film obtained is 0.30 to 0.65 μm. It has a uniform semi-gloss in the range of a cathode current density of 〇.〇5 to 0.3 A/dm2. Electroplating scorching occurred under the condition that the cathode current density was 〇.4 A/dm2. As shown in Table 7, the cathode current efficiency and the film thickness variation coefficient were observed to be deteriorated under the condition that the cathode current density was 0.2 A/dm 2 or more. Further, in Comparative Example 2, the wire tensile test and the solder ball shear test were not performed. [Table 7] Cathodic current density (A/dm,) 0.0 5 0 . 1 0. 2 0. 3 0, 4 Electroplating bath pH 6. 3 left and left left and left with left condition plating bath temperature oc) 6 5 Same as left and left Same as left stirring in the same left and left as the same as left and left (300 rpm) Cathodic current efficiency (CE) (%) 9 2 9 0 8 2 7 2 6 2 Result Membrane coefficient of variation (CV値) 1 Surface 4. 2 3 . 4 5 . 2 6 5 5 . 8 (%)|Back side 4. 4 2. 8 5. 3 8 . 7 9 . 6 [Comparative Example 3] Using the plating conditions shown in Table 8, using the plating bath of the following composition, respectively, in the test The sheet and the BGA panel form a gold-plated film.

二瓿金⑴酸鉀(以金濃度而計) 3g/L 檸檬酸 1 5g/LDiterpenoid gold (1) potassium (in terms of gold concentration) 3g / L citric acid 1 5g / L

檸檬酸鉀 22 5 g/L ⑧ -24- 201211323Potassium citrate 22 5 g/L 8 -24- 201211323

硫酸鈉 2.1 g/LSodium sulfate 2.1 g/L

硫酸鉈(以鉈濃度而計) 5mg/L 所得到的鍍金被膜的膜厚爲0.45〜0.70μηι,而且均勻 的半光澤狀。陰極電流效率、膜厚變異係數如同表8所 示。特別是在陰極電流密度爲0.1 A/dm2的條件下,陰極 電流效率低。在比較例3中未實施導線拉伸測試及焊球剪 切測試。 [表8] 陰極電流密度(A/dm〇 0.0 5 0 . 1 0. 2 0 . 3 0. 4 電鍍 鍍浴pH 6 . 3 同左 同左 同左 同左 條件 鑛浴酿0C) 6 5 同左 同左 同左 同左 攪拌 中 同左 同左 同左 同左 (300rpm) 陰極電流效率(CE)(%) 7 0 8 5 9 1 9 5 9 2 結果 膜厚變異係數(cv値)丨表面 6 . 6 3 . 5 3 . 5 3. 8 5 . 0 (%)j背面 4. 9 4. 6 4. 5 3 . 5 3 . 8 [比較例4 ] 以表9所示的電鍍條件’使用下述組成的鍍浴,分別 在測試片及BGA面板使鍍金被膜形成。將各種評估結果 揭示於表9 °Barium sulfate (calculated as cerium concentration) 5 mg/L The obtained gold-plated film has a film thickness of 0.45 to 0.70 μm and a uniform semi-gloss. The cathode current efficiency and film thickness variation coefficient are shown in Table 8. Especially at a cathode current density of 0.1 A/dm2, the cathode current efficiency is low. In Comparative Example 3, the wire tensile test and the solder ball shear test were not performed. [Table 8] Cathodic current density (A/dm 〇 0.0 5 0 . 1 0. 2 0 . 3 0. 4 Electroplating bath pH 6.3 3 with the same left and left with the same condition left-handed mineral bath 0C) 6 5 with left and left with the same left and left stirring The same as the left and the same left and the same left (300rpm) Cathodic current efficiency (CE) (%) 7 0 8 5 9 1 9 5 9 2 Result film thickness coefficient of variation (cv値) 丨 surface 6. 6 3 . 5 3 . 5 3. 8 5 . 0 (%) j back 4. 9 4. 6 4. 5 3 . 5 3 . 8 [Comparative Example 4] Using the plating conditions shown in Table 9 'using the plating bath of the following composition, respectively, in the test piece and The BGA panel forms a gold-plated film. Reveal the various evaluation results in Table 9 °

