[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW200849517A - Low melting point metal thermal interface material and thermal module applied the same - Google Patents

Low melting point metal thermal interface material and thermal module applied the same Download PDF

Info

Publication number
TW200849517A
TW200849517A TW96133111A TW96133111A TW200849517A TW 200849517 A TW200849517 A TW 200849517A TW 96133111 A TW96133111 A TW 96133111A TW 96133111 A TW96133111 A TW 96133111A TW 200849517 A TW200849517 A TW 200849517A
Authority
TW
Taiwan
Prior art keywords
heat dissipation
heat
melting point
alloy
low
Prior art date
Application number
TW96133111A
Other languages
Chinese (zh)
Other versions
TWI349352B (en
Inventor
Yuan-Chang Fann
Jiun-Mu Chen
Jiann-Jong Su
Cheng-Chou Wong
Jen-Dong Hwang
Fuh Yuarn Shiau
Chen Chuan Lin
Original Assignee
Ind Tech Res Inst
Thermoshuttle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst, Thermoshuttle Co Ltd filed Critical Ind Tech Res Inst
Priority to TW096133111A priority Critical patent/TWI349352B/en
Publication of TW200849517A publication Critical patent/TW200849517A/en
Application granted granted Critical
Publication of TWI349352B publication Critical patent/TWI349352B/en

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A metal thermal interface material (TIM) comprises In, and all of or part of the elements including Bi, Sn and Zn, having low thermal impedance and anti-leakage of melt. The TIM has melting temperature ranges from 55 DEG C up to 85 DEG C and a thickness not thicker than 0. 04 mm. A thermal module, utilized to dissipate heat of an electronic component, comprises a heat sink, an aforementioned metal TIM and a ring material. The heat sink is disposed above the electronic component. The metal TIM is disposed at a junction between the electronic component and the heat sink. The ring material is also disposed between the electronic component and the heat sink and around the periphery of the metal TIM.

