[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201135972A - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
TW201135972A
TW201135972A TW99111358A TW99111358A TW201135972A TW 201135972 A TW201135972 A TW 201135972A TW 99111358 A TW99111358 A TW 99111358A TW 99111358 A TW99111358 A TW 99111358A TW 201135972 A TW201135972 A TW 201135972A
Authority
TW
Taiwan
Prior art keywords
layer
light
emitting diode
type
thickness
Prior art date
Application number
TW99111358A
Other languages
Chinese (zh)
Other versions
TWI437730B (en
Inventor
Wen-Chau Liu
Yi-Jung Liu
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW99111358A priority Critical patent/TWI437730B/en
Publication of TW201135972A publication Critical patent/TW201135972A/en
Application granted granted Critical
Publication of TWI437730B publication Critical patent/TWI437730B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light emitting diode in sequence includes a substrate, a buffer layer, a n-type layer, a multi quantum well layer, a n-type doping layer, a p-type layer, a transparent conductive layer and an electrode, wherein the electrode is grew on the transparent conductive layer and the n-type layer.

Description

201135972 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種發光二極體,特別是與一種氮化鎵系 發光二極體有關,以導入一埋入式能障,來提升電流於其中 之擴散效應。 /、 【先前技術】 相較於一般燈泡’發光二極體(Light Emitting Di〇de, LED)具有更加輕量化、壽命長、省電、切換速度快、單色 性及可靠度轉優點’所以發光二極體早已成為日常生活中 不可或缺的光電元件。近年來由於材料科技的突艇進,使 得發光二極體的亮度不斷升高、多彩化及價格降低,故使得 其應用領域也絲愈廣。其巾,魏化鎵(GaN)為主要製 造材料的藍光二極體不過問世幾年,現在已成為固態照明 (S〇lid-State lighting,SSL)建造中的重要元件,更是下世代照明 的主要元件。 發光二極體之發光的基本原理,說明如下:在半導體材 料中’電流順向流入半導體材料中p_n接面時,電子與電洞 於-適當條件下結合會產生光子。依材料的不同,電子和電 洞所具有的能階也不同’其相對能階高度差即是決定電子盘 電洞結合所發出能量的高低,因而產生具有不同能量之;^ 子’猎此可以控制發光二極體所發出光的波長,也就是光譜 或顏色。 發光二極體另可區分兩類:水平式發光二極體及垂直式 發光-極體。其中’水平式發光二極體由於其結構特性,相 較於垂直式發光二歸’使得電流於其中無法纽擴散,導 201135972 此=幻限制’並且其操作壽命以及其飽和電流降低。 佈不均白,之水平式發光二極體在大電流操作下’其電流散 力不足Τ’亚且低濕度環境下易產生靜電聚焦,其抗靜電能 盆轉Ξ此,如何改善發光二極體之電流擴散能力,並且提升 電防_力,是本技術領域亟欲解決之問題。 【發明内容】 t日月之—目的係在於提供一 n型摻雜層在介面處形成 ,处成電場,藉此料電流在此 特徵中m的-其步他的目了t優點可以從本發明所揭露的技術 ,達上述之-或部份或全部目的或是其他目的,本發明 一緩衝層 P型層 ίΓΙί例的—種發光二極體,由下而上依序成長:一基板、 —η型層、—多重量子井層、1型摻雜層、- Μ _透明導電層及一電極,其中電極成長於透明導電 層及η型層之上。 相較於習知,本發明實施例藉由於多重量子井層_型 層中加入一 η型摻雜層,因此生成一埋入式ρ-η接面,、以誘 發内建電場,対克職糾阻塞在最短導祕徑之問題, 並可提升發光二極||之光電效能。此埋入式㈣接面所誘發 的内建電场可以有效分散過於集中的電流路徑,降低電流擁 «crowding)效應,以及降低發光二極體之寄生電阻值,使得 電流擴散效能上升、導職壓下降,並且抗靜電放電能力優 化。此外,當本發萄作在正向偏壓時,具有較為均勾的電 201135972 流擴散(spreading)效應。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在以 下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的 呈現。以下實施例中所提到的方向用語,例如:上、下、卢、 右、前或後等,僅是參考附加圖式的方向。因此,使用的方 向用語是用來說明並非用來限制本發明。201135972 VI. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode, in particular to a gallium nitride-based light-emitting diode, for introducing a buried energy barrier to increase current Among them, the diffusion effect. /, [Previous technology] Compared with the general bulb 'Light Emitting Diode (LED), it has more weight, longer life, power saving, fast switching speed, monochromaticity and reliability. Light-emitting diodes have long been an indispensable optoelectronic component in everyday life. In recent years, due to the advancement of material science and technology, the brightness of the light-emitting diode has been continuously increased, colorful and reduced in price, which has made its application field wider. Its blue towel diode, which is the main manufacturing material of GaN, has been a major component in the construction of S〇lid-State lighting (SSL), and it is the next generation of lighting. Main components. The basic principle of the illuminating of the illuminating diode is as follows: When the current flows in the semiconductor material into the p_n junction of the semiconductor material, the electrons and the hole are combined under appropriate conditions to generate photons. Depending on the material, the energy levels of electrons and holes are different. The difference in the relative energy level is the difference between the energy emitted by the electron hole and the energy generated. Controls the wavelength of the light emitted by the light-emitting diode, that is, the spectrum or color. Light-emitting diodes can be distinguished into two categories: horizontal light-emitting diodes and vertical light-emitting bodies. Among them, the horizontal type light-emitting diode has a current in which it cannot diffuse due to its structural characteristics, so that the current is dithered and its operating life and its saturation current are lowered. The cloth is unevenly white, and the horizontal light-emitting diodes under the high current operation 'the current is less than the force Τ' sub- and the low-humidity environment is prone to electrostatic focusing, and the anti-static energy basin turns to this, how to improve the light-emitting diode The ability of the body to diffuse current and improve the power defense is a problem that the technical field is eager to solve. SUMMARY OF THE INVENTION The purpose of the present invention is to provide an n-type doped layer formed at the interface to form an electric field, whereby the current of the material in this feature is m - the advantage of which can be obtained from The invention discloses a light-emitting diode of a buffer layer P-type layer of the present invention, which is sequentially grown from bottom to top: a substrate, An n-type layer, a multiple quantum well layer, a type 1 doped layer, a ——transparent conductive layer, and an electrode, wherein the electrode is grown on the transparent conductive layer and the n-type layer. Compared with the prior art, the embodiment of the present invention generates a buried ρ-η junction by adding an n-type doped layer in the multiple quantum well layer _-type layer to induce a built-in electric field. Correct the problem of blocking the shortest guiding path, and improve the photoelectric performance of the light-emitting diode|| The built-in electric field induced by the buried (four) junction can effectively disperse the current path that is too concentrated, reduce the current crowding effect, and reduce the parasitic resistance value of the light-emitting diode, so that the current diffusion efficiency increases, and the guidance The pressure drops and the antistatic discharge capability is optimized. In addition, when the present invention is forward biased, it has a relatively uniform electrical 201135972 flow spreading effect. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments. The directional terms mentioned in the following embodiments, for example, up, down, lou, right, front or back, etc., are only directions referring to the additional drawings. Therefore, the terminology used is used to describe that it is not intended to limit the invention.

