[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2736617C2 - Метаматериал, производство и применение - Google Patents

Метаматериал, производство и применение Download PDF

Info

Publication number
RU2736617C2
RU2736617C2 RU2018106922A RU2018106922A RU2736617C2 RU 2736617 C2 RU2736617 C2 RU 2736617C2 RU 2018106922 A RU2018106922 A RU 2018106922A RU 2018106922 A RU2018106922 A RU 2018106922A RU 2736617 C2 RU2736617 C2 RU 2736617C2
Authority
RU
Russia
Prior art keywords
graphene
container
metamaterial
perfluorotributylamine
liquid
Prior art date
Application number
RU2018106922A
Other languages
English (en)
Other versions
RU2018106922A (ru
RU2018106922A3 (ru
Inventor
Елена Владимировна Орлова
Original Assignee
Елена Владимировна Орлова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Елена Владимировна Орлова filed Critical Елена Владимировна Орлова
Publication of RU2018106922A publication Critical patent/RU2018106922A/ru
Publication of RU2018106922A3 publication Critical patent/RU2018106922A3/ru
Application granted granted Critical
Publication of RU2736617C2 publication Critical patent/RU2736617C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/58Amines, e.g. polyalkylene polyamines, quaternary amines
    • C10M105/60Amines, e.g. polyalkylene polyamines, quaternary amines having amino groups bound to an acyclic or cycloaliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/06Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B17/00Screening
    • G12B17/02Screening from electric or magnetic fields, e.g. radio waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/0413Carbon; Graphite; Carbon black used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/041Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/14Composite materials or sliding materials in which lubricants are integrally molded