Description

200849517 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種低熔點合金箔片,以及一種利用此 低熔點合金箔片作為熱界面材料之散熱模組。 【先前技術】 構裝微電子元件,例如高亮度發光二極體和中央處 理器等,因為發展朝向高功率、高速化、和/或小型化 等趨勢,微電子元件產生的高熱流量必須移除,使其接 面溫度維持低於其安全操作溫度。微電子元件的接面溫 度一旦超過安全操作溫度時,將劣化微電子元件的性 月色’或者損壞微電子元件,嚴重的影響電子元件的使用 壽命及可靠度。 伴隨著微電子及電子元件的散熱需求,刺激了散熱元 件、材料等電子散熱產品的多樣化與技術創新。電子散熱 產mi主要有散熱裝置,例如冷板、散熱器及風扇等,以及 熱界面材料(Thermal Interface Materials, TIM)兩種類別。 由前述散熱裝置及熱界面材料組合而成的散熱模組示 意圖如圖一 A所示,此散熱模組10包括一散熱器11及一 熱界面材料14。圖一 a中更顯示了一散熱系統,此散熱系 統包括上述之散熱模組10、一構裝微電子元件12及一電 路板13。其中,構裝微電子元件12設置於電路板13上, 散熱器11設置於構裝微電子元件12上方,熱界面材料14 設置於構裝微電子元件12與散熱器11之間。詳細地說, 200849517 ^ 熱界面材料14之兩侧面分別接觸於散熱器11的下表面以 及構裝微電子元件12的上表面。 熱界面材料14是使用於構裝微電子結構外部與散 熱為的第二階界面,其係湘自身可流動或預熱溶融的 特性填補前述元件間界面的微孔隙,藉此減少微電子熱量 傳遞至散熱元件或至散熱器的熱阻,以提高微電子散熱性 能。 ,熱界面材料的性能指標主要有熱傳導率與熱阻抗,熱 傳導率係指熱量在材料⑽熱傳導的能力,熱阻抗係指跨 越不同材料界面的熱傳導之效益。一般來說,熱界面材料 的熱傳導率愈高、界面接合厚度(bond line thickness)越 小’則熱界面材料之熱阻抗愈低。 構裝微電子與散熱器的第二階熱界面材料包含散 熱膏(thermal grease)和相變化材料(沖咖吐肪辟 material)等高分子化合物,以及低熔點合金(1〇w melting alloy)。其中在室溫為固態、界面上受熱可以 熔融的低熔點合金,藉由熔解潛熱以吸收大量熱能的特 性,已被證實具有較高分子化合物更好的散熱性能,而 可以更有效地將構裝微電子的熱傳導至微電子外部環 境。 利用低溶點合金作為熱界面材料的想法首見於美 國專利第 4,384, 610, ”Simple Thermal Joint,,,1983),後 、、只的低溶點合金應用於熱界面材料的相關專利,如美國 專利第6,281,573B1號和第6,343,647B2號所揭露。然 而,熔融的低熔點合金熱界面材料的液相如自熱界面溢 8 200849517 出’可能使得構裝微電子元件及装 應用上不如高分子編晴=崎鱗,因此實務 點人自界面溢漏的方法,主要在低熔 :二„的外圍安裝一環形塾片,亦或是所謂預 ttf 形體受_多时導致環形體的阻 f作用失效,例如熔融的液相盛滿環__有限空間 <溢出’或獅體的紐力量不均,使得獅體未緊貼 接合界面,而造成溢出。 針對前述問題,應·構裝微電子第二階的金屬熱 界面材料在政熱器扣具的壓力下炼解時,壓擠作用使得 熔融液相往自由空間流動,通常是金屬熱界面材料的外 圍,並使该低熔點金屬的界面接合厚度減薄;熔融液相 除了填滿界面_孔隙之外,其他的多餘液相自然往流 動阻力較低的金屬熱界面材料外圍區域流動。低熔點合 金熱界面材料的原始厚度越厚,則往外圍區域流動的多 餘液相越多,形成的珠狀液滴越大,重力促使珠狀液滴 自界面溢漏的可能性越高。 此外,熱熔液滴與周邊材料的表面吸附力亦會影響液 相的流動,例如低熔點合金液相與銅和鋁的不同介面反 應,使得液相較不容易於銅界面上溢漏。又不同的使用 環境,可能使得重力的影響更加顯著,例如圖一B所示, 有些散熱模組之設置位置係為立放,也就是轉90度後置放 (如:電腦主機的CPU散熱模組),此時如熱熔液滴之重力 大於金屬液滴與周邊材料之吸附力時,熱熔液滴便會向下 汽漏0 9 200849517 為了因應微電子元件的曰趨嚴苛散熱需求,以及有效 解決低?點合金熱界面材料驗相溢關題…種兼具高 散熱與高阻漏紐的低舰合金郎的祕面材料以及使 用該低熔點合金箔片的散熱模組被開發出來。 【發明内容】 本發明之一目的係在於防止低熔點合金熱界面材料受 熱液化後之液滴洩漏。 本發明之另一目的係在於利用厚度不大於〇〇4 _之 低熔點合金則作為散賴組之熱界面材料,使得散熱模 組具有極麵散熱絲,以及防歧融麟點合金熱界面 材料的液相溢漏出熱界面。 本發明提供-種兼具有低触抗雛以及抑制熱熔金 屬液相溢漏的低溶點合金熱界面材料,其係由必要的钢⑽ 以及叙㈣、錫(Sn)、和鋅(Zn)等元素之部份或全部組合 而成。此低熔點合金熱界面材料熔解溫度介於55。〇至85。〇 之間’且其厚度不大於_職。其中,該低炼點合金轨 界面材料之健厚度細條aG15mm i G G3mm n 本發明提供-種電子元件的散熱模組,包括一散熱 器、一低熔點合金箔片及一環形體。其中,電子元件言=置 於一電路板上,且彼此電路相連接,散熱器設置於電^元 件上方。低熔點合金㈣設置於電子元件與雜器之間, 且作為電子元件與散熱器間之熱界面材料。環形體設置於 電子元件與散熱器之間,且環繞於低熔點合金箔片之周緣: 環形體之魏主要有轉界面接合厚度、延緩低炼點 200849517 合金箱片熔融後的氧化速率,以及可強化低炼點合金熱溶 液滴自電子元件與散熱器之間的阻漏。 本發明另提供一種電子元件的散熱模組,包括一散熱 器和一低熔點合金箔片。藉由低熔點合金箔片之厚度係不 大於0.04mm,使低熔點合金箔片熔融後之液相適量化, 前述的液相除填補界面微孔隙之外,其餘的液相質量極少 化’以抑制其流動性,使不容易產生泡漏情形。關於本發 明之優點與精神,以及更詳細的實施方式可以藉由以下的 實施方式以及所附圖式得到進一步的暸解。 【實施方式】 請參照圖二A,其係為本發明散熱模組之一實施例之 示意圖。本發明的散熱模組20,可使一電子元件22運作 時所產生的熱能快速傳導至外界環境,散熱模組2〇包括一 散熱器21及一低熔點合金箔片24。如圖所示,散熱器21 設置於電子元件22上方,低熔點合金箔片24設置於電子 元件22與散熱器21之間,且作為電子元件22與散熱器 21間之熱界面材料。另外,電子元件22係設置於一電路 板23上,且彼此電路相連接。詳細地說,低熔點合金箱片 24之兩側面分別接觸於散熱器21的下表面以及電子元件 22的上表面。請參照圖二B,其係為本發明一實施例之低 溶點合金羯片不意圖。 在另一實施例中’為了更加有效地防止低熔點合金箔 片24之熱熔液流動而洩漏至電路板23上,除了使用厚度 較小之低熔點合金箔片24之外,更可以使用面積較小的低 200849517 溶點合金治片24至本發明之散熱模組,也是個可防止洩漏 的方法。 為釐清不同厚度的低熔點合金箔片熔融後的厚度變 化,以及熱阻抗數值的影響。製作熔點6(rc、重量組成 In_Bi32.5_Snl6.5的合金箔片,箔片長、寬均為31mm, 厚度分別為 0.1mm、0.075mm、0·05 mm、0.03mm 和 0·015 mm。前述不等厚度的In-Bi32.5-Snl6.5合金箔片於一改良 自ASTM D5470規範的熱阻抗測試設備進行熱阻抗量 測’測试條件分別為48瓦與3.1kg/cm2的壓力。 測試後發現除了厚度〇·03 _和0 015 111111的箔片邊 緣未熔出珠狀液滴外,其餘厚度的箔片均溢出珠狀液滴, 而且珠狀液滴的尺寸與數量隨原箔片的厚度增加而增加。 圖二是不同厚度In-Bi32.5-Snl6.5合金箔片的熱阻抗 數值曲線,不同厚度的合金箔片的熱阻抗數值隨著厚度的 遞減而降低,直到厚度〇·〇15_的箔片測試數值出現轉 折’其中厚度〇.〇15mm箔片的熱阻抗數值略高於厚度 〇·〇3 mm箔片的數值。前述熱阻抗數值的轉折原因似乎與 厚度〇.〇15mm箔片的熔解液相不足以填補界面微孔隙有 關。 不同厚度箔片測試前、後的厚度變化呈現一明顯趨 勢’測試前合金箔片的厚度越大,測試後的厚度變化量越 大’此外’除了 0.015mm箔片測試前、後的厚度幾乎無 明顯變化’測試前其他不同厚度的箔片,包含0.03 mm厚 度的、消片’於測試後的厚度均介於〇 〇2mm至〇 〇3 mm 之間。 200849517 前述 In-Bi32.5-Snl6.5 合金、厚度 〇.〇7mm、0.05mm、 (X04mm以及0.03mm的箔片分別置放於銘塊材(a”、鍍 鎳塊材(Ni)之閜,以及銅塊材(Cu)、銅塊材之間(Qi),立 式放置並加熱至70°C維持100小時,然後降溫至室溫, 拆解前述的塊材,檢視前述合金箔片熱融液相的流動情 形。 圖四至圖七分別是厚度0·07、0·05、0.04和0.03mm 厚度的猪片在Al/Ni界面70°C持溫的溢流照片。比較各 圖後顯示,厚度0.03 mm的箔片維持原來矩形外觀,其 餘厚度的箔片均因液相流動而改變其形狀。 而刖述不專厚度的合金猪片在Cu/Cu界面的流動結 果’厚度0.03、0.04 mm的箔片維持原來矩形外觀,其 餘厚度的箔片均因液相流動而改變其形狀。圖八是厚度 〇· 03 mm箔片在Cu/Ni界面、70°C持溫100小時的外觀, 同樣無溢漏,其中熱熔液相與Cu塊形成界面反應,在 拆解Cu塊時撕裂箔片。 此外,In-Bi32.5-Snl6.5 合金、厚度 〇.〇2 mm 至 0.13mm不等的箔片分別置放於熱阻測試基台上,籍壓箱 片的政熱器底板為銘合金,提供一固定加熱功率使測試 載台升溫至70。〇,促使箔片熔解,然後降溫並檢查箔片 的厚度與重量變化,表一是測試前、後的相關數據。200849517 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a low melting point alloy foil and a heat dissipation module using the low melting point alloy foil as a thermal interface material. [Prior Art] The construction of microelectronic components, such as high-brightness light-emitting diodes and central processing units, etc., due to the trend toward high power, high speed, and/or miniaturization, the high heat flux generated by microelectronic components must be removed. Keep its junction temperature below its safe operating temperature. Once the junction temperature of the microelectronic component exceeds the safe operating temperature, it will degrade the moonlight color of the microelectronic component or damage the microelectronic component, seriously affecting the life and reliability of the electronic component. Along with the heat dissipation requirements of microelectronics and electronic components, it has stimulated the diversification and technological innovation of electronic heat dissipation products such as heat dissipation components and materials. Electronic heat dissipation Mi mainly has heat sinks, such as cold plates, radiators and fans, and Thermal Interface Materials (TIM). The heat dissipating module formed by the combination of the heat dissipating device and the thermal interface material is shown in FIG. 1A. The heat dissipating module 10 includes a heat sink 11 and a thermal interface material 14. A heat dissipation system is further illustrated in FIG. 1a. The heat dissipation system includes the heat dissipation module 10, a microelectronic component 12, and a circuit board 13. The mounting microelectronic component 12 is disposed on the circuit board 13, the heat sink 11 is disposed above the mounting microelectronic component 12, and the thermal interface material 14 is disposed between the microelectronic component 12 and the heat sink 11. In detail, 200849517 ^ Both sides of the thermal interface material 14 are in contact with the lower surface of the heat sink 11 and the upper surface of the microelectronic element 