請參照第-®,其係為本發明實施例之—種發光二極體 100之結構圖。發光二極體100之半導體層成長於一基板1〇1 上,其半導體層由下而上依序包括:一緩衝層1〇2、一 η型 層103、-多重量子井層1〇4、- η型掺雜層1〇5、一 ρ型層 觸、一透明導電層1〇7及-電極1〇8。其中,基板1〇1之二 料為半絕緣型氧化鋁(Α12〇3)。 , 們用鱼屬有機氣相化學沈積法(MetalPlease refer to the --, which is a structural diagram of a light-emitting diode 100 according to an embodiment of the present invention. The semiconductor layer of the light-emitting diode 100 is grown on a substrate 1〇1, and the semiconductor layer is sequentially included from bottom to top: a buffer layer 1〇2, an n-type layer 103, and a multiple quantum well layer 1〇4. - an n-type doped layer 1 〇 5, a p-type layer contact, a transparent conductive layer 1 〇 7 and an - electrode 1 〇 8. Among them, the substrate 1〇1 is a semi-insulating alumina (Α12〇3). , we use the fish organic gas phase chemical deposition method (Metal

Organic Chemical Vapor Deposition,MOCVD )或分子束磊晶 法(_咖^纖__)成長於基板1〇1上,其中,緩^ 層1〇2之材料為未摻雜型氮化鎵(⑽),並且其膜層之厚度範 圍為0.1 _錢⑽。在一較佳實施例中,緩衝層搬之膜 層厚度為500nm。 、 ^層103利用金屬有機氣相化學沈積法或分子束蟲晶 =長於緩衝層搬上,其中,n型層係為一 n型氮化 1並且摻元素於其中’其電子载子濃度約為MW 編且其厚度範圍約為。在 較佳貧施例中,η型層1〇3之膜層厚度為。 201135972 多重量子井層104利用金屬有機氣相化學沈積法或分子 束蟲晶法成長於1^層朋上,其中,多重量子井層1〇4由 複數量子井結構所堆疊而成,每—量子井結構包括:氮化錄 (GaN)層及-氮化銦鎵(InxGaixN)層,這些量子井結構之數量 ,為2至5G,並且其x值範圍約為請至〇 25。此外,多重 量子井層104 +每-氮化鎵層之厚度範圍約$ 1〇 至 腹’並骑-統之摻雜元素騎,且其摻雜濃度範圍 =為lxl016cm·3至lxl0i9cm-3,以及每一氮化麵錄層之厚度 範圍約為1 nm至5 nm。在-較佳實施例t,多重量子井層 104包括15個重複堆疊之砍摻雜氮化鎵/氮化錮蘇 之量子井結構,其摻雜濃度為lxlG]W,並且每一氮化録 層之厚度為12nm,以及每-氮化銦鎵層之厚度為3腹。 η型摻雜層105利用金屬有機氣相化學沈積法,原子層沉積技術(Atomic Layer Deposition,ALD),或分子束磊晶法 成長於多重量子井層104之上,其中,„型捧雜層1〇5之材 料為氮化銦鎵(ΙηΑ·χΝ)或氮化鎵,並且氮化鋼鎵之χ值範圍 約為0.01至0.3。此外’ η型摻雜層105之電子载子濃度約為 1x10 cm3至lxl〇19cm3 ’以及其厚度範圍約為丨⑽至1〇〇 nm。在一較佳實施例中,n型摻雜層1〇5之電子載子濃度為 lxl019cm·3,以及其厚度為5 nm。 P型層106利用金屬有機氣相化學沈積法或分子束磊晶 法成長於η型摻雜層105上,並且於蟲晶成長過程中,其載 子之活化溫度約為300°C至l〇〇(TC。其中,ρ型層之材^係 為一摻雜型氮化鎵,其電洞載子濃度之範圍約為1χ1〇16 cm·3 至1x10 8 cm3 ’以及其厚度範圍約為微米至1微米,並 201135972 且其換雜元素為鎖(Mg)或鋅(Zn)。在一較佳實施例中,p型層 106之電洞載子濃度為4xl〇17cm_3,並且其厚度為〇.3/zm。 透明導電層107利用熱蒸鍵法(thermal evaporating)、賤 鏡法(sputtering)或電子束蒸鑛法(E-beam evaporating)成長於p 型層106上’並且於成長過程中包含一合金化過程,其合金 溫度約為50°C至500。(:。其中,透明導電層1〇7之材料係為 金屬薄膜或其氧化物,並且其電阻率範圍係為l〇_8Q_cm至 10'1 Ω-cm。在一較佳實施例中’透明導電層107之電子載子 濃度為4xl〇2Qcm_3,並且其厚度為250nm。 在一較佳實施例中’更包括一覆蓋鈍化層(未圖示)。透 明絕緣型覆蓋鈍化層利用電漿辅助化學氣相沉積 (Plasma-Enhanced Chemical Vapor Deposition,PECVD)、低壓 化學氣相沉積(Low-Pressure Chemical Vapor Deposition, LPCVD)、電子束蒸鍍法或濺鍍法成長於透明導電層,以避 免長^•間之氧化效應。其中,覆蓋鈍化層之材料係為氧化辞 (ZnO)、二氧化矽(Si〇2)或氮化矽⑦^凡^,並且其厚度範圍介 於10nm至500nm之間。 電極108利用熱4鑛法、濺錢法或電子束蒸錢法披覆於 j層103與透明導電層1〇7之上,並且於成長過程中包含 一高溫退火過程’其退火溫度範圍介於50°C至60(TC之間。 =中,屯極108係為一歐姆接觸電極,電極1〇8包括一 p型 包極及一 n型電極’P型電極成長於透明導電層1G7,以及n ㈣1G3之上。_極由鉻、鉬與金所組 、之厚度fc圍約為lrm^100nm,麵之厚度範圍約 ’’、、扭11至30〇nm,以及金之厚度範圍約為1〇〇 nm至 201135972 3000nm。n型賴祕、倾麵組成,或是由鈦與金所組 成’其中,若η型電極由鉻、鉬與金所組成,鉻之範 約為-至論m,紅厚度範圍約為伽m至3Q(J= 及金之厚度範圍約為職m至3_麵;若η型電極由欽愈 金所組成,鈦之厚度範圍約為lnm至1〇〇nm,以及金咖 範圍約為l〇〇nm至3〇〇〇nm。 又 明參照第二圖’係為本發明實施例之一種發光二極體 ⑽之部份放大_建電場E之示意圖。由於多重量子井層 104與p型層1()6中具有n型摻雜層1〇5,於是發光二極體 獅中生成一埋入式p_n接面。將發光二極體1〇〇操作於正向 導通電塵下,其P_n接面之間會誘發喊電場E,能夠有效 分散過於集中的電流丨之路徑,使得㈣二極體丨⑽具有較 大面積的K擴散範圍,來降低電流擁撥效應。 如第二圖所不,係為本發明實施例之一種發光二極體 100與習知比較之正向電流_電壓曲線圖。其中,曲線A代表 發光二極體100中η型摻雜層1〇5為氮化鎵之正向電流-電壓 1測結果,曲線Β代表發光二極體1〇〇中η型摻雜層1〇5為 氮化銦鎵(InxGaNxN)之正向電流_電壓量測結果,以及曲線c 代表習知之發光二極體之正向電流_電壓量測結果。若定義正 向導通偏壓Vf為電流於2〇 mA時之電壓值,則曲線a所對 應之正向導通偏壓VfA為3.Π V,曲線B所對應之正向導通 偏壓VfB為3.35 V,以及曲線c所對應之正向導通偏壓 為3.48 V,則可知VfA < vffi < VfC。此外,由第二圖中可知本 發明實施例之發光二極體1〇〇之擴散電流在發光面上分佈十 分均勻,因此,具有較小的寄生電阻效應,使得其串聯寄生 201135972 電阻降低’以得到較小的正向導ϋ偏壓vfA及VfB。 一經=計算,可由第三圖得到第四圖,係為本發明實施例 之-,發光=靖⑽與習知比較之錢_電流線性圖。其 中藉由σ十算二條線性趨近線之斜率,可得到不同的發光二 極體之串聯寄生電阻計算值:曲線Α代表發光二極體^中 =型/參雜層1G5為氮化鎵之電壓電流線性結果,其寄生電阻 十^為15.2Ώ,曲線B代表發光二極體1〇〇中n型摻雜層1〇5 ,氮化銦鎵(InxGalxN)之電壓_電流線性結果’其寄生電阻計 =為18.9Ω ;以及,曲線c代表習知之發光二極體之電壓_ 電流線性結果’其寄生電阻計算為31.5Ω。由第三圖及第四 圖可證實本發明實施例之-種發光二極體1GG巾具有反向之 内建電場E,能有效降低發光二極體1〇〇中串聯寄生電阻效 應,使得發光二極體100具有寬廣且均勻的發光面積。 參照第五圖,係為本發明實施例之一種發光二極體1〇〇 之局部能帶圖。其中,多重量子井層104之能帶係由一重複 性之氮化鎵層之大能隙l〇4a及氮化銦鎵層之小能隙1〇牝所 堆疊組成,並且CB代表傳導帶,Y3代表價電帶。由於多重 里子井層104與p型層1〇6中具有^型摻雜層1〇5,於是發 光二極體100中所生成ρ_η接面,將誘發内建電場Ε,此内 建電場Ε所導入之能障會侷限電子e與電洞h之移動。對於 傳輸之自由載子:電子e與電洞h,埋入式p_n接面所誘發之 内建電場E在局部所造成的能障會阻擔住電流之最短導通路 徑。例如,當電洞h注入此埋入式p_n接面時,電洞h必須 先跨越内建電場E所造成之能障,使能進入埋入式p-n接面, 進而與電子e結合放出光子。因此,電洞h在埋入式p_n接 201135972 面會傾向水平式擴散而注入到多重量子井層104,而非直接 跨越p-n接面,因此將提升氮化鎵發光二極體1〇〇之電流擴 散能力。 如第六圖所示,係為本發明實施例之一種發光二極體 刚與習知比較之機器模式(Machine m〇(iel)下元件存活率 (pass yield)-輸入電壓之對照關係曲線圖,也是靜電放電 (Electrostatic discharge)測試結果之示意圖。