200905333 ---------- 1TW 23886twf.doc/n 贫明說明 九 【發明所屬之技術領域】 本發明是有關於-種配向朗製造 二=是有關於-種光配向膜 的衣方法以及配向液。 [先前技術】200905333 ---------- 1TW 23886twf.doc/n 严明说明九 [Technical field to which the invention belongs] The present invention relates to the production of a kind of alignment and the second is a kind of light-aligning film Method and alignment solution. [Prior technology]
液晶顯不面板主要由主動元件陣列基板、對向基板以 及-液晶層所組成。當在對向基板與_元件陣列基板之 間施加電場時,液晶層_液晶分子便會受到電場的作用 而產生偏轉,使得液晶層具有相應於此電場的光線穿透 率。如此一來,液晶顯示面板便可以依據對向基板與主動 元件陣列基板之間的電場大小,而顯示不同的灰階晝面。 為了使液晶分子達到快速反應與廣視角的需求,必須令液 晶分子在多個區域呈不同方向的傾倒排列,也就是多區域 (multi-domain)配向。 目則’表常見的做法大致可以採取配置凸塊 (protrusions)、改變邊緣電場(fringe field)或是光配向 (photo alignment)的方式,來使液晶分子產生多區域配向效 果。不過,改變邊緣電場的方式會使製程變得複雜,而凸 塊的配置會犧牲顯示區開口率。為了避免前述兩者的缺 點’可以採用光配向的方式來形成多區域配向。 多區域光配向的進行方式是利用線性極化紫外光進 行曝光製程’使得光配向膜具有特定的配向方向。但是, 200905333 *__________rw 23886twf.doc/n 此種配向方法中,每進行一次的曝光製程僅會形成—個配 向方向。因此,若欲形成多區域配向,則須進行多次曝 製程而使得製程步驟繁項。 + 【發明内容】 本發明是提供一種光配向膜的製造方法,以減少欲形 成多區域配向之光配向膜時,進行曝光製程的次數。乂 本發明另提供一種配向液,其在不同能量的光照下, 會產生光聚合作用或光分解作用。 本發明提出一種光配向膜的製造方法,包括以下牛 驟。首先,提供一配向液,配向液包括光聚合型配向材^ 以及光分解型配向材料。接著,塗佈配向液於基板上,'盆 中基板具有多個第一區域以及多個第二區域。然後,使 性極化光通過光學元件照射基板上之配向液。線性極化光 通過光學元件而照射第一區域的部分使配向液中的光分解 型配向材料分解,同時線性極化光通過光學元件而照ς第 〇 二區域的部分使配向液中的光聚合型配向材料聚合了 在本發明之光配向膜的製造方法的一實施例中,上述 之,性極化光通過光學元件而照射第一區域的部分具有第 、月b里’且線性極化光通過光學元件而照射第二區域的部 ^具有第二能量,其中第一能量與第二能量不同。舉例來 1兄’上述之第一能量例如可高於第二能量。 、,在本發明之光配向膜的製造方法的一實施例中,上述 之光學元件包括一半透光罩(half-tone mask) 〇 200905333 TW 23886twf.doc/n 在本發明之光配向膜的製造方法的一實施例中,上述 之線性極化光照射配向液後,配向液在第一區域形成一第 -配向方向,而配向液在第二區域形成—第二配向方向, 且第一配向方向與第二配向方向不同。 在本發明之光配向膜的製造方法的—實施例中,上述 之第一配向方向與第二配向方向互相垂直。The liquid crystal display panel is mainly composed of an active device array substrate, a counter substrate, and a liquid crystal layer. When an electric field is applied between the opposite substrate and the _ element array substrate, the liquid crystal layer _ liquid crystal molecules are deflected by the electric field so that the liquid crystal layer has a light transmittance corresponding to the electric field. In this way, the liquid crystal display panel can display different grayscale surfaces according to the electric field between the opposite substrate and the active device array substrate. In order to achieve the rapid reaction and wide viewing angle of the liquid crystal molecules, the liquid crystal molecules must be arranged in different directions in a plurality of regions, that is, multi-domain alignment. The common practice of the table is to adopt a method of configuring protrusions, changing fringe fields or photo alignment to cause multi-region alignment effects of liquid crystal molecules. However, changing the edge electric field can complicate the process, and the configuration of the bumps sacrifices the aperture ratio of the display area. In order to avoid the disadvantages of the foregoing two, the optical alignment can be employed to form a multi-region alignment. The multi-zone photoalignment is carried out by using a linearly polarized ultraviolet light to perform an exposure process so that the photoalignment film has a specific alignment direction. However, 200905333 *__________rw 23886twf.doc/n In this alignment method, only one alignment direction is formed for each exposure process. Therefore, if a multi-zone alignment is to be formed, multiple exposure processes are required to make the process steps complicated. SUMMARY OF THE INVENTION The present invention provides a method for producing a photo-alignment film, which is capable of reducing the number of exposure processes when a photo-alignment film having a plurality of regions is formed.