12, respectively. The thermal interface material 14 is used for constructing a second-order interface outside the microelectronic structure and dissipating heat, and the characteristics of the flowable or preheating melt of the structure itself fill the micropores of the interface between the elements, thereby reducing the heat transfer of the microelectronics. Thermal resistance to the heat sink or to the heat sink to improve microelectronic heat dissipation. The thermal interface material performance index mainly includes thermal conductivity and thermal impedance. The thermal conductivity refers to the heat transfer capability of the material (10), and the thermal impedance refers to the heat transfer effect across different material interfaces. In general, the higher the thermal conductivity of the thermal interface material and the smaller the bond line thickness, the lower the thermal impedance of the thermal interface material. The second-order thermal interface material for constructing the microelectronics and the heat sink comprises a polymer compound such as a thermal grease and a phase change material, and a low melting alloy. Among them, a low melting point alloy which is solid at room temperature and which can be melted by heat at the interface, has been characterized by melting latent heat to absorb a large amount of heat energy, and has been confirmed to have a higher heat dissipation property of a higher molecular compound, and can be more efficiently constructed. The heat of the microelectronics is transferred to the external environment of the microelectronics. The idea of using a low melting point alloy as a thermal interface material is first seen in U.S. Patent No. 4,384,610, "Simple Thermal Joint,", 1983), and later, only low melting point alloys are used in thermal interface materials, such as the United States. Patent Nos. 6,281,573 B1 and 6,343,647 B2. However, the liquid phase of the molten low melting point alloy thermal interface material, such as the self-heating interface, may not make the microelectronic component and the application less suitable for the polymer. Edited clear = Saki scale, so the practice of people from the interface leakage method, mainly in the low-melting: two outer periphery of the installation of a ring-shaped cymbal, or the so-called pre-ttf body is subject to _ many times lead to the ring body's resistance f failure For example, the molten liquid phase fills the ring __limited space <overflow& or the lion's strength is uneven, so that the lion body does not cling to the joint interface, causing overflow. In view of the above problems, when the metal thermal interface material of the second order of microelectronics is to be refined under the pressure of the enameling device, the pressing action causes the molten liquid to flow into the free space, usually a metal thermal interface material. The periphery and the interface bonding thickness of the low melting point metal are thinned; the molten liquid phase flows in addition to the interface_pore, and the other excess liquid phase naturally flows to the peripheral region of the metal thermal interface material having a lower flow resistance. The thicker the original thickness of the low-melting alloy thermal interface material, the more the excess liquid phase flows into the peripheral region, and the larger the bead droplets formed, the higher the possibility that gravity will cause the bead droplets to leak from the interface. In addition, the surface adsorption of the hot melt droplets and the surrounding material also affects the flow of the liquid phase. For example, the liquid phase of the low melting point alloy reacts with different interfaces of copper and aluminum, making the liquid phase less likely to overflow at the copper interface. Different usage environments may make the influence of gravity more significant. For example, as shown in Figure 1B, some of the heat-dissipating modules are placed in a vertical position, that is, after being rotated 90 degrees (for example, the CPU cooling module of the computer mainframe) Group), at this time, if the gravity of the hot melt droplet is greater than the adsorption force of the metal droplet and the surrounding material, the hot melt droplet will leak downward. 0 200849517 In order to meet the stringent heat dissipation requirements of the microelectronic component, And effectively solve the low-point alloy thermal interface material phase-checking problem... The low-alloy alloy lang secret material with high heat dissipation and high resistance leakage and the heat dissipation module using the low-melting alloy foil are developed. . SUMMARY OF THE INVENTION One object of the present invention is to prevent droplet leakage of a low melting point alloy thermal interface material after being thermally liquefied. Another object of the present invention is to use a low melting point alloy having a thickness of not more than 〇〇4 _ as a thermal interface material of the dispersing group, so that the heat dissipating module has a surface heat dissipating wire, and an anti-aliasing alloy thermal interface material The liquid phase leaks out of the thermal interface. The invention provides a low-melting-point alloy thermal interface material which has both low-impact resistance and inhibits hot-melt metal liquid-liquid leakage, and is composed of necessary steel (10) and Syria (four), tin (Sn), and zinc (Zn). ) Part or all of the elements are combined. The low melting point alloy thermal interface material has a melting temperature of 55. 