RU2623459C1 - Пассивный автокаталитический рекомбинатор водорода и кислорода со средствами организации дополнительного потока окружающей воздушной среды к сборкам каталитических элементов в направлении поперечном к основному - Google Patents
Пассивный автокаталитический рекомбинатор водорода и кислорода со средствами организации дополнительного потока окружающей воздушной среды к сборкам каталитических элементов в направлении поперечном к основному Download PDFInfo
- Publication number
- RU2623459C1 RU2623459C1 RU2016127496A RU2016127496A RU2623459C1 RU 2623459 C1 RU2623459 C1 RU 2623459C1 RU 2016127496 A RU2016127496 A RU 2016127496A RU 2016127496 A RU2016127496 A RU 2016127496A RU 2623459 C1 RU2623459 C1 RU 2623459C1
- Authority
- RU
- Russia
- Prior art keywords
- assembly
- hydrogen
- housing
- catalytic elements
- specified
- Prior art date
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 44
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 44
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 43
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 239000001301 oxygen Substances 0.000 title claims abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 21
- 230000008520 organization Effects 0.000 title description 2
- 230000007613 environmental effect Effects 0.000 title 1
- 239000003570 air Substances 0.000 claims abstract description 19
- 239000012080 ambient air Substances 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000005215 recombination Methods 0.000 abstract description 14
- 230000006798 recombination Effects 0.000 abstract description 14
- 238000013021 overheating Methods 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract 1
- 239000003054 catalyst Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 5
- 238000000429 assembly Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 102200052313 rs9282831 Human genes 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003608 radiolysis reaction Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C9/00—Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
- G21C9/04—Means for suppressing fires ; Earthquake protection
- G21C9/06—Means for preventing accumulation of explosives gases, e.g. recombiners
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Catalysts (AREA)
Abstract
Изобретение относится к атомной энергетике. Пассивный автокаталитический рекомбинатор водорода и кислорода содержит вертикально расположенный полый корпус прямоугольного или круглого поперечного сечения со свободно открытыми в окружающую воздушную среду нижним и верхним торцами и помещенную в нижней части указанного корпуса по его высоте по меньшей мере одну сборку каталитических элементов, расположенных по поперечному сечению корпуса соответственно его форме параллельными или концентричными горизонтальными рядами. Рекомбинатор дополнительно содержит средства организации дополнительного потока окружающей воздушной среды по меньшей мере через часть по меньшей мере нижней каталитической сборки в поперечном направлении по отношению к оси корпуса. Каждый последующий от периферии к центру ряд каталитических элементов указанной сборки расположен ниже предыдущего. Изобретение позволяет увеличить скорость рекомбинации водорода и кислорода в окружающей воздушной среде, устранить риск локального перегрева каталитических элементов. 4 з.п. ф-лы, 6 ил.
Description
Область техники
Изобретение относится к области атомной энергетики и может быть использовано при авариях на атомных электростанциях (АЭС) для предотвращения накопления в аварийных помещениях водорода, при захоронении ядерных отходов (где водород образуется в результате радиолиза воды и органических веществ). Кроме того, оно может быть использовано при утечках водорода в производственных помещениях на предприятиях химической индустрии, из установок с применением водорода (например, из системы охлаждения генераторов электростанций всех типов), в хранилищах водородных баллонов, на испытательных стендах с применением водорода, в учебных лабораториях, при коррозии оборудования и др.
Уровень техники
Одним из основных способов обеспечения водородной безопасности в случае аварии на современных АЭС с выделением большого количества водорода является каталитическая рекомбинация водорода с кислородом воздуха:
В качестве катализаторов используются металлы платиновой группы, чаще сама платина. Реакция на них протекает в диффузионном режиме, т.е. ее скорость лимитируется стадией подвода газовых реагентов к поверхности катализатора. Процесс удаления водорода (т.е. превращение его в безопасный водяной пар) протекает в автокаталитическом (пассивном) режиме, т.е. без энергозатрат и управления извне, что позволяет поддерживать достаточно низкое (безопасное) содержание водорода в помещениях АЭС в течении всего аварийного периода. Устройство, в котором осуществляется реакция (1), получило название пассивный автокаталитический рекомбинатор (ПАР). Обычно он представляет собой вертикально расположенный полый корпус прямоугольного или круглого поперечного сечения со свободно открытыми в окружающую среду нижним и верхним торцами с помещенной в нижней части указанного корпуса по его высоте по меньшей мере одной сборкой каталитических элементов.
