RU95119589A - METAL GLASS AND METHOD OF OBTAINING METAL GLASS - Google Patents
METAL GLASS AND METHOD OF OBTAINING METAL GLASSInfo
- Publication number
- RU95119589A RU95119589A RU95119589/02A RU95119589A RU95119589A RU 95119589 A RU95119589 A RU 95119589A RU 95119589/02 A RU95119589/02 A RU 95119589/02A RU 95119589 A RU95119589 A RU 95119589A RU 95119589 A RU95119589 A RU 95119589A
- Authority
- RU
- Russia
- Prior art keywords
- value
- lies
- range
- metal selected
- group
- Prior art date
Links
- 239000000956 alloy Substances 0.000 claims 13
- 229910045601 alloy Inorganic materials 0.000 claims 13
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 claims 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 12
- 239000010936 titanium Substances 0.000 claims 12
- 239000010949 copper Substances 0.000 claims 10
- 239000005300 metallic glass Substances 0.000 claims 10
- 229910052723 transition metal Inorganic materials 0.000 claims 10
- 150000003624 transition metals Chemical class 0.000 claims 10
- 229910052735 hafnium Inorganic materials 0.000 claims 9
- 229910052804 chromium Inorganic materials 0.000 claims 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims 8
- 239000011651 chromium Substances 0.000 claims 8
- 229910052751 metal Inorganic materials 0.000 claims 8
- 239000002184 metal Substances 0.000 claims 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims 7
- 229910052758 niobium Inorganic materials 0.000 claims 7
- 239000010955 niobium Substances 0.000 claims 7
- 229910052720 vanadium Inorganic materials 0.000 claims 7
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium(0) Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 6
- 229910052803 cobalt Inorganic materials 0.000 claims 6
- 239000010941 cobalt Substances 0.000 claims 6
- 229910052742 iron Inorganic materials 0.000 claims 6
- PWHULOQIROXLJO-UHFFFAOYSA-N manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 6
- 229910052748 manganese Inorganic materials 0.000 claims 6
- 239000011572 manganese Substances 0.000 claims 6
- 229910052719 titanium Inorganic materials 0.000 claims 6
- VBJZVLUMGGDVMO-UHFFFAOYSA-N Hafnium Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims 5
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims 5
- 229910052727 yttrium Inorganic materials 0.000 claims 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims 4
- 229910052750 molybdenum Inorganic materials 0.000 claims 4
- 239000011733 molybdenum Substances 0.000 claims 4
- 229910052763 palladium Inorganic materials 0.000 claims 4
- 229910052709 silver Inorganic materials 0.000 claims 4
- BQCADISMDOOEFD-UHFFFAOYSA-N silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims 4
- 239000004332 silver Substances 0.000 claims 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims 4
- 229910052715 tantalum Inorganic materials 0.000 claims 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 4
- 229910052721 tungsten Inorganic materials 0.000 claims 4
- 239000010937 tungsten Substances 0.000 claims 4
- 229910052726 zirconium Inorganic materials 0.000 claims 4
- UIWYJDYFSGRHKR-UHFFFAOYSA-N Gadolinium Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N Neodymium Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims 3
- 229910052779 Neodymium Inorganic materials 0.000 claims 3
- 239000005092 Ruthenium Substances 0.000 claims 3
- 229910052782 aluminium Inorganic materials 0.000 claims 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 3
- 230000015572 biosynthetic process Effects 0.000 claims 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 3
- 229910052796 boron Inorganic materials 0.000 claims 3
- 238000001816 cooling Methods 0.000 claims 3
- 238000005755 formation reaction Methods 0.000 claims 3
- 239000011521 glass Substances 0.000 claims 3
- 238000004519 manufacturing process Methods 0.000 claims 3
- 238000002844 melting Methods 0.000 claims 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims 3
- 229910052707 ruthenium Inorganic materials 0.000 claims 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 3
- 229910052710 silicon Inorganic materials 0.000 claims 3
- 239000010703 silicon Substances 0.000 claims 3
- 229910052768 actinide Inorganic materials 0.000 claims 2
- 150000001255 actinides Chemical class 0.000 claims 2
- QQINRWTZWGJFDB-UHFFFAOYSA-N actinium Chemical compound [Ac] QQINRWTZWGJFDB-UHFFFAOYSA-N 0.000 claims 2
- 229910052767 actinium Inorganic materials 0.000 claims 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium(0) Chemical group [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims 2
- 229910052802 copper Inorganic materials 0.000 claims 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 2
- 229910052747 lanthanoid Inorganic materials 0.000 claims 2
- 150000002602 lanthanoids Chemical class 0.000 claims 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims 2
- 229910052746 lanthanum Inorganic materials 0.000 claims 2
- 150000002739 metals Chemical class 0.000 claims 2
- 229910052759 nickel Inorganic materials 0.000 claims 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims 1
- 229910052732 germanium Inorganic materials 0.000 claims 1
- -1 rutinium Chemical compound 0.000 claims 1
Claims (18)
(Zr1 - x Tix)a 1 ETMa 2 (Cu1 - y Niy)b 1 LTMb 2 Beс,
где x и y обозначают атомные доли, а а1, а2, b1, b2 и с обозначают атомные проценты,
ETM обозначает по крайней мере один ранний переходный металл, выбранный из группы, включающей ванадий, ниобий, гафний и хром, где атомное процентное содержание хрома составляет не более 0,2а1;
LTM обозначает поздний переходный металл, выбранный из группы, включающей железо, кобальт, марганец, рутений, серебро и палладий;
значение а2 лежит в интервале от 0 до 0,4а1;
значение y лежит в интервале от 0 до 1; и
(А) если значение x лежит в интервале от 0 до 0,15:
значение (а1 + а2) лежит в интервале от 30 до 75%,
значение (b1 + b2) лежит в интервале от 5 до 62%,
значение b2 лежит в интервале от 0 до 25%,
значение с лежит в интервале от 6 до 47%;
(В) если значение x лежит в интервале от 0,15 до 0,4:
значение (а1 + а2) лежит в интервале от 30 до 75%,
значение (b1 + b2) лежит в интервале от 5 до 62%,
значение b2 лежит в интервале от 0 до 25%,
значение с лежит в интервале от 2 до 47%;
(С) если значение x лежит в интервале от 0,4 до 0,8:
значение (а1 + а2) лежит в интервале от 35 до 75%,
значение (b1 + b2) лежит в интервале от 5 до 62%,
значение b2 лежит в интервале от 0 до 25%, и
значение с лежит в интервале от 2 до 47%;
(D) если значение x лежит в интервале от 0,6 до 0,8:
значение (а1 + а2) лежит в интервале от 35 до 75%,
значение (b1 + b2) лежит в интервале от 5 до 62%,
значение b2 лежит в интервале от 0 до 25%, и
значение с лежит в интервале от 2 до 42%;
(Е) если значение x лежит в интервале от 0,8 до 1:
значение (а1 + а2) лежит в интервале от 35 до 75%,
значение (b1 + b2) лежит в интервале от 5 до 62%,
значение b2 лежит в интервале от 0 до 25%, и
значение с лежит в интервале от 2 до 30%;
с тем ограничением, что значение 3с не превышает (100 - b1 - b2), когда значение (b1 + b2) составляет от 10 до 49%.1. Metallic glass, characterized in that it is formed by an alloy having the formula
(Zr 1 - x Ti x ) a 1 ETM a 2 (Cu 1 - y Ni y ) b 1 LTM b 2 Be c ,
where x and y denote atomic fractions, and a1, a2, b1, b2 and c denote atomic percentages,
ETM refers to at least one early transition metal selected from the group including vanadium, niobium, hafnium, and chromium, where the atomic percentage of chromium is no more than 0.2-1;
LTM denotes a late transition metal selected from the group comprising iron, cobalt, manganese, ruthenium, silver and palladium;
the value of a2 lies in the range from 0 to 0.4a1;
the value of y lies in the range from 0 to 1; and
(A) if the value of x lies in the range from 0 to 0.15:
the value of (a1 + a2) lies in the range from 30 to 75%,
the value (b1 + b2) lies in the range from 5 to 62%,
the value of b2 lies in the range from 0 to 25%,
the value of c lies in the range from 6 to 47%;
(B) if the value of x lies in the range from 0.15 to 0.4:
the value of (a1 + a2) lies in the range from 30 to 75%,
the value (b1 + b2) lies in the range from 5 to 62%,
the value of b2 lies in the range from 0 to 25%,
the value of c lies in the range from 2 to 47%;
(C) if the value of x lies in the range from 0.4 to 0.8:
the value of (a1 + a2) lies in the range from 35 to 75%,
the value (b1 + b2) lies in the range from 5 to 62%,
the value of b2 lies in the range from 0 to 25%, and
the value of c lies in the range from 2 to 47%;
(D) if the value of x lies in the range from 0.6 to 0.8:
the value of (a1 + a2) lies in the range from 35 to 75%,
the value (b1 + b2) lies in the range from 5 to 62%,
the value of b2 lies in the range from 0 to 25%, and
the value of c lies in the range from 2 to 42%;
(E) if the value of x lies in the range from 0.8 to 1:
the value of (a1 + a2) lies in the range from 35 to 75%,
the value (b1 + b2) lies in the range from 5 to 62%,
the value of b2 lies in the range from 0 to 25%, and
the value of c lies in the range from 2 to 30%;
with the restriction that the value of 3c does not exceed (100 - b1 - b2) when the value (b1 + b2) is from 10 to 49%.