〇 to 85. Between ’ and its thickness is not greater than _ position. The thin strip of the low-altitude alloy rail interface material aG15mm i G G3mm n The present invention provides a heat dissipating module for an electronic component, comprising a heat sink, a low melting point alloy foil and a ring body. Wherein, the electronic component is placed on a circuit board and connected to each other, and the heat sink is disposed above the electrical component. The low melting point alloy (4) is disposed between the electronic component and the impurity device and serves as a thermal interface material between the electronic component and the heat sink. The annular body is disposed between the electronic component and the heat sink and surrounds the periphery of the low melting point alloy foil: the Wei of the annular body mainly has the thickness of the interface bonding, and the oxidation rate of the low melting point 200849517 alloy box piece is melted, and Strengthen the low temperature point alloy hot solution drop from the electronic component and the heat sink to prevent leakage. The invention further provides a heat dissipation module for an electronic component, comprising a heat sink and a low melting point alloy foil. The thickness of the low melting point alloy foil is not more than 0.04 mm, so that the liquid phase after melting of the low melting point alloy foil is properly quantified, and the liquid phase is less than the interface micropores, and the remaining liquid phase is extremely small. The fluidity is suppressed, so that bubble leakage is not easily generated. The advantages and spirit of the present invention, as well as the more detailed embodiments, can be further understood by the following embodiments and the accompanying drawings. [Embodiment] Please refer to FIG. 2A, which is a schematic diagram of an embodiment of a heat dissipation module of the present invention. The heat dissipation module 20 of the present invention can quickly transfer heat generated by an electronic component 22 to the external environment, and the heat dissipation module 2 includes a heat sink 21 and a low melting point alloy foil 24. As shown, the heat sink 21 is disposed above the electronic component 22, and the low melting point alloy foil 24 is disposed between the electronic component 22 and the heat sink 21 and serves as a thermal interface material between the electronic component 22 and the heat sink 21. Further, the electronic components 22 are disposed on a circuit board 23 and are connected to each other. In detail, the two sides of the low melting point alloy case piece 24 are in contact with the lower surface of the heat sink 21 and the upper surface of the electronic component 22, respectively. Referring to Figure 2B, it is not intended to be a low melting point alloy crucible according to an embodiment of the present invention. In another embodiment, in order to more effectively prevent the hot melt flow of the low melting point alloy foil 24 from leaking onto the circuit board 23, in addition to the use of the low-thickness low-melting alloy foil 24, the area can be used. The smaller low 200849517 melting point alloy sheet 24 to the heat dissipation module of the present invention is also a method for preventing leakage. In order to clarify the thickness variation of the low-melting alloy foil of different thicknesses and the influence of the thermal impedance value. An alloy foil having a melting point of 6 (rc, weight composition In_Bi32.5_Snl6.5) was produced, and the length and width of the foil were 31 mm, and the thicknesses were 0.1 mm, 0.075 mm, 0·05 mm, 0.03 mm, and 0·015 mm, respectively. The equal-thickness In-Bi32.5-Snl6.5 alloy foil was subjected to thermal impedance measurement in a thermal impedance test apparatus modified from ASTM D5470's test conditions of 48 watts and 3.1 kg/cm2, respectively. It was found that except for the thickness of 〇·03 _ and 0 015 111111, the edges of the foil did not melt the bead droplets, and the remaining thickness of the foil overflowed the bead droplets, and the size and number of the bead droplets were the same as those of the original foil. Figure 2 shows the thermal impedance curves of different thickness In-Bi32.5-Snl6.5 alloy foils. The thermal impedance values of alloy foils with different thicknesses decrease with decreasing thickness until the thickness is 〇· The foil test value of 〇15_ has a turning point. The thermal impedance value of the 〇15mm foil is slightly higher than the thickness of the 〇·〇3 mm foil. The reason for the above thermal resistance value seems to be the thickness 〇.〇 The melting liquid phase of the 15mm foil is not sufficient to fill the interface micropores. The thickness change before and after the thickness foil test showed a clear trend. The greater the thickness of the alloy foil before the test, the greater the thickness change after the test. In addition, the thickness before and after the 0.015mm foil test was almost no significant. Variations of other foils of different thicknesses before testing, including 0.03 mm thickness, and the thickness of the film after testing were between 〇〇2 mm and 〇〇3 mm. 200849517 The aforementioned In-Bi32.5-Snl6.5 Alloy, thickness 〇.〇7mm, 0.05mm, (X04mm and 0.03mm foils are placed on the block (a), nickel-plated block (Ni), and copper block (Cu), copper block Between the materials (Qi), stand up and heat to 70 ° C for 100 hours, then cool to room temperature, disassemble the above block, and examine the flow of the hot melt liquid phase of the above alloy foil. Figure 4 to Figure 7 The overflow images of the pig slices with thicknesses of 0·07, 0·05, 0.04, and 0.03 mm at 70 ° C at the Al/Ni interface. The comparison of the figures shows that the foil with a thickness of 0.03 mm maintains the original rectangular appearance. The remaining thickness of the foil changes its shape due to the liquid phase flow. The flow of the sheet at the Cu/Cu interface results in a thickness of 0.03, 0.04 mm of the foil maintaining the original rectangular appearance, and the remaining thickness of the foil changes its shape due to the liquid phase flow. Figure 8 is a thickness of 〇 · 03 mm foil in Cu The appearance of the /Ni interface at 70 ° C for 100 hours is also the same as that of the overflow, in which the hot melt liquid phase forms an interface reaction with the Cu block, and the foil is torn when the Cu block is disassembled. In addition, In-Bi32.5-Snl6.5 alloys, foils with thicknesses ranging from mm2 mm to 0.13 mm are placed on the thermal resistance test abutment, and the e-heater bottom plate of the pressure box is an alloy. Provide a fixed heating power to warm the test stage to 70. 〇, the foil is melted, then the temperature is lowered and the thickness and weight of the foil are checked. Table 1 shows the relevant data before and after the test.

