TW200919738A - Flash memory - Google Patents
Flash memory Download PDFInfo
- Publication number
- TW200919738A TW200919738A TW096140741A TW96140741A TW200919738A TW 200919738 A TW200919738 A TW 200919738A TW 096140741 A TW096140741 A TW 096140741A TW 96140741 A TW96140741 A TW 96140741A TW 200919738 A TW200919738 A TW 200919738A
- Authority
- TW
- Taiwan
- Prior art keywords
- flash memory
- layer
- item
- substrate
- scope
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 238000009413 insulation Methods 0.000 claims abstract description 5
- 150000004767 nitrides Chemical class 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims 1
- 239000013589 supplement Substances 0.000 claims 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- FQXXSQDCDRQNQE-UHFFFAOYSA-N markiertes Thebain Natural products COC1=CC=C2C(N(CC3)C)CC4=CC=C(OC)C5=C4C23C1O5 FQXXSQDCDRQNQE-UHFFFAOYSA-N 0.000 description 1
- QKQQEIVDLRUZRP-UHFFFAOYSA-N northebaine Natural products COC1=CC=C2C(NCC3)CC4=CC=C(OC)C5=C4C23C1O5 QKQQEIVDLRUZRP-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0408—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
- G11C16/0441—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates
- G11C16/0458—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates comprising two or more independent floating gates which store independent data
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/401—Multistep manufacturing processes
- H01L29/4011—Multistep manufacturing processes for data storage electrodes
- H01L29/40114—Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42324—Gate electrodes for transistors with a floating gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/788—Field effect transistors with field effect produced by an insulated gate with floating gate
- H01L29/7887—Programmable transistors with more than two possible different levels of programmation
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
200919738 九、發明說明: 【發明所屬之技術領域】 本每明係有關於一種丰缉_辦#壯耍 一種且有雔μ心牛導肢6己憶裝置’特別是有關於 〆、有又子置閘極之快閃記憶體。 【先前技術】 在,導體記憶裝置中,快閃記憶 (non-volatile)記情髀,β两从 性开伴银性 體(erasable pr ::;可,除及可程式之唯讀記憶 般而言,快閃紀情體呈右: "⑽017, EPR〇M)。一 以/匕體具有間極(一浮置閘極與一控制 儲存1荷,控㈣極則用以 ::於心二與:並出 是其可針對整個記刚换:她^ 只需!5 ^ ΐ 订抹除,且抹除速度快,約 ν。因此,近年來,快閃記憶體已廣泛運用在 -私〜 例如:數位相機、數位攝影機、 订動龟話、手提電腦或隨身聽等。 ,、成 ^積體電路晶片上製作高密度之半導體 =如=每一個記憶胞(mem〇ryceii)的大 : 蝻耗,以使其操作速度加快。 力 φ , φ r P , 仕1寻、、死的千面電晶體設計 τ為了&侍—更小尺寸之記憶單元,必須盡量 雜長度縮短,以減少記憶單元的橫向面積里 =閃記憶體的製程中’若將崎'度微縮至大: 以下時’浮置閑極介電層將很難隨之繼續向下』 如,致元件受限於上述尺寸’無法朝更小尺寸發展。= 200919738200919738 IX. Description of the invention: [Technical field to which the invention belongs] Each of the Ming dynasty has a kind of 缉 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Set the flash memory of the gate. [Prior Art] In the conductor memory device, the non-volatile memory, the β-sexual silver-related body (erasable pr:; can, except for the programmable read-only memory) Words, flashing genre is right: "(10)017, EPR〇M). One / 匕 has a pole (a floating gate with a control storage 1 load, control (four) pole is used for:: heart two and: out is it can be for the entire record just change: she ^ just! 5 ^ 订 Order erase, and erase speed is fast, about ν. Therefore, in recent years, flash memory has been widely used in private - for example: digital camera, digital camera, mobile turtle, laptop or walkman Etc., to form a high-density semiconductor on the integrated circuit chip = such as = the memory of each memory cell (mem〇ryceii): the power consumption, so that its operating speed is accelerated. Force φ, φ r P, Shi 1 The search and death of the thousands of crystal design τ for & the smaller-sized memory unit, must be as short as possible to reduce the horizontal area of the memory unit = flash memory process in the process Miniaturization to large: When the following, the floating floating dielectric layer will be difficult to continue down. For example, the component is limited by the above size 'cannot be developed to a smaller size.= 200919738