значение (а1 + а2) лежит в интервале от 40 до 67%,
значение (b1 + b2) лежит в интервале от 10 до 48%,
значение b2 лежит в интервале от 0 до 25%, и
значение с лежит и интервале от 10 до 35%.2. Metallic glass according to claim 1, characterized in that
the value of (a1 + a2) lies in the range from 40 to 67%,
the value (b1 + b2) lies in the range from 10 to 48%,
the value of b2 lies in the range from 0 to 25%, and
the value of c lies in the range from 10 to 35%.
((Zr, Hf, Ti)x ETM1 - x)а (Cu1 - y Niy)b 1 LTMb 2 Beс,
где x и y обозначают атомные доли, а а, b1, b2 и с обозначают атомные проценты;
атомная доля титана во фрагменте ((Hf, Zr, Ti) ETM) составляет менее 0,7;
значение x лежит в интервале от 0,8 до 1;
LTM обозначает поздний переходный металл, выбранный из группы, включающей никель, медь, железо, кобальт, марганец, рутиний, серебро и палладий;
ETM обозначает ранний переходный металл, выбранный из группы, включающей ванадий, ниобий, иттрий, неодим, гадолиний и другие редкоземельные элементы, хром, молибден, тантал и вольфрам;
значение а лежит и интервале от 30 до 75%;
значение (b1 + b2) лежит в интервале от 5 до 57%, и
значение с лежит в интервале от 6 до 45%.3. Metallic glass, characterized in that it is formed by an alloy having the formula
((Zr, Hf, Ti) x ETM 1 - x ) a (Cu 1 - y Ni y ) b 1 LTM b 2 Be c ,
where x and y denote atomic fractions, and a, b1, b2 and c denote atomic percentages;
the atomic fraction of titanium in the fragment ((Hf, Zr, Ti) ETM) is less than 0.7;
the value of x lies in the range from 0.8 to 1;
LTM denotes a late transition metal selected from the group consisting of nickel, copper, iron, cobalt, manganese, rutinium, silver and palladium;
ETM refers to an early transition metal selected from the group consisting of vanadium, niobium, yttrium, neodymium, gadolinium and other rare-earth elements, chromium, molybdenum, tantalum and tungsten;
the value of a lies in the range from 30 to 75%;
the value (b1 + b2) lies in the range from 5 to 57%, and
the value of c lies in the range from 6 to 45%.
значение а лежит в интервале от 40 до 67%,
значение (b1 + b2) лежит в интервале от 10 до 48%,
значение с лежит в интервале от 10 до 35%.4. Metallic glass according to claim 3, characterized in that
the value of a lies in the range from 40 to 67%,
the value (b1 + b2) lies in the range from 10 to 48%,
the value of c lies in the range from 10 to 35%.
изготовление сплава, имеющего формулу
(Zr1 - x Tix)а 1 ETMа 2 (Cu1 - y Niy)b i LTMb 2 Beс,
где x и y обозначают атомные доли, а а1, а2, b1, b2 и с обозначают атомные проценты,
ETM обозначает по крайней мере один ранний переходный металл, выбранный из группы, включающей ванадий, ниобий, гафний и хром,
атомное процентное содержание хрома составляет не более 0,2а1;
LTM обозначает поздний переходный металл, выбранный из группы, включающей железо, кобальт, марганец, рутений, серебро и палладий;
значение а2 лежит в интервале от 0 до 0,4а1;
значение y лежит в интервале от 0 до 1;
(А) если значение x лежит в интервале от 0 до 0,15:
значение (а1 + а2) лежит в интервале от 30 до 75%,
значение (b1 + b2) лежит в интервале от 5 до 62%,
значение b2 лежит в интервале от 0 до 25%,
значение с лежит в интервале от 6 до 47%;
(В) если значение x лежит в интервале от 0,15 до 0,4:
значение (а1 + а2) лежит в интервале от 30 до 75%;
значение (b1 + b2) лежит в интервале от 5 до 62%,
значение b2 лежит в интервале от 0 до 25%, и
значение с лежит в интервале от 2 до 47%;
(С) если значение x лежит в интервале от 0,4 до 0,6:
значение (а1 + а2) лежит в интервале от 35 до 75%,
значение (b1 + b2) лежит в интервале от 5 до 62%,
значение b2 лежит в интервале от 0 до 25%, и
значение с лежит в интервале от 2 до 47%;
(D) если значение x лежит в интервале от 0,6 до 0,8:
значение (а1 + а2) лежит в интервале от 35 до 75%,
значение (b1 + b2) лежит в интервале от 5 до 62%,
значение b2 лежит в интервале от 0 до 25%,
значение С лежит и интервале от 2 до 42%;
(Е) если значение x лежит в интервале от 0,8 до 1:
значение (а1 + а2) лежит в интервале от 35 до 75%,
значение (b1 + b2) лежит в интервале от 5 до 62%,
значение b2 лежит в интервале от 0 до 25%,
значение с лежит в интервале от 2 до 30%;
с тем ограничением, что значение 3с не превышает (100 - b1 - b2), когда значение (b1 + b2) составляет от 10 до 49%;
охлаждение всего сплава от температуры выше его температуры плавления до температуры ниже его температуры стеклования с достаточной скоростью, чтобы предотвратить образование более 50% кристаллической фазы.5. The method of obtaining metallic glass containing at least 50% of the amorphous phase, characterized in that carry out the stage:
manufacture of alloy having the formula
(Zr 1 - x Ti x ) and 1 ETM and 2 (Cu 1 - y Ni y ) b i LTM b 2 Be c ,
where x and y denote atomic fractions, and a1, a2, b1, b2 and c denote atomic percentages,
ETM refers to at least one early transition metal selected from the group comprising vanadium, niobium, hafnium, and chromium,
atomic percentage of chromium is not more than 0.2a1;
LTM denotes a late transition metal selected from the group comprising iron, cobalt, manganese, ruthenium, silver and palladium;
the value of a2 lies in the range from 0 to 0.4a1;
the value of y lies in the range from 0 to 1;
(A) if the value of x lies in the range from 0 to 0.15:
the value of (a1 + a2) lies in the range from 30 to 75%,
the value (b1 + b2) lies in the range from 5 to 62%,
the value of b2 lies in the range from 0 to 25%,
the value of c lies in the range from 6 to 47%;
(B) if the value of x lies in the range from 0.15 to 0.4:
the value of (a1 + a2) lies in the range from 30 to 75%;
the value (b1 + b2) lies in the range from 5 to 62%,
the value of b2 lies in the range from 0 to 25%, and
the value of c lies in the range from 2 to 47%;
(C) if the value of x lies in the range from 0.4 to 0.6:
the value of (a1 + a2) lies in the range from 35 to 75%,
the value (b1 + b2) lies in the range from 5 to 62%,
the value of b2 lies in the range from 0 to 25%, and
the value of c lies in the range from 2 to 47%;
(D) if the value of x lies in the range from 0.6 to 0.8:
the value of (a1 + a2) lies in the range from 35 to 75%,
the value (b1 + b2) lies in the range from 5 to 62%,
the value of b2 lies in the range from 0 to 25%,
the value of C lies in the range from 2 to 42%;
(E) if the value of x lies in the range from 0.8 to 1:
the value of (a1 + a2) lies in the range from 35 to 75%,
the value (b1 + b2) lies in the range from 5 to 62%,
the value of b2 lies in the range from 0 to 25%,
the value of c lies in the range from 2 to 30%;
with the limitation that the value of 3c does not exceed (100 - b1 - b2) when the value (b1 + b2) is from 10 to 49%;
cooling the entire alloy from a temperature above its melting point to a temperature below its glass transition temperature at a sufficient rate to prevent the formation of more than 50% of the crystalline phase.
значение (а1 + а2) лежит в интервале от 40 до 67%,
значение (b1 + b2) лежит в интервале от 10 до 48%,
значение b2 лежит в интервале от 0 до 25%,
значение с лежит в интервале от 10 до 35%.6. The method according to claim 5, characterized in that
the value of (a1 + a2) lies in the range from 40 to 67%,
the value (b1 + b2) lies in the range from 10 to 48%,
the value of b2 lies in the range from 0 to 25%,
the value of c lies in the range from 10 to 35%.