二氰金(I)酸鉀(以金濃度而計)3g/L 檸檬酸 1 5g/LPotassium dicyanate (I) potassium (in terms of gold concentration) 3g / L citric acid 1 5g / L

棒檬酸鉀 22 5g/L -25- 201211323Potassium citrate 22 5g/L -25- 201211323

第二磷酸鉀 35g/LPotassium second potassium phosphate 35g/L

硝酸鉈(以鉈濃度而計) 10mg/L 特別是在陰極電流密度爲0.2A/dm2以下的條件下, 陰極電流效率低。在比較例4中未實施導線拉伸測試及焊 球剪切測試。 [表9] 陰極電流密度 (A/dm2) 0. 0 5 0. 1 0. 2 0. 3 0. 4 電鍍 鍍浴pH 6 . 3 同左 同左 同左 同左 條件 鍍浴溫度α) 6 5 同左 同左 同左 同左 搅拌 中 同左 同左 同左 同左 DOOrpm) 陰極職效率 (CE)(%) 6 4.8 7 9.9 8 5.2 9 0.5 9 3. 1 評估 結果 膜厚變異係數(CV値)|表面 4. 4 4. 6 3 . 9 4. 0 4. 8 (%)|背面 4. 6 4. 2 4. 0 4. 3 5 . 5 [比較例5 ] 以表1 0所示的電鍍條件’使用下述組成的鍍浴,使 鍍金被膜分別形成在測試片及BGA面板。將各種評估結 果揭示於表1 〇。Cerium nitrate (based on cerium concentration) 10 mg/L The cathode current efficiency is low particularly under the condition that the cathode current density is 0.2 A/dm 2 or less. In Comparative Example 4, the wire tensile test and the ball shear test were not performed. [Table 9] Cathodic current density (A/dm2) 0. 0 5 0. 1 0. 2 0. 3 0. 4 Electroplating bath pH 6. 3 Same as left and left with left and left conditional bath temperature α) 6 5 Same as left and left Same as left stirring, left and right, left and right, left and right DOOrpm) Cathodic efficiency (CE) (%) 6 4.8 7 9.9 8 5.2 9 0.5 9 3. 1 Evaluation result Film thickness variation coefficient (CV値)|Surface 4. 4 4. 6 3 . 9 4. 0 4. 8 (%)|Back side 4. 6 4. 2 4. 0 4. 3 5 . 5 [Comparative Example 5] Using the plating conditions shown in Table 10, 'using the plating bath of the following composition, The gold plating film was formed on the test piece and the BGA panel, respectively. The various evaluation results are disclosed in Table 1.

二氰金(I)酸鉀(以金濃度而計)3g/LPotassium dicyanate (I) potassium (in terms of gold concentration) 3g/L