乂 The present invention further provides an alignment liquid which produces photopolymerization or photodecomposition under illumination of different energies. The present invention provides a method of producing a photo-alignment film comprising the following steps. First, an alignment liquid is provided, and the alignment liquid includes a photopolymerizable alignment material and a photodecomposition type alignment material. Next, the alignment liquid is applied onto the substrate, and the substrate in the basin has a plurality of first regions and a plurality of second regions. Then, the polarized light is irradiated to the alignment liquid on the substrate through the optical element. The linearly polarized light illuminates the portion of the first region through the optical element to decompose the photodecomposable alignment material in the alignment liquid, while the linearly polarized light passes through the optical element to illuminate the photopolymer in the alignment liquid. The type-aligned material is polymerized in an embodiment of the method for producing a photo-alignment film of the present invention, wherein the portion of the polarized light that illuminates the first region through the optical element has a first month and a month and a linearly polarized light The portion that illuminates the second region through the optical element has a second energy, wherein the first energy is different from the second energy. For example, the first energy of the above may be higher than the second energy, for example. In an embodiment of the method for producing a photo-alignment film of the present invention, the optical element comprises a half-tone mask 〇200905333 TW 23886twf.doc/n in the manufacture of the optical alignment film of the present invention. In an embodiment of the method, after the linearly polarized light irradiates the alignment liquid, the alignment liquid forms a first alignment direction in the first region, and the alignment liquid forms a second alignment direction in the second region, and the first alignment direction Different from the second alignment direction. In the embodiment of the method for producing a photo-alignment film of the present invention, the first alignment direction and the second alignment direction are perpendicular to each other.
O 在本發明之光配向膜的製造方法的—實施例中,上述 之線性極化光是以不垂直基板之表_方向照射配向液。 在本發明之光配向膜的製造方法中,使線性極化光照 射配向液的方法包括以下步驟。先將基板劃分成多個第三 區域以及多個第四區域’其中各第三區域與各第四區域分 別包括至少-第-區域與至少—第二區域。然後,遮蔽第 四區域並暴露出第三區域,以使第一線性極化光通過光學 元件照射第三區域上之配向液。隨之,遮蔽第三區域並暴 露出第四區域,以使第二線性極化光通過光學元件照射第 四區域上之配向液。 在本%明之光配向膜的製造方法的一實施例中,上述 之第一線性極化光與第二線性極化光之極化方向相互不平 行。 在本發明之光配向膜的製造方法的一實施例中,上述 之光聚合型配向材料以及光分解型配向材料之重量比比例 為 1 : 1。 在本發明之光配向膜的製造方法的一實施例中,塗佈 配向液於基板上之後與提供線性極化光之前,更包括進行 ._ rW 23886twf.doc/n 200905333 一預烘烤製程。 一 在本發明之光配向膜的製造方法的一實施例中,使線 性極化光照射配向液之後,更包括進行一後烘烤製程。 本發明另提供一種配向液包括一光聚合型配向材料 以及一光分解型配向材料。 在本發明之配向液的一實施例中,上述之光聚合型配 向材料以及光分解型配向材料之比例為1 : 1。O In the embodiment of the method for producing a photo-alignment film of the present invention, the linearly polarized light is irradiated with an alignment liquid in a direction of a non-perpendicular substrate. In the method for producing a photo-alignment film of the present invention, the method of linearly illuminating the alignment liquid comprises the following steps. The substrate is first divided into a plurality of third regions and a plurality of fourth regions ′ wherein each of the third regions and each of