изготовление сплава, имеющего формулу
((Zr, Hf, Ti)x ETM1 - x)а (Cu1 - y Niy)b 1 LTMb 2 Beс
где x и y обозначают атомные доли, а а, b1, b2 и с обозначают атомные проценты;
атомная доля титана во фрагменте ((Hf, Zr, Ti) ETM) составляет менее 0,7;
значение x лежит в интервале от 0,8 до 1;
LTM обозначает поздний переходный металл, выбранный из группы, включающей никель, медь, железо, кобальт, марганец, рутений, серебро и палладий;
ETM обозначает ранний переходный металл, выбранный из группы, включающей ванадий, ниобий, иттрий, неодим, гадолиний и другие редкоземельные элементы, хром, молибден, тантал и вольфрам;
значение а лежит в интервале от 30 до 75%;
значение (b1 + b2) лежит в интервале от 5 до 57%,
значение с лежит в интервале от 6 до 45%;
охлаждение всего сплава от температуры выше его температуры плавления до температуры ниже его температуры стеклования с достаточной скоростью, чтобы предотвратить образование более 50% кристаллической фазы.7. The method of obtaining metallic glass containing at least 50% of the amorphous phase, characterized in that carry out the stage:
manufacture of alloy having the formula
((Zr, Hf, Ti) x ETM 1 - x ) a (Cu 1 - y Ni y ) b 1 LTM b 2 Be with
where x and y denote atomic fractions, and a, b1, b2 and c denote atomic percentages;
the atomic fraction of titanium in the fragment ((Hf, Zr, Ti) ETM) is less than 0.7;
the value of x lies in the range from 0.8 to 1;
LTM denotes a late transition metal selected from the group comprising nickel, copper, iron, cobalt, manganese, ruthenium, silver and palladium;
ETM refers to an early transition metal selected from the group consisting of vanadium, niobium, yttrium, neodymium, gadolinium and other rare-earth elements, chromium, molybdenum, tantalum and tungsten;
the value of a lies in the range from 30 to 75%;
the value (b1 + b2) lies in the range from 5 to 57%,
the value of c lies in the range from 6 to 45%;
cooling the entire alloy from a temperature above its melting point to a temperature below its glass transition temperature at a sufficient rate to prevent the formation of more than 50% of the crystalline phase.
значение а лежит в интервале от 40 до 67%,
значение (b1 + b2) лежит в интервале от 10 до 48%,
значение с лежит в интервале от 10 до 35%.8. The method according to p. 7, characterized in that
the value of a lies in the range from 40 to 67%,
the value (b1 + b2) lies in the range from 10 to 48%,
the value of c lies in the range from 10 to 35%.
(Zr1 - x Tix)а (Cu1 - y Niy)b Beс,
где x и y обозначают атомные доли, а а, b и с обозначают атомные проценты, при этом значение y лежит в интервале от 0 до 1;
(А) если значение x лежит в интервале от 0 до 0,15:
значение а лежит в интервале от 30 до 75%,
значение b лежит в интервале от 5 до 62%, и
значение с лежит в интервале от 6 до 47%;
(В) если значение x лежит в интервале от 0,15 до 0,4:
значение а лежит в интервале от 30 до 75%,
значение b лежит в интервале от 5 до 62%, и
значение с лежит в интервале от 2 до 47%;
(С) если значение x лежит в интервале от 0,4 до 0,6:
значение а лежит в интервале от 35 до 75%,
значение b лежит в интервале от 5 до 62%, и
значение с лежит в интервале от 2 до 47%;
(D) если значение x лежит в интервале от 0,6 до 0,8:
значение а лежит в интервале от 35 до 75%,
значение b лежит в интервале от 5 до 62%, и
значение с лежит в интервале от 2 до 42%; и
(Е) если значение x лежит в интервале от 0,8 до 1:
значение а лежит в интервале от 35 до 75%,
значение b лежит в интервале от 5 до 62%, и
значение с лежит в интервале от 2 до 30%,
с тем ограничением, что значение 3с не превышает (100 - b), когда значение b составляет от 10 до 49%.11. Metallic glass, characterized in that it is formed by an alloy having the formula
(Zr 1 - x Ti x ) a (Cu 1 - y Ni y ) b Be c ,
where x and y denote atomic fractions, and a, b and c denote atomic percentages, while the value of y lies in the range from 0 to 1;
(A) if the value of x lies in the range from 0 to 0.15:
the value of a lies in the range from 30 to 75%,
the value of b lies in the range from 5 to 62%, and
the value of c lies in the range from 6 to 47%;
(B) if the value of x lies in the range from 0.15 to 0.4:
the value of a lies in the range from 30 to 75%,
the value of b lies in the range from 5 to 62%, and
the value of c lies in the range from 2 to 47%;
(C) if the value of x lies in the range from 0.4 to 0.6:
the value of a lies in the range from 35 to 75%,
the value of b lies in the range from 5 to 62%, and
the value of c lies in the range from 2 to 47%;
(D) if the value of x lies in the range from 0.6 to 0.8:
the value of a lies in the range from 35 to 75%,
the value of b lies in the range from 5 to 62%, and
the value of c lies in the range from 2 to 42%; and
(E) if the value of x lies in the range from 0.8 to 1:
the value of a lies in the range from 35 to 75%,
the value of b lies in the range from 5 to 62%, and
the value of c lies in the range from 2 to 30%,
with the restriction that the 3c value does not exceed (100 - b) when the b value is between 10 and 49%.
фрагмент (Cu1 - y Niy) содержит также дополнительный металл, выбранный из группы, включающей от 0 до 25% железа, от 0 до 25% кобальта, от 0 до 15% марганца и от 0 до 5% других металлов из групп 7 - 11;
бериллиевый фрагмент содержит также дополнительный металл, выбранный из группы, включающей от 0 до 15% алюминия, при этом значение с равно не менее 6, от 0 до 5% кремния и от 0 до 5% бора; и
сплав содержит не более 2% других элементов.13. Metallic glass according to claim 11 or 12, characterized in that the fragment (Zr 1 - x Ti x ) also contains an additional metal selected from the group comprising from 0 to 25% hafnium, from 0 to 20% niobium, from 0 to 15% yttrium, from 0 to 10% chromium, from 0 to 2% vanadium, from 0 to 5% molybdenum, from 0 to 50 tantalum, from 0 to 50 tungsten and from 0 to 5% lanthanum, lanthanides, actinium and actinides ;
the fragment (Cu 1 - y Ni y ) also contains an additional metal selected from the group consisting of from 0 to 25% iron, from 0 to 25% cobalt, from 0 to 15% manganese and from 0 to 5% other metals from groups 7 - eleven;
the beryllium fragment also contains an additional metal selected from the group comprising from 0 to 15% aluminum, with a value of at least 6, from 0 to 5% silicon, and from 0 to 5% boron; and
alloy contains no more than 2% of other elements.
изготовление сплава, имеющего формулу
(Zr1 - x Tix)а (Cu1 - y Niy)b Beс
где x и y обозначают атомные доли, а а, b и с обозначают атомные проценты, в которой значение y лежит в интервале от 0 до 1;
(А) если значение x лежит в интервале от 0 до 0,15:
значение а лежит в интервале от 30 до 75%,
значение b лежит в интервале от 5 до 62%, и
значение с лежит в интервале от 6 до 47%;
(В) если значение x лежит в интервале от 0,15 до 0,4:
значение а лежит в интервале от 30 до 75%,
значение b лежит в интервале от 5 до 62%, и
значение с лежит в интервале от 2 до 47%;
(С) если значение x лежит в интервале от 0,4 до 0,6:
значение а лежит в интервале от 35 до 75%,
значение b лежит в интервале от 5 до 62%, и
значение с лежит в интервале от 2 до 47%;
(D) если значение x лежит в интервале от 0,6 до 0,8:
значение а лежит в интервале от 35 до 75%,
значение b лежит в интервале от 5 до 62%, и
значение с лежит в интервале от 2 до 42; и
(Е) если значение x лежит в интервале от 0,8 до 1:
значение а лежит в интервале от 35 до 75%,
значение b лежит в интервале от 5 до 62%, и
значение с лежит в интервале от 2 до 30%,
с тем ограничением, что значение 3с не превышает (100 - b), когда значение b составляет от 10 до 49%;
охлаждение всего сплава от температуры выше его температуры плавления до температуры ниже его температуры стеклования с достаточной скоростью, чтобы предотвратить образование более 50% кристаллической фазы.14. The method of obtaining metallic glass containing at least 50% of the amorphous phase, characterized in that carry out the following stages:
manufacture of alloy having the formula
(Zr 1 - x Ti x ) a (Cu 1 - y Ni y ) b Be with
where x and y denote atomic fractions, and a, b and c denote atomic percentages, in which the value of y lies in the range from 0 to 1;
(A) if the value of x lies in the range from 0 to 0.15:
the value of a lies in the range from 30 to 75%,
the value of b lies in the range from 5 to 62%, and
the value of c lies in the range from 6 to 47%;
(B) if the value of x lies in the range from 0.15 to 0.4:
the value of a lies in the range from 30 to 75%,
the value of b lies in the range from 5 to 62%, and
the value of c lies in the range from 2 to 47%;
(C) if the value of x lies in the range from 0.4 to 0.6:
the value of a lies in the range from 35 to 75%,
the value of b lies in the range from 5 to 62%, and
the value of c lies in the range from 2 to 47%;
(D) if the value of x lies in the range from 0.6 to 0.8:
the value of a lies in the range from 35 to 75%,
the value of b lies in the range from 5 to 62%, and
the value c lies in the range from 2 to 42; and
(E) if the value of x lies in the range from 0.8 to 1:
the value of a lies in the range from 35 to 75%,
the value of b lies in the range from 5 to 62%, and
the value of c lies in the range from 2 to 30%,
with the restriction that the 3c value does not exceed (100 - b) when the b value is between 10 and 49%;
cooling the entire alloy from a temperature above its melting point to a temperature below its glass transition temperature at a sufficient rate to prevent the formation of more than 50% of the crystalline phase.
