RU2733722C1 - Способ получения вулканизующего агента с микрокапсулированной серой - Google Patents
Способ получения вулканизующего агента с микрокапсулированной серой Download PDFInfo
- Publication number
- RU2733722C1 RU2733722C1 RU2019143745A RU2019143745A RU2733722C1 RU 2733722 C1 RU2733722 C1 RU 2733722C1 RU 2019143745 A RU2019143745 A RU 2019143745A RU 2019143745 A RU2019143745 A RU 2019143745A RU 2733722 C1 RU2733722 C1 RU 2733722C1
- Authority
- RU
- Russia
- Prior art keywords
- sulfur
- plastisol
- melt
- producing
- paste
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/06—Sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/08—Ingredients agglomerated by treatment with a binding agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Изобретение относится к способу получения микрокапсулированной серы как вулканизующего агента и может быть использовано при получении полимерной композиции для резинотехнической и шинной промышленности. Способ включает стадии диспергирования серы в дисперсионной среде, в качестве которой используют охлажденный до комнатной температуры смоляной расплав 17,50–18,20 мас.ч. ε-капролактама с 17,50–18,20 мас.ч N-изопропил-N/-фенил-n-фенилендиамином с возможным добавлением в расплав до 3,60 мас.ч стеариновой кислоты, с получением пасты. Далее в пасту при перемешивании добавляют порошкообразный, микросуспензионный поливинилхлорида до постоянных значений вязкости с образованием пластизоли и вызревании пластизоли при комнатной температуре до повышения вязкости, желатинизации пластизоли при 100±5°С в течение часа, охлаждении твердого продукта с последующим измельчением, при следующем соотношении компонентов, мас.%: 35,00 – 40,00 серы, 35,00 – 40,00 смоляного расплава, 30,00 – 20,00 поливинилхлорида. Техническим результатом является расширение арсенала вулканизирующих агентов, повышение физико-механических свойств вулканизатов. 4 табл., 6 пр.
Description
Изобретение относится к способу получения вулканизующего агента, в частности, к способу получения вулканизующего агента с микрокапсулированной серой и может быть использовано при получении полимерной композиции для резинотехнической и шинной промышленности.
Известен способ получения капсулированной серы, заключающийся в получении из полиэтиленового воска, низкомолекулярного полиэтилена низкого давления и циклогексана дисперсии и ее охлаждении при активном размешивании в присутствии отдельных кристаллов ускорителя (патент RU 2212420, МПК C08K 9/10, B01J 13/02, B01J 13/04, B01J 13/22, C08L 21/00, 2003).
Основным недостатком способа является то, что по нему невозможно получить капсулированную серу, обладающую полифункциональным воздействием на эластомерную композицию.
Наиболее близким является способ микрокапсулирования посредством диспергирования серы в дисперсионной смоляной среде, являющейся основой оболочки микрокапсулы и формирования ее оболочки добавлением специального вещества (катализатора) или с помощью температурного воздействия (патент RU 2376058, МПК B01J 13/02, C08K 3/06, C08K 9/10, 2003).
Недостатком является то, что в полученном по данному способу продукте капсулообразующие компоненты не обеспечивают существенного повышения термоокислительной стойкости вулканизатов.
Задачей является разработка способа получения вулканизующего агента с микрокапсулированной серой, совмещающего в себе свойства противостарителя и добавки повышающей динамическую выносливость и износостойкость резин.
Техническим результатом является расширение арсенала вулканизирующих агентов, повышение физико-механических свойств вулканизатов.