Дисперсный металл-катализатор в каталитическом элементе обычно наносится на каталитическую основу, в качестве которой, как правило, используются пористые керамические композиты (чаще всего из оксида алюминия) в виде пластин, труб и др. Каталитические элементы закрепляются в жестком каркасе (картридже) из термо- и коррозионно-стойкого материала, обычно из нержавеющей стали.
Автокаталитический режим экзотермических реакций (к этому классу относится и рассматриваемая реакция) обусловлен тепловыделением, благодаря которому испаряется образующаяся вода, своевременно освобождая по мере испарения рабочую поверхность катализатора. Нагретый пар и воздух формируют в корпусе ПАР восходящий конвективный поток. В результате естественного газообмена ПАР в стационарном пассивном режиме освобождает окружающую среду от водорода. С конца прошлого века пассивные рекомбинаторы кислорода и водорода описанной выше конструкции являются обязательной составной частью современных систем водородной безопасности АЭС.
Модернизация ПАР происходит в направлениях повышения их производительности, улучшения надежности функционирования, сокращения стартового периода включения в работу, снижения стоимости, увеличения ресурса и безопасности.
Последнее связано с возможным «перегревом» катализатора при работе в атмосфере с высоким содержанием водорода (более 6-8% об.), что может инициировать поджиг и даже взрыв водород-воздушной среды. В свою очередь, уровень концентрации водорода в помещении, в которое постоянно поступает водород, находится в прямой зависимости от производительности отдельных ПАР (скорости каталитического процесса и создаваемой конвективным потоком тяги в корпусе рекомбинатора). «Перегрев» катализатора обусловлен тем, что его работа происходит в пространстве, ограниченном стенками корпуса ПАР, т.е. в условиях, близких к адиабатическим. Чем больше мощность ПАР и эффективнее происходит теплоотвод от зоны каталитической сборки, тем меньшее количество этих устройств и финансовых затрат требуется для оснащения данного помещения. В целях увеличить производительность ПАР в последние 10-15 лет предлагались: различные катализаторы, структуры и картриджи сборок каталитических элементов и конструкции корпусов ПАР.
Известен ПАР (RU 2499305, G21C 9/06, 2013 [1]), содержащий вертикально расположенный полый корпус прямоугольного или круглого поперечного сечения со свободно открытыми в окружающую воздушную среду нижним и верхним торцами и помещенную в нижней части указанного корпуса по его высоте по меньшей мере одну сборку каталитических элементов, расположенных по поперечному сечению корпуса соответственно его форме параллельными или концентричными горизонтальными рядами.
Согласно [1] каждую каталитическую пластину размещают между двумя, более короткими, металлическими пластинами, что создает более равномерное распределение газового потока и снижение термической нагрузки на нижнюю часть каталитической пластины. При содержании водорода в окружающей воздушной среде, равном 2% об., удельная скорость рекомбинации водорода и кислорода в данном ПАР достигает 45 н.мл/(мин см2).
Известен ПАР (RU 2461900, G21C 9/06, 2012 [2]), в котором с целью предотвращения перегрева катализатора в нижней части корпуса помещены по меньшей мере два расположенных по высоте сборки пластинчатых каталитических элемента с уменьшающимися поперечным сечением и высотой, которые обеспечивают ступенчатое возрастание скорости реакции и, одновременно, делокализацию выделяющегося тепла реакции и распределение его по высоте сборки указанных элементов. Подобная структура позволяет при 2% об. содержания водорода в окружающей среде получать скорости рекомбинации водорода и кислорода до 55 н.мл/(мин см2).