其中,曲線a代 表發光二極體100中η型摻雜層1()5為氮化鎵之測試結果, 曲線Β代表發光二極體1〇〇巾η型_層1〇5為氮化姻鎵 (InxGai-xN)之測試結果,以及曲線c代表習知之發光二極體 之測試結果。測試時,加人—正向紐衝擊於發光二極體之 陽極,並將陰極接地。 由第六圖可知’當齡—正向偏壓5QQV時,可分別得 到發光二極體100中η型接雜層1〇5為氮化鎵之元件存活率 為100〇/〇,發光二極體100中η型摻雜層1〇5為氮化鋼錄 (ΙηΑχΝ)之元件存鮮為542%,以及f知之發光二極體 之凡件存活率為〇 %。由測試結果圖可知,由於發光二極體 1〇〇之電流分散效應的提升,使得本發明在_靜電放電後 因此’埋入式㈣接面所誘發之内 建電%可〜㈣加%流’以降低於靜電 體100所受到的熱載子(hotcarrier)破壞性。 先一桎 建電場,鼠,上財_/;^:;=生成,以誘發内 201135972 擁擠效應 、有效分散發光二極體100中電流路徑,來降低 電流 一、降低發光二極體1〇〇之寄生電阻值,使得電流 效能上升。 擴散 三、由於發光二極體1〇〇之寄生電阻值下降,使 偏壓減少。 通Organic Chemical Vapor Deposition (MOCVD) or molecular beam epitaxy (_coffee fiber __) is grown on the substrate 1〇1, wherein the material of the buffer layer 1〇2 is undoped gallium nitride ((10)) And the thickness of the film layer ranges from 0.1 _ money (10). In a preferred embodiment, the buffer layer is deposited to a thickness of 500 nm. , layer 103 utilizes metal organic vapor phase chemical deposition or molecular beam worm crystal = longer than buffer layer loading, wherein the n-type layer is an n-type nitridation 1 and the doping element is in which 'the electron carrier concentration is about The MW is woven and has a thickness range of approximately. In the preferred embodiment, the thickness of the n-type layer 1 〇 3 is. 201135972 The multiple quantum well layer 104 is grown on the 1^ layer by metal organic vapor phase chemical deposition or molecular beam crystallization, wherein the multiple quantum well layers 1〇4 are stacked by a complex number of well structures, each quantum The well structure includes a nitride (GaN) layer and an indium gallium nitride (InxGaixN) layer. The number of these quantum well structures is 2 to 5 G, and the range of x values is approximately 〇25. In addition, the thickness of the multiple quantum well layer 104 + per gallium nitride layer ranges from about $ 1 〇 to the doping element of the abdomen and rides, and the doping concentration range is from lxl016 cm·3 to lxl0i9 cm-3. And each nitrided recording layer has a thickness ranging from about 1 nm to 5 nm. In the preferred embodiment t, the multiple quantum well layer 104 includes 15 repeating stacked quantum doped gallium nitride/nitride nitride quantum well structures having a doping concentration of lxlG]W and each nitrided recording The thickness of the layer was 12 nm, and the thickness of each indium gallium nitride layer was 3 ventral. The n-type doped layer 105 is grown on the multiple quantum well layer 104 by metal organic vapor phase chemical deposition, Atomic Layer Deposition (ALD), or molecular beam epitaxy. The material of 1〇5 is indium gallium nitride (ΙηΑ·χΝ) or gallium nitride, and the germanium of the nitrided steel has a value range of about 0.01 to 0.3. Further, the electron carrier concentration of the n-type doped layer 105 is about 1x10 cm3 to lxl〇19cm3' and a thickness ranging from about 丨(10) to 1〇〇nm. In a preferred embodiment, the electron carrier concentration of the n-type doped layer 1〇5 is lxl019cm·3, and the thickness thereof 5 nm. The P-type layer 106 is grown on the n-type doped layer 105 by metal organic vapor phase chemical deposition or molecular beam epitaxy, and the activation temperature of the carrier is about 300° during the growth of the crystal. C to l〇〇(TC. wherein the material of the p-type layer is a doped type of gallium nitride, and the concentration of the hole carrier is in the range of about 1χ1〇16 cm·3 to 1x10 8 cm3′ and its thickness. The range is from about micrometers to 1 micrometer, and 201135972 and its impurity-replacement element is lock (Mg) or zinc (Zn). In a preferred embodiment, the p-type layer 1 The hole carrier concentration of 06 is 4xl 〇 17cm_3, and its thickness is 〇.3/zm. The transparent conductive layer 107 uses thermal evaporating, sputtering or electron beam evaporation (E) -beam evaporating) grows on the p-type layer 106' and includes an alloying process during the growth process, and the alloy temperature is about 50 ° C to 500. (: wherein the material of the transparent conductive layer 1 〇 7 is metal a film or an oxide thereof, and having a resistivity ranging from 10 〇 8 Q_cm to 10' 1 Ω-cm. In a preferred embodiment, the electron carrier concentration of the transparent conductive layer 107 is 4 x 1 〇 2 Q cm 3 , and the thickness thereof is It is 250 nm. In