檸檬酸 15g/LCitric acid 15g/L

檸檬酸鉀 22 5 g/LPotassium citrate 22 5 g/L

第二磷酸鉀 17g/LPotassium second potassium phosphate 17g/L

硫酸鉈(以鉈濃度而計) 1 mg/L 特別是在陰極電流密度爲0.1 A/dm2以下的條件下’ ⑧ -26- 201211323 陰極電流效率低。在比較例5中未實施導線拉伸測試及焊 球剪切測試。 [表 10] 陰極電流密度(A/dm») 0.05 〇. 1 0. 2 0. 3 0. 4 電鍍 條件 齡Η 6. 3 同左 同左 同左 同左 讎雖(t:) 6 5 同左 同左 同左 同左 攪拌 中 同左 同左 同左 同左 (300rpm) 陰極電流效率(CE) (%) 6 6. 2 8 1.1 9 0. 0 9 3. 2 9 5. 7 評估 結果 卿變異係數(CV値)丨表面 4. 1 3 . 9 4. 0 4. 6 5 . 8 4. 4 4. 3 4. 4 4. 0 5 . 0 [實施例5] 以表1 1所示的電鍍條件,使用下述組成的鍍浴,使 鎪金被膜分別形成在測試片及B G A面板。將各種評估結 果揭示於表11 »Barium sulphate (based on cerium concentration) 1 mg/L Especially at conditions where the cathode current density is 0.1 A/dm2 or less. 8 8-26- 201211323 The cathode current efficiency is low. The wire tensile test and the ball shear test were not carried out in Comparative Example 5. [Table 10] Cathodic current density (A/dm») 0.05 〇. 1 0. 2 0. 3 0. 4 Electroplating conditions Age Η 6. 3 Same as left and left with the same left and left as though (t:) 6 5 Same as left and left with left and left stirring The same as the left and the same left and the same left (300rpm) Cathodic current efficiency (CE) (%) 6 6. 2 8 1.1 9 0. 0 9 3. 2 9 5. 7 Evaluation results 变异 coefficient of variation (CV 値) 丨 surface 4. 1 3 9 4. 0 4. 6 5 . 8 4. 4 4. 3 4. 4 4. 0 5 . 0 [Example 5] Using the plating conditions shown in Table 11, a plating bath having the following composition was used. Sheet metal films are formed on the test piece and the BGA panel, respectively. Reveal the various evaluation results in Table 11 »

二氰金(I)酸鉀(以金濃度而計) 3g/L 檸檬酸 15g/L 檸檬酸鉀 225g/L 第二磷酸鉀 35g/L 亞硫酸鈉 2g/L 蟻酸鉈(以鉈濃度而計) 1 Omg/L -27- 201211323 [表 11] 電鍍 條件 陰極電流密度(A/dm2) 0 . 1 0. 2 0 . 3 0. 4 灘pH 同左 同左 同左 同左 鍍浴麵t) 同左 同左 同左 同左 攪拌 同左 同左 同左 同左 評估 結果 陰極電流效率.(CE)(%) 9 0. 9 9 7. 1 9 8.8 9 6. 6 膜厚變異係數(cv値)i表面 2 . 9 3 . 1 4. 2 4. 3 (%)i背面 3.0 3. 6 4. 4 4. 6 關於將有機酸鹽的一部分取代爲第二磷酸鉀以作爲傳 導鹽的比較例4及比較例5,與僅採用有機酸鹽的比較例 1作比較,則其陰極電流效率整體降低。另一方面,關於 將亞硫酸鈉添加至比較例5的實施例5,特別是能夠提升 低電流密度域中的陰極電流效率,可確認具有亞硫酸離子 的添加效果。 [實施例6] 以表1 2所表示的電鎪條件,使用下述組成的鍍浴, 使鍍金被膜分別形成在測試片及BGA面板。將各種評估 結果揭不於表12。 二氰金(I)酸鉀(以金濃度而計) 3g/L 檸檬酸 1 5g/L 檸檬酸鉀 125g/L 蟻酸鉀 100g/L -28- 201211323Potassium dicyanate (I) in terms of gold concentration 3g/L Citric acid 15g/L Potassium citrate 225g/L Potassium diphosphate 35g/L Sodium sulfite 2g/L Sodium citrate (based on cesium concentration) 1 Omg/L -27- 201211323 [Table 11] Electroplating conditions Cathodic current density (A/dm2) 0 . 1 0. 2 0 . 3 0. 4 Beach pH Same as left and left left with left left plating bath surface t) Same as left and left with left and left with left stirring The same as the left and the same left, the results of the cathode current efficiency. (CE) (%) 9 0. 9 9 7. 1 9 8.8 9 6. 6 film thickness coefficient of variation (cv値) i surface 2. 9 3 . 1 4. 2 4. 3 (%) i back 3.0 3. 6 4. 4 4. 6 Comparison of Comparative Example 4 and Comparative Example 5, in which a part of the organic acid salt was replaced with potassium second potassium phosphate as a conductive salt, compared with the organic acid salt only In comparison with Example 1, the cathode current efficiency was reduced as a whole. On the other hand, regarding the addition of sodium sulfite to Example 5 of Comparative Example 5, in particular, the cathode current efficiency in the low current density region can be improved, and the effect of adding sulfite ions can be confirmed. [Example 6] The gold plating film was formed on the test piece and the BGA panel, respectively, using the plating bath of the following composition using the electroplating conditions shown in Table 12. The results of various evaluations are not disclosed in Table 12. Potassium dicyanate (I) potassium (in terms of gold concentration) 3g/L citric acid 1 5g/L potassium citrate 125g/L potassium formate 100g/L -28- 201211323