Известен ПАР (RU 2537956, G21C 9/06, 2014 [3]), содержащий, кроме центральной стволовой части корпуса, присоединенные к ней боковые рукава со сборками каталитических элементов, расположенные наклонно под углом к указанной стволовой части корпуса. Этим достигается дополнительное поступление водород-воздушной смеси в стволовую часть корпуса, с соответствующим увеличением скорости рекомбинации водорода и кислорода при 2% об. содержания водорода в окружающей среде до 70 н.мл /(мин⋅см2).
Общим недостатком всех трех перечисленных аналогов является наличие риска локального перегрева каталитических элементов, вызываемого увеличением скорости рекомбинации водорода и кислорода.
Из перечисленных выше трех аналогов патентуемого изобретения в качестве ближайшего (прототипа) выбран аналог [1], несмотря на наименьшее для указанных трех аналогов в достигнутое значение величины скорости рекомбинации водорода при заданном значении его объемного содержания в окружающей среде. Это связано с тем, что аналог [1] наиболее близок к патентуемому изобретению по своему конструктивному выполнению.
Раскрытие изобретения
Техническими результатами патентуемого изобретения являются дальнейшее по сравнению с достигнутым уровнем техники увеличение скорости рекомбинации водорода и кислорода в окружающей воздушной среде, а также устранение риска локального перегрева каталитических элементов при увеличенной скорости рекомбинации водорода и кислорода.
Указанные технические результаты обеспечиваются тем, что ПАР, содержащий вертикально расположенный полый корпус прямоугольного или круглого поперечного сечения со свободно открытыми в окружающую воздушную среду нижним и верхним торцами и помещенную в нижней части указанного корпуса по его высоте по меньшей мере одну сборку каталитических элементов, расположенных по поперечному сечению корпуса соответственно его форме параллельными или концентричными горизонтальными рядами, согласно изобретению дополнительно содержит средства организации дополнительного потока окружающей воздушной среды по меньшей мере через часть по меньшей мере нижней каталитической сборки в поперечном направлении по отношению к оси корпуса, а каждый последующий от периферии к центру ряд каталитических элементов указанной сборки расположен ниже предыдущего.
Величина снижения каждого последующего горизонтального ряда каталитических элементов от периферии до центра корпуса предпочтительно составляет:
Δh=k⋅h/n,
где
k - численный коэффициент,
h - высота каталитического элемента,
n - число горизонтальных рядов сборки от периферии до центра корпуса;
величина k предпочтительно лежит в пределах 0,1…1,0, расстояние между смежными рядами каталитических элементов в сборке предпочтительно составляет δ=(0,1…0,4)h, величина h предпочтительно лежит в пределах (10…150) мм, а расстояние в свету между смежными каталитическими элементами одного горизонтального ряда сборки предпочтительно составляет s=(0…150) мм.
Для организации поперечного потока окружающей воздушной среды через выделенную часть выделенной сборки в стенках указанного корпуса в местах, ограничивающих зоны подвода указанного поперечного потока, могут быть предусмотрены равномерно распределенные по соответствующей части стенок корпуса сквозные отверстия
или
стенки указанного корпуса в местах, ограничивающих зоны подвода указанного поперечного потока, могут быть выполнены в виде металлической сетки.
Для организации поперечного потока окружающей воздушной среды через по меньшей мере нижнюю часть нижней сборки указанная часть указанной сборки может быть выведена вовне за пределы нижнего торца указанного корпуса.
Причинно-следственная связь между совокупностью существенных признаков патентуемого изобретения и его техническими результатами заключается в следующем.
При работе ПАР согласно патентуемому изобретению в рабочие зоны выделенных каталитических сборок поступает водород-воздушная смесь не только снизу, в восходящем конвективном потоке, но и по периферии корпуса с поперечным по отношению к восходящему потоком. При этом за счет существенного увеличения площади контакта водород-воздушной смеси с каталитическими элементами соответственно возрастает скорость рекомбинации водорода и кислорода. Интенсивное функционирование катализатора сопровождается ростом теплообмена (в частности, теплового излучения), что снижает риск локального перегрева каталитических элементов.
