RU2605848C2 - Способ получения нанокапсул лекарственных препаратов группы цефалоспоринов в интерфероне - Google Patents
Способ получения нанокапсул лекарственных препаратов группы цефалоспоринов в интерфероне Download PDFInfo
- Publication number
- RU2605848C2 RU2605848C2 RU2014141074/15A RU2014141074A RU2605848C2 RU 2605848 C2 RU2605848 C2 RU 2605848C2 RU 2014141074/15 A RU2014141074/15 A RU 2014141074/15A RU 2014141074 A RU2014141074 A RU 2014141074A RU 2605848 C2 RU2605848 C2 RU 2605848C2
- Authority
- RU
- Russia
- Prior art keywords
- interferon
- chloroform
- nanocapsules
- core
- microcapsules
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
- A61K31/542—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
- A61K31/545—Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Nanotechnology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Medicinal Preparation (AREA)
Abstract
Изобретение относится к медицине и заключается в способе получения нанокапсул лекарственных препаратов группы цефалоспоринов, в которых в качестве оболочки используется интерферон, а в качестве ядра используются препараты группы цефалоспоринов. При осуществлении способа к водному раствору интерферона добавляют препарат группы цефалоспоринов и Е472с в качестве поверхностно-активного вещества, полученную смесь перемешивают на магнитной мешалке до растворения компонентов смеси с образованием прозрачного раствора, затем медленно по каплям приливают хлороформ, полученную суспензию отфильтровывают, промывают хлороформом и сушат, при этом соотношение оболочка : ядро составляет 3:1. Технический результат заключается в упрощении и ускорении получения нанокапсул, а также в увеличении выхода по массе. 1 ил., 9 пр.
Description
Изобретение относится к области нанотехнологии, медицине, фармакологии, фармацевтике и ветеринарной медицине.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в Пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат. 2095055, МПК A61K 9/52, A61K 9/16, A61K 9/10, Российская Федерация, опубликован 10.11.1997, предложен способ получения твердых непористых микросфер, который включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением в инертной атмосфере при температуре от -15°C до -50°C и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.
Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.
В пат. 2091071, МПК A61K 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.
Недостатком способа является применение шаровой мельницы, что может приводить к разрушению части микрокапсул и в итоге к уменьшению выхода конечного продукта.
В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.
В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, которая содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.
В пат. 2139046, МПК A61K 9/50, A61K 49/00, А61K 51/00, Российская Федерация, опубликован 10.10.1999, предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и, возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. После вымораживания смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ, и полусферические или сферические микрокапсулы высушивают.
Недостатками предложенного способа являются сложность и длительность процесса, использование высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.
В пат. 2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000, предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащих твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и недействующего как эмульгатор.
Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя, получение микрокапсул химическим методом полимеризации, технологическая сложность.
В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.
В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).
В пат. 20110223314, МПК B05D 7/00; 20060101, B05D 007/00, В05С 3/02; 20060101, В05С 003/02; В05С 11/00; 20060101, В05С 011/00; B05D 1/18; 20060101, B05D 001/18; B05D 3/02; 20060101, B05D 003/02; B05D 3/06; 20060101, B05D 003/06 от 10.03.2011 US, описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.
Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.
В пат. WO/2011/150138 US, МПК C11D 3/37; B01J 13/08; C11D 17/00, опубликован 01.12.2011, описан способ получения твердых микрокапсул, растворимых в воде агентов методом полимеризации.
Недостатками данного способа являются сложность исполнения и длительность процесса.
В пат. WO/2011/127030 US, МПК A61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, опубликован 13.10.2011, предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.
Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).
В пат. WO/2011/104526 GB, МПК B01J 13/00; B01J 13/14; С09В 67/00; C09D 11/02, опубликован 01.09.2011, предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых, изделий, по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, для инкапсуляции твердых частиц которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.
Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернилах струйной печати, для фармацевтической промышленности данная методика неприменима.
В пат. WO/2011/056935 US, МПК C11D 17/00; A61K 8/11; B01J 13/02; C11D 3/50, опубликован 12.05.2011, описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонатов, полиэфиров, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемыми для материала сердечника и материалов в окружающей среде, в которой инкапсулируется агент. Выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воски, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул водорастворимых лекарственных препаратов группы цефалоспоринов в α- и β-формах интерферона человеческого лейкоцитарного, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул лекарственных препаратов группы цефалоспоринов, относящихся к β-лактамным антибиотикам, отличающимся тем, что в качестве оболочки нанокапсул используется интерферон человеческий лейкоцитарный в α- и β-формах при получении нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа, процесс получения осуществляется без специального оборудования.
Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул лекарственных препаратов группы цефалоспоринов, относящихся к β-лактамным антибиотикам, интерферона человеческого лейкоцитарного в α- и β-формах при их получении физико-химическим методом осаждения нерастворителем с применением хлороформа в качестве осадителя.
Результатом предлагаемого метода является получение нанокапсул лекарственных препаратов группы цефалоспоринов, относящихся к β-лактамным антибиотикам в α- и β- фомах интерферона человеческого лейкоцитарного при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.