a preferred embodiment, it further includes a blanket passivation layer (not shown). The transparent insulating type cover passivation layer utilizes Plasma-Enhanced Chemical Vapor Deposition (PECVD), low pressure chemistry. Low-Pressure Chemical Vapor Deposition (LPCVD), electron beam evaporation, or sputtering is grown on a transparent conductive layer to avoid oxidation effects between the layers. The material covering the passivation layer is oxidized. (ZnO), cerium oxide (Si〇2) The tantalum nitride is 7^, and its thickness ranges from 10 nm to 500 nm. The electrode 108 is coated on the j layer 103 and the transparent conductive layer 1〇7 by a hot 4 ore method, a splashing method or an electron beam evaporation method. Above, and during the growth process involves a high temperature annealing process 'with an annealing temperature range between 50 ° C and 60 (TC). In the middle, the drain 108 is an ohmic contact electrode, and the electrode 1〇8 includes a p-type cladding and an n-type electrode. The 'P-type electrode is grown on the transparent conductive layer 1G7, and n (tetra) 1G3. _ pole consists of chromium, molybdenum and gold, the thickness fc is about lrm^100nm, the thickness of the surface is about '', the twist is 11 to 30〇nm, and the thickness of gold is about 1〇〇nm to 201135972. 3000nm. n type Lai secret, tilting composition, or composed of titanium and gold 'where, if the n-type electrode is composed of chromium, molybdenum and gold, the standard of chromium is about - to m, the red thickness range is about gamma To 3Q (J= and gold thickness range is about m to 3_ face; if the n-type electrode is composed of Chinkin gold, the thickness of titanium ranges from about 1 nm to 1 〇〇 nm, and the range of gold coffee is about l 〇〇nm to 3〇〇〇nm. Also referring to the second figure is a schematic diagram of a partial amplification of the light-emitting diode (10) according to an embodiment of the present invention. The multiple quantum well layer 104 and p-type The layer 1 () 6 has an n-type doping layer 1 〇 5, so that a buried p_n junction is formed in the illuminating diode lion. The illuminating diode 1 〇〇 is operated under the positive conduction dust, and its P_n The electric field E is induced between the junctions, which can effectively disperse the path of the current 丨 that is too concentrated, so that the (4) diode 丨 (10) has a larger K diffusion range to reduce the current sag effect. Is a forward current_voltage graph of a light-emitting diode 100 according to an embodiment of the present invention, wherein the curve A represents the light-emitting diode The n-type doped layer 1〇5 in the body 100 is a forward current-voltage 1 measurement result of gallium nitride, and the curve Β represents the n-type doped layer 1〇5 of the light-emitting diode 1〇〇 is indium gallium nitride ( The forward current_voltage measurement result of InxGaNxN) and the curve c represent the forward current_voltage measurement result of the conventional light-emitting diode. If the forward conduction bias voltage Vf is defined as the current value of the current at 2 mA Then, the forward conduction bias voltage VfA corresponding to the curve a is 3. Π V, the forward conduction bias voltage VfB corresponding to the curve B is 3.35 V, and the forward conduction bias corresponding to the curve c is 3.48 V. It can be seen that VfA < vffi < VfC. Further, it can be seen from the second figure that the diffusion current of the light-emitting diode 1〇〇 of the embodiment of the present invention is distributed uniformly on the light-emitting surface, and therefore, has a small parasitic resistance effect. Let its series parasitic 201135972 reduce the resistance' to get a smaller positive guiding bias voltage vfA and VfB. Once calculated, the fourth figure can be obtained from the third figure, which is the embodiment of the invention - illuminating = Jing (10) and Xi Know the money _ current linear graph, where the slope of the two linear approximation lines is calculated by σ, The calculated values of the series parasitic resistance of different light-emitting diodes are obtained: the curve Α represents the linear result of the voltage and current of the gallium nitride in the light-emitting