亞硫酸鈉 1 mg/L 所得到的鍍金被膜的膜厚爲0.70〜〇.75μιη,而且呈均 勻的半光澤狀。如同表12所示,在陰極電流效率爲〇〇5 〜0.4 A/dm2的範圍內,陰極電流效率、膜厚變異係數、導 線拉伸測試及焊球剪切測試的結果良好。 [表 12] 陰極電流密度(A/dm〇 0.0 5 0 . 1 0. 2 0. 3 〇. 4 電鍍 .條件 鍍浴pH 6. 3 同左 同左 同左 同左 鍍浴溫度(。〇 6 5 同左 同左 同左 同左 攪拌 中 同左 同左 同左 同左 (300rpm) 陰極電流效率(CE) (%) 9 6 9 8 9 9 10 0 9 8 膜厚變異係數(CV値)1表面 3. 7 3. 8 4. 0 4. 1 4. 0 “果 (%)丨背賴 3. 4 3. 4 3. 3 3. 4 3 . 5 導線拉伸強度(gf) (斷裂模式) 6·0 〜8.5 (良) 同左 同左 同左 同左 焊接剪切強度(N) (斷裂模式) 8.0〜 10.0 (良) 同左 同左 同左 同左 [實施例7] 以表1 3所示的電鍍條件,使用下述組成的鍍浴,使 鍍金被膜分別形成在測試片及BGA面板。將各種評估結 果揭不於表13。The gold plating film obtained by dissolving 1 mg/L of sodium sulfite has a film thickness of 0.70 to 75.75 μm, and has a uniform semi-gloss. As shown in Table 12, the results of the cathode current efficiency, the film thickness variation coefficient, the wire tensile test, and the solder ball shear test were good in the range of the cathode current efficiency of 〇〇5 to 0.4 A/dm2. [Table 12] Cathodic current density (A/dm 〇 0.0 5 0 . 1 0. 2 0. 3 〇. 4 Electroplating. Conditional plating bath pH 6. 3 Same as left and left left with left left plating bath temperature (. 〇6 5 with left and left left Same as left stirring in the same left and left as the same as left and left (300 rpm) Cathodic current efficiency (CE) (%) 9 6 9 8 9 9 10 0 9 8 Film thickness coefficient of variation (CV値) 1 Surface 3. 7 3. 8 4. 0 4. 1 4. 0 “fruit (%) 丨 3 3. 4 3. 4 3. 3 3. 4 3 . 5 wire tensile strength (gf) (fracture mode) 6·0 8.5 (good) with left and left with the same left Welding shear strength (N) (fracture mode) 8.0 to 10.0 (good) Same as left and left, same as left and left [Example 7] With the plating conditions shown in Table 13, the gold plating film was formed by using a plating bath having the following composition. Test strips and BGA panels. The results of various evaluations are not disclosed in Table 13.

二氰金(I)酸鉀(以金濃度而計) 3g/L 檸檬酸 15g/L -29- 201211323Potassium dicyanate (I) potassium (in terms of gold concentration) 3g/L citric acid 15g/L -29- 201211323