7L 線寬縮小時,也易產生短通道效應或熱載子效應而 件可靠度。 _ 【發明内容】 本發明之-實施例,提供-種快閃記憶體,包括:— 基底;-形成於該基底上之第-絕緣層;一設置於該第一 絕緣層上之控制閘極;以及兩分別和該基底共平面之 閘極,其分別設置於該控制閘極之兩側。 Γ 本發明之一實施例,提供一種具有錐 記憶體。在宜記伊單元中,又矛置閉極之快閃 / /、己11早凡中具有兩個分別設置於控制閘極 :側之净置閘極。由於控制閘極可同時控制兩個 極’遂可同時進行兩組資料的輸入盥輪出,斟分此t =確有實質性幫助。且因設計原二 造成二= 下文=本2!:上述目的、特徵及優點能更明顯易僅, ^特舉佳貫施例,並配合所附圖式,作詳細說明如 【實施方式】 記』ΐΐ第=說:本發明之一實施例,-種快閃 第2圖為當^ 為一快閃記憶體裝置之平面配置圖。 ,為弟1圖沿Α-Α剖面線所得之部份剖面示意圖。 朽展Θ】中’標號100表示-主動區,標號110表示一閘 =層,而位於閉_110兩側的標號120則表示兩浮置閑 第 圖中,快閃記憶體10包括一基底]2、 第一絕 200919738 緣層14二一控制閘極16、兩浮置閘極ι8以及一第二絕緣 d 第、。巴緣層14形成於基底12上。控制閘極16設 置於第-絕緣層14上。兩浮置閘極18分別與基底12共 平面,設置於控制閘極16的兩側。第二絕 控制閘極16盥第一绍绘臨1yl — —、,、巴緣層14之間以及形成於控制閘極 16與兩浮置閘極18之間。 基底12可為一 P型或11型矽基底。第-絕緣層 " 氧化層。控制閘極16可由複晶矽所構成。浮置When the 7L line width is reduced, it is also prone to short channel effect or hot carrier effect and reliability. SUMMARY OF THE INVENTION The present invention provides an embodiment of a flash memory comprising: a substrate; a first insulating layer formed on the substrate; and a control gate disposed on the first insulating layer And two gates respectively coplanar with the substrate, which are respectively disposed on two sides of the control gate.之一 An embodiment of the invention provides a cone memory. In the Yi Kei unit, the spear is set to fast flash / /, and there are two separate sets in the control gate: the net gate of the side. Since the control gate can control the two poles at the same time, the input and output of the two sets of data can be performed at the same time, and the division of this t = does have substantial help. And due to the design of the original two caused by = = below = this 2!: The above purposes, features and advantages can be more obvious and easy, only special examples, and with the drawings, for detailed description such as [embodiment] 』ΐΐ第=说: One embodiment of the present invention, a type of flashing Fig. 2 is a plan view of a flash memory device. A partial cross-sectional view of the brother 1 along the Α-Α section line. In the embossed Θ], the reference numeral 100 denotes an active area, the reference numeral 110 denotes a gate = layer, and the reference numeral 120 on both sides of the closed _110 denotes two floating idle diagrams, and the flash memory 10 includes a substrate. 2, the first absolute 200919738 edge layer 14 two control gate 16, two floating gates ι8 and a second insulation d first. The bain layer 14 is formed on the substrate 12. The control gate 16 is disposed on the first insulating layer 14. The two floating gates 18 are coplanar with the substrate 12 and are disposed on both sides of the control gate 16. The second permanent control gate 16 is first formed between the 1 yl, -, and rim layers 14 and between the control gate 16 and the two floating gates 18. Substrate 12 can be a P-type or 11-type germanium substrate. Insulation layer " Oxide layer. The control gate 16 can be formed by a polysilicon. Floating