Технический результат достигается в способе получения вулканизующего агента с микрокапсулированной серой, заключающемся в диспергировании серы в дисперсионной смоляной среде, формировании оболочки капсулы добавлением специального вещества и/или с помощью температурного воздействия, при этом в качестве дисперсионной среды используют смоляной расплав 17,50-18,20 мас.ч. ε-капролактама с 17,50-18,20 мас.ч N-изопропил-N'-фенил-n-фенилендиамином с возможным добавлением в расплав до 3,60 мас.ч стеариновой кислоты, а формирование оболочки капсулы осуществляют в процессе образования пластизоли при добавлении поливинилхлорида и последующей желатинизации пластизоли, при 100±5°С в течение часа, при следующем соотношении компонентов вулканизующего агента, мас.%:
сера | 35,00-40,00 |
смоляной расплав | 35,00-40,00 |
поливинилхлорид | 30,00-20,00 |
Сущность изобретения заключается в том, что способ позволяет получить вулканизующий агент, оболочка которого представлена жидкой смоляной композицией - расплавом ε-капролактама с N-изопропил-N'-фенил-n-фенилендиамином (IPPD) и стеариновой кислотой (или без нее). В тоже время расплав оказывает пластифицирующее действие на поливинилхлорид (ПВХ) и образует, в итоге с последним, типичные пластизоли, способные к желатинизации.
Бинарный расплав, впрочем, как и расплав со стеариновой кислотой, взятой в заявляемом количестве, относится к смоляной композиции. Его вязкость по Брукфильду в температурном интервале 20-25°С составляет 2000-3000 сПз, что оказывается достаточно, чтобы использовать расплав в качестве дисперсионной среды для получения устойчивых к седиментации серных паст. Вязкость полученных паст значительна. При определении вязкости на вискозиметре Брукфильда марки DV- || +Pro, с использованием шпинделя №7, ее значения, в температурном интервале 25-30°С составляют не менее 80000 сПз. Паста с такой вязкостью, практически, не приемлема к использованию с технологических позиций: во-первых, невозможно самотеком опорожнить реактор, во-вторых - осуществить нормальную развеску и дозирование, как это, например, имеет место при использовании сыпучих ингредиентов.
Добавление в пасту ПВХ способно решить не только проблемы технологического характера, но и, по сути заявки на изобретение, создать микрокапсулированную серу. Так, при добавлении в пасту, в заявляемом количестве порошкообразного, микросуспензионного ПВХ вязкость среды, в целом, постепенно уменьшается, и паста, в конечном итоге, превращается в типичный пластизоль с вязкостью, практически, на порядок меньшей, чем вязкость пасты. При 20 мас.% содержании ПВХ вязкость пластизоли (условия ее определения не менялись, но, использовался шпиндель №6) составляла порядка 8000 сПз, при 30 мас.% - 16000 сПз. Последующая желатинизация пластизоли, при 100±5°С в течение часа, приводит к получению твердого продукта микрокапсулированной серой, находящейся в капсуле с оболочкой из расплава ε-капролактама с IPPD и стеариновой кислотой или без нее.
Использование стеариновой кислоты является не обязательным. Ее влияние наиболее заметно, только, на кинетику вулканизации каучука, выражающееся в увеличении индукционного периода, что является положительным фактором, особенно, при вулканизации крупногабаритных изделий. Использование стеариновой кислоты в количестве большем заявляемого способно нивелировать достигнутые результаты, а также ухудшить реологические свойства пластизолей. Прежде всего, повышается вязкость, осложняющая операции выгрузки пластизоли из реактора.
Принятое соотношение ε-капролактама и IPPD является наиболее оптимальным, так как их предельные количественные значения близки к эвтектическому соотношению (1:1, мас.ч). При этих значениях не происходит выкристаллизации ни одного из компонентов расплава. В противном случае, выкристаллизация требует дополнительных энергетических и временных затрат на перевод расплава в жидкое, гомогенное состояние.
Значительное снижение вязкости в процессе образования пластизоли при добавлении ПВХ, вероятно, является следствием уменьшения концентрации порошкообразной серы в смоляном расплаве из-за введения ПВХ. В свою очередь последний, будучи в исходном состоянии, также порошкообразным, при поглощении смоляного расплава превращается в жидкий пластизоль. Причем, ПВХ ограниченно набухает в смоляном расплаве, который в данном случае является для ПВХ пластификатором. Оставшаяся часть смоляного расплава, адсорбируясь на частицах серы, образует своеобразную капсулу. Таким образом, вулканизующий агент в целом, можно представить как пластизоль ПВХ, в котором диспергированы микрокапсулы с ядром из серы и оболочкой из смоляного расплава.