the fourth regions comprises at least a first region and at least a second region. Then, the fourth region is masked and the third region is exposed such that the first linearly polarized light illuminates the alignment liquid on the third region through the optical element. Accordingly, the third region is shielded and the fourth region is exposed such that the second linearly polarized light illuminates the alignment liquid on the fourth region through the optical element. In an embodiment of the method for producing a photo-alignment film of the present invention, the polarization directions of the first linearly polarized light and the second linearly polarized light are not parallel to each other. In an embodiment of the method for producing a photo-alignment film of the present invention, the photopolymerizable alignment material and the photo-decomposition-type alignment material have a weight ratio of 1:1. In an embodiment of the method of fabricating the photoalignment film of the present invention, after the application of the alignment liquid on the substrate and before the provision of the linearly polarized light, the pre-baking process is further performed. _rW 23886 twf.doc/n 200905333. In an embodiment of the method for producing a photo-alignment film of the present invention, after the linearly polarized light is irradiated to the alignment liquid, a post-baking process is further included. The present invention further provides an alignment liquid comprising a photopolymerizable alignment material and a photodecomposition type alignment material. In an embodiment of the alignment liquid of the present invention, the ratio of the photopolymerizable alignment material to the photodecomposition type alignment material is 1:1.
O ϋ 在本發明之配向液的一實施例中,上述之光分解型配 向材料,-第-能量下產生分解作用,而找合型配向材 料在-第二能量下產生聚合仙,且第—能量與第二能量 不同其巾,上述之第-能量例如是高於第二能量。 制点ίf^在基板上塗佈兩種不同性質的光配向材料所 衣成之配向液。同時,在同—士 件使从二 曝先製程中’利用光學元 此向液接收到不同能量的光線。因 m同區域上形成具有相異的配向方向的配 造步驟。 用於夕區域配向製程的製 為讓本發明之上述和其他 ΐ懂,下文特舉實施例,並配合所附== 【實施方式】 圖1 Α為本發明之一實施例 流程,而圖1B為圖1A之步驟=膜的製造方划 〇的曝光方法的剖面圖, TW 23886twf.doc/n 200905333 另外’圖2為本發明之一實施例之光配向膜的示意圖。請 先參照圖1A,本實施例之光配向膜的製造方法至少包括以 下所述之步驟。 〇 首先,進行步驟10,提供一配向液,其中配向液包括 光聚合型配向材料以及光分解型配向材料。舉例而言,配 向液中所含光聚合型配向材料以及光分解型配向材料之比 例可以是1 : 1。另外,光分解型配向材料可在一第一能量 下產生分解作用’而光聚合型配向材料則可在一第二能量 下產生聚合作用,其中第一能量例如是與第二能量不同。 舉例而言,光聚合型配向材料例如是美國Elsicon公 司所生產的RD-160型光配向材料,而光分解型配向材料 例如疋日本捷時雅(JSR)公司所生產的AL-60805型光配向 材料。光分解型配向材料與光聚合型配向材料發生光反應 所需的能量常會落在一範圍内。在本實施例中,使光分解 型配向材料產生光分解反應所需之最小能量較佳是大於使 光聚合型材料產生光聚合反應所需之最大能量。 接著,進行步驟20,塗佈配向液於一基板上,苴 板具有多個第-區域以及多個第二區域。在此 =::區_如是祕子狀被交錯·,也就是說盘 :個弟-區域相鄰者例如是多個第二區域,反之亦然。另、 扭烤 配向液f基板上之後可選擇性地進行步驟30之預 九、烤H以使配向液初步固化於基板上。 、 然後’進行步驟40之狼制立。^ 利用線性極化光為照射光,‘ ^進行曝光製程時 ^則先分解型配向材料在產生光 200905333 ----------_ PW 23886twf.doc/n 分解反應之後,會形成與此照射光之極化方向相^ 、 配向方向。光I合型配向材料產生光聚合作用後 ^ 與照射光之極化方向平行的配向方向。簡,則形成 ^ ’線性極仆, 光的極化方向會影響配向材料發生光反應之後所形成的配 向方向。在完成步驟40之曝光製程後,可選擇性地進行牛 驟5 〇之後供烤製程’以使配向液乾固。 , 詳細來說,請參照圖1B,步驟4〇之曝光製程是使線 性極化光⑽通過光學元件140照板12G上之配向液 I 110。本實施例中,光學元件140是採用半透光罩(half_t〇ne mask)。線性極化光13〇通過光學元件14〇後,照射在基板 120曰的第-區域122與第二區域124的部分會帶有不^的 月匕里。,如此,線性極化光130通過光學元件14〇而照射第 一區域122的部分可使配向液11〇中的光分解型配向材料 分解。同時,線性極化光130通過光學元件14〇而照射第 二區域124的部分使配向液12〇中的光聚合型配向材料聚 合。在其他實施例中,光學元件140也可以是其他適當的 〇 光學構件’只要能讓通過的線性極化光130照射在第—區 域122與第二區域124的部分帶有不同的能量即可。 然後,請同時參照圖1B與圖2,配向液110發生光 反應並接著被乾固而形成光配向膜200之後,例如在第一 區域122形成第一配向方向A1,而在第二區域I24形成與 第一配向A1方向不同之第二配向方向A2。此外,與光作 用之後,光分解型配向材料會形成與此線性極化光之極化 方向相互垂直的配向方向,而光聚合型配向材料會形成與 10 200905333 _ _ _ _ rw 23886twf.doc/n 線性極化光之極化方向平行的配向方向。因此,第—配向 方向A1例如是與第二配向方向A2互相垂直。 