фрагмент (Zr1 - x Tix) содержит также дополнительный металл, выбранный из группы, включающей от 0 до 25% гафния, от 0 до 20% ниобия, от 0 до 15% иттрия, от 0 до 10% хрома, от 0 до 20% ванадия, от 0 до 5% молибдена, от 0 до 5% тантала, от 0 до 5% вольфрама и от 0 до 50 лантана, лантанидов, актиния и актинидов;
фрагмент (Cu1 - y Niy) содержит также дополнительный металл, выбранный из группы, включающей от 0 до 25% железа, от 0 до 25% кобальта, от 0 до 15% марганца и от 0 до 5% других металлов из Групп 7 - 11;
бериллиевый фрагмент содержит также дополнительный металл, выбранный из группы, включающей от 0 до 15% алюминия, при этом значение с равно не менее 6, от 0 до 5% кремния и от 0 до 5% бора;
сплав содержит не более 2% других элементов.16. The method according to p. 14 or 15, characterized in that
the fragment (Zr 1 - x Ti x ) also contains an additional metal selected from the group consisting of from 0 to 25% hafnium, from 0 to 20% niobium, from 0 to 15% yttrium, from 0 to 10% chromium, from 0 to 20% vanadium, 0 to 5% molybdenum, 0 to 5% tantalum, 0 to 5% tungsten, and 0 to 50 lanthanum, lanthanides, actinium, and actinides;
the fragment (Cu 1 - y Ni y ) also contains an additional metal selected from the group consisting of from 0 to 25% iron, from 0 to 25% cobalt, from 0 to 15% manganese and from 0 to 5% other metals from Groups 7 - eleven;
the beryllium fragment also contains an additional metal selected from the group comprising from 0 to 15% aluminum, with a value of at least 6, from 0 to 5% silicon, and from 0 to 5% boron;
alloy contains no more than 2% of other elements.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/044,814 US5288344A (en) | 1993-04-07 | 1993-04-07 | Berylllium bearing amorphous metallic alloys formed by low cooling rates |
US08/044,814 | 1993-04-07 | ||
US08/044.814 | 1993-04-07 | ||
US08/198,873 | 1994-02-18 | ||
US08/198.873 | 1994-02-18 | ||
US08/198,873 US5368659A (en) | 1993-04-07 | 1994-02-18 | Method of forming berryllium bearing metallic glass |
Publications (2)
Publication Number | Publication Date |
---|---|
RU95119589A true RU95119589A (en) | 1997-11-20 |
RU2121011C1 RU2121011C1 (en) | 1998-10-27 |
Family
ID=26722021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU95119589A RU2121011C1 (en) | 1993-04-07 | 1994-04-07 | Metallic glass and method of its manufacture |
Country Status (11)
Country | Link |
---|---|
US (1) | US5368659A (en) |
EP (1) | EP0693136B1 (en) |
JP (1) | JP4128614B2 (en) |
KR (1) | KR100313348B1 (en) |
CN (1) | CN1043059C (en) |
AU (1) | AU675133B2 (en) |
CA (1) | CA2159618A1 (en) |
DE (1) | DE69425251T2 (en) |
RU (1) | RU2121011C1 (en) |
SG (1) | SG43309A1 (en) |
WO (1) | WO1994023078A1 (en) |
Families Citing this family (208)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08199318A (en) * | 1995-01-25 | 1996-08-06 | Res Dev Corp Of Japan | Bar-shaped or cylindrical zirconium-base amorphous alloy cast and molded by metal mold and its production |
US5589012A (en) * | 1995-02-22 | 1996-12-31 | Systems Integration And Research, Inc. | Bearing systems |
US7357731B2 (en) * | 1995-12-04 | 2008-04-15 | Johnson William L | Golf club made of a bulk-solidifying amorphous metal |
GB2325414B (en) * | 1995-12-04 | 1999-05-26 | Amorphous Technologies Interna | Golf club made of a bulk-solidifying amorphous metal |
US6709536B1 (en) * | 1999-04-30 | 2004-03-23 | California Institute Of Technology | In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning |
US5607365A (en) * | 1996-03-12 | 1997-03-04 | California Institute Of Technology | Golf club putter |
US5980652A (en) * | 1996-05-21 | 1999-11-09 | Research Developement Corporation Of Japan | Rod-shaped or tubular amorphous Zr alloy made by die casting and method for manufacturing said amorphous Zr alloy |
US6039918A (en) * | 1996-07-25 | 2000-03-21 | Endress + Hauser Gmbh + Co. | Active brazing solder for brazing alumina-ceramic parts |
EP0835716B1 (en) * | 1996-07-25 | 2003-10-22 | Endress + Hauser GmbH + Co. KG | Active brazing alloy for brazing parts of alumina ceramics |
US5797443A (en) * | 1996-09-30 | 1998-08-25 | Amorphous Technologies International | Method of casting articles of a bulk-solidifying amorphous alloy |
US20040267349A1 (en) * | 2003-06-27 | 2004-12-30 | Kobi Richter | Amorphous metal alloy medical devices |
US20060178727A1 (en) * | 1998-12-03 | 2006-08-10 | Jacob Richter | Hybrid amorphous metal alloy stent |
US8382821B2 (en) | 1998-12-03 | 2013-02-26 | Medinol Ltd. | Helical hybrid stent |
EP1183401B1 (en) * | 1999-04-30 | 2011-07-06 | California Institute Of Technology | In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning |
AU1340601A (en) * | 1999-12-07 | 2001-06-18 | Corning Incorporated | Metallic glass hermetic coating for an optical fiber and method of making an optical fiber hermetically coated with metallic glass |
WO2001094054A1 (en) * | 2000-06-09 | 2001-12-13 | California Institute Of Technology | Casting of amorphous metallic parts by hot mold quenching |
WO2002022906A1 (en) * | 2000-09-18 | 2002-03-21 | Tohoku Techno Arch Co., Ltd. | Method for imparting higher ductility to amorphous alloy |
US6695936B2 (en) | 2000-11-14 | 2004-02-24 | California Institute Of Technology | Methods and apparatus for using large inertial body forces to identify, process and manufacture multicomponent bulk metallic glass forming alloys, and components fabricated therefrom |
JP4011316B2 (en) * | 2000-12-27 | 2007-11-21 | 独立行政法人科学技術振興機構 | Cu-based amorphous alloy |
US20060030439A1 (en) * | 2001-01-31 | 2006-02-09 | Philip Muller | Laser welded broadhead |
US6939258B2 (en) | 2001-01-31 | 2005-09-06 | Philip Muller | Unitary broadhead blade unit |
KR100874694B1 (en) | 2001-03-07 | 2008-12-18 | 리퀴드메탈 테크놀로지스 인코포레이티드 | Sharp cutting tools |
US6843496B2 (en) * | 2001-03-07 | 2005-01-18 | Liquidmetal Technologies, Inc. | Amorphous alloy gliding boards |
JP3860445B2 (en) * | 2001-04-19 | 2006-12-20 | 独立行政法人科学技術振興機構 | Cu-Be based amorphous alloy |
ATE366829T1 (en) * | 2001-06-07 | 2007-08-15 | Liquidmetal Technologies | IMPROVED METAL FRAME FOR ELECTRONIC DEVICES AND FLAT SCREENS |
US6623566B1 (en) * | 2001-07-30 | 2003-09-23 | The United States Of America As Represented By The Secretary Of The Air Force | Method of selection of alloy compositions for bulk metallic glasses |
ATE420218T1 (en) | 2001-08-02 | 2009-01-15 | Liquidmetal Technologies Inc | JOINING AMORPHIC METALS TO OTHER METALS USING A MECHANICAL CASTING JOINT |
WO2003023081A1 (en) * | 2001-09-07 | 2003-03-20 | Liquidmetal Technologies | Method of forming molded articles of amorphous alloy with high elastic limit |
US7008490B2 (en) * | 2001-10-03 | 2006-03-07 | Liquidmetal Technologies | Method of improving bulk-solidifying amorphous alloy compositions and cast articles made of the same |
US6682611B2 (en) | 2001-10-30 | 2004-01-27 | Liquid Metal Technologies, Inc. | Formation of Zr-based bulk metallic glasses from low purity materials by yttrium addition |
KR101190440B1 (en) * | 2002-02-01 | 2012-10-11 | 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. | Thermoplastic casting of amorphous alloys |
WO2003078158A1 (en) | 2002-03-11 | 2003-09-25 | Liquidmetal Technologies | Encapsulated ceramic armor |
EP1513637B1 (en) * | 2002-05-20 | 2008-03-12 | Liquidmetal Technologies | Foamed structures of bulk-solidifying amorphous alloys |