Желатинизация пластизоли следует осуществлять при температуре 100±5°С в течение часа. Этот температурно-временной режим наиболее предпочтителен с позиций возможности измельчения на дисковом ноже желатинированного пластизоли или его вальцевания и, тем самым, получения товарного продукта. При этом не маловажным фактором является получение продукта с вязкостью по Муни, не превышающей 8-9 единиц, что обуславливает хорошее распределение его в резиновой смеси, вязкость которой, практически, не бывает ниже 30 единиц.
Протекающее при температурном воздействии термическое расширения затвердевшей в процессе желатинизации пластизоли и, непосредственно, серы, способствует возникновению внутреннего давления на оболочку капсулы, вследствие чего, возможно, интенсивное проникновение расплава в дефектные места кристаллов серы. Высокая проникающая способность расплавов ε-капролактама со многими органическими веществами известна, а возникающий, от проникновения, в дефектные места, ее расплавов, расклинивающий эффект способствует наибольшей диспергируемости серы в матрице каучука.
Использование серы в количестве меньшем заявляемого - менее 35 мас.%, приведет к увеличению обшей массы навески полимерной композиции с микрокапсулированной серой, а, следовательно, к увеличению доли ПВХ, что не всегда является положительным фактором при оценке свойств резин на основе каучуков общего назначения и таких полярных полимеров, как ПВХ.
В таблице 1 представлены вулканизующие агенты - составы композиций с микрокапсулированной серой (пример 2 - по прототипу; примеры 3-6 - в соответствии с заявляемым способом) и обычная сера (пример 1).
Пример. Способ получения вулканизующего агента с микрокапсулированной серой агента осуществляется следующим образом (в соответствии с рецептурами, приведенными в табл. 1):
При температуре силиконовой бани 75±5°С в фарфоровый реактор (стакан) емкостью 150 см3 загружают навески компонентов смоляного расплава: ε-капролактам, N-изопропил-N'-фенил-n-фенилендиамин и, при необходимости, стеариновую кислоту, перемешивают с помощью мешалки, со скоростью вращения 60 об/мин в течение 10-12 мин. Расплав, не извлекая мешалки, охлаждают до комнатной температуры и засыпают серу, продолжая перемешивание еще в течение 30-35 мин. Затем, также, при комнатной температуре, не прекращая перемешивание, порциями загружают ПВХ. Каждые 10 мин. мешалку останавливают, извлекают из пластизоли и переносят реактор для определения вязкости на вискозиметре Брукфильда (замеры проводят шпинделем №6). После достижения постоянных значений вязкости, приготовление пластизоли заканчивают и, не выливая из реактора, ставят на вызревание при комнатной температуре. Через сутки, вызревание сопровождается повышением вязкости. Время приготовления пластизолей и время их вызревания будут зависеть от объема реактора, интенсивности перемешивания и целевой вязкости. Желатинизацию проводят в течение часа при температуре 100°С в противнях, куда сливали пластизоли, помещая противни в воздушный термостат.
После желатинизации и охлаждения твердый продукт измельчался на дисковом ноже до крошки размером 1-5 мм или подвергался вальцеванию на вальцах 320 160/160 с зазором между валками 1-2 мм. Вальцованные листы сворачивались в «куклу». «Куклы» и крошка являлись готовым продуктом - микрокапсулированной серой как вулканизующего агента, который поступал на участок приготовления резиновых смесей. Для определения реометрических показателей использовали вальцованные образцы готового продукта и резиновых смесей. Испытания проводили на реометре MDR-3000.
Примеры 3-6 осуществляли по описанному примеру с использованием компонентов в количественном соотношении, приведенном в табл. 1.
Отсутствие в составах по примерам 3 и 6 стеариновой кислоты не оказывает влияния на температурно-временные режимы приготовления пластизолей, а полученные пластизоли отличались от стеаринсодержащих вязкостью, определяемой на вискозиметре Брукфильда, а их желатинированные продукты вязкостью по Муни (определяемой с помощью реометра MDR -3000 при 100°С).