diode ^=type/doping layer 1G5, and the parasitic resistance is 15.2Ώ, the curve B represents the n-type doped layer 1〇5 of the light-emitting diode 1〇〇, and the voltage_current linear result of the indium gallium nitride (InxGalxN) 'the parasitic resistance meter=18.9 Ω; and the curve c represents the conventional luminescence The voltage of the diode _ current linear result 'the parasitic resistance is calculated as 31.5 Ω. It can be confirmed from the third and fourth figures that the light-emitting diode 1 GG towel of the embodiment of the present invention has a reverse built-in electric field E, The series parasitic resistance effect in the light-emitting diode 1〇〇 can be effectively reduced, so that the light-emitting diode 100 has a wide and uniform light-emitting area. Referring to FIG. 5, it is a partial energy band diagram of a light-emitting diode 1〇〇 according to an embodiment of the present invention. Wherein, the energy band of the multiple quantum well layer 104 is composed of a large energy gap l〇4a of a repetitive gallium nitride layer and a small energy gap 1〇牝 of the indium gallium nitride layer, and CB represents a conduction band. Y3 stands for price band. Since the multiple lining layer 104 and the p-type layer 1〇6 have the ^-type doping layer 1〇5, the ρ_η junction formed in the light-emitting diode 100 will induce a built-in electric field Ε, which is a built-in electric field. The introduction of energy barriers limits the movement of electrons e and holes h. For the free carrier of the transmission: the electron e and the hole h, the built-in electric field E induced by the buried p_n junction locally blocks the shortest path of the current. For example, when the hole h is injected into the buried p_n junction, the hole h must first cross the energy barrier caused by the built-in electric field E, enabling access to the buried p-n junction, and then combining with the electron e to emit photons. Therefore, the hole h will be horizontally diffused in the buried type p_n to be connected to the multiple quantum well layer 104 instead of directly crossing the pn junction, so that the current of the gallium nitride light-emitting diode will be increased. Diffusion ability. As shown in the sixth figure, it is a comparison of the machine mode (passing yield-input voltage of Machine m〇(iel)) which is a light-emitting diode according to an embodiment of the present invention. It is also a schematic diagram of the results of the electrostatic discharge test, wherein the curve a represents the test result of the n-type doped layer 1() 5 of the light-emitting diode 100 being gallium nitride, and the curve Β represents the light-emitting diode 1〇. The η type _ layer 1 〇 5 is the test result of the fluorinated gallium (InxGai-xN), and the curve c represents the test result of the conventional luminescent diode. When testing, the addition - positive impact on the illuminating two The anode of the polar body is grounded and the cathode is grounded. From the sixth figure, it can be seen that when the age-positive bias voltage is 5QQV, the n-type impurity layer 1〇5 of the light-emitting diode 100 can be obtained as a component of gallium nitride. The rate is 100 〇/〇, and the n-type doped layer 1〇5 of the light-emitting diode 100 is a component of the nitrided steel record (ΙηΑχΝ), which is 542%, and the survival rate of the light-emitting diode of the known light-emitting diode is 〇%. It can be seen from the test result graph that the current dispersion effect of the light-emitting diode 1〇〇 is improved, Therefore, the present invention can reduce the built-in power induced by the embedded (four) junction after the electrostatic discharge to (4) plus the % flow' to reduce the thermal carrier destructiveness of the electrostatic body 100.桎 Built electric field, mouse, Shangcai _ /; ^:; = generation, to induce the internal crowding effect of 201135972, effectively disperse the current path in the light-emitting diode 100, to reduce the current, reduce the parasitic light-emitting diode The resistance value causes the current efficiency to rise. Diffusion 3. Since the parasitic resistance value of the light-emitting diode 1〇〇 decreases, the bias voltage is reduced.