US6805758B2 (en) * | 2002-05-22 | 2004-10-19 | Howmet Research Corporation | Yttrium modified amorphous alloy |
US7560001B2 (en) | 2002-07-17 | 2009-07-14 | Liquidmetal Technologies, Inc. | Method of making dense composites of bulk-solidifying amorphous alloys and articles thereof |
AU2003254123A1 (en) * | 2002-07-22 | 2004-02-09 | California Institute Of Technology | BULK AMORPHOUS REFRACTORY GLASSES BASED ON THE Ni-Nb-Sn TERNARY ALLOY SYTEM |
WO2004012620A2 (en) | 2002-08-05 | 2004-02-12 | Liquidmetal Technologies | Metallic dental prostheses made of bulk-solidifying amorphous alloys and method of making such articles |
AU2003258298A1 (en) * | 2002-08-19 | 2004-03-03 | Liquidmetal Technologies | Medical implants |
AU2003279096A1 (en) * | 2002-09-30 | 2004-04-23 | Liquidmetal Technologies | Investment casting of bulk-solidifying amorphous alloys |
US6896750B2 (en) * | 2002-10-31 | 2005-05-24 | Howmet Corporation | Tantalum modified amorphous alloy |
AU2003287682A1 (en) * | 2002-11-18 | 2004-06-15 | Liquidmetal Technologies | Amorphous alloy stents |
AU2003295809A1 (en) * | 2002-11-22 | 2004-06-18 | Liquidmetal Technologies, Inc. | Jewelry made of precious amorphous metal and method of making such articles |
US7591910B2 (en) * | 2002-12-04 | 2009-09-22 | California Institute Of Technology | Bulk amorphous refractory glasses based on the Ni(-Cu-)-Ti(-Zr)-Al alloy system |
AU2003300388A1 (en) * | 2002-12-20 | 2004-07-22 | Liquidmetal Technologies, Inc. | Pt-BASE BULK SOLIDIFYING AMORPHOUS ALLOYS |
US7896982B2 (en) * | 2002-12-20 | 2011-03-01 | Crucible Intellectual Property, Llc | Bulk solidifying amorphous alloys with improved mechanical properties |
US8828155B2 (en) * | 2002-12-20 | 2014-09-09 | Crucible Intellectual Property, Llc | Bulk solidifying amorphous alloys with improved mechanical properties |
WO2004076099A2 (en) | 2003-01-17 | 2004-09-10 | Liquidmetal Technologies | Method of manufacturing amorphous metallic foam |
WO2005005675A2 (en) | 2003-02-11 | 2005-01-20 | Liquidmetal Technologies, Inc. | Method of making in-situ composites comprising amorphous alloys |
WO2005034590A2 (en) * | 2003-02-21 | 2005-04-14 | Liquidmetal Technologies, Inc. | Composite emp shielding of bulk-solidifying amorphous alloys and method of making same |
AU2003294624A1 (en) * | 2003-02-26 | 2004-09-17 | Bosch Rexroth Ag | Directly controlled pressure control valve |
JP5043427B2 (en) | 2003-03-18 | 2012-10-10 | リキッドメタル テクノロジーズ,インコーポレイティド | Current collecting plate made of bulk solidified amorphous alloy |
USRE44426E1 (en) * | 2003-04-14 | 2013-08-13 | Crucible Intellectual Property, Llc | Continuous casting of foamed bulk amorphous alloys |
USRE44425E1 (en) * | 2003-04-14 | 2013-08-13 | Crucible Intellectual Property, Llc | Continuous casting of bulk solidifying amorphous alloys |
US7090733B2 (en) * | 2003-06-17 | 2006-08-15 | The Regents Of The University Of California | Metallic glasses with crystalline dispersions formed by electric currents |
US9039755B2 (en) | 2003-06-27 | 2015-05-26 | Medinol Ltd. | Helical hybrid stent |
US9155639B2 (en) | 2009-04-22 | 2015-10-13 | Medinol Ltd. | Helical hybrid stent |
WO2005033350A1 (en) | 2003-10-01 | 2005-04-14 | Liquidmetal Technologies, Inc. | Fe-base in-situ composite alloys comprising amorphous phase |
US7368023B2 (en) * | 2004-10-12 | 2008-05-06 | Wisconisn Alumni Research Foundation | Zirconium-rich bulk metallic glass alloys |
EP1805337B8 (en) * | 2004-10-15 | 2011-01-12 | Crucible Intellectual Property, LLC | Au-base bulk solidifying amorphous alloys |
US20090114317A1 (en) * | 2004-10-19 | 2009-05-07 | Steve Collier | Metallic mirrors formed from amorphous alloys |
US8197615B2 (en) | 2004-10-22 | 2012-06-12 | Crucible Intellectual Property, Llc | Amorphous alloy hooks and methods of making such hooks |
US20060123690A1 (en) * | 2004-12-14 | 2006-06-15 | Anderson Mark C | Fish hook and related methods |
US7597840B2 (en) * | 2005-01-21 | 2009-10-06 | California Institute Of Technology | Production of amorphous metallic foam by powder consolidation |
US8063843B2 (en) * | 2005-02-17 | 2011-11-22 | Crucible Intellectual Property, Llc | Antenna structures made of bulk-solidifying amorphous alloys |
US20090209923A1 (en) * | 2005-04-19 | 2009-08-20 | Linderoth Soeren | Disposable hypodermic needle |
US8231948B2 (en) * | 2005-08-15 | 2012-07-31 | The University Of Florida Research Foundation, Inc. | Micro-molded integral non-line-of sight articles and method |
US7540929B2 (en) | 2006-02-24 | 2009-06-02 | California Institute Of Technology | Metallic glass alloys of palladium, copper, cobalt, and phosphorus |
US20070217163A1 (en) * | 2006-03-15 | 2007-09-20 | Wilson Greatbatch | Implantable medical electronic device with amorphous metallic alloy enclosure |
US8057530B2 (en) * | 2006-06-30 | 2011-11-15 | Tyco Healthcare Group Lp | Medical devices with amorphous metals, and methods therefor |
US20080005953A1 (en) * | 2006-07-07 | 2008-01-10 | Anderson Tackle Company | Line guides for fishing rods |
US7589266B2 (en) * | 2006-08-21 | 2009-09-15 | Zuli Holdings, Ltd. | Musical instrument string |
WO2008079333A2 (en) * | 2006-12-21 | 2008-07-03 | Anderson Mark C | Cutting tools made of an in situ composite of bulk-solidifying amorphous alloy |
CN100569984C (en) * | 2007-01-12 | 2009-12-16 | 中国科学院金属研究所 | Crystalline state alloy spherical particle/amorphous alloy base composite material and preparation method thereof |
CN100560775C (en) * | 2007-01-12 | 2009-11-18 | 中国科学院金属研究所 | Amorphous alloy spherical particle/crystal alloy based composites and preparation method thereof |
CN100560776C (en) * | 2007-01-12 | 2009-11-18 | 中国科学院金属研究所 | Amorphous alloy spherical particle/amorphous alloy base composite material and preparation method |
US20080209794A1 (en) * | 2007-02-14 | 2008-09-04 | Anderson Mark C | Fish hook made of an in situ composite of bulk-solidifying amorphous alloy |
WO2008124623A1 (en) * | 2007-04-04 | 2008-10-16 | California Institute Of Technology | Process for joining materials using bulk metallic glasses |
JP5566877B2 (en) * | 2007-04-06 | 2014-08-06 | カリフォルニア インスティテュート オブ テクノロジー | Semi-melt processing of bulk metallic glass matrix composites |
US20090056509A1 (en) * | 2007-07-11 | 2009-03-05 | Anderson Mark C | Pliers made of an in situ composite of bulk-solidifying amorphous alloy |
EP2176017B1 (en) | 2007-07-12 | 2012-05-30 | Apple Inc. | Methods for integrally trapping a glass insert in a metal bezel |
US20090095075A1 (en) * | 2007-10-12 | 2009-04-16 | Yevgeniy Vinshtok | Sensor housing |
EP2225059A1 (en) | 2007-11-26 | 2010-09-08 | Yale University | Method of blow molding a bulk metallic glass |
CN101952247B (en) | 2007-12-20 | 2015-08-19 | 爱克发印艺公司 | For the preparation of the midbody compound of cyanine dye, merocyanine dye and oxonol dye that meta replaces |
EP2095948B1 (en) | 2008-02-28 | 2010-09-15 | Agfa Graphics N.V. | A method for making a lithographic printing plate |
US8613816B2 (en) | 2008-03-21 | 2013-12-24 | California Institute Of Technology | Forming of ferromagnetic metallic glass by rapid capacitor discharge |
SG191693A1 (en) | 2008-03-21 | 2013-07-31 | California Inst Of Techn | Forming of metallic glass by rapid capacitor discharge |
US8613814B2 (en) | 2008-03-21 | 2013-12-24 | California Institute Of Technology | Forming of metallic glass by rapid capacitor discharge forging |