Характеристические показатели вулканизующих агентов по примерам 3-6 представлены в таблице 2.
Полученные вулканизующие агенты с микрокапсулированной серой были апробированы в полимерных композициях (резиновых смесях) протекторных резинах для изготовления с/з шин. Состав резиновых смесей представлен в таблице 3.
В экспериментах использовалась одинаковая маточная смесь на основе каучуков СКИ-3 и СКД, содержащая ТУ 550, оксид цинка, бензойную кислоту, масло Норман, стеариновую кислоту, смолу стирол-инденовую, смолу Пикар, сульфенамид Ц и сантогард PVI.
Для резиновых смесей с использованием микрокапсулированной серы как вулканизующего агента (по примерам 2-6) противостарительная группа, представленная ацетонанилом и IPPD, не использовалась, так как эту функцию дополнительно выполняет используемый вулканизующий агент. Физико-механические характеристики вулканизатов, полученных из соответствующих резиновых смесей представлены в таблице 4.
Из данных табл. 4 видно повышение термоокислительной стойкости, прочностных показателей, показателей динамической выносливости и лучшее сопротивление абразивному износу вулканизатов, полученных с использованием вулканизующих агентов по примерам 3-5, по сравнению с вулканизатами - с использованием обычной серы и микрокапсулированной изготовленной по прототипу. Вулканизат по примеру 6 заметно утрачивает все эти функции, по-видимому, из-за большого содержания в пластизоли ПВХ и, тем самым, вносит количественные ограничения на компоненты вулканизующего агента.
Заявленный способ получения вулканизующего агента с микрокапсулированной серой позволяет получать серу, претерпевшую структурные изменения за счет воздействия лактамсодержащего смоляного, расплава, в микрокапсуле более тонкодисперсной. В итоге ее влияние на формирование пространственной сетки вулканизата становится более значительным, чем, например, серы микрокапсулированной по прототипу.
Таким образом, способ получения вулканизующего агента с микрокапсулированной серой, заключающийся в диспергировании серы в дисперсионном смоляном расплаве из ε-капролактама, N-изопропил-N'-фенил-n-фенилендиамина, с возможным добавлением в расплав стеариновой кислоты, формировании оболочки капсулы в процессе образования пластизоли при добавлении поливинилхлорида и последующей желатинизации пластизоли при 100±5°С в течение часа, при заявленном соотношении компонентов, обеспечивает повышение динамической выносливости и износостойкости резин с их использованием.
Claims (2)
- Способ получения микрокапсулированной серы как вулканизующего агента, заключающийся в диспергировании серы в дисперсионной среде, в качестве которой используют охлажденный до комнатной температуры смоляной расплав 17,50–18,20 мас.ч. ε-капролактама с 17,50–18,20 мас.ч N-изопропил-N/-фенил-n-фенилендиамином с возможным добавлением в расплав до 3,60 мас.ч стеариновой кислоты, с получением пасты, добавлении в пасту при перемешивании порошкообразного, микросуспензионного поливинилхлорида до постоянных значений вязкости с образованием пластизоли и вызревании пластизоли при комнатной температуре до повышения вязкости, желатинизации пластизоли при 100±5°С в течение часа, охлаждении твердого продукта с последующим измельчением, при следующем соотношении компонентов, мас.%:
-
Сера 35,00 - 40,00 Смоляной расплав 35,00 - 40,00 Поливинилхлорид 30,00 - 20,00
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019143745A RU2733722C1 (ru) | 2019-12-25 | 2019-12-25 | Способ получения вулканизующего агента с микрокапсулированной серой |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019143745A RU2733722C1 (ru) | 2019-12-25 | 2019-12-25 | Способ получения вулканизующего агента с микрокапсулированной серой |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2733722C1 true RU2733722C1 (ru) | 2020-10-06 |