檸檬酸鉀 125 g/LPotassium citrate 125 g/L

蟻酸鉀 100g/LPotassium formate 100g/L

亞硫酸鉀 1 5 g/L 所得到的鍍金被膜的膜厚爲0.70〜0.75um,而且呈均 勻的半光澤狀。如同表中所示,在陰極電流效率爲0.05〜 0· 4 A/dm2的範圍內,陰極電流效率、膜厚變異係數、導線 拉伸測試及焊球剪切測試的結果良好。 [表 13] 陰極《流密度(A/dm») 0.05 0 . 1 0. 2 0. 3 0. 4 電鍍 條件 錢浴pH 6. 3 同左 同左 同左 同左 鍍浴溫度(t) 6 5 同左 同左 同左 同左 搜拌 中 同左 同左 同左 同左 (300ιριη) 陰極電流效率(CE)<%) 9 5 9 7 9 8 9 9 9 8 膜厚變異係數(CV値)|表面 3 . 9 4. 0 4. 1 3 . 9 3. 9 fpfe (%)丨背面 3 . 3 3. 6 3. 4 3 . 5 3. 5 結果 導線拉伸強度(gf) (斷裂模式) 6.0 〜8·5 (良) 同左 同左 同左 同左 .焊接剪切強度(N) (斷麵式) 8.0〜 10.0 (良) 同左 同左 同左 同左 【圖式簡單說明】 圖1表示在實施例之中,評估電鍍均厚能力(CV)時, 所測定的金膜厚的測定處之說明圖。圖1 (a)表示晶片側, 圖1(b)表示錫球側的測定處。 -30- ⑧ 201211323 圖2表示在實施例之中,進行焊接剪切測試時,焊球 的刮痕位置之說明圖。 【主要元件符號說明】 1 1 :焊球 20 :試樣圖型 2 1 :表面的測定處 23 背面的測定處The gold plating film obtained by using potassium sulfite 1 5 g/L has a film thickness of 0.70 to 0.75 um and has a uniform semi-gloss. As shown in the table, the results of the cathode current efficiency, the film thickness variation coefficient, the wire tensile test, and the solder ball shear test were good in the range of the cathode current efficiency of 0.05 to 0.4 A/dm2. [Table 13] Cathode "flow density (A / dm») 0.05 0 . 1 0. 2 0. 3 0. 4 plating conditions money bath pH 6. 3 with left and left with the same left with the left plating bath temperature (t) 6 5 with the left with the left with the left Same as left, left, right, left, left, right (300ιριη) Cathodic current efficiency (CE) <%) 9 5 9 7 9 8 9 9 9 8 Film thickness coefficient of variation (CV値)|Surface 3. 9 4. 0 4. 1 3 . 9 3. 9 fpfe (%)丨3. 3 3. 6 3. 4 3 . 5 3. 5 Result Wire Tensile Strength (gf) (Fracture Mode) 6.0 ~8·5 (Good) Same as Left and Left Same as the left. Welding shear strength (N) (section type) 8.0~ 10.0 (good) Same as left and left with the same left and left [Simplified illustration] Figure 1 shows the evaluation of plating uniformity (CV) in the examples. An explanatory view of the measurement portion of the measured gold film thickness. Fig. 1(a) shows the wafer side, and Fig. 1(b) shows the measurement side of the solder ball side. -30- 8 201211323 Fig. 2 is an explanatory view showing the position of the scratch of the solder ball in the welding shear test in the embodiment. [Description of main component symbols] 1 1 : Solder ball 20 : Sample pattern 2 1 : Surface measurement position 23 Measurement at the back side

Claims (1)