,極18可由⑤介電常數材質所構成。高介電常數材質可 3氮化㈣氧化物,其中I化物可為氮化石夕(silicon mn e ’而氧化物可為金屬氧化物,例如氧化給(hafnium H^化結(咖〇111聰〇Xide)或氧化1呂(aluminum oxide)。第二絕緣層2〇可為一氧化層。 憶體10更包括一源極22與一及極24,形成於 "" 中,並分別位於控制閘極16的兩側。在基底12 ,更包括一通道26,形成於源極22與汲極24之間。 :外於通道26與源/沒極(22/24)之間更包括形成有 •面(P-n junction) 28。p-n接面28可為一漸變接面(抑_ junction),其濃度變化範圍在2Q微米内 降至lxl〇n。 』」攸1x10 體結一浮置間極的快閃記憶 :之快閃記憶體。在其記憶單元中,具有兩分 置=兩側之浮置閘極。由於控制閘極可同時控制兩個i 率:提弁II同時進行兩組f料的輸人與輸出,對元件效 升確有貫質性幫助。且因設計原理自來浮置間極數 200919738 量的增加,而非閘極尺寸的微縮,因此,又可避免因尺寸 微縮造成的例如短通道效應或熱載子效應的缺點。 當電子被浮置閘極收集後便會停駐在浮置閘極内,使 臨限電壓上升,若欲移除浮置閘極中的電子,如同其他可 抹除及可程式的唯讀記憶體(erasable programmable read-only memory, EPROM),快閃記憶體亦是在浮置閘極 與源極或基底間,加諸一高電場,以促使浮置閘極上的電 子穿遂通過氧化層至源極或基底上。 請參閱第3A〜3C圖,說明本發明之一實施例,一種 快閃記憶體的製造方法。首先,如第3A圖所示,提供一 基底12之後依序於基底12上形成一氧化層(第一絕緣 層)14與一氧化鋁層30。接著,於氧化鋁層30上形成一 圖案化氮化層32。 之後,以圖案化氮化層32為一罩幕,#刻氧化I呂層 30至露出氧化層14,以定義出一溝槽34,如第3B圖所 示。待移除圖案化氮化層3 2後,坦覆性地形成一氧化層(第 二絕緣層)20於氧化鋁層30表面(未圖示)及溝槽34的侧 壁與底部。之後,覆蓋一複晶^夕層36於氧化層20上(未 圖示)並填入溝槽34。接者,藉由例如化學機械研磨 (chemical mechanical polish, CMP)的平坦化步驟移除氧化 鋁層30上的氧化層20與複晶矽層36,以在溝槽34中形 成一控制閘極16。之後,形成另一圖案化氮化層38於複 晶矽層36上,並於圖案化氮化層38兩侧形成間隙壁40。 接著,以圖案化氮化層38與間隙壁40為罩幕,蝕刻 氧化銘層3 0,以定義出兩浮置閘極18,如第3 C圖所示, 至此,即完成本發明之一實施例,一具有雙浮置閘極快閃 200919738 記憶體10的製作 之半導體製程势γ本务明快閃記憶體結構可由任何適合 雖然太敌 並不限定上述製法。 限定本發明:: ξ施例揭露如上’然其並非用以 神和範圍内,者;;、白^項技藝者,在不脫離本發明之精 當視後附之申請專利範圍所界定者為準 保心圍 200919738 【圖式簡單說明】 第1圖為本發明之一實施例,說明一快閃記憶體裝置 之平面配置。 第2圖為本發明之一實施例,說明一快閃記憶體之結 構,為一沿第1圖A-A剖面線所得之剖面示意圖。 第3A〜3C圖為本發明之一實施例,說明一快閃記憶體 之製造方法。 【主要元件符號說明】 10〜快閃記憶體; 12〜基底; 14〜第一絕緣層(氧化層); 16〜控制閘極; 18、120〜浮置閘極; 20〜第二絕緣層(氧化層); 2 2〜源極; 24〜汲極; 26〜通道; 28〜卩-11接面; 30〜氧化鋁層; 32、38〜圖案化氮化層 34〜溝槽; 36〜複晶矽層; 40〜間隙壁; 100〜主動區, 110〜閘極層。 10The pole 18 can be composed of a 5 dielectric constant material. The high dielectric constant material can be 3 nitrided (tetra) oxides, wherein the I compound can be silicon nitride (silicon mn e ' and the oxide can be a metal oxide, such as oxidation (hafnium H^ 结 ( Xide) or oxidizes aluminium oxide. The second insulating layer 2 can be an oxide layer. The memory 10 further includes a source 22 and a pole 24 formed in the "" The two sides of the gate 16. The substrate 12 further includes a channel 26 formed between the source 22 and the drain 24. The external channel 26 and the source/drain (22/24) are further included. • Pn junction 28. The pn junction 28 can be a gradual junction (conducting junction), and its concentration variation range is reduced to lxl〇n within 2Q microns. 』”攸1x10 body junction-floating interpole Flash memory: Flash memory. In its memory unit, it has two split = floating gates on both sides. Since the control gate can control two i-rates at the same time: Lifting II simultaneously performs two sets of f-materials The input and output of the device have a continuous help to the component efficiency. And due to the design principle, the number of poles in the floating period is increased by 200919738, instead of the gate. The shrinkage of the inch, therefore, can avoid the shortcomings such as short channel effect or hot carrier effect caused by the size reduction. When the electrons are collected by the floating gate, they will be parked in the floating gate, so that the threshold voltage rises. If you want to remove the electrons in the floating gate, like other erasable programmable read-only memory (EPROM), the flash memory is also in the floating gate and source. Between the poles or the substrate, a high electric field is applied to cause electrons on the floating gate to pass through the oxide layer to the source or the substrate. Referring to Figures 3A to 3C, an embodiment of the present invention is illustrated, a flash First, as shown in FIG. 3A, after