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

Изобретение относится к нанотехнологии и может быть использовано при изготовлении смазок, защитных экранов, электрических токоподводов. Сначала подготавливают поверхность для захвата графена путём распределения смеси N,N-диметилформамида и тетрагидрофурана в объёмном соотношении от 1:1 до 3:1 по внутренней поверхности контейнера, нагрева в течение 7-9 ч до 400-500°С и последующего охлаждения до 25-30°С. Контейнер изготовлен из термостойкого и химически нейтрального материала, например, боросиликатного стекла, содержащего: по меньшей мере, 80% SiO2 и по меньшей мере, 13% В2О3. Затем подготавливают жидкую смесь, содержащую 1-15 мг графеновых чешуек на 1 мл перфтортрибутиламина. Полученную смесь распределяют по внутренней поверхности контейнера, охлаждают внутреннюю поверхность контейнера до минус 32-50°С, подвергают воздействию магнитного поля интенсивностью 0,5-2,5 Тл в течение 12-24 ч, нагревают полученный жидкий метаматериал до 20-25°С. Полученный метаматериал представляет собой двухуровневую регулярную сетку с размером ячейки от 15 до 25 нм, состоит из перфтортрибутиламина и распределённых в нём указанных графеновых наночастиц и может быть смешан и/или отверждён в тонкой керамике, пластмассах, сплавах, твердотельных полимерах, жидких и аморфных веществах. Обеспечивается повышение производительности процесса получения метаматериала, обладающего высокой диспергируемостью в перфторуглеродных растворителях. 2 н. и 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится в целом к метаматериалам, более конкретно, изобретение относится к составу метаматериала, способу его получения и его практическому применению.
Настоящее изобретение, в частности, относится к дисперсионным растворам графена, способу получения таких растворов, а также к применению таких графеновых растворов. Возможность получения графена для практических решений представляет большой интерес с точки зрения промышленного применения, в частности, в отношении пригодности этих решений для конкретного применения. В частности, такие растворы могут быть легко использованы для осаждения наночастиц графена, чешуек или нанотрубок в данном носителе.
В последующем описании ссылки между квадратными скобками ([]) относятся к списку ссылок, приведенным после примеров.
Углерод известен как имеющий четыре уникальные кристаллические структуры или структуры: алмаз, графит, фуллерены и недавно описанное семейство структур, включающее двумерные углеродные чешуйки, наночастицы и нанотрубки, известные как «семейство графена». Графен или базовая плоскость графита, которая долгое время считалась виртуальным объектом, в последнее время стала реальностью благодаря работе Новоселова и др. ((K.S. Novoselov, А.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306, 666-669 (2004) [1]; K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I, Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene", Nature, 438, 197-200 (2005) [2], в которых описываются электронные свойства этого сингулярного объекта. Известно, что графит приводит к образованию интеркалирующих соединений (соединений интеркалирования графита или GIC) либо с донорами электронов, либо с акцепторами ("Synthesis of graphite intercalation compounds", A. Herold in Chemical physics of intercalation, A.P. Legrand and S. Flandrois Eds, NATO ASI Series, series B, Vol. 172, pp. 345 (1987 [3]). Тернарные соединения, имеющие формулу (ТГФ) С 24, имеют была получена еще в 1965 г. путем восстановления графита полиароматической щелочной солью молекулы в THE. (С, Stein, J. Poulenard, L. Bonnetain, J. Gole, C.R. Acad. Sci. Paris 260, 4503 (1965) [4]).
Уникальные свойства графена, подтвержденные научными экспериментами, привели к многочисленным исследовательским работам, направленным на практическое применение этой новой структуры и разработке методов полномасштабного производства композитных материалов на основе графена.
Начиная с 2004 года и публикации Novesolov et al., Мир физики проявил большой интерес к электронным свойствам изолированной плоскости графена или графита (Electric field effect in atomically thin carbon films, Novoselov et al. Science 306, 666 (2004)) [5]). Метод отшелушивания среза Новоселова и др. позволяет получить лишь несколько изолированных плоскостей. Кроме того, такие плоскости стабилизируются на поверхности, что препятствует их последующей обработке, например, для их интеграции в матрицу. Однако в настоящее время не существует эффективного способа солюбилизации графена, и растворы графена как таковые до сих пор оставались иллюзорными. Однако недавно был описан ряд довольно перспективных подходов. Сообщалось о нескольких попытках солюбилизации графена, главным образом благодаря функционализации графита (Chakraborty et al., "Functionalization of potassium graphite", Angew. Chem, Int. Ed., 46, 4486-4488 (2007) [6]) или путем функционализации (Niyogi, S.; Bekyarova, E.; Itkis, M.E.; McWilliams, J.L.; Hamon, M.A.; Haddon, R.C, "Solution Properties of Graphite and Graphene", J. Am, Chem, Soc, 128, 7720-7721 (2006) [7], Mc Allister, M.J.; Li, J.L.; Adamson, D.H.; Schniepp, H.C; Abdala, A.A.; Liu, J.; HerreraAlonso, M.; Millius, D.L.; Car, R.; Prud'homme, R.K.; Aksay, I.A., "Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite", Chem. Mater., 2007; ASAP Article [8]).
Среди наиболее перспективных подходов следует упомянуть патент США 9120675 [9], в котором описывается способ солюбилизации графена и его применения, включая производство композитов. Способ по изобретению отличается тем, что он включает следующие этапы, проводимые в инертной атмосфере:
- восстановление графена щелочным металлом с образованием соединения интеркаляции графена и
- воздействие соединения интеркалирования графита на полярный апротонный растворитель, чтобы привести к восстановлению раствора графена. Изобретение относится, в частности, к графеновым растворам и графеновым чешуйкам (плоскостям), полученным с помощью указанного способа, а также к использованию таких графеновых растворов и чешуек. Основной недостаток вышеуказанного способа заключается в том, что он не способен обеспечить равномерное распределение графена на поверхности с учетом высоких гидрофобных свойств графена.
Сообщалось о нескольких других попытках солюбилизации графена, главным образом благодаря функционализации графита (Chakraborty et al., "Functionalization of potassium graphite", Angew. Chem, Int. Ed., 46, 4486-4488 (2007) [10] or by functionalization of graphite oxide. (Niyogi, S.; Bekyarova, E.; Itkis, M.E.; McWilliams, J.L.; Hamon, M.A.; Haddon, R.C, "Solution Properties of Graphite and Graphene", J. Am, Chem, Soc, 128, 7720-7721 (2006) [11]; Mc Allister, M. J.; Li, J.L.; Adamson, D.H.; Schniepp, H.C; Abdala, A.A.; Liu, J.; Herrera Alonso, M.; Millius, D.L.; Car, R.; Prud'homme, R.K.; Aksay, I.A., "Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite", Chem. Mater., 2007; ASAP Article [12]).
Однако одним из недостатков таких методов является то, что полученные графеновые чешуйки не полностью функционализированы и разделены.
Таким образом, существует настоятельная потребность в способах солюбилизации графена, которые устраняют эти проблемы и препятствия, а также поиск способа, позволяющего получать графеновые материалы при минимизации затрат на производство.
Способ улучшения индустриальной доступности графена в большом количестве описан в патенте США 9134940 [13], в котором заявляется способ получения наномасштабированных графеновых чешуек, который включает стадии нанесения графенового материала в контакт с молекулярным или атомным кислородом или вещество, способное высвобождать молекулярный или атомный кислород, получая предшественник, состоящий из графенового материала, функционализированного кислородными группами (ФОГ), характеризующегося молярным соотношением углерода и кислорода выше 8: 1; впоследствии, восстанавливая (химически или физически) указанный предшественник ФОГ, получать наномасштабированные графеновые чешуйки, характеризующиеся молярным соотношением углерода / кислорода выше 20: 1. Основной недостаток этого метода состоит в том, что довольно большие «оксидные рамки» вызывают дискретные функциональные свойства таких сырьевых материалов.
Недавно обнаруженные свойства графена делают эту структуру перспективной для использования в композитных материалах. Существующие передовые композиционные материалы, используемые, например, в аэрокосмических конструкциях и авиационных применениях, не удовлетворяют требованиям к производительности этих и других применений. Соответственно, существует потребность в усиленных композиционных материалах, обладающих улучшенными механическими свойствами, таких как более высокая прочность на разрыв, деформация к разрушению, вязкость разрушения, долговечность, ударопрочность, устойчивость к истиранию, демпфирование и другие преимущества. Также существует необходимость в способах изготовления таких улучшенных материалов.
Практическое применение графена для производства композитных метаматериалов описано в патенте США 9 120 908 [14]. В патенте заявлены композиции из армированных смол на основе наноматериалов и связанные с ними способы. Композиции включают армирующий материал, такой как графен, полиаминовая кислота, углеродные нанотрубки или диметилацетамид, который диспергируется в смоле. Усиливающий материал присутствует в смоле от примерно 0,001 до примерно 10 мас. %. Также представлены способы изготовления этих композиций и способы подгонки композиции для достижения определенного набора механических свойств.
Однако объем применения смол, изготовленных в соответствии с [14], весьма ограничен, следовательно, существует потребность в составных метаматериалах с более широким диапазоном применения.
То же самое справедливо для термопластичной смолы, описанной в патенте США 9123889 [15], где смола укреплена предварительно изготовленной дисперсией нанотрубок. Однако способ получения такой дисперсии не раскрывается.
Другой патент США 9,159,463 [16] описывает проводящий материал, который включает углеродное вещество и металлическое вещество, смешанное с и/или ламинированное с углеродным веществом. Углеродное вещество имеет по меньшей мере один размер 200 нм или менее. Углеродное вещество включает графен, выбранный из однослойного графена и многослойного графена, часть атомов углерода, составляющих графен, замещена атомом азота. Металлическое вещество включает по меньшей мере одну из металлических частиц и металлическую проволоку. Проводящий материал, где I.sub.401,2, представляющий интенсивность при 401,2 эВ выше, чем I.sub.398,5, представляющий интенсивность при 398,5 эВ в рентгеновском фотоэлектронном спектре с 1 s электроном из атома азота. По сравнению с этим, заявляемое изобретение предлагает гораздо более высокую производительность, а именно, оно работает при 600 МэВ, и материал не содержит никаких металлических частиц.
Настоящее изобретение было сделано с учетом вышеописанных проблем для обычных методов, и решает задачу по созданию нанокомпозита, способного к высокой диспергируемости в жидком коктейле, включающем перфторуглеродный растворитель, и дисперсию, содержащую нанокомпозит.В частности, нанокомпозит, полученный в соответствии с настоящим изобретением, содержит наноструктуру на основе графена, где наночастицы графена, тромбоциты или нанотрубки распределены равномерно в перфтортрибутиламине, образуя двухуровневую регулярную сетку с размером ячейки в диапазоне от 15 до 25 нм.
Способ получения рассматриваемого метаматериала включает следующие этапы:
- подготовка поверхности для захвата графена с помощью
• распределение смеси N, N-диметилформамида и тетрагидрофурана в диапазоне от 1: 1 до 3: 1 (об. / об.) по внутренней поверхности контейнера, изготовленного из термостойкого и химически нейтрального вещества. В экспериментах использовалось боросиликатное стекло с содержанием, по меньшей мере, 80% SiO2, и с содержанием В2O3, по меньшей мере, 13%. Могут использоваться другие материалы со сходными свойствами, например, тонкая керамика;
• нагрев внутренней поверхности в течение 7-9 часов при температуре плюс 400 градусов по Цельсию до плюс 500 градусов по Цельсию;
• охлаждение покрытой таким образом внутренней поверхности контейнера до температурного диапазона плюс 25-30 градусов по Цельсию;
- подготовка субструктурной жидкости путем смешивания перфтортрибутиламина с графеновыми чешуйками, частицами или нанотрубками в диапазоне от 1 до 15 мг графена на 1 мл перфтортрибутиламина;
- распределением субструктурной жидкости по внутренней поверхности контейнера;
- охлаждение внутренней поверхности контейнера до температуры минус 32-50 градусов по Цельсию;
- применение магнитного поля с интенсивностью от 0,5-2,5 Тл в контейнер в течение 12-24 часов;
- нагревание полученного жидкого метаматериала до температурного диапазона плюс 20-25 градусов по Цельсию.
Полученное вещество оказалось способным к высокой диспергируемости в различных материалах. Кроме того, введение рассматриваемого вещества в различные материалы, такие как, например, композиционные материалы, керамика, пластмассы, сплавы, твердые полимеры, другие жидкие и аморфные вещества, позволяет равномерно распределять графеновые частицы внутри материала, составляя сплошную графенную сетку. Таким образом, материал приобретает черты метаматериала.
Из-за особых свойств рассматриваемого метаматериала описывается целый ряд практических применений, хотя список не является исчерпывающим. Одно из свойств заявленного метаматериала делает его особенно интересным для различных отраслей промышленности, а именно способность смешиваться и отверждаться в керамике, пластмассах, сплавах, твердотельных полимерах, композиционных материалах и других жидких, твердых и аморфных веществах.
Среди наиболее перспективных следует указать использование заявленного метаматериала для следующих целей:
- Использование метаматериала в качестве электрического токопровода с диапазоном сопротивления от 0,0002 Ом/см2 до 0,000001 при температурном диапазоне от минус 173 градусов по Цельсию до плюс 102 градусов по Цельсию. Эксперименты (см. Пример 6 выше в этом описании) обеспечили надежный базис для такого утверждения.
- Использование метаматериала в качестве щита против радиации и электромагнитных волн за счет способности значительно поглощать или/и отражать излучение в диапазоне частот от 30 МГц до 30 ЭГц.
Эксперименты (см. пункт формулы 5 и фиг. 1-5 далее в этом описании) обеспечили прочную основу для такого утверждения.
- Использование метаматериала в качестве смазки, способной поддерживать смазочные свойства в диапазоне температур от минус 180 градусов по Цельсию до плюс 700 градусов по Цельсию. Соответствующие эксперименты описаны в примере 4 формулы изобретения, в котором представлены результаты испытаний тонкослойной смазки в экстремальных температурных условиях.
Чтобы обеспечить лучшее понимание заявленного изобретения, представлены следующие чертежи:
Фиг. 1 - Испытание радиационного удара:
1.1- Перед испытанием. Микрочипы выключены.
1.2 - Перед испытанием. Микрочипы включены.
1.3 - источник рентгеновского излучения. До облучения.
1.4 - источник рентгеновского излучения. После облучения.
Видно, что чип управления (слева) не работает.
1.5 - Спонтанный процесс перезагрузки контрольной микросхемы (слева).
Фиг. 2 - Проверка смазывающих свойств метаматериала:
2.1 - Скафандр со смазкой плечевой муфты.
2.2 - Схема зависимости вязкости смазки от температуры.
Фиг. 3 - Тест проводимости:
3.1 - Электрические схемы (R - тестовый провод).
3.2 - Электрические схемы (X - метаматериал).
3.3 - Диаграмма зависимости сопротивления / температуры.
Пример для пункта формулы 4. Смазка тонкого слоя в экстремальных температурных условиях.
Метаматериал по п. 1 и, альтернативно, по п. 2, был испытан на подвижном компоненте (плечевой муфте) стандартного скафандра (см. Фиг. 2.1), подвергнутого испытанию на разрыв 8 бар (0,79 МПа). Скользящая способность двух покрытых поверхностей увеличилась в 5 раз. Устойчивость к износу увеличилась в 9,5 раза на 100000 циклов (против 47000 циклов при лабораторных испытаниях, описанных в Advanced Functional Materials, Volume 24, Issue 42, pages 6640-6646, November 12, 2014 [17]). Применяемый в шариковом сегменте скафандра смазочный материал продемонстрировал 15-кратное повышение производительности сегмента. Те же результаты были зарегистрированы также при температурах минус 180 градусов по Цельсию и плюс 700 градусов по Цельсию (см. Фиг. 2.2).
Пример для пункта. 5. Защита от радиации
Ниже приведен пример практического использования, заявленного метаматериала в качестве экрана против высокой дозы рентгеновского излучения (см. Фиг. 1). Экспериментальные и контрольные микросхемы содержали один процессор с алгоритмом случайных чисел, контроллер и лампы для визуализации. Экспериментальный чип был затоплен заявленным метаматериалом (см. п. 1 формулы). Чипы не защищены каким-либо специальным лаком. Во время облучения рентгеновским устройством микросхемы включались и интенсивно тряслись на вибрационной платформе. Испытание проводили в два этапа при 30 Грей и по 60 минут каждый. После первого этапа управления чип совершил спонтанную перезагрузку. После 2-го этапа такая перезагрузка начала повторяться каждые 20-30 минут. Следует отметить, что роботы Toshiba с защищенными микросхемами США, которые в настоящее время используются ТЕРСО, также стали самопроизвольно перезагружаться и выходят из строя, проработав в течение 4 часов при дозе 26 Грей.
Пример для пункта формулы 6. Испытания проводимости
Для экспериментов (см. Фиг. 3) была установлена простая схема, содержащая R-медный провод, Х-метаматериал по пункту 1 и источник электроэнергии. Для измерений можно использовать мост Кельвина или другое подобное устройство. Медная проволока продемонстрировала сопротивление в диапазоне от 0,017 до 0,018 Ом/см2 при средней комнатной температуре. Затем медный провод был заменен образцом, выполненным из метаматериала по п. 1 формулы. Записи в этом случае указывали зарегистрированный диапазон от 0,0002 Ом/см2 до 0,000001 Ом/см2 при той же комнатной температуре. Эксперименты проводились в широком диапазоне температур, а именно в диапазоне от минус 173 градусов по Цельсию до плюс 102 градуса Цельсия. Диаграмма, представленная на Фиг. 3.3, показывает зависимость температуры / сопротивления. Те же результаты были получены с помощью метаматериала по пункту 2.

Claims (12)

1. Метаматериал, состоящий из перфтортрибутиламина и графеновых наночастиц в виде чешуек, где чешуйки равномерно распределены в перфтортрибутиламине, образуя двухуровневую регулярную сетку с размером ячейки в диапазоне от 15 до 25 нм.
2. Метаматериал по п. 1, смешанный и/или отвержденный в тонкой керамике, пластмассах, сплавах, твердотельных полимерах, жидких и аморфных веществах.
3. Способ получения метаматериала по п. 1, включающий в себя этапы:
- подготавливают поверхность для захвата графена с помощью
• распределения смеси N,N-диметилформамида и тетрагидрофурана в соотношении от 1: 1 до 3: 1 (об. / об.) по внутренней поверхности контейнера, изготовленного из термостойкого и химически нейтрального материала, такого как, но не исключительно, боросиликатное стекло с содержанием, по меньшей мере, 80% SiO2, и с содержанием В2О3, по меньшей мере, 13%;
• нагрева внутренней поверхности в течение 7-9 ч при температуре плюс 400-500°С;
• охлаждения покрытой таким образом внутренней поверхности контейнера до температурного диапазона плюс 25-30°С;
- подготавливают жидкую смесь перфтортрибутиламина с графеновыми чешуйками в диапазоне 1-15 мг графена на 1 мл перфтортрибутиламина;
- распределяют полученную таким образом жидкую смесь по внутренней поверхности контейнера;
- охлаждают внутреннюю поверхность контейнера до температуры минус 32-50°С;
- подвергают воздействию магнитного поля интенсивностью 0,5-2,5 Тл на контейнер в течение 12-24 ч;
- нагревают полученный жидкий метаматериал до температурного диапазона плюс 20-25°С.
RU2018106922A 2016-03-21 2016-03-21 Метаматериал, производство и применение RU2736617C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2016/000154 WO2017164758A1 (en) 2016-03-21 2016-03-21 Metamaterial, production and application thereof

Publications (3)