四、由於發光二極體1〇〇之施加電流被有效分散,使 其抗靜電放電能力優化。·,當本發明操作在正向偏壓時,更具有較均勾的 流擴散效應。 惟=上_者,縣本發日狀錄實侧㈣,當不能 以it限疋本發明實狀範圍,即大凡 及發明說咖雜狀辟料效龜雜 用來限制本發明之權利範圍。过件技哥之用’亚非 【圖式簡單說明】 =一圖,係為本發明實施例之—種發光二極體之結構圖。 弟-圖’係為本發明實施例之 大的内建電場之示意圖。 么先-桎體之晶放 較之Si本發明實施例之一種發光二極體與習知比 平乂 &止向電流-電壓曲線圖。 第四圖,係為本㈣實施例之—種發光二極體與習知比 電 201135972 較之電壓-電流線性圖。 第五圖,係為本發明實施例之一種發光二極體之局部能 帶圖。 第六圖所示,係為本發明實施例之一種發光二極體與習 知比較之機器模式下元件存活率-輸入電壓之對照關係曲線 圖。 【主要元件符號說明】 100 :發光二極體 101 :基板 102 :緩衝層 103 : η型層 104 :多重量子井層 104a :氮化鎵層 104b :氮化銦鎵層 105: η型掺雜層 φ 106 : ρ型層 107 :透明導電層 108 :電極 A,B,C :曲線 E :内建電場 e :電子 h :電洞 12 2011359724. Since the applied current of the light-emitting diode is effectively dispersed, the antistatic discharge capability is optimized. When the present invention operates in forward bias, it has a more uniform flow diffusion effect. However, the upper part of the county is not limited to the actual range of the invention, that is, the general and the invention are used to limit the scope of the present invention. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The figure is a schematic view of the large built-in electric field of the embodiment of the present invention. The crystal-first crystal of the first embodiment of the present invention is compared with the one of the light-emitting diodes of the embodiment of the present invention. The fourth figure is a voltage-current linear diagram of the light-emitting diode of the present embodiment (4) compared with the conventional light-emitting diode 201135972. The fifth figure is a partial energy band diagram of a light-emitting diode according to an embodiment of the present invention. Fig. 6 is a graph showing the relationship between the component survival rate and the input voltage in a machine mode in which a light-emitting diode according to an embodiment of the present invention is compared with a conventional one. [Main component symbol description] 100: Light-emitting diode 101: Substrate 102: Buffer layer 103: n-type layer 104: multiple quantum well layer 104a: gallium nitride layer 104b: indium gallium nitride layer 105: n-type doped layer Φ 106 : p-type layer 107 : transparent conductive layer 108 : electrode A, B, C : curve E : built-in electric field e : electron h : hole 12 201135972