a substrate 12 is provided, an oxide layer (first insulating layer) 14 and an aluminum oxide layer 30 are sequentially formed on the substrate 12. Next, in the aluminum oxide layer. A patterned nitride layer 32 is formed on 30. Thereafter, the patterned nitride layer 32 is used as a mask to etch the I layer 30 to expose the oxide layer 14 to define a trench 34, as shown in FIG. 3B. As shown, after the patterned nitride layer 3 2 is removed, it is formed satisfactorily An oxide layer (second insulating layer) 20 is on the surface (not shown) of the aluminum oxide layer 30 and the sidewalls and the bottom of the trench 34. Thereafter, a polycrystalline layer 36 is overlaid on the oxide layer 20 (not shown). And filling the trench 34. The oxide layer 20 and the germanium layer 36 on the aluminum oxide layer 30 are removed by a planarization step such as chemical mechanical polish (CMP) to A control gate 16 is formed in 34. Thereafter, another patterned nitride layer 38 is formed on the germanium layer 36, and spacers 40 are formed on both sides of the patterned nitride layer 38. Next, the patterned nitride layer 38 and the spacers 40 are used as masks to etch the oxide layer 30 to define two floating gates 18, as shown in FIG. 3C. Thus, one of the present inventions is completed. For example, a semiconductor floating process with a double floating gate flash 200919738 memory 10 can be used as a suitable flash memory structure. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTI ID=0.0>> </ RTI> </ RTI> Quasi-safe heart circumference 200919738 [Simple description of the drawings] Figure 1 is an embodiment of the invention, illustrating the planar configuration of a flash memory device. Fig. 2 is a cross-sectional view showing the structure of a flash memory as a cross-sectional view taken along line A-A of Fig. 1 according to an embodiment of the present invention. 3A to 3C are diagrams showing an embodiment of the present invention, illustrating a method of manufacturing a flash memory. [Main component symbol description] 10~ flash memory; 12~ substrate; 14~ first insulating layer (oxide layer); 16~ control gate; 18, 120~ floating gate; 20~ second insulating layer ( Oxide layer); 2 2 ~ source; 24 ~ drain; 26 ~ channel; 28 ~ 卩-11 junction; 30 ~ alumina layer; 32, 38 ~ patterned nitride layer 34 ~ trench; 36 ~ complex Wafer layer; 40~ spacer; 100~ active area, 110~ gate layer. 10
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096140741A TW200919738A (en) | 2007-10-30 | 2007-10-30 | Flash memory |
US11/948,947 US20090108321A1 (en) | 2007-10-30 | 2007-11-30 | Flash memory |
DE102007058355A DE102007058355B4 (en) | 2007-10-30 | 2007-12-03 | Flash memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096140741A TW200919738A (en) | 2007-10-30 | 2007-10-30 | Flash memory |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200919738A true TW200919738A (en) | 2009-05-01 |
Family
ID=40514480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096140741A TW200919738A (en) | 2007-10-30 | 2007-10-30 | Flash memory |
Country Status (3)
Country | Link |
---|---|
US (1) | US20090108321A1 (en) |
DE (1) | DE102007058355B4 (en) |
TW (1) | TW200919738A (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3973819B2 (en) * | 1999-03-08 | 2007-09-12 | 株式会社東芝 | Semiconductor memory device and manufacturing method thereof |
US6417049B1 (en) * | 2000-02-01 | 2002-07-09 | Taiwan Semiconductor Manufacturing Company | Split gate flash cell for multiple storage |