201211323 七、申請專利範圍 1. 一種氰系電解鍍金浴,其特徵爲含有: 二氰金(I)酸鹼金屬鹽或二氰金(I)酸銨鹽,以金濃度而計 係 1.0〜5.0g/L ; 結晶調整劑; 傳導鹽; 緩衝劑:以及 亞硫酸鹼金屬鹽及亞硫酸銨鹽之任一種以上所構成之析出 促進劑,以亞硫酸離子而計係0.1 m g/L〜1 8 g/ L。 2. —種氰系電解鍍金浴,其特徵爲含有:二氰金(I)酸 鹼金屬鹽或二氰金(I)酸銨鹽,以金濃度而計係1.0〜 5.0g/L ; 結晶調整劑; 傳導鹽; 緩衝劑; 亞硫酸鹼金屬鹽及亞硫酸銨鹽之任一種以上所構成之析出 促進劑,以亞硫酸離子而計係0.1 m g/L〜1 8 g/L ;以及 乙二胺四醋酸。 3. 如申請專利範圍第2項之氰系電解鍍金浴’其中乙 二胺四醋酸之濃度係〇.lmg/L〜20g/L° 4. 如申請專利範圍第1或2項之氰系電解鍍金浴’其 中傳導鹽係由檸檬酸鹽、犠酸鹽所構成之群中所選出之1 種以上所構成,前述傳導鹽之濃度係1〇〇〜250g/L。 5 •如申請專利範圍第1或2項之電解鍍金浴’其中結 ⑧ -32- 201211323 晶調整劑係由鉈化合物或鉛化合物所構成’前述結晶調整 劑之濃度以銳或給而計係ο.1〜20mg/L。 6. 如申請專利範圍第1或2項之電解鍍金浴,其中緩 衝劑係由磷酸、硼酸、檸檬酸及該等鹽所構成之群中所選 出之1種以上所構成,前述緩衝劑之濃度係1〜3 00g/L。 7. —種印刷配線基板之電鍍方法,其特徵爲:使用如 申請專利範圍第1或2項之氰系電解鏟金浴,在電鍍電流 密度 0.05〜0.5A/dm2、鍍浴pH3.5〜8.5、鍍浴溫度 55〜 70°C下進行電鍍。 -33-201211323 VII. Patent application scope 1. A cyanide electrolytic gold plating bath characterized by: dicyandiamide (I) acid alkali metal salt or dicyanogold (I) acid ammonium salt, which is 1.0 to 5.0 in terms of gold concentration g/L; crystallization modifier; conductive salt; buffer: and a precipitation promoter composed of any one or more of an alkali metal sulfite and an ammonium sulfite, and a sulfite ion of 0.1 mg/L to 1 8 g/ L. 2. A cyanide-based electrolytic gold plating bath characterized by comprising: dicyandiamide (I) acid alkali metal salt or dicyanogold (I) acid ammonium salt, which is 1.0 to 5.0 g/L in terms of gold concentration; Adjusting agent; conducting salt; buffering agent; a precipitation accelerator composed of any one or more of an alkali metal sulfite and an ammonium sulfite salt, and a sulfite ion of 0.1 mg/L to 18 g/L; Diamine tetraacetic acid. 3. For example, in the cyanide electrolytic gold plating bath of the second paragraph of the patent application, the concentration of ethylenediaminetetraacetic acid is l.lmg/L~20g/L° 4. The cyanide electrolysis according to item 1 or 2 of the patent application scope In the gold plating bath, the conductive salt is composed of one or more selected from the group consisting of citrate and citrate, and the concentration of the conductive salt is from 1 to 250 g/L. 5 • Electrolytic gold plating bath as claimed in Section 1 or 2 of the patent application. Where the knot 8 -32 - 201211323 crystal modifier is composed of a bismuth compound or a lead compound. The concentration of the aforementioned crystal modifier is determined by sharp or giving. .1~20mg/L. 6. The electrolytic gold plating bath according to claim 1 or 2, wherein the buffering agent is composed of one or more selected from the group consisting of phosphoric acid, boric acid, citric acid and the salts, and the concentration of the buffering agent is It is 1~3 00g/L. 7. A method for electroplating a printed wiring board, characterized in that: using a cyanide electrolytic shovel gold bath as claimed in claim 1 or 2, the plating current density is 0.05 to 0.5 A/dm2, and the plating bath is pH 3.5~ 8.5. Electroplating is carried out at a plating bath temperature of 55 to 70 °C. -33-
TW100110124A 2010-03-26 2011-03-24 Cyanide based electrolytic gold plating solution and plating method using same TW201211323A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010073447 2010-03-26

Publications (1)

Publication Number Publication Date
TW201211323A true TW201211323A (en) 2012-03-16

Family

ID=44673091

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100110124A TW201211323A (en) 2010-03-26 2011-03-24 Cyanide based electrolytic gold plating solution and plating method using same