Краткое описание чертежей
На фиг. 1 схематически изображен корпус ПАР (вид спереди) прямоугольного сечения, в стенках которого предусмотрены отверстия для поперечного подвода водород-воздушной смеси к каталитическим элементам выделенной сборки; на фиг. 2 - вид спереди на корпус ПАР, стенки которого в месте расположения выделенной сборки каталитических элементов выполнены в виде металлической сетки; фиг. 3 - корпус ПАР (вид спереди) прямоугольного сечения с нижней сборкой каталитических элементов пластинчатой формы, часть которой выдвинута вовне за пределы нижнего торца корпуса; на фиг. 4 - то же в виде сбоку на указанную сборку; на фиг. 5 - то же в виде спереди для корпуса круглого сечения со сборкой каталитических элементов трубчатой формы; на фиг. 6 - то же в виде снизу.
Условные обозначения
КЭ - каталитический элемент;
ПАР - пассивный автокаталитический рекомбинатор водорода и кислорода;
Перечень позиций
10 - корпус ПАР; 11 - сквозные отверстия в стенке корпуса; 12 - металлическая сетка в качестве части стенки корпуса; 20 - нижняя сборка КЭ; 31 - параллельные горизонтальные ряды КЭ; 32 - концентричные горизонтальные ряды КЭ; 41, 42 - КЭ; 41 - прямоугольные КЭ; 42 - трубчатые КЭ.
Осуществление изобретения
ПАР согласно патентуемому изобретению содержит вертикально расположенный полый корпус 10 (фиг. 1-6) прямоугольного (фиг. 1-4) или круглого (фиг. 5, 6) сечения со свободно открытыми в окружающую воздушную среду нижним и верхним торцами.
В нижней части корпуса 10 по его высоте установлена по меньшей мере одна сборка (в данном примере одна сборка 20) каталитических элементов (КЭ) 41, 42, расположенных по поперечному сечению корпуса соответственно его форме параллельными рядами 31 (фиг. 4) или концентричными рядами 32 (фиг. 6).
ПАР согласно изобретению дополнительно содержит средства организации дополнительного потока окружающей воздушной среды в данном примере к нижней сборке 20 КЭ 41, 42 в поперечном направлении по отношению к оси корпуса 10. При этом каждый последующий от периферии к центру ряд 31 или 32 КЭ 41, 42 сборки 20, в которой организован поперечный поток окружающей воздушной среды, расположен ниже предыдущего фиг. 4, 5.
Величина снижения каждого последующего горизонтального ряда 31 или 32 КЭ 41, 42 от периферии до центра корпуса 10 составляет:
Δh=k⋅h/n,
где
k - численный коэффициент,
h - высота КЭ 41, 42,
n - число горизонтальных рядов до центра корпуса 31 или 32 сборки,
при этом k равно (0,1…1,0), h равна (10…150) мм.
Пример: при выбранных значениях: k=0,5, h=100 мм, n=4
Δh=0,5⋅100/4=12,5 мм
Организация поперечного потока окружающей воздушной среды через КЭ 41, 42 может быть осуществлена следующими равноэффективными конструктивными средствами:
а) в стенках корпуса 10 в местах, ограничивающих зоны подвода поперечного потока окружающей воздушной среды, могут быть предусмотрены равномерно распределенные по соответствующей части стенок корпуса 10 сквозные отверстия 11;
б) стенки корпуса 10 в местах, ограничивающих зоны подвода поперечного потока окружающей воздушной среды, могут быть выполнены в виде металлической сетки 12;
в) по меньшей мере часть нижней сборки 20 может быть выведена вовне за пределы нижнего торца корпуса 10.
Следует заметить, что варианты а) и б) могут быть использованы применительно к сборке КЭ, расположенной в любом месте по высоте нижней части корпуса 10, а вариант в) только для нижней сборки.
ПАР согласно патентуемому изобретению работает следующем образом.