Publication Number Publication Date
RU2018106922A RU2018106922A (ru) 2020-04-22
RU2018106922A3 RU2018106922A3 (ru) 2020-04-22
RU2736617C2 true RU2736617C2 (ru) 2020-11-19

Family

ID=59899635

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018106922A RU2736617C2 (ru) 2016-03-21 2016-03-21 Метаматериал, производство и применение

Country Status (4)

Country Link
KR (1) KR102102552B1 (ru)
CN (1) CN109415202B (ru)
RU (1) RU2736617C2 (ru)
WO (1) WO2017164758A1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110245378A1 (en) * 2010-03-26 2011-10-06 Richard Russ Nanomaterial-reinforced resins and related materials
RU159967U1 (ru) * 2015-07-06 2016-02-27 Федеральное государственное военное казённое образовательное учреждение высшего профессионального образования "Военная академия тыла и транспорта имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Управляемые фильтры на основе поляризаторов из лент графена для защиты оптико-электронных приборов разведки от лазерного оружия

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101011033B1 (ko) * 2007-09-20 2011-01-26 한국과학기술원 금속 나노복합분말의 제조방법
KR101092860B1 (ko) * 2008-06-27 2011-12-14 한국과학기술원 마이크로웨이브를 이용한 금속성 탄소나노튜브의 분리방법
KR20100010295A (ko) * 2008-07-22 2010-02-01 재단법인서울대학교산학협력재단 기판을 나노구조물로 코팅하는 방법, 복수의나노구조물들을 구비한 회로 기판 및 나노구조물 코팅 장치
KR101042634B1 (ko) * 2008-09-17 2011-06-20 한국과학기술원 전기도금법과 고온 산화법을 결합한 금속산화물-탄소나노튜브 복합박막의 제조방법
JP2010187062A (ja) * 2009-02-10 2010-08-26 Hitachi Maxell Ltd メタマテリアル
US8636830B2 (en) * 2010-06-11 2014-01-28 William Marsh Rice University Aliphatic amine based nanocarbons for the absorption of carbon dioxide
JP5856423B2 (ja) * 2011-09-30 2016-02-09 株式会社東芝 導電材料およびこれを用いた電気素子
CN103085372B (zh) * 2011-10-31 2015-10-07 深圳光启高等理工研究院 一种超材料介质基板及其加工方法
US20130116114A1 (en) * 2011-11-07 2013-05-09 K Tube Technology LLC Systems, Devices, and/or Methods for Preparation of Graphene and Graphene Hybrid Composite Via the Pyrolysis of Milled Solid Carbon Sources
CN102627817A (zh) * 2012-03-30 2012-08-08 上海第二工业大学 高储能密度介质材料及其制备方法
CN103935982B (zh) * 2013-01-18 2016-01-13 海洋王照明科技股份有限公司 石墨烯纳米带的制备方法
EP2958979A4 (en) * 2013-02-19 2016-10-26 Nanotech Ind Solutions Inc INORGANIC FULL-SOUND AND TUBULAR PARTICLES IN LIQUIDS AND LUBRICANTS AND UNDERGROUND HOLES APPLICATIONS
WO2014163127A1 (ja) * 2013-04-05 2014-10-09 積水化学工業株式会社 薄片化黒鉛及び薄片化黒鉛分散液の製造方法、並びに薄片化黒鉛、薄片化黒鉛分散液及び薄片化黒鉛-樹脂複合材料
CN103254429B (zh) * 2013-05-21 2015-04-15 合肥工业大学 一种聚苯胺和二硫化钼插层复合材料的制备方法
RU2548083C2 (ru) * 2013-06-18 2015-04-10 Общество с ограниченной ответственностью "НаноТехЦентр" Способ модифицирования углеродных наноматериалов
CN103482620B (zh) * 2013-09-11 2016-01-20 黄镇东 氧化或还原石墨烯基网格材料及其制备方法
CN104877156A (zh) * 2015-06-23 2015-09-02 北京化工大学常州先进材料研究院 一种高导电聚酰亚胺/碳材料/银三相复合薄膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110245378A1 (en) * 2010-03-26 2011-10-06 Richard Russ Nanomaterial-reinforced resins and related materials
RU159967U1 (ru) * 2015-07-06 2016-02-27 Федеральное государственное военное казённое образовательное учреждение высшего профессионального образования "Военная академия тыла и транспорта имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Управляемые фильтры на основе поляризаторов из лент графена для защиты оптико-электронных приборов разведки от лазерного оружия