ES2382371T3 (en) | 2008-10-23 | 2012-06-07 | Agfa Graphics N.V. | Lithographic printing plate |
CN102245692B (en) | 2008-12-18 | 2014-02-26 | 爱克发印艺公司 | A lithographic printing plate precursor |
US9539628B2 (en) | 2009-03-23 | 2017-01-10 | Apple Inc. | Rapid discharge forming process for amorphous metal |
CN101886232B (en) | 2009-05-14 | 2011-12-14 | 比亚迪股份有限公司 | Amorphous alloy-based composite material and preparation method thereof |
MX2011012414A (en) | 2009-05-19 | 2012-03-07 | California Inst Of Techn | Tough iron-based bulk metallic glass alloys. |
JP4783934B2 (en) * | 2009-06-10 | 2011-09-28 | 株式会社丸ヱム製作所 | Metal glass fastening screw |
CN102041461B (en) * | 2009-10-22 | 2012-03-07 | 比亚迪股份有限公司 | Zr-based amorphous alloy and preparation method thereof |
CN102041462B (en) | 2009-10-26 | 2012-05-30 | 比亚迪股份有限公司 | Zirconium-based amorphous alloy and preparation method thereof |
CN102154596A (en) | 2009-10-30 | 2011-08-17 | 比亚迪股份有限公司 | Zirconium-based amorphous alloy and preparation method thereof |
US9273931B2 (en) | 2009-11-09 | 2016-03-01 | Crucible Intellectual Property, Llc | Amorphous alloys armor |
EP2499270B1 (en) | 2009-11-11 | 2019-07-31 | BYD Company Limited | Zirconium-based amorphous alloy, preparing method and recycling method thereof |
KR20110055399A (en) * | 2009-11-19 | 2011-05-25 | 한국생산기술연구원 | Sputtering target mother material of multi-component alloy system and method for manufacturing complex-coating thin film of multi-function |
WO2011069273A1 (en) * | 2009-12-09 | 2011-06-16 | Rolex S.A. | Method for making a spring for a timepiece |
JP2013516326A (en) | 2010-01-04 | 2013-05-13 | クルーシブル インテレクチュアル プロパティ エルエルシー | Amorphous alloy seal and bonding |
WO2011094755A2 (en) | 2010-02-01 | 2011-08-04 | Crucible Intellectual Property Llc | Nickel based thermal spray powder and coating, and method for making the same |
US9057120B2 (en) | 2010-02-17 | 2015-06-16 | Apple Inc. | Thermoplastic forming methods for amorphous alloy |
CN102859024A (en) | 2010-03-19 | 2013-01-02 | 科卢斯博知识产权有限公司 | Iron- chromium- molybdenum - based thermal spray powder and method of making of the same |
CN102892915B (en) | 2010-04-08 | 2014-09-03 | 加利福尼亚技术学院 | Electromagnetic forming of metallic glasses using capacitive discharge and magnetic field |
KR20130048224A (en) | 2010-06-14 | 2013-05-09 | 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. | Tin-containing amorphous alloy |
WO2012064871A2 (en) | 2010-11-09 | 2012-05-18 | California Institute Of Technology | Ferromagnetic cores of amorphouse ferromagnetic metal alloys and electonic devices having the same |
AU2011352304B2 (en) | 2010-12-23 | 2015-11-05 | California Institute Of Technology | Sheet forming of mettalic glass by rapid capacitor discharge |
CN103443321B (en) | 2011-02-16 | 2015-09-30 | 加利福尼亚技术学院 | The injection molding of the metallic glass undertaken by rapid capacitor discharge |
WO2012162239A1 (en) | 2011-05-21 | 2012-11-29 | James Kang | Material for eyewear & eyewear structure |
US20150107083A1 (en) | 2011-07-01 | 2015-04-23 | Apple Inc. | Heat stake joining |
CN103748456B (en) | 2011-08-05 | 2017-02-15 | 科卢斯博知识产权有限公司 | Nondestructive method to determine crystallinity in amorphous alloy |
US10107550B2 (en) | 2011-08-05 | 2018-10-23 | Crucible Intellectual Property, LLC. | Crucible materials |
US8936664B2 (en) | 2011-08-05 | 2015-01-20 | Crucible Intellectual Property, Llc | Crucible materials for alloy melting |
US8459331B2 (en) | 2011-08-08 | 2013-06-11 | Crucible Intellectual Property, Llc | Vacuum mold |
US10280493B2 (en) | 2011-08-12 | 2019-05-07 | Cornerstone Intellectual Property, Llc | Foldable display structures |
US8858868B2 (en) | 2011-08-12 | 2014-10-14 | Crucible Intellectual Property, Llc | Temperature regulated vessel |
JP5934366B2 (en) | 2011-09-16 | 2016-06-15 | クルーシブル インテレクチュアル プロパティ エルエルシーCrucible Intellectual Property Llc | Molding and separation of bulk solidified amorphous alloys and composites containing amorphous alloys. |
WO2013043149A1 (en) | 2011-09-19 | 2013-03-28 | Crucible Intellectual Property Llc | Nano- and micro-replication for authentication and texturization |
WO2013043156A1 (en) | 2011-09-20 | 2013-03-28 | Crucible Intellectual Property Llc | Induction shield and its method of use in a system |
KR20140070639A (en) | 2011-09-29 | 2014-06-10 | 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. | Radiation shielding structures |
US9945017B2 (en) | 2011-09-30 | 2018-04-17 | Crucible Intellectual Property, Llc | Tamper resistant amorphous alloy joining |
EP2760609A1 (en) | 2011-09-30 | 2014-08-06 | Crucible Intellectual Property, LLC | Injection molding of amorphous alloy using an injection molding system |
CN103974790B (en) | 2011-10-14 | 2018-02-13 | 科卢斯博知识产权有限公司 | Cast gate is contained for the melting of straight line temperature control |
CN103890937B (en) | 2011-10-20 | 2017-05-03 | 科卢斯博知识产权有限公司 | Bulk amorphous alloy heat sink |
CN103889613B (en) | 2011-10-21 | 2016-02-03 | 苹果公司 | Pressure fluid shaping is used to carry out engagement block glassy metal sheet material |
CN104039480B (en) | 2011-11-11 | 2016-04-06 | 科卢斯博知识产权有限公司 | For the twin columns stopper rod of controlled delivery in adapted to injection system |
CN104039481B (en) | 2011-11-11 | 2016-04-20 | 科卢斯博知识产权有限公司 | The ingot bar load maintainer of injection machine |
US9302320B2 (en) | 2011-11-11 | 2016-04-05 | Apple Inc. | Melt-containment plunger tip for horizontal metal die casting |
JP2015503028A (en) | 2011-11-21 | 2015-01-29 | クルーシブル インテレクチュアル プロパティ エルエルシーCrucible Intellectual Property Llc | Alloying of Fe-based bulk amorphous alloys |
US9544949B2 (en) | 2012-01-23 | 2017-01-10 | Apple Inc. | Boat and coil designs |
US20130224676A1 (en) | 2012-02-27 | 2013-08-29 | Ormco Corporation | Metallic glass orthodontic appliances and methods for their manufacture |
WO2013141866A1 (en) | 2012-03-22 | 2013-09-26 | Crucible Intellectual Property Llc | Methods and systems for skull trapping |
CN104582877A (en) | 2012-03-23 | 2015-04-29 | 苹果公司 | Continuous moldless fabrication of amorphous alloy ingots |
WO2013141880A1 (en) | 2012-03-23 | 2013-09-26 | Crucible Intellectual Property Llc | Amorphous alloy powder feedstock processing |
CN104641010B (en) | 2012-03-23 | 2018-05-22 | 苹果公司 | The amorphous alloy roll forming of feed or component |
JP6001159B2 (en) | 2012-03-23 | 2016-10-05 | クルーシブル インテレクチュアル プロパティ エルエルシーCrucible Intellectual Property Llc | Bulk amorphous alloy fasteners |
WO2013154581A1 (en) | 2012-04-13 | 2013-10-17 | Crucible Intellectual Property Llc | Material containing vessels for melting material |
WO2013158069A1 (en) | 2012-04-16 | 2013-10-24 | Apple Inc. | Injection molding and casting of materials using a vertical injection molding system |
US20150139270A1 (en) | 2012-04-23 | 2015-05-21 | Apple Inc. | Non-destructive determination of volumetric crystallinity of bulk amorphous alloy |
US10131022B2 (en) | 2012-04-23 | 2018-11-20 | Apple Inc. | Methods and systems for forming a glass insert in an amorphous metal alloy bezel |
WO2013162521A1 (en) | 2012-04-24 | 2013-10-31 | Apple Inc. | Ultrasonic inspection |
US20160237537A1 (en) | 2012-04-25 | 2016-08-18 | Crucible Intellectual Property, Llc | Articles containing shape retaining wire therein |