С появлением в окружающей воздушной среде водорода на поверхностях катализатора каталитических элементов КЭ 41, 42 начинается экзотермическая реакция рекомбинации водорода и кислорода (1). Автокаталитический режим этой реакции обусловлен так называемым стефановским потоком, направленным к поверхности катализатора и представляющим собой поток массы по направлению нормали к поверхности раздела фаз, обусловленный разностью давлений в газовой смеси с неоднородным распределением концентраций ее компонентов. Кроме того, на развитие каталитического процесса влияет возникновение восходящего конвективного газового потока вследствие появления градиентов температуры и давления по высоте корпуса ПАР 10. При этом, если стефановский поток к поверхности катализатора, находящегося внутри корпуса 10 со сплошными стенками, осуществляется только за счет восходящего (одномерного) газового потока внутри ограниченного пространства, то внутри корпуса 10 с несплошными стенками (наличие отверстий 11 или металлической сетки 12) или вне того же корпуса для переноса газовых реагентов стефановским потоком, т.е. в поперечном (горизонтальном) направлении по отношению к катализатору, этого ограничения нет. В результате находящаяся внутри корпуса 10 с несплошными стенками или вне того же корпуса соответствующая часть катализатора сборки 20 использует повышенный газообмен с окружающей водородсодержащей воздушной средой и, следовательно, способна рекомбинировать водород с большей скоростью.
Проведенные экспериментальные исследования работы ПАР согласно патентуемому изобретению с использованием описанных выше средств организации дополнительного поперечного потока окружающей водород-содержащей воздушной среды через нижнюю сборку 20 КЭ 41, 42 различной формы показали, что степень возрастания скорости рекомбинации водорода и кислорода при атмосферном давлении и С(Н2)=2% об., по сравнению с достигнутой в ПАР [1] скоростью 45 н.мл/мин⋅см2, составляет в среднем 1,9. Таким образом, абсолютное значение скорости рекомбинации водорода и кислорода в ПАР патентуемого изобретения при указанной выше концентрации водорода в окружающей воздушной среде составляет примерно 86 н.мл/мин⋅см2, что превышает эффективность работы в данном отношении всех известных из современного уровня техники ПАР.
Кроме того, как показали проведенные эксперименты при работе ПАР согласно патентуемому изобретению, по сравнению с [1] наблюдалось значительное снижение степени саморазогрева катализатора. Например, при удельной скорости рекомбинации 80 н.мл/(мин⋅см2) указанная температура снизилась с 360°С до 195°С, т.е. в 1,85 раза.
Промышленная применимость
ПАР согласно изобретению отвечает условию «промышленная применимость». Сущность технического решения раскрыта в формуле, описании и чертежах достаточно ясно для понимания и промышленной реализации соответствующими специалистами на основании современного уровня техники в области атомной энергетики и других приведенных выше отраслей.
Claims (20)
1. Пассивный автокаталитический рекомбинатор водорода и кислорода, содержащий:
вертикально расположенный полый корпус прямоугольного или круглого поперечного сечения со свободно открытыми в окружающую воздушную среду нижним и верхним торцами
и помещенную в нижней части указанного корпуса по его высоте по меньшей мере одну сборку каталитических элементов, расположенных по поперечному сечению корпуса соответственно его форме параллельными или концентричными горизонтальными рядами,
отличающийся тем, что:
он дополнительно содержит средства организации дополнительного потока окружающей воздушной среды по меньшей мере через часть по меньшей мере нижней каталитической сборки в поперечном направлении по отношению к оси корпуса,
а каждый последующий от периферии к центру ряд каталитических элементов указанной сборки расположен ниже предыдущего.
2. Пассивный автокаталитический рекомбинатор водорода и кислорода по п. 1,
отличающийся тем, что
величина снижения каждого последующего горизонтального ряда каталитических элементов от периферии до центра корпуса составляет:
Δh=k·h/n,
где
h - высота каталитического элемента,
n - число горизонтальных рядов сборки от периферии до центра корпуса;
величина k лежит в пределах 0,1…1,0, расстояние между смежными рядами каталитических элементов в сборке составляет δ=(0,1…0,4)h, величина h лежит в пределах (10…150) мм, а расстояние в свету между смежными каталитическими элементами одного горизонтального ряда сборки составляет s=(0…150) мм.
3. Пассивный автокаталитический рекомбинатор водорода и кислорода по п. 1 или 2, отличающийся тем, что
для организации поперечного потока окружающей воздушной среды через выделенную часть выделенной сборки в стенках указанного корпуса в местах, ограничивающих зоны подвода указанного поперечного потока, предусмотрены равномерно распределенные по соответствующей части стенок корпуса сквозные отверстия.
4. Пассивный автокаталитический рекомбинатор водорода и кислорода по п. 1 или 2, отличающийся тем, что
для организации поперечного потока окружающей воздушной среды стенки указанного корпуса в местах, ограничивающих зоны подвода указанного поперечного потока, выполнены в виде металлической сетки.
5. Пассивный автокаталитический рекомбинатор водорода и кислорода по п. 1 или 2, отличающийся тем, что
для организации поперечного потока окружающей воздушной среды через по меньшей мере нижнюю часть нижней сборки указанная часть указанной сборки выведена вовне за пределы нижнего торца указанного корпуса.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016127496A RU2623459C1 (ru) | 2016-07-08 | 2016-07-08 | Пассивный автокаталитический рекомбинатор водорода и кислорода со средствами организации дополнительного потока окружающей воздушной среды к сборкам каталитических элементов в направлении поперечном к основному |
PCT/RU2016/000723 WO2018009092A1 (ru) | 2016-07-08 | 2016-10-24 | Пассивный автокаталитический рекомбинатор водорода и кислорода |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016127496A RU2623459C1 (ru) | 2016-07-08 | 2016-07-08 | Пассивный автокаталитический рекомбинатор водорода и кислорода со средствами организации дополнительного потока окружающей воздушной среды к сборкам каталитических элементов в направлении поперечном к основному |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2623459C1 true RU2623459C1 (ru) | 2017-06-26 |
Family
ID=59241506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016127496A RU2623459C1 (ru) | 2016-07-08 | 2016-07-08 | Пассивный автокаталитический рекомбинатор водорода и кислорода со средствами организации дополнительного потока окружающей воздушной среды к сборкам каталитических элементов в направлении поперечном к основному |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2623459C1 (ru) |
WO (1) | WO2018009092A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2761989C1 (ru) * | 2021-01-26 | 2021-12-14 | Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" | Пассивный каталитический рекомбинатор водорода и кислорода |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113380431A (zh) * | 2021-06-03 | 2021-09-10 | 哈尔滨工程大学 | 一种氢气复合器催化单元 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4911879A (en) * | 1987-08-14 | 1990-03-27 | Siemens Aktiengesellschaft | Apparatus for the recombination of hydrogen and oxygen |
US5167908A (en) * | 1990-01-08 | 1992-12-01 | Gesellschaft Fur Reaktorsicherheit (Grs) | Device for recombination of hydrogen and oxygen |
RU113404U1 (ru) * | 2011-10-17 | 2012-02-10 | Закрытое Акционерное Общество Инвестиционная Научно-Производственная Компания РУССКИЕ ЭНЕРГЕТИЧЕСКИЕ ТЕХНОЛОГИИ | Пассивный многоярусный автокаталитический рекомбинатор водорода и кислорода с отдельным забором обрабатываемой газовой среды для каждого яруса |
RU2499305C1 (ru) * | 2012-10-11 | 2013-11-20 | Владимир Андреевич Шепелин | Пассивный автокаталитический рекомбинатор водорода и кислорода с равномерной нагрузкой на площадь каталитического элемента |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2537956C1 (ru) * | 2013-07-19 | 2015-01-10 | Владимир Андреевич Шепелин | Пассивный автокаталический рекомбинатор водорода и кислорода с боковым забором водород-воздушной газовой смеси |
-
2016
- 2016-07-08 RU RU2016127496A patent/RU2623459C1/ru active