Family
ID=72926756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019143745A RU2733722C1 (ru) | 2019-12-25 | 2019-12-25 | Способ получения вулканизующего агента с микрокапсулированной серой |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2733722C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1694562C3 (de) * | 1966-03-17 | 1975-11-13 | The Lubrizol Corp., Cleveland, Ohio (V.St.A.) | Harzhaltige Mischungen mit verbesserten rheologischen Eigenschaften |
RU2212420C2 (ru) * | 1997-11-25 | 2003-09-20 | Шилл Унд Зайлахер (Гмбх Унд Ко.) | Микрокапсулированная добавка к каучуку |
RU2376058C2 (ru) * | 2005-07-28 | 2009-12-20 | Шилл+Зайлахер АГ | Микрокапсулированные добавки для каучуков и способ их приготовления |
RU2596251C1 (ru) * | 2015-08-12 | 2016-09-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) | Промотор адгезии резины к текстильному корду |
-
2019
- 2019-12-25 RU RU2019143745A patent/RU2733722C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1694562C3 (de) * | 1966-03-17 | 1975-11-13 | The Lubrizol Corp., Cleveland, Ohio (V.St.A.) | Harzhaltige Mischungen mit verbesserten rheologischen Eigenschaften |
RU2212420C2 (ru) * | 1997-11-25 | 2003-09-20 | Шилл Унд Зайлахер (Гмбх Унд Ко.) | Микрокапсулированная добавка к каучуку |
RU2376058C2 (ru) * | 2005-07-28 | 2009-12-20 | Шилл+Зайлахер АГ | Микрокапсулированные добавки для каучуков и способ их приготовления |
RU2596251C1 (ru) * | 2015-08-12 | 2016-09-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) | Промотор адгезии резины к текстильному корду |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nimpaiboon et al. | Influence of gel content on the physical properties of unfilled and carbon black filled natural rubber vulcanizates | |
US9920184B2 (en) | Production method for rubber composition | |
JP5577047B2 (ja) | ゴムウェットマスターバッチ、その製造方法、ゴム組成物及びタイヤ | |
WO2022105742A1 (en) | Antidegradant composition, antidegradant master batch and rubber composition | |
KR101818894B1 (ko) | NdBR 웨트 마스터배치 | |
JP2016538393A (ja) | 極性充填剤を含有するゴム組成物の混合および加工における改良 | |
US4138375A (en) | Process for the production of pulverulent, pourable elastomer-filler mixtures optionally containing plasticizer oil | |
US2118601A (en) | Manufacture of rubber | |
EP3180200B1 (en) | Functionalized silica with elastomer binder | |
US3294720A (en) | Masticating and heating of mixtures comprising wet rubber crumb, carbon black and softener | |
RU2733722C1 (ru) | Способ получения вулканизующего агента с микрокапсулированной серой | |
CN106459428B (zh) | 橡胶湿法母炼胶的制造方法 | |
JP2005502754A (ja) | ゴムコンパウンド、フィラー、可塑剤及び硬化剤を含むマスターバッチ | |
RU2596251C1 (ru) | Промотор адгезии резины к текстильному корду | |
Lin et al. | Particle size distribution, mixing behavior, and mechanical properties of carbon black (high‐abrasion furnace)–filled powdered styrene butadiene rubber | |
US2653924A (en) | Vulcanization accelerators | |
Ansarifar et al. | Effects of silica on the cure properties of some compounds of styrene-butadiene rubber | |
JP5062584B2 (ja) | 原料ゴム組成物の製造方法 | |
JPH10130396A (ja) | 配合ゴムのためのパッケージ、配合ゴム及びそのトレッドを有するタイヤ | |
US3654218A (en) | Process of forming an elastomer-carbon black mixture | |
DE112017005221B4 (de) | Verfahren zum Herstellen eines Reifenelements | |
JP5350039B2 (ja) | ウエットマスターバッチの製造方法、および該ウエットマスターバッチを用いて得られた加硫ゴム | |
US3850845A (en) | Metal oxide paste dispersions and use as curing agents | |
US3542692A (en) | Liquid mixture of n-4-methyl-2-pentyl-n'-phenyl-para-phenylenediamine and n-5 - methyl - 2 - hexyl - n' - phenyl - para-phenylenediamine | |
CN109721898A (zh) | 一种四丙氟硫化胶及其制备方法 |