WO2013165441A1 (en) | 2012-05-04 | 2013-11-07 | Apple Inc. | Consumer electronics port having bulk amorphous alloy core and a ductile cladding |
WO2013165442A1 (en) | 2012-05-04 | 2013-11-07 | Apple Inc. | Inductive coil designs for the melting and movement of amorphous metals |
US9056353B2 (en) | 2012-05-15 | 2015-06-16 | Apple Inc. | Manipulating surface topology of BMG feedstock |
US9375788B2 (en) | 2012-05-16 | 2016-06-28 | Apple Inc. | Amorphous alloy component or feedstock and methods of making the same |
US9044805B2 (en) | 2012-05-16 | 2015-06-02 | Apple Inc. | Layer-by-layer construction with bulk metallic glasses |
US9302319B2 (en) | 2012-05-16 | 2016-04-05 | Apple Inc. | Bulk metallic glass feedstock with a dissimilar sheath |
US8485245B1 (en) | 2012-05-16 | 2013-07-16 | Crucible Intellectual Property, Llc | Bulk amorphous alloy sheet forming processes |
US8961091B2 (en) | 2012-06-18 | 2015-02-24 | Apple Inc. | Fastener made of bulk amorphous alloy |
US10066276B2 (en) * | 2012-06-25 | 2018-09-04 | Crucible Intellectual Property, Llc | High thermal stability bulk metallic glass in the Zr—Nb—Cu—Ni—Al system |
US9027630B2 (en) | 2012-07-03 | 2015-05-12 | Apple Inc. | Insert casting or tack welding of machinable metal in bulk amorphous alloy part and post machining the machinable metal insert |
US9033024B2 (en) | 2012-07-03 | 2015-05-19 | Apple Inc. | Insert molding of bulk amorphous alloy into open cell foam |
US9279733B2 (en) | 2012-07-03 | 2016-03-08 | Apple Inc. | Bulk amorphous alloy pressure sensor |
US9587296B2 (en) | 2012-07-03 | 2017-03-07 | Apple Inc. | Movable joint through insert |
US20140007985A1 (en) * | 2012-07-03 | 2014-01-09 | Christopher D. Prest | Indirect process condition monitoring |
US9909201B2 (en) | 2012-07-04 | 2018-03-06 | Apple Inc. | Consumer electronics machined housing using coating that exhibit metamorphic transformation |
US9103009B2 (en) | 2012-07-04 | 2015-08-11 | Apple Inc. | Method of using core shell pre-alloy structure to make alloys in a controlled manner |
US9771642B2 (en) | 2012-07-04 | 2017-09-26 | Apple Inc. | BMG parts having greater than critical casting thickness and method for making the same |
US8829437B2 (en) | 2012-07-04 | 2014-09-09 | Apple Inc. | Method for quantifying amorphous content in bulk metallic glass parts using thermal emissivity |
US9314839B2 (en) | 2012-07-05 | 2016-04-19 | Apple Inc. | Cast core insert out of etchable material |
US9963769B2 (en) | 2012-07-05 | 2018-05-08 | Apple Inc. | Selective crystallization of bulk amorphous alloy |
US9430102B2 (en) | 2012-07-05 | 2016-08-30 | Apple | Touch interface using patterned bulk amorphous alloy |
US8826968B2 (en) | 2012-09-27 | 2014-09-09 | Apple Inc. | Cold chamber die casting with melt crucible under vacuum environment |
US8813816B2 (en) | 2012-09-27 | 2014-08-26 | Apple Inc. | Methods of melting and introducing amorphous alloy feedstock for casting or processing |
US8701742B2 (en) | 2012-09-27 | 2014-04-22 | Apple Inc. | Counter-gravity casting of hollow shapes |
US8833432B2 (en) | 2012-09-27 | 2014-09-16 | Apple Inc. | Injection compression molding of amorphous alloys |
US9004151B2 (en) | 2012-09-27 | 2015-04-14 | Apple Inc. | Temperature regulated melt crucible for cold chamber die casting |
US8813814B2 (en) | 2012-09-28 | 2014-08-26 | Apple Inc. | Optimized multi-stage inductive melting of amorphous alloys |
US8813817B2 (en) | 2012-09-28 | 2014-08-26 | Apple Inc. | Cold chamber die casting of amorphous alloys using cold crucible induction melting techniques |
US9725796B2 (en) | 2012-09-28 | 2017-08-08 | Apple Inc. | Coating of bulk metallic glass (BMG) articles |
US8813813B2 (en) | 2012-09-28 | 2014-08-26 | Apple Inc. | Continuous amorphous feedstock skull melting |
US10197335B2 (en) | 2012-10-15 | 2019-02-05 | Apple Inc. | Inline melt control via RF power |
CN102912260B (en) * | 2012-10-19 | 2014-11-05 | 南京理工大学 | Endogenic intermetallic compound metal glass composite material and preparation method thereof |
CN102888572B (en) * | 2012-10-19 | 2014-01-08 | 南京理工大学 | Zirconium-based metallic glass multi-phase composite material and preparation method thereof |
US9393612B2 (en) | 2012-11-15 | 2016-07-19 | Glassimetal Technology, Inc. | Automated rapid discharge forming of metallic glasses |
CN103911563B (en) | 2012-12-31 | 2017-06-06 | 比亚迪股份有限公司 | Zirconium-base amorphous alloy and preparation method thereof |
JP2016508546A (en) | 2013-01-29 | 2016-03-22 | グラッシメタル テクノロジー インコーポレイテッド | Golf club production from bulk metallic glass with high toughness and rigidity |
WO2014145747A1 (en) | 2013-03-15 | 2014-09-18 | Glassimetal Technology, Inc. | Methods for shaping high aspect ratio articles from metallic glass alloys using rapid capacitive discharge and metallic glass feedstock for use in such methods |
US20140261898A1 (en) | 2013-03-15 | 2014-09-18 | Apple Inc. | Bulk metallic glasses with low concentration of beryllium |
US9925583B2 (en) | 2013-07-11 | 2018-03-27 | Crucible Intellectual Property, Llc | Manifold collar for distributing fluid through a cold crucible |
US9445459B2 (en) | 2013-07-11 | 2016-09-13 | Crucible Intellectual Property, Llc | Slotted shot sleeve for induction melting of material |
US9499891B2 (en) | 2013-08-23 | 2016-11-22 | Heraeus Deutschland GmbH & Co. KG | Zirconium-based alloy metallic glass and method for forming a zirconium-based alloy metallic glass |
CN104419879B (en) * | 2013-09-06 | 2016-09-21 | 南京理工大学 | A kind of zirconium-base amorphous alloy with antioxygenic property and wide supercooling liquid phase region |
US10273568B2 (en) | 2013-09-30 | 2019-04-30 | Glassimetal Technology, Inc. | Cellulosic and synthetic polymeric feedstock barrel for use in rapid discharge forming of metallic glasses |
CN104630661B (en) | 2013-10-03 | 2017-04-26 | 格拉斯金属技术股份有限公司 | Feedstock barrels coated with insulating films for rapid discharge forming of metallic glasses |
US10065396B2 (en) | 2014-01-22 | 2018-09-04 | Crucible Intellectual Property, Llc | Amorphous metal overmolding |
US9970079B2 (en) | 2014-04-18 | 2018-05-15 | Apple Inc. | Methods for constructing parts using metallic glass alloys, and metallic glass alloy materials for use therewith |
US9849504B2 (en) | 2014-04-30 | 2017-12-26 | Apple Inc. | Metallic glass parts including core and shell |
US10056541B2 (en) | 2014-04-30 | 2018-08-21 | Apple Inc. | Metallic glass meshes, actuators, sensors, and methods for constructing the same |
US10161025B2 (en) | 2014-04-30 | 2018-12-25 | Apple Inc. | Methods for constructing parts with improved properties using metallic glass alloys |
US10029304B2 (en) | 2014-06-18 | 2018-07-24 | Glassimetal Technology, Inc. | Rapid discharge heating and forming of metallic glasses using separate heating and forming feedstock chambers |
US10022779B2 (en) | 2014-07-08 | 2018-07-17 | Glassimetal Technology, Inc. | Mechanically tuned rapid discharge forming of metallic glasses |
US10000837B2 (en) | 2014-07-28 | 2018-06-19 | Apple Inc. | Methods and apparatus for forming bulk metallic glass parts using an amorphous coated mold to reduce crystallization |
US9873151B2 (en) | 2014-09-26 | 2018-01-23 | Crucible Intellectual Property, Llc | Horizontal skull melt shot sleeve |
RU2596696C1 (en) * | 2015-06-26 | 2016-09-10 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Material based on 3d metal glass based on zirconium and its production method in conditions of low vacuum |