加熱前原始 溢出前原始 溢出量 溢出後剩餘重 溢出後剩餘厚 重*⑷ 厚度(mm) (g) 量㈤ 度(mm) 13 200849517Raw before overflow Original overflow before overflow Heavy residual after overflow Thickness remaining after overflow*(4) Thickness (mm) (g) Amount (five) Degree (mm) 13 200849517

表一 不同厚度的箔片在Cu/Al載台加熱7(TC後的厚度變化 由以上測成結果得知,低溶點合金笛片的厚度愈 薄,則箔片的熱熔液相流動愈不易發生;此外,周邊材 =的組成會影響熔解液相的流動。並且,無論測試的載 口 =设置位置為平放或立放(轉9〇度設置),在低熔點合 金v|片的厚度低於—臨界厚度時,熱熔液相的流動不易 發生。以上結果顯示熱熔液相與周邊材料的吸附力會大 於2促使其流動的力量來源,例如重力或箝壓力量。經 ’前述低烙點合金箱片的臨界厚度應不 大於 0.04 mm。 基於前述的吨絲,當本㈣之娜點合金箱片 200849517 Μ的厚度接近臨界厚度時,低熔點合金箔片24之熱熔 液相便相當不易流動,進而不易產生触的情形。 因此,在本實施例之散熱模組2〇中,低炫人金猪 片?4之厚度t係不大於_聰,且在較佳 度係介於0.015mm至(X〇3mm之間。 值得注意的是,本發明之烟:點合錢卩24係為一種 a金其主要組成元素可為Ιη-ΒρSn、In-Bi-Sn_Zn或In-B 〇 此外,前駐要組成合金更可包括至少—種非毒害環境 元素,例如銀、銅、鈦、鍺、紹、鈽、鑭或石夕等元素。 並且’低熔點合金Μ 24可依上雜成元素的不同而有 55 C至85C不等熔點變化。請參照表二,其係為不同組成 合金及其熔點,主要是用來說明本發明的實施方式,而 不是用來限制其中的組成含量。Table 1 shows the thickness of the foil on the Cu/Al stage. The thickness change after the TC is determined by the above results. The thinner the thickness of the low melting point alloy flute, the more the hot melt liquid phase of the foil flows. Not easy to occur; in addition, the composition of the surrounding material = will affect the flow of the molten liquid phase. And, regardless of the test port = set position is flat or vertical (turn 9 〇 setting), in the low melting point alloy v | When the thickness is lower than the critical thickness, the flow of the hot melt liquid phase is not easy to occur. The above results show that the adsorption force of the hot melt liquid phase and the surrounding material will be greater than 2 sources of force that cause it to flow, such as gravity or force of the clamp. The critical thickness of the low-burning alloy box piece should be no more than 0.04 mm. Based on the above-mentioned ton wire, when the thickness of the (4) nano-point alloy box piece 200849517 接近 is close to the critical thickness, the hot-melt liquid phase of the low-melting alloy foil 24 Therefore, it is not easy to flow, and it is not easy to generate a touch. Therefore, in the heat dissipation module 2 of the embodiment, the thickness t of the low-shrinking gold pig piece 4 is not greater than _ Cong, and in the preferred degree From 0.015mm to (X〇3mm. It is worth noting The smoke of the present invention: the point of the money 24 is a kind of a gold whose main constituent element may be Ιη-ΒρSn, In-Bi-Sn_Zn or In-B 〇 In addition, the former resident alloy may further include at least - Non-toxic environmental elements such as silver, copper, titanium, niobium, samarium, tantalum, niobium or Shi Xi. And 'low melting point alloy Μ 24 can vary from 55 C to 85 C depending on the impurity element. For the change, please refer to Table 2, which is a different composition alloy and its melting point, which is mainly used to explain the embodiment of the present invention, and is not intended to limit the composition content thereof.