若將本實施例之配向膜2 〇 〇的製造方法應用於晝素陣 列的製程中,則藉由一次的曝光製程就可以在每個晝素中 形成兩個不同的配向方向。因此,本製造方法有助於簡化 多區域配向製程。 圖3為本發明之另一實施例之光配向膜的製造方法的 流程圖’而圖4為根據圖3之製造方法所製造之光配向膜 的示意圖。請先參照圖3與圖4,光配向膜400之製造方 法與上述實施例中所述之配向膜200大致相同,其相異之 處在於,曝光製程的進行方式。 详細來6兒,本貫施例之曝光製程中,首先進行步驟 310。將基板劃分成多個第三區域以及多個第四區域。各第 二區域包括至少一第一區域與至少一第二區域,而各第四 區域包括至少一第一區域與至少一第二區域。 然後,進行步驟320以及步驟330,遮蔽第四區域並 b 暴硌出第二區域,隨之以第一線性極化光進行曝 此曝光步驟33〇是與上述實施例之曝光步驟;;相^^不 另作說明。 隨之,進行步驟340以及步驟35〇,遮蔽第三區域並 f露出第四區域’且以第二線性極化光進行曝光步驟,直 中弟-線性極化光與第二線性極化光之極化方向相互不平 仃。同樣的,曝光步驟350的進行方式也如同上述實施例 之曝光步驟40。此時,依據上述各步驟所製成的光配向膜 200905333 ----------TW 23886twf.doc/n 即如,4之光配向膜400所示。請參照圖*,光配向膜· 中’弟二區域410包括—第一區域412以及〆第二區域 4M。同時,第四區域420也包括—第—區域412以及一第 二區域4M。以第-雜極化光進行曝光步驟之後,第三 區域410中第一區域412以及第二區域似例如是分別具 有相互垂直之第-配向方向A1肖第二配向方向以。以第 -線性極化光進行曝光製程後,第四_ 中第一區域 412以及第二區域414分別具有相互垂直之第三配向方向 i A3與第四配向方向A4。 在本實施例中,第-線性極化光以及第二線性極化光 的極化^向之間的夾角例如是45度。因此,第一線性極化 光以及第二線性極化光使光分解型配向材料產生光分解作 用後所形成的第-配向方向Α1#第三配向方向A3會具有 45度夾角。同理,光聚合型配向材料產生光聚合作用之 後’所形成之第二配向方向A2與第四配向方向A4也會具 有45度的夾角。換έ之,本實施例中進行兩次的曝光製程 I』 可使光配向膜400具有四個不同的配向方向。概括而言, 利用本發明所則共之製造方法以製造Ν個不同配向方向的 光配向膜時,僅需進行州2次曝光製程,相較於習知光配 向膜的多區域配向製程而言,進行曝光步驟的次數可減少 -jji- 〇 以上所述之各個實施例中,線性極化光可以不垂直基 板之表面的方向照射配向液。如此一來,所產生的光配向 膜應用於液晶顯示面板時,可使液晶分子以具有預傾角的 12 200905333 TW 23886twf.doc/n 方式排列,而有助於提高液晶分子的應答速率。 綜上所述,本發明所提供的配向液中含有光分解型配 向材,以及光聚合型配向村料,所以此配向液可依所接受 之能量的不同而產生光分解作用或光聚合作用。因此,^ 發明之光配向膜的製造方法中,使用—光學元件進行一欠 曝光製程即可形成具有兩種配向方向的光配向膜。簡言 之,本發明之配向液與光配向膜的製造方法不僅可簡化多 p 區域配向的光配向膜之製程,更可降低製程成本。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明’任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為 準。 【圖式簡單說明】 圖1A為本發明之一實施例之光配向膜的製造方法的 (J 流程圖。 圖1B為圖ία之步驟40的曝光方法的剖面圖。 圖2為根據圖1 a之製造方法所製造之光配向膜的示 意圖。 圖3為本發明之另一實施例之光配向膜的製造方法的 流程圖。 圖4為根據圖3之製造方法所製造之光配向膜的示意 200905333 TW 23886twf.doc/n 【主要元件符號說明】 10〜50、310〜350 :步驟 110 :配向液 120 :基板 122、412 :第一區域 124、414 :第二區域 130 :線性極化光 140 :光學元件 〇 200、400 :光配向膜 410 :第三區域 420 :第四區域 Al、A2、A3、A4 :配向方向 14O ϋ In an embodiment of the alignment liquid of the present invention, the photodegradable alignment material has a decomposition effect at the first energy, and the alignment alignment material generates a polymerization fairy at the second energy, and the first The energy is different from the second energy, and the first energy is, for example, higher than the second energy. The dot ίf^ is coated on the substrate with an alignment liquid of two different kinds of light alignment materials. At the same time, in the same process, the optical element is used to receive light of different energies from the liquid. The formation steps having different alignment directions are formed on the same region of m. The above-mentioned and other simplifications of the present invention are provided for the above-mentioned and other simplifications of the present invention, and the following specific embodiments are accompanied by the accompanying == [Embodiment] FIG. 1 is a flow of an embodiment of the present invention, and FIG. 1B A cross-sectional view of the exposure method for the step of the film of Fig. 1A, TW 23886 twf.doc/n 200905333 Further, Fig. 2 is a schematic view of a photoalignment film according to an embodiment of the present invention. Referring first to Figure 1A, the method of fabricating the photo-alignment film of the present embodiment includes at least the steps described below. First, in step 10, an alignment liquid is provided, wherein the alignment liquid includes a photopolymerizable alignment material and a photodecomposition type alignment material. For example, the ratio of the photopolymerizable alignment material and the photodegradable alignment