i:電流i: current

VfA,VfB,Vfc .導通偏麼 CB :傳導帶 VB :價電帶 p-n :接面 13VfA, VfB, Vfc. Conduction bias CB: Conductive strip VB: Valence band p-n: junction 13

Claims (1)

201135972 七、申凊專利範圍: L 一種發光二極體,包括·· 一基板; 一緩衝層,成長於該基板之上; 一n型層,成長於該緩衝層之上; 夕重里子井層,成長於該η型層之上; 一η型摻雜層,成長於該多重量子井層之上; Ρ型層,成長於該η型摻雜層之上; —透明導電層’成長於該Ρ型層之上;以及 一電極,成長於該透明導電層及該η型層之上。 2·如申凊專利範圍第i項所述之發光二極體,其中該基 反之材料係為半絕緣型氧化鋁。 徐爲3.如申清專利範圍第1項所述之發光二極體,其中該缓 曰之材係為未摻雜型氮化鎵,其厚度範 米 至10微米。 ㈣4·如申睛專利範圍第1項所述之發光二極體,其中該n 日係1一 n型氮化鎵層’其電子載子濃度約為lxio16 cm·3 ^細em·3 ’以及其厚度範圍約為Ο.5微米至5微米,並且 μ η型層之摻雜元素係為矽。 5.如申請專利範圍第i項所述之發光二極 係由複數量子井結構所堆疊而成,t量= 約=層’該些4子井結構之數旦 、‘、、、50,亚且該氮化銦鎵之化學式為InxGaixN,其1 14 201135972 值範圍約為0.01至0.25。 曰6.如申請專利範圍第5項所述之發光二極體,其中該多 重量子井層巾氮化鎵層之摻雜元储初,其摻雜濃度範圍 約為ΐχ’β至lxlQlw,以及其厚度範圍約為1〇奈米 至20奈米,並且該氮化銦鎵層之厚度範圍約為1奈米至5 奈米。 7. 如申請專利範圍帛i項所述之發光二極體,其中該η 型摻雜層之材料係魏化銦鎵及氮化鎵之其-,並且該氮化 銦鎵之化學式為InxGai xN,χ值範圍約為⑽1至〇·3。 8. 如申請專利範圍第7項所述之發光二極體,其中該η 型推雜層之電子載子濃度約為_17 em·3至bdQiW,以201135972 VII. Application scope of the patent: L A light-emitting diode comprising: a substrate; a buffer layer grown on the substrate; an n-type layer grown on the buffer layer; Growing on the n-type layer; an n-type doped layer grown on the multiple quantum well layer; a germanium layer grown on the n-type doped layer; - a transparent conductive layer growing in the Above the ruthenium layer; and an electrode grown on the transparent conductive layer and the n-type layer. 2. The light-emitting diode of claim i, wherein the material is a semi-insulating alumina. The light-emitting diode according to claim 1, wherein the retarded material is undoped gallium nitride having a thickness ranging from 10 micrometers to 10 micrometers. (4) The light-emitting diode according to claim 1, wherein the n-type 1-n-type gallium nitride layer has an electron carrier concentration of about lxio16 cm·3 ^fine em·3 'and The thickness ranges from about 微米5 μm to 5 μm, and the doping element of the μ η type layer is 矽. 5. The light-emitting diodes described in item i of the patent application are stacked by a complex number of sub-well structures, t quantity = about = layer 'the number of the four sub-well structures, ',, 50, And the chemical formula of the indium gallium nitride is InxGaixN, and the value of 1 14 201135972 ranges from about 0.01 to 0.25. The light-emitting diode according to claim 5, wherein the doping element of the multi-quantum well layer gallium nitride layer has a doping concentration range of about ΐχ'β to lxlQlw, and The thickness ranges from about 1 nanometer to 20 nanometers, and the thickness of the indium gallium nitride layer ranges from about 1 nanometer to about 5 nanometers. 7. The light-emitting diode according to claim ,i, wherein the material of the n-type doped layer is - indium gallium arsenide and gallium nitride, and the chemical formula of the indium gallium nitride is InxGai xN The range of χ is approximately (10)1 to 〇·3. 8. The light-emitting diode according to claim 7, wherein the n-type dopant layer has an electron carrier concentration of about _17 em·3 to bdQiW, —-cm 至 ΐχίο19。!^ 及其厚度範_為1奈米至1G0奈米。 專利减第1項所述之發光二極體,其中該P Ϊ之材料ί為摻雜型氮化鎵,其電洞載子濃度約為1χ10】6 if日^ MO Cm ’以及其厚度範圍約為0,1微米至1微米, 並且釘型層之摻雜元素係為鎮及鋅之其一。 诱明申請專利範圍第1項所述之發光二極體,其中該 率rU系ΐ一金屬薄膜或一金屬氧化物層,並且其電阻 革乾圍係為10·8歐姆-公分至W歐姆·公分。 專纖圍第10項所述之發光二極體,更包括 料係為麵明導電層之上,該覆蓋鈍化層之材 奈米至^㈣―氧切或氮切,並且其厚度範圍約為10 12·如申請專利範圍第1項所述之發光二極體,其中該 15 201135972—-cm to ΐχίο19. !^ and its thickness range _ from 1 nm to 1 G0 nm. The invention relates to the light-emitting diode according to Item 1, wherein the material of the P ί is doped GaN, and the concentration of the hole carrier is about 1 χ 10] 6 if day ^ MO Cm ' and its thickness range is about It is 0, 1 micron to 1 micron, and the doping element of the nail-shaped layer is one of the town and zinc. The light-emitting diode according to claim 1, wherein the rate rU is a metal film or a metal oxide layer, and the electrical resistance of the leather is 10·8 ohm-cm to W ohm. Centimeters. The light-emitting diode according to Item 10 of the special fiber, further comprising a material layer on the surface of the conductive layer, the material covering the passivation layer is nanometer to ^ (4) - oxygen cut or nitrogen cut, and the thickness range thereof is about 10 12· The light-emitting diode according to claim 1, wherein the 15 201135972 電極包括一 p型電極及一 η型電極,該p型電極成長 明導電層’以及該η型電極成長於該η型層之上。 13. 如申請專利範園第12項所述之發光二極體,其中, ρ型電極係由鉻、翻與金所組成,並且該鉻之厚度範圍約為^ 奈米至100奈米,該鉑之厚度範圍約為1〇奈米至3〇〇奈米, 以及該金之厚度範圍約為1〇〇奈米至3〇〇〇奈米。 14. 如申請專利範圍帛12項所述之發光二極體,其中該 η型電極係由鉻、_金所組成發光二極體,該鉻之厚度範 圍約為1奈米至勘奈米,軸之厚度範圍約為1G奈米至 300奈米’以及該金之厚度範圍約為湖奈米至細奈米。 15.如申明專利$&圍第12項所述之發光二極體,其中該打 =極係祕與金所組成,魏之厚度範圍約為丨奈米至⑽ 不/卡,以制金之厚度範_為丨⑻奈米至誦奈米。The electrode includes a p-type electrode and an n-type electrode, the p-type electrode growing a conductive layer ' and the n-type electrode is grown on the n-type layer. 13. The light-emitting diode according to claim 12, wherein the p-type electrode is composed of chromium, turn-over and gold, and the thickness of the chromium ranges from about 2 nm to about 100 nm. The thickness of the platinum ranges from about 1 nanometer to about 3 nanometers, and the thickness of the gold ranges from about 1 nanometer to about 3 nanometers. 14. The light-emitting diode according to claim 12, wherein the n-type electrode is composed of a chrome and a gold, and the chromium has a thickness ranging from about 1 nm to a nanometer. The thickness of the shaft ranges from about 1G nanometer to 300 nanometers and the thickness of the gold ranges from about nanometers to fine nanometers. 15. The light-emitting diode according to claim 12, wherein the thickness of the layer is approximately 丨 nanometer to (10) not/card, for the production of gold. The thickness of the _ is 丨 (8) nanometer to 诵 nanometer.
TW99111358A 2010-04-13 2010-04-13 Light emitting diode TWI437730B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99111358A TWI437730B (en) 2010-04-13 2010-04-13 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99111358A TWI437730B (en) 2010-04-13 2010-04-13 Light emitting diode