15 200849517 說,低熔點合金箔片24的熔點約在電子元件22的工作溫 度附近。也就是說,使用上係依照不同電子元件22的工^ 溫度來選用不同熔點的低熔點合金箔片24。藉此,當電子 元件22產生較局的工作溫度時,低溶點合金箱片%便會 受熱而溶融。 凊參照圖九,其係為本發明散熱模組之另一實施例之 剖面示意圖。如圖所示,本實施例之散熱模組%,亦可 使-電子元件32運作時所產㈣熱能快速傳導至外界環 境’散熱模組30包括一散熱器31、一低熔點合金箔片% 及一環形體35。 其中,環形體35的作用主要有維持界面接合厚度、 延緩低雜合錢片34熱熔氧化的速率,使娜點合金 箔片34的散熱效能不致因過度氧化而劣化,此外,也可 用來強化低溶點合金箔片34熱熔液相的阻漏。 電子元件32設置於-電路板33上,散熱器31設置 於電子it件32上方。娜點合金㈣34設置於電子元件 32與散熱器31之間,且作為電子元件32與散熱器3ι間 之熱界面材料。詳細地說,低熔點合金羯片34之兩側面 分別接觸於散熱$ 31的下表面減t子元件32的上表 面0 本發明低熔點合金箱片34與環形體35之設置型態如 圖十A所,。環形體35設置於電子元件32與散熱器^31 之間’且環繞於低熔點合金箔片34之周緣。其中,環形 體35可與健點合金μ 34之周緣接觸,或者亦可與低 溶點合金34之周緣具有些微空隙。藉由獅體%之 200849517 $又计可使低炼點合金箱片34受熱溶融液化時,熱炫液相 更不易自電子元件32與散熱器31之間洩漏出去。 本實施例亦可結合上一實施例,也就是將低熔點合金 箔片34之厚度降至〇.〇4mm以下,而達到更佳的阻漏效果。 值付注意的疋’由於低溶點合金箱片34之兩侧面必須 分別接觸於散熱器31的下表面以及電子元件32的上表 面,才能有效散熱。所以,在本實施例中,散熱器31壓合 至低熔點合金箔片34上表面時,亦同時接觸到環形體35 的上表面,也就是說,此時溶點合金箔片34與環形體35 具有相同的厚度。另外,環形體35的厚度略小於低熔點合 金箔片34之厚度時,環形體35亦具有不錯的阻漏效果。 在環形體35選用方面,環形體35可為黏彈性墊片、 散熱膏(thermal grease)或相變化散熱貼片(phase change thermal pad)··等兼具散熱性質且可受力而變形之材料所構 成。 另外,如圖十B所示,在一較佳實施例中,環形體35 具有複數個逃氣孔36,藉此,低熔點合金箔片34溶融液 化後所形成之氣泡可藉由逃氣孔36逸出。 值得注意的是,本發明之技術特徵應用於電子元件的 散熱模組,除了可應用於諸如電腦、遊戲機等中央處理器 和繪圖處理器等微電子元件的散熱模組外,更可以應用到 任何具有發熱元件的散熱模組。也就是說,上述各實施例 中的電子元件可以是構裝微電子元件,或者任何一種發熱 元件,例如:用來設置LED燈的金屬芯基板(Metal c〇re 17 200849517 PCB,MCPCB) 〇 綜上所述,本發明之散熱模組具有下列優點·· 一、 環形體的功能主要有維持接面接合厚度、延緩熔 融的低熔點合金箔片氧化,另外兼具有強化熱溶液滴的阻 漏效果。 二、 厚度不大於0.04mm的低熔點合金箔片應用至散 熱模組時,可抑制低熔點合金箔片受熱熔融的流動性,而 減少液滴洩漏的問題。 二、厚度不大於0.04mm的低熔點合金箔片具有極小 的熱阻抗(R),因此應用至散熱模組時,可發揮極佳的散熱 效果。 本發明雖以較佳實例闡明如上,然其並非用以限定本 發明精神與發明實體僅止於上述實施例爾。對熟悉此項技 術者,當可輕易了解並利用其它元件或方式來產生相同的 功效。是以,在不脫離本發明之精神與範圍内所作之修改, 均應包含在下述之申請專利範圍内。 【圖式簡單說明】 藉由以下詳細之描述結合所附圖示,將可輕易的了解 上述内容及此項發明之諸多優點,其中: 圖一A係為習知散熱模組之示意圖; 圖一B係為習知散熱模組設置型態之示意圖; 圖一Α係為本發明散熱模組之一實施例之示音圖; 18 200849517 圖二B係為本發明一實施例之低熔點合金箔片示惫 圖三係為重量組成In_Bi32 5-Snl6.5合金箔片的熱 阻抗與其厚度的關係曲線; ' 圖四至圖七係為不同厚度的箔片在Al/Ni界面、7〇 °C持溫的溢流照片; 圖八係為厚度〇· 03麵箔片在cu/Ni界面、7(Tc持 溫100小時的外觀照片; 圖九係為本發明散熱模組之另一實例之剖面示意 圃, 圖十A係為本發明低炼點合金箱片與環形體之設置 型態之一實施例之示意圖;以及 圖十B係為本發明低熔點合金箔片與環形體之設置 型態之另一實施例之示意圖。 【主要元件符號說明】 10、20、30 :散熱模組 U、21、31 :散熱器 12 :構裝微電子元件 22、32 :電子元件 13、23、33 ·電路板 14 ··熱界面材料 24、34 :低熔點合金箔片35 :環形體 36 :逃氣孔15 200849517 It is stated that the melting point of the low melting point alloy foil 24 is approximately in the vicinity of the operating temperature of the electronic component 22. That is to say, the low melting point alloy foil 24 of different melting points is selected according to the working temperature of the different electronic components 22. Thereby, when the electronic component 22 produces a relatively constant operating temperature, the low melting point alloy case% is heated and melted. Referring to Figure 9, there is shown a cross-sectional view of another embodiment of the heat dissipation module of the present invention. As shown in the figure, the heat dissipation module % of the embodiment can also enable the electronic component 32 to operate (4) thermal energy to be quickly transmitted to the external environment. The heat dissipation module 30 includes a heat sink 31 and a low melting point alloy foil. And an annular body 35. Among them, the role of the annular body 35 is mainly to maintain the thickness of the interface joint and delay the rate of hot melt oxidation of the low-hybrid sheet 34, so that the heat dissipation performance of the nano-point alloy foil 34 is not deteriorated by excessive oxidation, and can also be used for strengthening. The low melting point alloy foil 34 is blocked by the hot melt liquid phase. The electronic component 32 is disposed on the circuit board 33, and the heat sink 31 is disposed above the electronic component 32. The nano-point alloy (4) 34 is disposed between the electronic component 32 and the heat sink 31 and serves as a thermal interface material between the electronic component 32 and the heat sink 3i. In detail, the two sides of the low-melting alloy crucible 34 are respectively in contact with the lower surface of the heat dissipation $31 minus the upper surface of the sub-element 32. The arrangement of the low-melting alloy case 34 and the annular body 35 of the present invention is as shown in FIG. A,. The annular body 35 is disposed between the electronic component 32 and the heat sink ^31 and surrounds the periphery of the low melting point alloy foil 34. The annular body 35 may be in contact with the periphery of the point alloy μ 34 or may have a slight gap with the periphery of the low melting point alloy 34. The hot liquid phase is more difficult to leak from between the electronic component 32 and the heat sink 31 by the lion body% of 200849517 $ again, when the low-melting point alloy box piece 34 is heated and melted. This embodiment can also be combined with the previous embodiment, that is, the thickness of the low melting point alloy foil 34 is reduced to less than 〇4 mm to achieve a better leakage preventing effect. The value 付' is effective because the two sides of the low melting point alloy case 34 must be in contact with the lower surface of the heat sink 31 and the upper surface of the electronic component 32, respectively. Therefore, in the present embodiment, when the heat sink 31 is pressed against the upper surface of the low melting point alloy foil 34, it also contacts the upper surface of the annular body 35, that is, the melting point alloy foil 34 and the annular body at this time. 35 has the same thickness. Further, when the thickness of the annular body 35 is slightly smaller than the thickness of the low-melting alloy foil 34, the annular body 35 also has a good leakage preventing effect. In terms of the selection of the annular body 35, the annular body 35 may be a viscoelastic gasket, a thermal grease or a phase change thermal pad, etc., which has heat dissipation properties and can be deformed by force. Composition. In addition, as shown in FIG. 10B, in a preferred embodiment, the annular body 35 has a plurality of escape holes 36, whereby the bubbles formed by the liquefaction of the low melting point alloy foil 34 can be escaped by the escape hole 36. Out. It should be noted that the technical features of the present invention are applied to a heat dissipation module of an electronic component, and can be applied to a heat dissipation module of a microelectronic component such as a central processing unit such as a computer or a game machine, and a graphics processor. Any thermal module with a heating element. That is to say, the electronic components in the above embodiments may be a microelectronic component, or any heat generating component, for example, a metal core substrate for setting an LED lamp (Metal c〇re 17 200849517 PCB, MCPCB) As described above, the heat dissipation module of the present invention has the following advantages: 1. The function of the annular body mainly maintains the thickness of the joint joint, delays the oxidation of the molten low-melting alloy foil, and additionally has the barrier of strengthening the hot solution droplets. effect. 2. When the low melting point alloy foil having a thickness of not more than 0.04 mm is applied to the heat dissipation module, the fluidity of the low melting point alloy foil to be melted by heat can be suppressed, and the problem of droplet leakage can be reduced. 2. The low melting point alloy foil with a thickness of not more than 0.04mm has a very small thermal resistance (R), so it can exert excellent heat dissipation when applied to a heat dissipation module. The present invention has been described above by way of a preferred embodiment, and is not intended to limit the spirit of the invention and the inventive subject matter. For those skilled in the art, other components or means can be easily understood and utilized to produce the same effect. Modifications made within the spirit and scope of the invention are intended to be included within the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other advantages of the invention will be readily understood by the following detailed description in conjunction with the accompanying drawings in which: Figure 1A is a schematic diagram of a conventional heat dissipation module; B is a schematic diagram of a conventional heat dissipation module setting type; FIG. 1 is a sound diagram of an embodiment of the heat dissipation module of the present invention; 18 200849517 FIG. 2B is a low melting point alloy foil according to an embodiment of the present invention The film shows the relationship between the thermal impedance of the In_Bi32 5-Snl6.5 alloy foil and its thickness; 'Figure 4 to Figure 7 are the foils of different thickness at the Al/Ni interface, 7〇°C Photograph of warm overflow; Figure 8 is the thickness of 〇 · 03 face foil at cu / Ni interface, 7 (Tc temperature is 100 hours of appearance photos; Figure IX is a cross-section of another example of the heat dissipation module of the present invention圃, FIG. 10A is a schematic view showing one embodiment of the arrangement form of the alloy box and the ring body of the low-smelting point of the present invention; and FIG. 10B is the setting type of the low-melting alloy foil and the ring body of the present invention. Schematic diagram of another embodiment. [Main component symbol description] 10 20, 30: heat dissipation module U, 21, 31: heat sink 12: structure microelectronic components 22, 32: electronic components 13, 23, 33 · circuit board 14 · thermal interface materials 24, 34: low melting point alloy foil Sheet 35: Ring Body 36: Escape Hole

Claims (1)

200849517 十、申請專利範圍: h 抗街纽及抑制贿觸液相溢漏 材料,其係由必要的銦(In)以及祕 (B〇、錫㈣、和辞(Zn)等元素之部份或全部組合而 ί反ϊίϊίΐί於饥至85t之間,該低溶點合金 熱界面材料的改良在於厚度不大於〇 〇4mn^ 2. ίΠί利範圍第1項所述之低熔點合金熱界面材料, 其二該低熔,合金熱界面材料之較佳厚度範圍介於 0.015mm 至 0.03mm 之間。 3. -種散麵組,可使—電子元件運作時 傳導至外界環境,該散熱模組包括··的熱^速 一散熱器,設置於該電子元件上方; 一厚度不大於_mm的健點合金制,設置 ;:====,且料該電子元件棘散熱器間 _=點:==件與該散熱器之間,且環燒於 人 4· 第3項所述之散熱模組,其中該低溶點 金片之車又佳厚度範圍介於〇.〇15mm至a〇3mm之間。 第3項所述之散熱模組,其中該低溶點合 1 ^由必要的鋼(In)以及⑪(Bi)、錫(Sn)、和鋅 QZn)等疋素之部份或全部組合而成。 6· 第5項所述之散熱模組,其中該低炼點合 金1片為一 In七i_Sn合金或In-Bi-Sn-Zn合金或In_Bi合 20 200849517 7. 散熱模組,其中該㈣點合 銀、《可,二= 8’ 組’其一合 為第3項所述之散熱模組’其中該環形體係 11. Γίίΐί^3項崎之触觀,其㈣環形想係 12··^散熱漁,可使—電子树運作時 傳導餅界環境,該雜觀包括·· 速 一散熱器,設置於該電子元件上方;以及 一厚度不大於_mm的低熔點合金制,設置於該 之間’且作為該電子元件触散熱器間 之熱界面材料。 13. 如申請專利範圍第12項所述之散熱模組,其中該低 合金箱片之較佳厚度範圍介於0.015mm至〇 〇3職之 14. 如申請專利範圍第12項所述之散熱模組,其中該低熔點 合金箔片的組成由必要的銦(In)以及鉍(Bi)、錫 鋅(Ζη)等元素之部份或全部組合而成。)別⑽和 21 200849517 15 In-Bi 16i申if專利範圍第15項所述之散賊組,其巾^_ 素’例如銀、銅、钦、錄、“、::等害:素境元 1— 輸蝴驗速傳導 一散熱器’設置於該發熱元件上方; 一厚=大於0.04mm❾低溶點合金箱片,設置於該發熱 二二該散熱器之間’且作為該發熱元件無散熱器間 之熱界面材料;以及 一環形體’設置麟發熱元件無散鮮之間,且環繞於 該低溶點合金箔片之周緣。 19·種散熱模組,可使一發熱元件運作時所產生的熱能快 速傳導至外界環境,該散熱模組包括: 一散熱器,設置於該發熱元件上方;以及 一f度不大於〇.〇4mm的低熔點合金箔片,設置於該發熱 疋件與該散熱器之間,且作為該發熱元件與該散熱器間 之熱界面材料。 22200849517 X. Patent application scope: h anti-street and anti-brace liquid leakage materials, which are partly composed of elements such as indium (In) and secret (B〇, tin (4), and Zn). The low-melting point alloy thermal interface material is improved by a thickness of not more than 〇〇4mn^ 2. Secondly, the low-melting, alloy thermal interface material preferably has a thickness ranging from 0.015 mm to 0.03 mm. 3. - A type of surface layer enables the electronic component to be transmitted to the external environment during operation, and the heat dissipation module includes · A heat sink, a heat sink, disposed above the electronic component; a thickness of no more than _mm of the point alloy, set;: ====, and the electronic component between the spine radiator _= point: = Between the piece and the heat sink, and the ring is fired in the heat dissipation module of the fourth item, wherein the low-melting point piece of gold has a good thickness ranging from 〇.〇15mm to a〇3mm. The heat dissipation module of item 3, wherein the low melting point is 1 ^ by the necessary steel (In) and 11 (Bi) Some or all of the halogens such as tin (Sn) and zinc QZn) are combined. 6) The heat dissipation module according to item 5, wherein the low-point alloy 1 is an In seven-Si alloy or In-Bi-Sn-Zn alloy or In_Bi alloy 20 200849517 7. The heat dissipation module, wherein the (four) point Hefei, "Can, two = 8' group" is a heat dissipation module according to item 3, wherein the ring system 11. Γίίΐί^3 itemizes the tactile view, and (4) the ring wants to be 12··^ The heat-dissipating fish can be used to transmit the cake boundary environment during operation of the electronic tree, the complex comprising: a speed-heating device disposed above the electronic component; and a low-melting alloy having a thickness of not more than _mm, disposed thereon And as the thermal interface material between the electronic components and the heat sink. 13. The heat dissipation module according to claim 12, wherein the low alloy box has a preferred thickness ranging from 0.015 mm to 〇〇3. 14. The heat dissipation according to claim 12 The module, wherein the composition of the low-melting alloy foil is composed of a part or all of an essential element such as indium (In) and bismuth (Bi) or tin-zinc (Ζη). ) (10) and 21 200849517 15 In-Bi 16i application of the scope of the patent scope of the thief group, its towel ^_ prime 'such as silver, copper, Chin, recorded, ",::, etc.: the prime territory 1—The speed of the butterfly is transmitted to the top of the heating element; a thickness = more than 0.04mm, a low melting point alloy box, disposed between the heat sink and the heat sink, and no heat dissipation as the heating element The thermal interface material between the devices; and a ring body disposed between the lining heating elements and no wandering around the periphery of the low melting point alloy foil. 19. A heat dissipation module that can be generated when a heating element is operated The heat energy is quickly transmitted to the external environment, the heat dissipation module includes: a heat sink disposed above the heat generating component; and a low melting point alloy foil having a f degree not greater than 〇.〇4 mm, disposed on the heat generating component Between the heat sinks, and as a thermal interface material between the heat generating component and the heat sink.
TW096133111A 2007-06-05 2007-09-05 Low melting point metal thermal interface material and thermal module applied the same TWI349352B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096133111A TWI349352B (en) 2007-06-05 2007-09-05 Low melting point metal thermal interface material and thermal module applied the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW96120203 2007-06-05
TW096133111A TWI349352B (en) 2007-06-05 2007-09-05 Low melting point metal thermal interface material and thermal module applied the same

Publications (2)

Publication Number Publication Date
TW200849517A true TW200849517A (en) 2008-12-16
TWI349352B TWI349352B (en) 2011-09-21

Family

ID=44824170

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096133111A TWI349352B (en) 2007-06-05 2007-09-05 Low melting point metal thermal interface material and thermal module applied the same

Country Status (1)

Country Link
TW (1) TWI349352B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726529B (en) * 2019-12-11 2021-05-01 遠東科技大學 Thinning process of indium bismuth alloy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI761227B (en) * 2021-06-08 2022-04-11 遠東科技大學 Composite material manufactured by combining aluminum base material with indium-bismuth alloy and method for manufacturing the same
TWI838772B (en) 2022-06-20 2024-04-11 財團法人工業技術研究院 Low melting point alloy composite material and composite material structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726529B (en) * 2019-12-11 2021-05-01 遠東科技大學 Thinning process of indium bismuth alloy

Also Published As

Publication number Publication date
TWI349352B (en) 2011-09-21

Similar Documents

Publication Publication Date Title
US11776868B2 (en) Methods for establishing thermal joints between heat spreaders or lids and heat sources
TWI344196B (en) Melting temperature adjustable metal thermal interface materials and use thereof
KR102027615B1 (en) Power module substrate with heat sink, power module substrate with cooler, and power module
CN101420835B (en) Low melting point alloy thermal interface material and radiating module applying same
KR20160126879A (en) Reusable thermoplastic thermal interface materials and methods for establishing thermal joints between heat sources and heat dissipating/removal structures
WO2002084735A1 (en) Radiating structural body of electronic part and radiating sheet used for the radiating structural body
TW200924622A (en) Metal thermal interface material and thermal module and packaged microelectronic component containing the material
JP2005203778A (en) Heat sink and heat spreader assembly
TW200849517A (en) Low melting point metal thermal interface material and thermal module applied the same
TWM598743U (en) Heat dissipation apparatus
TW200936028A (en) Thermal module and system applied the phase-change metal thermal interface material
JP2005228955A (en) Heat dissipation member, its manufacturing method and application
TWM540741U (en) Multi-layer composite heat conduction structure
CN215834516U (en) Heat conducting device for electronic element
TWM629463U (en) heat dissipation structure
CN116801595A (en) Heat conducting material and preparation method and application thereof
TWI588436B (en) Heat transmitting structure as well as manufacturing method and heat dissipation method of the same
TWI831163B (en) Immersed heat sink
TWI684310B (en) Laser system heat sink
US20240297094A1 (en) Heat dissipation structure and portable information device
TWM531580U (en) Heat dissipation fins
CN207752994U (en) A kind of radiator of semiconductor power pipe
TWM638224U (en) Semiconductor package
TWM570456U (en) Heat dissipating module
JP2003309386A (en) Heat radiating member and electronics apparatus