US6438031B1 (en) * | 2000-02-16 | 2002-08-20 | Advanced Micro Devices, Inc. | Method of programming a non-volatile memory cell using a substrate bias |
JP4370104B2 (en) * | 2002-03-05 | 2009-11-25 | シャープ株式会社 | Semiconductor memory device |
US6888755B2 (en) * | 2002-10-28 | 2005-05-03 | Sandisk Corporation | Flash memory cell arrays having dual control gates per memory cell charge storage element |
US20060113585A1 (en) * | 2004-03-16 | 2006-06-01 | Andy Yu | Non-volatile electrically alterable memory cells for storing multiple data |
US20070164352A1 (en) * | 2005-12-12 | 2007-07-19 | The Regents Of The University Of California | Multi-bit-per-cell nvm structures and architecture |
JP2007317920A (en) * | 2006-05-26 | 2007-12-06 | Toshiba Corp | Semiconductor memory device and its manufacturing method |
-
2007
- 2007-10-30 TW TW096140741A patent/TW200919738A/en unknown
- 2007-11-30 US US11/948,947 patent/US20090108321A1/en not_active Abandoned
- 2007-12-03 DE DE102007058355A patent/DE102007058355B4/en active Active
Also Published As
Publication number | Publication date |
---|---|
DE102007058355B4 (en) | 2011-02-03 |
US20090108321A1 (en) | 2009-04-30 |
DE102007058355A1 (en) | 2009-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9614060B2 (en) | Nanowire transistor with underlayer etch stops | |
TWI565058B (en) | Non-planar semiconductor device having hybrid geometry-based active region | |
CN105144390B (en) | Electric leakage for nano-wire transistor reduces structure | |
US9484352B2 (en) | Method for forming a split-gate flash memory cell device with a low power logic device | |
US9129829B2 (en) | Silicon and silicon germanium nanowire structures | |
KR102136234B1 (en) | Internal spacers for nanowire transistors and method of fabrication thereof | |
TWI620249B (en) | Semiconductor device with isolated body portion | |
JP6533237B2 (en) | Monolithic integration of high voltage and low voltage non-planar transistors | |
CN103563085A (en) | Vertical tunneling negative differential resistance devices | |
KR20150130270A (en) | Nanowire transistor fabrication with hardmask layers | |
CN103887313A (en) | Semi-floating gate device and manufacturing method | |
CN111627918A (en) | 3D NAND memory and manufacturing method thereof | |
TW201234567A (en) | Memory devices with a connecting region having a band gap lower than a band gap of a body region | |
JP2010245345A (en) | Nonvolatile semiconductor memory and method of manufacturing the smae | |
CN107316808A (en) | A kind of semiconductor devices and preparation method thereof, electronic installation | |
CN103329270A (en) | Memory devices having source lines directly coupled to body regions and methods | |
CN103165613A (en) | Semiconductor memory and method of manufacturing the same | |
JP2011049576A (en) | Method for manufacturing floating gate memory cell, and floating gate memory cell | |
JP2007294874A (en) | Semiconductor device and manufacturing method therefor | |
TW200919738A (en) | Flash memory | |
CN106972020A (en) | A kind of semiconductor devices and preparation method thereof, electronic installation | |
TW201618236A (en) | Three-dimensional memory and method for manufacturing the same | |
CN106783865A (en) | A kind of preparation method of memory cell | |
TWI544579B (en) | Memory cell having isolated charge sites and method of fabricating same | |
CN107305891A (en) | A kind of semiconductor devices and preparation method thereof, electronic installation |