- 2016-10-24 WO PCT/RU2016/000723 patent/WO2018009092A1/ru active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4911879A (en) * | 1987-08-14 | 1990-03-27 | Siemens Aktiengesellschaft | Apparatus for the recombination of hydrogen and oxygen |
US5167908A (en) * | 1990-01-08 | 1992-12-01 | Gesellschaft Fur Reaktorsicherheit (Grs) | Device for recombination of hydrogen and oxygen |
RU113404U1 (ru) * | 2011-10-17 | 2012-02-10 | Закрытое Акционерное Общество Инвестиционная Научно-Производственная Компания РУССКИЕ ЭНЕРГЕТИЧЕСКИЕ ТЕХНОЛОГИИ | Пассивный многоярусный автокаталитический рекомбинатор водорода и кислорода с отдельным забором обрабатываемой газовой среды для каждого яруса |
RU2499305C1 (ru) * | 2012-10-11 | 2013-11-20 | Владимир Андреевич Шепелин | Пассивный автокаталитический рекомбинатор водорода и кислорода с равномерной нагрузкой на площадь каталитического элемента |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2761989C1 (ru) * | 2021-01-26 | 2021-12-14 | Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" | Пассивный каталитический рекомбинатор водорода и кислорода |
Also Published As
Publication number | Publication date |
---|---|
WO2018009092A1 (ru) | 2018-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2878121C (en) | Nuclear plant with a containment shell and with a pressure relief system | |
WO2015085241A1 (en) | Slimm-scalable liquid metal cooled small modular reactor | |
EP2428965B1 (en) | Devices and methods for managing noncombustible gasses in nuclear power plants | |
RU2461900C1 (ru) | Пассивный автокаталитический рекомбинатор водорода и кислорода со ступенчато увеличивающейся в направлении газового потока скоростью каталитической реакции | |
EP2704153B1 (en) | Gas treatment equipment of nuclear power plant | |
RU2623459C1 (ru) | Пассивный автокаталитический рекомбинатор водорода и кислорода со средствами организации дополнительного потока окружающей воздушной среды к сборкам каталитических элементов в направлении поперечном к основному | |
KR20150045032A (ko) | 가연성 기체 연소 제어기 | |
KR20150046005A (ko) | 수소 재결합기 | |
Iwai et al. | Room-temperature reactor packed with hydrophobic catalysts for the oxidation of hydrogen isotopes released in a nuclear facility | |
CN108140433B (zh) | 核反应堆 | |
JP2015102514A (ja) | 水素除去装置 | |
KR101478738B1 (ko) | 수증기 저감부가 장착된 피동 촉매 결합기 | |
Takamatsu et al. | New reactor cavity cooling system having passive safety features using novel shape for HTGRs and VHTRs | |
RU2537956C1 (ru) | Пассивный автокаталический рекомбинатор водорода и кислорода с боковым забором водород-воздушной газовой смеси | |
Cristescu et al. | Commissioning of water detritiation and cryogenic distillation systems at TLK in view of ITER design | |
Katanishi et al. | Safety evaluation on the depressurization accident in the gas turbine high temperature reactor (GTHTR300) | |
Magomedbekov et al. | Current state of research in the field of detritiation of technological water flows: A review | |
RU2499305C1 (ru) | Пассивный автокаталитический рекомбинатор водорода и кислорода с равномерной нагрузкой на площадь каталитического элемента | |
Yanhua et al. | Analysis of diffusion process and influence factors in the air ingress accident of the HTR-PM | |
JP2011252837A (ja) | 原子炉格納容器除熱装置及び除熱方法 | |
EP0599617A1 (en) | Internal passive hydrogen peroxide decomposer for a boiling water reactor | |
RU2599145C1 (ru) | Рекомбинатор и способ рекомбинации водорода или метана и кислорода в газовой смеси | |
RU2761989C1 (ru) | Пассивный каталитический рекомбинатор водорода и кислорода | |
US20110216872A1 (en) | Boiling Water Nuclear Plant and Steam Dryer | |
Bezgodov et al. | Experimental results for RVK-500 recombiner tested in conditions typical for pressurized water NPP severe accidents |