US10968547B2 (en) | 2015-09-30 | 2021-04-06 | Crucible Intellectual Property, Llc | Bulk metallic glass sheets and parts made therefrom |
EP3170579A1 (en) * | 2015-11-18 | 2017-05-24 | The Swatch Group Research and Development Ltd. | Method for manufacturing a part from amorphous metal |
US10682694B2 (en) | 2016-01-14 | 2020-06-16 | Glassimetal Technology, Inc. | Feedback-assisted rapid discharge heating and forming of metallic glasses |
US10632529B2 (en) | 2016-09-06 | 2020-04-28 | Glassimetal Technology, Inc. | Durable electrodes for rapid discharge heating and forming of metallic glasses |
CN106906430B (en) * | 2017-04-25 | 2019-02-26 | 湖南理工学院 | A kind of Cu70Zr20Ti10/ Cu/Ni-P amorphous alloy composite powder and its preparation process |
DE102018101453A1 (en) * | 2018-01-23 | 2019-07-25 | Borgwarner Ludwigsburg Gmbh | Heating device and method for producing a heating rod |
SG10201805971SA (en) | 2018-07-11 | 2020-02-27 | Attometal Tech Pte Ltd | Iron-based amorphous alloy powder |
US11371108B2 (en) | 2019-02-14 | 2022-06-28 | Glassimetal Technology, Inc. | Tough iron-based glasses with high glass forming ability and high thermal stability |
CN110205566B (en) * | 2019-06-19 | 2021-07-23 | 中国科学院金属研究所 | Method for improving strength of phase-change Ti-based amorphous composite material by adding Al |
CN114672745B (en) * | 2022-03-24 | 2023-03-10 | 松山湖材料实验室 | Titanium-based amorphous composite material and preparation method and application thereof |
CN115247243B (en) * | 2022-08-24 | 2023-06-27 | 盘星新型合金材料(常州)有限公司 | Hf-containing light large-size block amorphous alloy and preparation method and application thereof |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4050931A (en) * | 1975-08-13 | 1977-09-27 | Allied Chemical Corporation | Amorphous metal alloys in the beryllium-titanium-zirconium system |
US3989517A (en) * | 1974-10-30 | 1976-11-02 | Allied Chemical Corporation | Titanium-beryllium base amorphous alloys |
US4032198A (en) * | 1976-01-05 | 1977-06-28 | Teledyne Industries, Inc. | Bearing assembly with lubrication and cooling means |
US4064757A (en) * | 1976-10-18 | 1977-12-27 | Allied Chemical Corporation | Glassy metal alloy temperature sensing elements for resistance thermometers |
US4116687A (en) * | 1976-12-13 | 1978-09-26 | Allied Chemical Corporation | Glassy superconducting metal alloys in the beryllium-niobium-zirconium system |
US4126449A (en) * | 1977-08-09 | 1978-11-21 | Allied Chemical Corporation | Zirconium-titanium alloys containing transition metal elements |
US4135924A (en) * | 1977-08-09 | 1979-01-23 | Allied Chemical Corporation | Filaments of zirconium-copper glassy alloys containing transition metal elements |
US4113478A (en) * | 1977-08-09 | 1978-09-12 | Allied Chemical Corporation | Zirconium alloys containing transition metal elements |
CH671534A5 (en) * | 1986-03-14 | 1989-09-15 | Escher Wyss Ag | |
WO1988002106A1 (en) | 1986-09-08 | 1988-03-24 | Commonwealth Scientific And Industrial Research Or | Stable metal-sheathed thermocouple cable |
EP0319588B2 (en) * | 1987-06-18 | 1998-02-04 | Sumitomo Rubber Industries Limited | Pneumatic radial tire and production thereof |
JPS6447831A (en) * | 1987-08-12 | 1989-02-22 | Takeshi Masumoto | High strength and heat resistant aluminum-based alloy and its production |
DE3741290C2 (en) * | 1987-12-05 | 1993-09-30 | Geesthacht Gkss Forschung | Application of a process for the treatment of glass-like alloys |
JPH0621326B2 (en) * | 1988-04-28 | 1994-03-23 | 健 増本 | High strength, heat resistant aluminum base alloy |
NZ230311A (en) * | 1988-09-05 | 1990-09-26 | Masumoto Tsuyoshi | High strength magnesium based alloy |
JPH07122120B2 (en) * | 1989-11-17 | 1995-12-25 | 健 増本 | Amorphous alloy with excellent workability |
EP0503880B1 (en) * | 1991-03-14 | 1997-10-01 | Tsuyoshi Masumoto | Amorphous magnesium alloy and method for producing the same |
JP2992602B2 (en) * | 1991-05-15 | 1999-12-20 | 健 増本 | Manufacturing method of high strength alloy wire |
-
1994
- 1994-02-18 US US08/198,873 patent/US5368659A/en not_active Expired - Lifetime
- 1994-04-07 RU RU95119589A patent/RU2121011C1/en active
- 1994-04-07 AU AU66287/94A patent/AU675133B2/en not_active Ceased
- 1994-04-07 CA CA002159618A patent/CA2159618A1/en not_active Abandoned
- 1994-04-07 SG SG1996008006A patent/SG43309A1/en unknown
- 1994-04-07 KR KR1019950704341A patent/KR100313348B1/en not_active IP Right Cessation
- 1994-04-07 DE DE69425251T patent/DE69425251T2/en not_active Expired - Lifetime
- 1994-04-07 CN CN94191971A patent/CN1043059C/en not_active Expired - Fee Related
- 1994-04-07 WO PCT/US1994/003850 patent/WO1994023078A1/en active IP Right Grant
- 1994-04-07 JP JP52249894A patent/JP4128614B2/en not_active Expired - Lifetime
- 1994-04-07 EP EP94914081A patent/EP0693136B1/en not_active Expired - Lifetime
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU95119589A (en) | METAL GLASS AND METHOD OF OBTAINING METAL GLASS | |
US6682611B2 (en) | Formation of Zr-based bulk metallic glasses from low purity materials by yttrium addition | |
KR960702010A (en) | Beryllium composition comprising metallic glass | |
Naka et al. | Potential and prospects of some intermetallic compounds for structural applications | |
US6592689B2 (en) | Fractional variation to improve bulk metallic glass forming capability | |
CA2211894A1 (en) | Metallic glass alloys of zr, ti, cu and ni | |
Ohashi et al. | NEW METASTABLE PHASE IN RAPIDLY SOLIDIFIED Al--Zr ALLOYS. | |
JP2001049371A (en) | Al-Zn ALLOY EXCELLENT IN VIBRATION ABSORBING CAPACITY AND ITS PRODUCTION | |
RU2002110657A (en) | Aluminum-based alloy, product from this alloy and method for manufacturing the product | |
ATE363549T1 (en) | SOLDER ALLOY | |
Fu et al. | The effect of Gd addition on the glass-forming ability of Cu–Zr–Al alloy | |
KR20150073270A (en) | Rare earth element based high entropy bulk metallic glass | |
WO2004074522A2 (en) | Method of modifying iron based glasses to increase crytallization temperature without changing melting temperature | |
Naka et al. | Designing novel multiconstituent inter me tallies: Contribution of modern alloy theory in developing engineered materials | |
CN112095040B (en) | Multi-principal-element high-entropy alloy and preparation method thereof | |
US4160854A (en) | Ductile brazing foil for cast superalloys | |
JP2002531701A (en) | High performance rare earth transition metal magnetostrictive materials with increased impurities | |
US5593514A (en) | Amorphous metal alloys rich in noble metals prepared by rapid solidification processing | |
JP2714555B2 (en) | High strength and high conductivity copper alloy sheet material | |
US5122206A (en) | Precipitation hardening nickel base single crystal cast alloy | |
Su et al. | Formation and properties of Mg-based metallic glasses in Mg-TM-X alloys (TM Cu or Ni; X Sn, Si, Ge, Zn, Sb, Bi or In) | |
JP3407054B2 (en) | Copper alloy with excellent heat resistance, strength and conductivity | |
Dong Sheng et al. | Site occupancy of alloying elements in TiNi compounds | |
Kale et al. | Modification of the aluminium rich portion of the Nd-Al phase diagram | |
CN108559897A (en) | A kind of high-strength corrosion-resisting magnesium alloy and preparation method thereof |