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDREY E. NIKOLAENKO et al, Nonlinear graphene metamaterial, Appl. Phys. Lett., 2012, v. 100, p.p. 181109-1 - 181109-3. DIANA BERMAN et al, Graphene: a new emerging lubricant, Materials Today, 2014, v. 17, no. 1, p.p. 31-42. *
NIKITAS PAPASIMAKIS et al, Graphene is a photonic metamaterial, Optics Express, 2010, v. 18, no. 8, p.p. 8253-8359. *
МАЛЕЕВА Н.А., Электродинамика сверхпроводящих метаматериалов на основе плоских спиральных резонаторов, Диссертация на соискание учёной степени кандидата физико-математических наук, Москва, 2015, раздел 1.3. ВЕНДИК И.Е, ВЕНДИК ОГ., Метаматериалы и их применение в технике сверхвысоких частот (Обзор), ЖТФ, 2013, т. 83 вып. 1, реф.; разделы Введение; 1, 2. ФРОЛОВ Ю.Г., Курс коллоидной химии. Поверхностные явления и дисперсные системы, Москва, Химия, 1989, с. 15. ЕНОХОВИЧ А.С., Справочник по физике и технике, Москва, Просвещение, 1983, с.с. 22, 191. *

Also Published As

Publication number Publication date
RU2018106922A (ru) 2020-04-22
KR20180118162A (ko) 2018-10-30
KR102102552B1 (ko) 2020-04-21
CN109415202A (zh) 2019-03-01
CN109415202B (zh) 2021-07-16
WO2017164758A1 (en) 2017-09-28
RU2018106922A3 (ru) 2020-04-22

Similar Documents

Publication Publication Date Title
Zhao et al. Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption
Zhang et al. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials
Cheng et al. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption
Feng et al. Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy
Lewis et al. Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers
Kang et al. Hybrids of reduced graphene oxide and hexagonal boron nitride: lightweight absorbers with tunable and highly efficient microwave attenuation properties
Li et al. Unique nanoporous structure derived from Co3O4–C and Co/CoO–C composites towards the ultra-strong electromagnetic absorption
Bhimanapati et al. Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets
Tien et al. Novel conductive epoxy composites composed of 2-D chemically reduced graphene and 1-D silver nanowire hybrid fillers
Yang et al. Strong absorption and wide-frequency microwave absorption properties of the nanostructure zinc oxide/zinc/carbon fiber multilayer composites
Shi et al. Octahedron Fe3O4 particles supported on 3D MWCNT/graphene foam: In-situ method and application as a comprehensive microwave absorption material
Wang et al. Polymer composites with enhanced wave absorption properties based on modified graphite and polyvinylidene fluoride
Pang et al. MnFe2O4-coated carbon nanotubes with enhanced microwave absorption: Effect of CNT content and hydrothermal reaction time
Song et al. Improved dielectric properties and highly efficient and broadened bandwidth electromagnetic attenuation of thickness-decreased carbon nanosheet/wax composites
TWI543931B (zh) 石墨烯之製備方法及石墨烯之分散組成物
Li et al. Dielectric properties of binary polyvinylidene fluoride/barium titanate nanocomposites and their nanographite doped hybrids.
Wang et al. Ferromagnetic Ti3CNCl2-decorated RGO aerogel: From 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property
JP6284019B2 (ja) 窒化ホウ素ナノシート含有分散液及びその製造方法、窒化ホウ素ナノシート複合体及びその製造方法
JP6214028B2 (ja) 酸化グラフェン含有液の製造方法及びその利用
Ling et al. Bio-inspired, bimetal ZIF-derived hollow carbon/MXene microstructure aim for superior microwave absorption
CN101993065A (zh) 一种制备石墨烯粉体的方法
JP6620975B2 (ja) ナノシート含有分散液、ナノシート複合体及びそれらの製造方法
Han et al. Vertically and compactly rolled-up reduced graphene oxide film/epoxy composites: a two-stage reduction method for graphene-based thermal interfacial materials
Dong et al. Construction of MnO nanoparticles anchored on SiC whiskers for superior electromagnetic wave absorption
Radoń et al. Electrical properties of epoxy nanocomposites containing Fe3O4 nanoparticles and Fe3O4 nanoparticles deposited on the surface of electrochemically exfoliated and oxidized graphite