Publications (2)

Publication Number Publication Date
TW201135972A true TW201135972A (en) 2011-10-16
TWI437730B TWI437730B (en) 2014-05-11

Family

ID=46752080

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99111358A TWI437730B (en) 2010-04-13 2010-04-13 Light emitting diode

Country Status (1)

Country Link
TW (1) TWI437730B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751807B (en) * 2020-11-25 2022-01-01 聯嘉光電股份有限公司 Vertical light-emitting diode structure with high current dispersion and high reliability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751807B (en) * 2020-11-25 2022-01-01 聯嘉光電股份有限公司 Vertical light-emitting diode structure with high current dispersion and high reliability

Also Published As

Publication number Publication date
TWI437730B (en) 2014-05-11

Similar Documents

Publication Publication Date Title
KR100601945B1 (en) Top emitting light emitting device and method of manufacturing thereof
US7964889B2 (en) Nitride-based light-emitting device and method of manufacturing the same
CN100411199C (en) Top-emitting nitride-based light emitting device and method of manufacturing the same
WO2001073858A1 (en) Group-iii nitride compound semiconductor device
KR100910964B1 (en) Ohmic electrode and method for forming the same
CN101960603A (en) High-performance heterostructure light emitting devices and methods
KR20110050357A (en) Laser spike annealing for gan leds
WO2012163130A1 (en) Gan-based vertical structure led applying graphene film current expansion layer
JP2013065889A (en) Top emit type nitride-based light emitting element
JP2005167237A (en) Flip chip type nitride light emitting device and manufacturing method therefor
TW200417065A (en) Semiconductor light emitting device
JP2008078297A (en) GaN-BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE
US9130103B2 (en) Light-emitting diode device
US20050045906A1 (en) Light emitting device
US8581264B2 (en) Semiconductor body and method of producing a semiconductor body
KR100849737B1 (en) Light emitting diode device and manufacturing method thereof
TW201135972A (en) Light emitting diode
KR20060007948A (en) Top emitting light emitting device and method of manufacturing thereof
TW200541070A (en) Semiconductor material and semiconductor element using the same
CN107316924B (en) Nitride semiconductor structure and semiconductor light-emitting elements
KR100862366B1 (en) Manufacturing method for light emitting diode device
JP2011040784A (en) Nitride semiconductor light emitting device
KR100998007B1 (en) Nitride semiconductor light emitting device
KR100611642B1 (en) Top emitting light emitting device and method of manufacturing thereof
KR100611639B1 (en) Top emitting light emitting device and method of manufacturing thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees