200423565 玖、發明說明: 【發明所屬之技術領域】 本發明所揭示之主題内容係關於元件間的介面。特定言 《’本發明所揭示之主體内容係關於能以—或多個資料傳 輸模式發送或接收資料之元件。 【先前技術】 在元件間傳輪知體中的資料傳輸通常係才艮據一資料鏈路 锄疋來傳釦,孩協疋取決於該特定傳輸媒體。對於一特定 If幸則媒體’兀件可根據—個以上資料傳輸模式發送或接收 、料同I特走元件可根據一個以上的資料傳輸模式在 T傳輸媒體中傳輸資料。由—傳輸媒體_合之元件可參與 自動^商」程序’藉此該等元件認可將用於該等元件間 傳輸資料之一共同資料傳輸模式。 【發明内容】 正伤玩明書中所提及的「一項具體實施例」或「一具體 實施例」表示配合具體實施例所說明的特定功能、結構或 特徵至少包含於本發明一項具體實施例中。因此,說明書 各處出現的「在一項具體實施例中」或「一具體實施例」 辭令不一定全部代表同一具體實施例。另外,特定功能、 結構或特徵可在一項或多項具體實施例中組合。 本又所指「機器可讀取」指令係,可由一或更多機器理 解以執行一或更多邏輯操作之表示。例如,機器可讀取指 令可包括由一處理器編譯器解譯用於在一或更多的資料物 O:\89\89153.DOC2 200423565 華禹合至该D DI的一或多個资斜^綠诸 貝科線迢。為回應一協商週期内在 該腦上的-或多個鏈路脈衝信號,可選擇性地配置該資料 收發器,以根據基於所接收的-或多_路脈衝信號之一 資料傳輸模絲-或乡個資料道上發送與純資料。然 而’此僅為-範例具體實施例’而本發明之其他具體實施 例並不限於此等方面。 【實施方式】 圖1所示之圖說明根據本發明之一項具體實施例,能協商 一資料傳輸模式之系統10。可配置&一DDI 12輕合之元件 14與16以—或多個資料傳輸模式通信。在-協商週期内, 元件14與16可通信以決定在該等元件14與16間傳輸資料使 用的一或多個可能的共同資料傳輸模式。然後,可選擇一 共同資料傳輸模式,且該等元件14與16可配置成用以根據 所選擇的資料傳輸模式發送或接收資料。 根據一項具體實施例,該Dm 12可包括形成於一印刷電 路板(未顯示)之銅跡線中的複數個資料線道(未顯示)。然而 ,這僅為資料線道如何形成於DDI内之範例,而本發明之具 體貫施例並不限於此方面。每一資料線道可在一或多個差 動仏號對中發送或接收資料。然而,此僅為如何在資料線 返中傳輸資料之範例,而本發明之具體實施例並不限於此 方面。 對於全雙工通信,一資料線道可包括兩個差動信號對(例 如,一個差動信號對用於從一元件發送資料,一個差動信 號對用於在該元件中接收資料)。或者,一資料線道可包括 O:\89\89153.DOC2 200423565 單一差動信號對’用於以半雙工操作模式通信。然而,此 僅為如何使用差動信號對實施全或半雙工通信之範例,而 本發明之具體實施例不限於此方面。 根據一項具體實施例,該元件包括一資料收發器丨8與一 協商區段20。該資料收發器18可包括一實體媒體相依 (physical media dependent; PMD)介面,經(例如)耦合至 DDI 12中所形成的差動對導體之DDI 12中的資料線道發送或接 收資料之電路或邏輯。該資料收發器丨8耦合至該PMD電路 ,亦可包括一 PMA區段與一 pcs區段,如IEEE標準 802.3ae-2002第48條或IEEE標準802.3-2000第36條所提供 内容。然而,這僅為一資料收發器如何實施PMA與PCS區段 之範例,而本發明之具體實施例並不限於此等方面。 根據一項具體實施例,該資料收發器1 8可耦合至若干資 料通信系統或輸入/輸出架構任何一個中的其他元件。例如 ,資料收發器18的PCS可包括一媒體獨立介面(media independent interface; Mil)以耦合至其他元件,如一媒體 存取控制器(media access controller; MAC)。此 MAC 可將 該資料收發器1 8_合至若干其他I/O元件(例如,一多工資料 匯流排或一多埠交換架構)中的任何一個。該MAC亦可將該 資料收發器1 8耦合至一或多個封包分類元件(例如,用於網 路協定處理),例如一網路處理器或封包分類之專用積體電 路(application specific integrated circuits ; ASIC)。然而’ 此僅為可經MAC耦合至一資料收發器之元件的範例,而本 發明之具體實施例不限於此等方面。 O:\89\89153.DOC2 -10- 200423565 在另一項具體實施例中,該資料收發器1 8的PCS可包括一 ’其摘合至一貫體層通信元件以在一通信媒體(例如, 同轴、光纖、或雙絞線電纜)中發送與接收資料。然而,此 僅為可用於從MII發送資料,或在ΜΠ上接收資料之資料傳 輸媒體之範例,而本發明之具體實施例不限於此等方面。 根據一項具體實施例,可配置該資料收發器丨8以根據一 或多個資料傳輸模式向該DDI 12發送資料或從該DDI 12中 接收資料。對於每一此等資料傳輸模式,該資料收發器18 可包括一相關PMA區段與/或pCS區段,其能根據該資料傳 輸模式發送或接收資料。因此,該資料收發器可包括複數 個PMA與/或PCS區段以及邏輯,用於根據所選擇的資料傳 輸模式選擇性地致動一 PMA區段與/或PCS區段。 一協商區段20與元件16通信,以決定該元件16根據一或 多個資料傳輸模式在該DDI 12中發送或接收資料之能力。 然後,該協商區段20可選擇一資料傳輸模式,其為該資料 收發蒜18與該元件16共同具有之能力。然後,該協商區段 可根據所選擇的資料傳輸模式配置該資料收發器18,使其 經孩DDI 12發送或接收資料,並透過該〇〇1 12使該資料收 發器18與該元件16耦合。 圖2所顯示之流程圖說明根據圖1所示之該協商區段汕之 具fa見施例,使用鏈路脈衝信號協商一 DDI中的一或多個資 料線遭内的資料傳輸模式之過程30。該過程30可以邏輯方 式貝施,其使用之技術為具有數位邏輯與電路設計技術之 人士熱知。在圓框32中,為回應一事件(例如,鏈路重新啟 O:\89\89153.DOC2 -11 - 200423565 動或開機),可開始-協商週期。然而,此僅為可啟動由资 枓鏈路耦合之元件間的協商過程之事件的範例,而本發明 又具體實施例不限於此等方面。 根據-項具體貫施例,該元件“與i6可發送與接收在則 12的差動信號對中傳輸的鏈路脈衝信號。例如,該元㈣ 的于初商區段20可發送與接收鏈路脈衝信號,如腦E標準 •3 2000第28·2· 1.1與28.2.2.1條所述。雖然IEEE標準 8〇2·3_2_第28.2.1.1與28.2.2.1條提及透過雙絞線電纖媒體 發信號,但IEEE標準802·3_2〇〇〇、第“上以與“^丨條之 教義可應用於透過無需實質修改之形成在Dm内的差動信 號對(例如,一印刷電路板中銅跡線形成之差動信號對)發送 與接收鏈路脈衝信號(包括正常鏈路脈衝(n〇rmal Hnk pda ,NLP)^號或快速鏈路脈衝(fast Hnk pUise ; pip)信號)。 應明白,該元件14或16皆可在DDI 12中的一個或一個以 上的資料線道上傳輸資料。在方塊34中,根據一項具體實 訑例,該元件14與該元件16間傳輸的鏈路脈衝信號可在該 DDI 12中一預定「主要」資料線道上傳輸。例如,該等元 件14與16可各耦合至該主要資料線道中的一發送差動信號 對與一接收差動信號對。因此,該等元件14與16可透過該 主要資料線道交換鏈路脈衝信號,而與元件14或16是否可 透過一或一個以上資料線道傳輸資料無關。 該等元件14與16可交換封裝在該鏈路脈衝信號(如基地 鏈路碼字(Base Link Code Word),在 IEEE標準 802 3,第 2 8 · 2 · 1 · 2條提供)中的机息’繼之以一或多個下一頁訊息 O:\89\89153.DOC2 -12- 200423565 (Next Page Message)(在 IEEE標準 802.3,第 28·2.3.4條提供) 。在眾多訊息中,該 Base Link Code Word 與 Next Page Message可指示一發送元件對一接收元件以一或多個資料 傳輸模式操作之能力。為回應從元件16接收封裝訊息,在 方塊36中,該協商區段20可使該元件16的能力關聯於該資 料收發器18的能力,以識別一或多個共同資料傳輸模式(即 ,元件16與18皆可使用,以在該DDI 12中彼此間傳輸資料 之資料傳輸模式),如IEEE標準802.3-2000,第28.2.3條所提 供内容。 在方塊38中,該協商區段20可從一個以上之共同資料傳 輸模式中選擇。例如,該協商區段20可根據IEEE標準 802.3-2000,第28.2.3條所提供之預定優先級方案,在多個 共同資料傳輸模式中仲裁,以選擇一「最大公分母(highest common denominator)」。 在方塊40中,該協商區段20可配置該資料收發器18以使 用所選之共同資料傳輸模式(例如,一最大公分母資料傳輸 模式)透過該DDI 12發送與/或接收資料。例如,該協商區段 20可包括一技術相依介面(Technology-Dependent Interface ;TDI),具有根據IEEE標準802.3-2000第28.2.6條,與所選 資料模式相關之該資料收發器1 8的PMA區段與/或PCS區段 。該協商區段20可透過該TDI與所選資料傳輸模式的PMA 區段與/或PCS區段通信,以致動該PMA區段與/或PCS區段 。然而,此僅為如何配置一資料收發器以根據一資料傳輸 模式發送或接收資料之範例,而本發明之具體實施例並不 O:\89\89153.DOC2 -13- 200423565 限於此等方面。 根據所選的資料傳輸模式配置該資料收發器丨8之後,在 方塊42中,該資料收發器18可耦合至該DDI 12,以根據IEEE 標準802.3-2000,第28·2·1·3條所提供之發送交換功能 (Transmit Switch Function)(例如,耦合一或多個發送差動 對)與IEEE標準802.3-2000,第28.2·2·3條之接收交換功能 (Receive Switch Function)(例如,耦合一或多個接收差動對 )與該元件16通信。然而,此僅為如何在資料傳輸模式配置 後,將一資料收發器耦合至一傳輸媒體之範例,而本發明 之具體實施例並不限於此等方面。 儘管圖1與2提及在元件14中的一資料收發器18與一協商 區段20,但應明白,该元件16亦可同樣的包括一資料收發 器(未顯示),其能根據一或多個資料傳輸模式在該1)1)1 12 中通信。該元件16亦可包括一協商區段(未顯示)用以與該協 商區4又20通仏,以藉由執行圖2所顯示的過程%選擇一共同 資料傳輸模式(並配置該資料收發器,以根據該共同資料傳 輸模式發送與接收資料)。 圖3至5說明根據圖丨與2所示之本發明之替代性具體實施 例,能協商在一DDI的資料線道中的資料傳輸模式之元件的 示意圖。圖3所示之系統120包括由Dm 122中的資料線道 128耦合之兀件124與126。在當前說明之具體實施例中,該 兀件124與1264-或二者皆可配置,以根據―或多個資料 傳輸模式通信。例如,每一該等元件124與126皆包括一或 多個PMA與PCS區段的組合,其包括pMA與pcs區段的一組 O:\89\89153.DOC2 -14- 200423565 合,以作為根據IEEE標準802.3ae-2002第47條的超高速媒體 獨立介面延伸子層(Ten Gigabit Media Independent Interface Extender Sublayer; XGXS)操作。因此,該DDI 122 可包括一超高速附接單元介面(Ten Gigabit Attachment Unit Interface ; XAUI)耦合元件 124 與 126 作為 XGXS元件。 然而應明白,兩元件之一亦可具有PMA與PCS區段之組合, 使之可根據IEEE標準802.3-2000第36條致動一 1000BASE-X資料傳輸模式(其中,每一 PMA附於一發送差 動信號對與一接收差動信號對),根據Cisco(思科)系統公司 所提議之SGMII信號格式,致動一串列十億位元媒體獨立 介面(Serial Gigabit Media Independent Interface ; SGMII) 資料傳輸模式,或其他資料傳輸模式。 在一協商週期内,如上參考圖2所概述,選擇透過XAUI 之XGXS元件的資料傳輸作為在Next Page Messages中所指 示之該等元件124與126之間的「最大公分母」資料傳輸模 式。如此,該等元件124與126中的PMA與PCS區段可用所選 資料傳輸模式操作。因此,可將該等元件124與126配置為 透過XAUI通信之XGXS元件。在一協商週期内,亦可使用 Next Page Message決定該等元件124與126之間的XAUI上 的線路編號方式。 圖4顯示根據一項具體實施例,一系統130包括由DDI 132 中的資料線道138耦合之元件134與136。在當前說明之具體 實施例中,可選擇性地配置該元件134以複數個操作模式( 例如,作為XGXS元件與另一 XGXS元件透過XAUI中的資料 O:\89\89153.DOC2 -15- 200423565 線道通信之XGXS操作模式,透過單—資料線道與一單一埠 元件通信之單一埠資料傳輸模式)中的任何一個操作。可選 擇性地配置該元件136以—或多個單—埠資料傳輸模式操 作,以透過單-資料線道與—單—埠元件通信。此單一蜂 操作模式可包括,例如,根據IEEE標準8〇23_2〇〇〇第鄉 之刪BASE-X資料傳輸模式,或根據上述由心。系統: 司提議之SGMII信號格式之SGMIp^料傳輸模式。 儘管元件U6僅可作為單一淳元件操作,但可配置該等元 件134與136,以-共同單—璋資料傳輸模式通信。若該等 το件134與136能以-個以上單—埠資料傳輸模式操作(例 如,母一 7L件皆可以i000base_x與SGMIp#料傳輸模式操 作)’則可根據「最大公分母」資料傳輸模式(根據一預定優 先級方案選擇)配置該等元件134與13^然後,可致動與所 選單4·貝料傳輸模式相關之該等元件i34與i 36中刚入與 PCS區段,以配置該等元件根據所選資料傳輸模式在該資料 線道138中通信。 圖5顯示根據一項具體實施例’ 一系統14〇包括由142 中的資料線道148與四個元件146耦合之一個元件144。四個 元件146中的每一個皆包括藉由相應的資料線道1料耦合至 該元件144之單一琿元件。在—項具體實施例中,四個元件 146中的每一個冑可包括一與|一多蜂元件整合之個別埠 。在當前說明之具體實施例中,可選擇性地配置元件144以 復數個貧料傳輸模式操作,例如,以XGXS資料傳輸模式, 做為XGXS元件透過形成χΑυι之資料線道與另一xgxs元 O:\89\89l53.DOC2 -16- 200423565 件通信,或以單一埠資料傳輸模式(例如,lo〇〇BASE_x或 SGMII)與一或多個單一埠元件通信。 根據項具體實施例,該等元件146之一可包括一協商區 段(未顯示),其藉由一預定主要資料線道148耦合至該元件 144,並可配置每一元件146以根據所選共同資料通信模式 通信。例如,該協商區段可致動在與所選資料通信模式相 關之每一元件146中PMA與PCS區段。 圖6顯示根據參考圖1與2所述之本發明之一項具體實施 例,使用鏈路脈衝協商在DDIr的一資料傳輸模式後,可封 裝式自動協商一操作模式之元件的示意圖。元件352係藉由 DDI 3 12中的一或多個資料線道(未顯示)糕合。每一元件352 包括一鏈路脈衝協商區段354、資料收發器356與封裝協商 區段358。每一元件352中的鏈路脈衝協商區段354可從一或 多個共同資料傳輸模式(即,該等資料收發器356共同的資 料傳輸模式)中選擇一資料傳輸模式,並配置該資料收發器 3 56以所選共同資料傳輸模式通信,如圖1所示。所選資料 傳輸模式可定義一封裝協商過程,如在IEEE標準 802.3-2000第37條所提供之10003八3£_又。例如,在一協商 週期内,該鏈路脈衝協商區段354可致動資料收發器356中 的PMA與PCS區段(未顯示),用於配置該資料收發器356以 所選資料通信模式通信。在該協商週期之後,封裝協商區 段352可在根據所選資料傳輸模式通信時,識別其额外的能 力(例如,在PMA區段上定義一協定層中)。然而,此僅為 如何在根據所選資料傳輸模式配置一資料收發器之後,執 O:\89\89153.DOC2 -17- 200423565 行一封裝協商方案之範例 於此方面。 而本發明之具體實施例並不限 雖然已對當前视為本發 乂 、 令知月<靶例性具體實施例進行說明 並撝述,但應熟悉技術人 签玲餉麸β 士應瞭解,其他不同之修改或以 ^ 曰換’皆不背離本發明之直奋r 士 許多修改以使特殊狀、、尸、禽處士 〃 Γ彳义成 … 秤殊狀/兄通應本發明的原理,而不脫離本文 所述的核心發明理念,因此, a u此本發明不限於所揭示的特定具 m貫施例,而是本發明包括 、 个兔/」包括屬於隨附申請專利範圍内的 有具體實施例。 【圖式簡單說明】 上又已參考以下圖式說明本發明之非限制性且非詳倉之 具體實施例’丨中各圖式中相同參考數字表示相同零:, 除非以其他方式指定。 圖冰示之圖說明根據本發明之一項具體實施例,能協商 兀件間的資料傳輸模式之系統。 圖2顯示說明根據^所示系統之具體實施例,使用鍵路 脈衝協商在一元件至元件互連(device_t〇_device interconnection ; DDI)資料線道中的資料傳輸模式之過程的 流程圖。 一圖3至5所示說明根據圖丨與2所示之本發明之替代性具體 實施例,能協商在一DIM的資料線道中的資料傳輸模式之= 件的示意圖。 圖6顯示在使用一鏈路脈衝信號協商在一 Dm中的資料 傳輸模式之後,能封裝式自動協商操作模式之元件的示意 0 \89\89153.DOC 2 -18- 200423565 圖。 【圖式代表符號說明 10 系統 12 元件至元件連接(DDI) 14、16 元件 18 資料收發器 20 協商區段 120 、 140 系統 122 元件至元件連接(DDI) 124 、 126 元件 128 、 138 資料線道 130 系統 132 、 142 元件至元件連接(DDI) 134 、 136 元件 144 、 146 元件 148 資料線道 312 元件至元件連接(DDI) 352 元件 354 鍵路脈衝協商區段 356 資料收發器 358 封裝協商區段 O:\89\89153.DOC2 -19-200423565 (1) Description of the invention: [Technical field to which the invention belongs] The subject matter disclosed in the present invention relates to the interface between components. In particular, "The subject matter disclosed in the present invention relates to elements capable of transmitting or receiving data in one or more data transmission modes. [Prior art] Data transmission in the transmission of knowledge between components is usually based on a data link, and the child association depends on the specific transmission medium. For a specific If, the media ’element can be sent or received according to more than one data transmission mode. It is expected that the special component can transmit data in the T transmission medium according to more than one data transmission mode. The “transmission media_combined components can participate in the“ automated quotient ”procedure” whereby these components recognize a common data transfer mode that will be used to transfer data between these components. [Summary of the Invention] "A specific embodiment" or "a specific embodiment" mentioned in the playbook is to indicate that a specific function, structure or feature described in conjunction with a specific embodiment is included in at least one specific embodiment of the present invention. In the examples. Therefore, the words "in a specific embodiment" or "a specific embodiment" appearing everywhere in the description do not necessarily all represent the same specific embodiment. Furthermore, the particular functions, structures, or characteristics may be combined in one or more specific embodiments. This "machine-readable" instruction is a representation that can be understood by one or more machines to perform one or more logical operations. For example, the machine-readable instructions may include one or more data items interpreted by a processor compiler for one or more data items O: \ 89 \ 89153.DOC2 200423565 ^ Green Zhubeke Lines. In response to the-or multiple link pulse signals on the brain during a negotiation period, the data transceiver may be selectively configured to transmit a mold wire based on one of the received-or multi-pulse signals-or Township data channel sent with pure information. However, 'this is only an -exemplary embodiment' and other embodiments of the present invention are not limited to these aspects. [Embodiment] The diagram shown in FIG. 1 illustrates a system 10 capable of negotiating a data transmission mode according to a specific embodiment of the present invention. Configurable & a DDI 12 lightweight components 14 and 16 communicate in-or multiple data transfer modes. During the -negotiation period, the elements 14 and 16 may communicate to determine one or more possible common data transmission modes for transmitting data between these elements 14 and 16. Then, a common data transmission mode can be selected, and the components 14 and 16 can be configured to send or receive data according to the selected data transmission mode. According to a specific embodiment, the Dm 12 may include a plurality of data lines (not shown) formed in copper traces of a printed circuit board (not shown). However, this is only an example of how data channels are formed in DDI, and the specific embodiments of the present invention are not limited in this respect. Each data line can send or receive data in one or more differential pairs. However, this is only an example of how to transmit data in the data line, and the specific embodiment of the present invention is not limited in this respect. For full-duplex communication, a data channel may include two differential signal pairs (for example, a differential signal pair is used to send data from a component, and a differential signal pair is used to receive data in the component). Alternatively, a data line may include O: \ 89 \ 89153.DOC2 200423565 a single differential signal pair 'for communicating in a half-duplex operation mode. However, this is only an example of how to implement a full or half-duplex communication using a differential signal pair, and the specific embodiments of the present invention are not limited in this respect. According to a specific embodiment, the element includes a data transceiver 8 and a negotiation section 20. The data transceiver 18 may include a physical media dependent (PMD) interface, for example, a circuit for transmitting or receiving data via a data line in the DDI 12 coupled to a differential pair conductor formed in the DDI 12 Or logic. The data transceiver 8 is coupled to the PMD circuit and may also include a PMA section and a pcs section, as provided by Article 48 of IEEE Standard 802.3ae-2002 or Article 36 of IEEE Standard 802.3-2000. However, this is only an example of how a data transceiver implements the PMA and PCS sections, and the specific embodiments of the present invention are not limited to these aspects. According to a specific embodiment, the data transceiver 18 may be coupled to other data communication system or other elements in any one of the input / output architectures. For example, the PCS of the data transceiver 18 may include a media independent interface (Mil) to be coupled to other components, such as a media access controller (MAC). This MAC can combine the data transceiver 1 8_ to any of several other I / O components (for example, a multiplexed data bus or a multi-port switching architecture). The MAC can also couple the data transceiver 18 to one or more packet classification components (for example, for network protocol processing), such as a network processor or application specific integrated circuits for packet classification. ASIC). However, this is just an example of a component that can be coupled to a data transceiver via a MAC, and the specific embodiments of the present invention are not limited to these aspects. O: \ 89 \ 89153.DOC2 -10- 200423565 In another specific embodiment, the PCS of the data transceiver 18 may include a device that is coupled to a consistent body communication element to communicate on a communication medium (eg, the same Shaft, fiber, or twisted-pair cable). However, this is only an example of a data transmission medium that can be used to send data from MII or receive data on MII, and the specific embodiments of the present invention are not limited to these aspects. According to a specific embodiment, the data transceiver 8 can be configured to send data to or receive data from the DDI 12 according to one or more data transmission modes. For each of these data transmission modes, the data transceiver 18 may include an associated PMA section and / or pCS section, which can send or receive data according to the data transmission mode. Therefore, the data transceiver may include a plurality of PMA and / or PCS sections and logic for selectively activating a PMA section and / or PCS section according to the selected data transmission mode. A negotiation section 20 communicates with the component 16 to determine the ability of the component 16 to send or receive data in the DDI 12 according to one or more data transmission modes. Then, the negotiation section 20 can select a data transmission mode, which is a capability that the data transmitting / receiving device 18 and the component 16 have in common. Then, the negotiation section can configure the data transceiver 18 according to the selected data transmission mode, so that it can send or receive data via the DDI 12, and couple the data transceiver 18 with the component 16 through the 0012. . The flowchart shown in FIG. 2 illustrates the process of negotiating the data transmission mode of one or more data lines in a DDI according to the embodiment of the negotiation section shown in FIG. 1 using the link pulse signal. 