material contained in the alignment liquid may be 1:1. Alternatively, the photodecomposable alignment material can undergo decomposition at a first energy' and the photopolymerizable alignment material can produce a polymerization at a second energy, wherein the first energy is, for example, different from the second energy. For example, the photopolymerizable alignment material is, for example, an RD-160 type optical alignment material produced by Elsicon Corporation of the United States, and the photodecomposition type alignment material is, for example, AL-60805 type optical alignment produced by JSR Japan. material. The energy required for photoreaction of the photodecomposable alignment material with the photopolymerizable alignment material often falls within a range. In the present embodiment, the minimum energy required to cause the photodecomposition reaction of the photodecomposable material is preferably larger than the maximum energy required to cause photopolymerization of the photopolymerizable material. Next, in step 20, the alignment liquid is applied onto a substrate, and the raft has a plurality of first regions and a plurality of second regions. Here, the =:: area_ is a staggered shape, that is, a disk: a younger-region neighbor is, for example, a plurality of second areas, and vice versa. Alternatively, after twisting the alignment liquid onto the substrate, the step 30 can be selectively performed to bake H to preliminarily cure the alignment liquid on the substrate. Then, proceed to step 40 to establish the wolf. ^ Use linearly polarized light as the illumination light, ' ^ When performing the exposure process ^ then the first decomposition type alignment material will form after the decomposition reaction is generated by the light 200905333 ----------_ PW 23886twf.doc/n The direction of polarization of the illuminating light is in the direction of alignment. After the photo-polymerization of the photo-I-type alignment material, the alignment direction parallel to the polarization direction of the illumination light. In short, a linear servant is formed, and the polarization direction of the light affects the alignment direction formed by the photoreaction of the alignment material. After the exposure process of step 40 is completed, the bolus process can be selectively performed after the bolus 5 以 to dry the alignment liquid. In detail, referring to FIG. 1B, the exposure process of step 4 is to cause the linearly polarized light (10) to pass through the optical component 140 to align the alignment liquid I 110 on the plate 12G. In this embodiment, the optical component 140 is a half-transparent mask. After the linearly polarized light 13 is passed through the optical element 14, the portion of the first region 122 and the second region 124 of the substrate 120 is irradiated with a recess. Thus, the linearly polarized light 130 illuminates the portion of the first region 122 through the optical element 14A to decompose the photo-decomposable alignment material in the alignment liquid 11?. At the same time, the linearly polarized light 130 illuminates the portion of the second region 124 through the optical element 14A to polymerize the photopolymerizable alignment material in the alignment liquid 12?. In other embodiments, the optical element 140 may be other suitable 光学 optical members as long as the passing linearly polarized light 130 is illuminated with different energies in portions of the first region 122 and