Country Status (4)

Country Link
JP (1) JPWO2011118537A1 (en)
CN (1) CN102753732A (en)
TW (1) TW201211323A (en)
WO (1) WO2011118537A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI617707B (en) * 2014-06-11 2018-03-11 美泰樂科技(日本)股份有限公司 Cyanide based electrolytic gold plating bath and bump forming method using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741180B (en) * 2014-01-10 2015-11-25 哈尔滨工业大学 Non-cyanide bright electrogilding additive and application thereof
US11674235B2 (en) 2018-04-11 2023-06-13 Hutchinson Technology Incorporated Plating method to reduce or eliminate voids in solder applied without flux

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119700A (en) * 1984-11-16 1986-06-06 Toppan Printing Co Ltd Recovering method of gold plating liquid
JP2793864B2 (en) * 1989-12-02 1998-09-03 エヌ・イーケムキヤツト株式会社 Gold plating liquid and plating method
JP3300929B2 (en) * 1993-08-30 2002-07-08 小島化学薬品株式会社 Pure gold plating solution
JP2003013278A (en) * 2001-06-26 2003-01-15 Japan Pure Chemical Co Ltd Gold plating solution
JP2007321213A (en) * 2006-06-02 2007-12-13 Shinko Electric Ind Co Ltd Electrolytic gold plating liquid and method for managing the same
JP5336785B2 (en) * 2007-08-07 2013-11-06 メタローテクノロジーズジャパン株式会社 Non-cyan electrolytic gold plating bath for bump formation and bump formation method
JP5686939B2 (en) * 2007-12-25 2015-03-18 メタローテクノロジーズジャパン株式会社 Replacement gold plating solution for copper substrate and gold plating method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI617707B (en) * 2014-06-11 2018-03-11 美泰樂科技(日本)股份有限公司 Cyanide based electrolytic gold plating bath and bump forming method using same

Also Published As

Publication number Publication date
WO2011118537A1 (en) 2011-09-29
JPWO2011118537A1 (en) 2013-07-04
CN102753732A (en) 2012-10-24

Similar Documents

Publication Publication Date Title
EP1716949B1 (en) Immersion method
US20070007144A1 (en) Tin electrodeposits having properties or characteristics that minimize tin whisker growth
JP4945193B2 (en) Hard gold alloy plating solution
KR20140085369A (en) Tin or tin alloy plating liquid
KR20070028265A (en) Metal duplex and method
JPH11200088A (en) Tin alloy plating composition and plating method
WO2012026159A1 (en) Gold displacement plating solution, and method for formation of joint part
US12018378B2 (en) Electroless plating process
JP2013224478A (en) Gold-palladium alloy electroplating solution, preparation method of the same, and electroplating method
JP5288362B2 (en) Multilayer plating film and printed wiring board
WO2023050980A1 (en) Plating solution for electroplating gold on nickel plating, method for electroplating gold on nickel plating, and gold-plated item
JP4812365B2 (en) Tin electroplating solution and tin electroplating method
TW201211323A (en) Cyanide based electrolytic gold plating solution and plating method using same
TWI687545B (en) Electroless nickel strike plating solution and method for forming nickel plating film
US6982030B2 (en) Reduction of surface oxidation during electroplating
CN104498918A (en) Chemical palladium plating solution for intermediate layer of chemical nickel, palladium and gold plating process
US7264848B2 (en) Non-cyanide electroless gold plating solution and process for electroless gold plating
CN105051254B (en) For the method for the copper surface active of electroless-plating
WO2019069964A1 (en) Electroless palladium plating solution, and electroless palladium plated coating
KR100760420B1 (en) Palladium Plating Solution
JPH06104902B2 (en) Electroless copper nickel alloy plating method
JP5214719B2 (en) Plating solution for forming tin alloy and method for forming tin alloy film using the same
JP2001200388A (en) Gold-tin alloy electroplating bath
JPS60200968A (en) Electroless plating method
US20060240276A1 (en) Underlayer for reducing surface oxidation of plated deposits