30. This process 30 can be implemented in a logical manner, and the technology used is well known to those with digital logic and circuit design techniques. In the round frame 32, in response to an event (for example, the link is restarted O: \ 89 \ 89153.DOC2 -11-200423565), a negotiation period may be started. However, this is only an example of an event that can initiate a negotiation process between elements coupled by a resource link, and the specific embodiments of the present invention are not limited to these aspects. According to the specific implementation example, the element "and i6 can send and receive the link pulse signal transmitted in the differential signal pair of rule 12. For example, the elementary circle in the initial business sector 20 can send and receive the chain Pulse signals, as described in Brain E Standards • 3 2000 Articles 28 · 2 · 1.1 and 28.2.2.1. Although IEEE Standard 802 · 3_2_ Articles 28.2.1.1 and 28.2.2.1 mention passing through twisted pair cables Fiber media signals, but the teachings of the IEEE Standard 802.3-30000, Articles 1 and 2 can be applied to differential signal pairs formed in Dm (for example, a printed circuit board) without substantial modification. The differential signal pair formed by the copper traces sends and receives link pulse signals (including normal link pulse (n0rmal Hnk pda, NLP) ^ number or fast link pulse (fast Hnk pUise; pip) signals). It should be understood that the element 14 or 16 can transmit data on one or more data channels in the DDI 12. In block 34, according to a specific example, the chain of transmission between the element 14 and the element 16 The pulse signal can be transmitted on a predetermined "main" data line in the DDI 12. For example, the elements 14 and 16 may each be coupled to a transmitting differential signal pair and a receiving differential signal pair in the main data line. Therefore, the components 14 and 16 can exchange link pulse signals through the main data channel, regardless of whether the components 14 or 16 can transmit data through one or more data channels. These components 14 and 16 can be exchanged and encapsulated in the pulse signal of the link (such as Base Link Code Word, provided in IEEE Standard 802 3, Article 2 8 · 2 · 1 · 2). The message is followed by one or more next page messages O: \ 89 \ 89153.DOC2 -12- 200423565 (Next Page Message) (provided in IEEE Standard 802.3, Article 28.2.3.4). Among many messages, the Base Link Code Word and Next Page Message can indicate the ability of a sending element to a receiving element to operate in one or more data transmission modes. In response to receiving the encapsulated message from the component 16, in block 36, the negotiation section 20 may associate the capabilities of the component 16 with the capabilities of the data transceiver 18 to identify one or more common data transmission modes (ie, components Both 16 and 18 can be used to transfer data between each other in the DDI 12), such as the content provided by IEEE Standard 802.3-2000, Article 28.2.3. In block 38, the negotiation section 20 may be selected from more than one common data transfer mode. For example, the negotiation section 20 may arbitrate among multiple common data transmission modes according to the predetermined priority scheme provided by the IEEE standard 802.3-2000, Article 28.2.3 to select a "highest common denominator" ". In block 40, the negotiation section 20 may configure the data transceiver 18 to send and / or receive data through the DDI 12 using a selected common data transmission mode (e.g., a greatest common denominator data transmission mode). For example, the negotiation section 20 may include a technology-dependent interface (TDI) having a PMA of the data transceiver 18 related to the selected data mode according to the IEEE standard 802.3-2000 section 28.2.6 Section and / or PCS section. The negotiation section 20 may communicate with the PMA section and / or the PCS section of the selected data transmission mode through the TDI to activate the PMA section and / or the PCS section. However, this is only an example of how to configure a data transceiver to send or receive data according to a data transmission mode, and the specific embodiment of the present invention is not limited to these aspects. O: \ 89 \ 89153.DOC2 -13- 200423565. After configuring the data transceiver 8 according to the selected data transmission mode, the data transceiver 18 may be coupled to the DDI 12 in block 42 to comply with IEEE Standard 802.3-2000, Article 28 · 2 · 1 · 3 Provided Transmit Switch Function (for example, coupling one or more transmit differential pairs) with the IEEE Standard 802.3-2000, Article 28.2 · 2 · 3 Receive Switch Function (for example, One or more receiving differential pairs are coupled) in communication with the element 16. However, this is only an example of how to couple a data transceiver to a transmission medium after the data transmission mode is configured, and the specific embodiments of the present invention are not limited to these aspects. Although FIGS. 1 and 2 refer to a data transceiver 18 and a negotiation section 20 in the element 14, it should be understood that the element 16 may also include a data transceiver (not shown), which can be based on a or Multiple data transmission modes communicate in this 1) 1) 1 12. The element 16 may also include a negotiation section (not shown) for communicating with the negotiation area 4 and 20 to select a common data transmission mode (and configure the data transceiver by performing the process shown in FIG. 2). To send and receive data according to the common data transfer mode). 3 to 5 are schematic diagrams illustrating elements capable of negotiating a data transmission mode in a DDI data line according to an alternative embodiment of the present invention shown in Figs. The system 120 shown in FIG. 3 includes elements 124 and 126 coupled by a data line 128 in Dm 122. In the presently illustrated embodiment, the elements 124 and 1264-or both can be configured to communicate according to one or more data transmission modes. For example, each of these elements 124 and 126 includes one or more combinations of PMA and PCS sections, which includes a set of O: \ 89 \ 89153.DOC2 -14- 200423565 for pMA and pcs sections as Super Gigabit Media Independent Interface Extender Sublayer (XGXS) operation according to IEEE Standard 802.3ae-2002 Article 47. Therefore, the DDI 122 may include a Ten Gigabit Attachment Unit Interface (XAUI) coupling element 124 and 126 as XGXS elements. It should be understood, however, that one of the two components may also have a combination of PMA and PCS sections, enabling it to activate a 1000BASE-X data transmission mode in accordance with Article 36 of the IEEE Standard 802.3-2000 (where each PMA is attached to a transmission Differential signal pair and a receiving differential signal pair) actuate a serial Gigabit Media Independent Interface (SGMII) data transmission according to the SGMII signal format proposed by Cisco Systems Mode, or other data transfer mode. During a negotiation period, as outlined above with reference to FIG. 2, the data transmission through the XGUI XGXS components is selected as the "largest common denominator" data transmission mode between these components 124 and 126 indicated in Next Page Messages. As such, the PMA and PCS sections of these elements 124 and 126 can be operated with the selected data transmission mode. Therefore, these elements 124 and 126 can be configured as XGXS elements that communicate through XAUI. During a negotiation period, the Next Page Message can also be used to determine the line numbering method on the XAUI between these components 124 and 126. FIG. 4 shows a system 130 including elements 134 and 136 coupled by a data line 138 in a DDI 132 according to a specific embodiment. In the specific embodiment currently described, the element 134 may be selectively configured to operate in a plurality of modes (for example, as an XGXS element and another XGXS element through data in XAUI O: \ 89 \ 89153.DOC2 -15- 200423565 The XGXS operation mode of the line communication, any one of the single-port data transmission modes in which a single data line communicates with a single-port component). The component 136 is optionally configured to operate in one or more single-port data transmission modes to communicate with the single-port component via a single-data line. This single bee operation mode may include, for example, the BASE-X data transmission mode according to the IEEE standard 8023-20000, or according to the above-mentioned reason. System: SGMIp data transmission mode of the SGMII signal format proposed by the company. Although the element U6 can only operate as a single element, these elements 134 and 136 can be configured to communicate in a common single-data transmission mode. If these το pieces 134 and 136 can operate in more than one single-port data transmission mode (for example, the female 7L pieces can operate in i000base_x and SGMIp # material transmission mode), then the data transmission mode according to the "largest common denominator" (Selected according to a predetermined priority scheme) Configure these components 134 and 13 ^ Then, the components i34 and i 36 related to the selected single 4 · shell material transmission mode can be activated to enter the PCS section to configure The components communicate in the data line 138 according to the selected data transmission mode. FIG. 5 shows a system 140 including one element 144 coupled to four elements 146 by a data lane 148 in 142 according to a specific embodiment. Each of the four elements 146 includes a single unitary element coupled to the element 144 through a corresponding data line 1. In one specific embodiment, each of the four elements 146 may include an individual port integrated with a multi-cell element. In the specific embodiment currently described, the element 144 may be selectively configured to operate in a plurality of lean transmission modes, for example, in the XGXS data transmission mode, as the XGXS element passes through the data channel forming χΑυι and another xgxs element : \ 89 \ 89l53.DOC2 -16- 200423565, or communicate with one or more single-port components in a single-port data transmission mode (for example, LO〇〇BASE_x or SGMII). According to a specific embodiment, one of the elements 146 may include a negotiation section (not shown), which is coupled to the element 144 through a predetermined main data line 148, and each element 146 may be configured to Common data communication mode communication. For example, the negotiation section may actuate the PMA and PCS sections in each element 146 associated with the selected data communication mode. Fig. 6 shows a schematic diagram of components that can be packaged to auto-negotiate an operation mode after a data transmission mode of the DDIr is negotiated using link pulses according to a specific embodiment of the present invention described with