the second region 124. Then, referring to FIG. 1B and FIG. 2 simultaneously, after the alignment liquid 110 is photoreacted and then dried to form the photo alignment film 200, for example, the first alignment direction A1 is formed in the first region 122, and the second alignment region A24 is formed. The second alignment direction A2 is different from the direction of the first alignment A1. In addition, after the action of light, the photodecomposed alignment material forms an alignment direction perpendicular to the polarization direction of the linearly polarized light, and the photopolymerization alignment material is formed with 10 200905333 _ _ _ _ rw 23886twf.doc/ n The direction of polarization in which the polarization directions of linearly polarized light are parallel. Therefore, the first alignment direction A1 is, for example, perpendicular to the second alignment direction A2. If the manufacturing method of the alignment film 2 of the present embodiment is applied to the process of the pixel array, two different alignment directions can be formed in each element by one exposure process. Therefore, this manufacturing method helps to simplify the multi-zone alignment process. Fig. 3 is a flow chart showing a method of producing a photo-alignment film according to another embodiment of the present invention, and Fig. 4 is a view showing a photo-alignment film produced by the production method of Fig. 3. Referring first to Figures 3 and 4, the method of fabricating the photo-alignment film 400 is substantially the same as that of the alignment film 200 described in the above embodiments, and the difference is in the manner in which the exposure process is performed. In detail, in the exposure process of the present embodiment, step 310 is first performed. The substrate is divided into a plurality of third regions and a plurality of fourth regions. Each of the second regions includes at least a first region and at least a second region, and each of the fourth regions includes at least a first region and at least a second region. Then, step 320 and step 330 are performed to mask the fourth region and b blast out the second region, and then expose the first linearly polarized light to the exposure step 33, which is the exposure step of the above embodiment; ^^ No other instructions. Then, step 340 and step 35 are performed, the third region is shielded and the fourth region is exposed, and the exposure step is performed with the second linearly polarized light, and the linearly polarized light and the second linearly polarized light are The polarization directions are not flat with each other. Similarly, the exposure step 350 is performed in the same manner as the exposure step 40 of the above embodiment. At this time, the photoalignment film 200905333 ---------- TW 23886 twf.doc/n which is produced according to the above steps is as shown in the photoalignment film 400 of 4. Referring to Fig.*, the optical alignment film·the second region 410 includes a first region 412 and a second region 4M. At the same time, the fourth region 420 also includes a - region 412 and a second region 4M. After the exposure step is performed with the first-to-polarized light, the first region 412 and the second region in the third region 410 appear to have, for example, a first alignment direction A1 and a second alignment direction. After the exposure process is performed with the first linearly polarized light, the first region 412 and the second region 