reference to Figs. The element 352 is combined by one or more data channels (not shown) in the DDI 3 12. Each element 352 includes a link pulse negotiation section 354, a data transceiver 356, and a package negotiation section 358. The link pulse negotiation section 354 in each element 352 can select a data transmission mode from one or more common data transmission modes (ie, data transmission modes common to the data transceivers 356), and configure the data transmission and reception. The device 3 56 communicates in the selected common data transmission mode, as shown in FIG. 1. The selected data transmission mode can define an encapsulation negotiation process, such as 10003 33 provided in Article 37 of the IEEE Standard 802.3-2000. For example, during a negotiation period, the link pulse negotiation section 354 may activate the PMA and PCS sections (not shown) in the data transceiver 356 for configuring the data transceiver 356 to communicate in the selected data communication mode. . After this negotiation period, the encapsulation negotiation section 352 can identify its additional capabilities when communicating according to the selected data transmission mode (e.g., in a protocol layer defined on the PMA section). However, this is just an example of how to implement an encapsulation negotiation scheme in O: \ 89 \ 89153.DOC2 -17- 200423565 after configuring a data transceiver according to the selected data transmission mode. And the specific embodiments of the present invention are not limited. Although the present exemplary embodiments which are currently considered as the present invention, and the target are described and described, the skilled person should be familiar with , Other different modifications or "^" are not deviated from the present invention. Many modifications are made to make the special shape, dead body, poultry clerk 彳 彳 彳 成 成 成 状 状 / brothers in accordance with the principles of the present invention Without departing from the core inventive concepts described herein. Therefore, the present invention is not limited to the specific embodiments disclosed, but rather the present invention includes Specific embodiment. [Brief description of the drawings] The non-limiting and non-detailed specific embodiments of the present invention have been described above with reference to the following drawings: The same reference numerals in the drawings represent the same zero: unless otherwise specified. The diagram shown in the figure illustrates a system capable of negotiating a data transmission mode between components according to a specific embodiment of the present invention. FIG. 2 shows a flowchart illustrating a process of negotiating a data transmission mode in a device-to-device interconnection (device-to-device interconnection; DDI) data line using a key pulse according to a specific embodiment of the system shown in FIG. 3 to 5 are schematic diagrams illustrating data transmission modes that can be negotiated in a data channel of a DIM according to an alternative embodiment of the present invention shown in FIGS. Fig. 6 shows a schematic diagram of components capable of encapsulating an auto-negotiation operation mode after negotiating a data transmission mode in a Dm using a link pulse signal. 0 \ 89 \ 89153.DOC 2 -18- 200423565. [Illustration of Symbols in the Drawings 10 System 12 Component to Component Connection (DDI) 14, 16 Component 18 Data Transceiver 20 Negotiation Section 120, 140 System 122 Component to Component Connection (DDI) 124, 126 Component 128, 138 Data Line 130 System 132, 142 Device-to-device connection (DDI) 134, 136 device 144, 146 device 148 Data line 312 Device-to-device connection (DDI) 352 Device 354 Key pulse negotiation section 356 Data transceiver 358 Package negotiation section O: \ 89 \ 89153.DOC2 -19-