414 in the fourth _ have a third alignment direction i A3 and a fourth alignment direction A4 which are perpendicular to each other. In the present embodiment, the angle between the polarization directions of the first linearly polarized light and the second linearly polarized light is, for example, 45 degrees. Therefore, the first linearly polarized light and the second linearly polarized light cause the first alignment direction Α1# of the photo-decomposition-type alignment material to have a 45-degree angle. Similarly, the second alignment direction A2 formed by the photopolymerization of the photopolymerizable alignment material and the fourth alignment direction A4 also have an angle of 45 degrees. In other words, the exposure process I performed twice in this embodiment allows the photoalignment film 400 to have four different alignment directions. In summary, when the photo-alignment film of the different alignment directions is manufactured by the manufacturing method of the present invention, only the state 2 exposure process is required, compared with the multi-region alignment process of the conventional photo-alignment film. The number of exposure steps can be reduced - jji - 各个 In each of the embodiments described above, the linearly polarized light can illuminate the alignment liquid in a direction that does not perpendicular to the surface of the substrate. In this way, when the produced photo-alignment film is applied to the liquid crystal display panel, the liquid crystal molecules can be arranged in a manner of having a pretilt angle of 12 200905333 TW 23886 twf.doc/n, which contributes to an increase in the response rate of the liquid crystal molecules. As described above, the alignment liquid provided by the present invention contains a photodecomposable alignment material and a photopolymerizable alignment material, so that the alignment liquid can cause photodecomposition or photopolymerization depending on the energy received. Therefore, in the method for producing a photo-alignment film of the invention, an optical alignment film having two alignment directions can be formed by performing an underexposure process using an optical element. In short, the method for producing the alignment liquid and the photo-alignment film of the present invention can not only simplify the process of the photo-alignment film in the multi-p region alignment, but also reduce the process cost. The present invention has been disclosed in the above embodiments, and it is not intended to limit the invention to those skilled in the art, and it is possible to make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a cross-sectional view showing a method of fabricating an optical alignment film according to an embodiment of the present invention. FIG. 1B is a cross-sectional view showing the exposure method of step 40 of FIG. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 3 is a flow chart of a method for producing a photo-alignment film according to another embodiment of the present invention. Fig. 4 is a schematic view of a photo-alignment film produced according to the manufacturing method of Fig. 3. 200905333 TW 23886twf.doc/n [Description of main component symbols] 10 to 50, 310 to 350: Step 110: alignment liquid 120: substrate 122, 412: first region 124, 414: second region 130: linearly polarized light 140 : Optical element 〇 200, 400: photoalignment film 410: third region 420: fourth region A1, A2, A3, A4: alignment direction 14