ПРИМЕР 1. Получение нанокапсул цефотаксима в интерфероне человеческом лейкоцитарном (β-интерфероне), соотношение оболочка:ядро 3:1
К 2,5 г 1% водного раствора интерферона человеческого лейкоцитарного (β-интерферона) добавляют 0,075 г порошка цефотаксима и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После растворения компонентов реакционной смеси до образования прозрачного раствора очень медленно по каплям приливают 6 мл хлороформа. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают хлороформом, сушат в эксикаторе над хлористым кальцием.
Получено 0,1 г белого порошка. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул цефотаксима в интерфероне человеческом лейкоцитарном (α-интерфероне), соотношение оболочка:ядро 3:1
К 2 г 1% водного раствора интерферона человеческого лейкоцитарного (α-интерферона) добавляют 0,060 г порошка цефатоксима и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После растворения компонентов реакционной смеси до образования прозрачного раствора очень медленно по каплям приливают 6 мл метанола хлороформа. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают хлороформом, сушат в эксикаторе над хлористым кальцием.
Получено 0,1 г белого порошка. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул цефтриаксона в интерфероне человеческом лейкоцитарном (β-интерфероне), соотношение оболочка:ядро 3:1
К 2,5 г 1% водного раствора интерферона человеческого лейкоцитарного (β-интерферона) добавляют 0,075 г порошка цефтриаксона и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После растворения компонентов реакционной смеси до образования прозрачного раствора очень медленно по каплям приливают 6 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают хлороформом, сушат в эксикаторе над хлористым кальцием.
Получено 0,1 г белого порошка. Выход составил 100%.
ПРИМЕР 4. Получение нанокапсул цефтриаксона в интерфероне человеческом лейкоцитарном (α-интерфероне), соотношение оболочка:ядро 3:1
К 2 г 1% водного раствора интерферона человеческого лейкоцитарного (α-интерферона) добавляют 0,060 г порошка цефтриаксона и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После растворения компонентов реакционной смеси до образования прозрачного раствора очень медленно по каплям приливают 6 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают хлороформом, сушат в эксикаторе над хлористым кальцием.
Получено 0,1 г белого порошка. Выход составил 100%.
ПРИМЕР 5. Получение нанокапсул цефазолина в интерфероне человеческом лейкоцитарном (β-интерфероне), соотношение оболочка:ядро 3:1
К 2,5 г 1% водного раствора интерферона человеческого лейкоцитарного (β-интерферона) добавляют 0,075 г порошка цефазолина и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После растворения компонентов реакционной смеси до образования прозрачного раствора очень медленно по каплям приливают 6 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают хлороформом, сушат в эксикаторе над хлористым кальцием.
Получено 0,1 г белого порошка. Выход составил 100%.
ПРИМЕР 6. Получение нанокапсул цефазолина в интерфероне человеческом лейкоцитарном (α-интерфероне), соотношение оболочка:ядро 3:1
К 2 г 1% водного раствора интерферона человеческого лейкоцитарного (α-интерферона) добавляют 0,060 г порошка цефазолина и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После растворения компонентов реакционной смеси до образования прозрачного раствора очень медленно по каплям приливают 6 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают хлороформом, сушат в эксикаторе над хлористым кальцием.
Получено 0,1 г белого порошка. Выход составил 100%.
ПРИМЕР 7. Получение нанокапсул цефепима в интерфероне человеческом лейкоцитарном (β-интерфероне), соотношение оболочка:ядро 3:1
К 2,5 г 1% водного раствора интерферона человеческого лейкоцитарного (β-интерферона) добавляют 0,075 г порошка цефепима и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После растворения компонентов реакционной смеси до образования прозрачного раствора очень медленно по каплям приливают 6 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают хлороформом, сушат в эксикаторе над хлористым кальцием.
Получено 0,1 г белого порошка. Выход составил 100%.
ПРИМЕР 8. Получение нанокапсул цефепима в интерфероне человеческом лейкоцитарном (α-интерфероне), соотношение оболочка : ядро 3:1
К 2 г 1% водного раствора интерферона человеческого лейкоцитарного (α-интерферона) добавляют 0,060 г порошка цефепима и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После растворения компонентов реакционной смеси до образования прозрачного раствора очень медленно по каплям приливают 6 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают хлороформом, сушат в эксикаторе над хлористым кальцием.
Получено 0,1 г белого порошка. Выход составил 100%.
ПРИМЕР 9. Определение размеров нанокапсул методом NTA (см. рис.1)
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт).
Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size:Auto, длительность единичного измерения 215s, использование шприцевого насоса.
Получены нанокапсулы лекарственных препаратов группы цефалоспоринов, относящихся к β-лактамным антибиотикам, в α- и β- формах интерферона человеческого лейкоцитарного. Процесс прост в исполнении и длится в течение 15 минут, не требует специального оборудования.
Claims (1)
- Способ получения нанокапсул лекарственных препаратов группы цефалоспоринов, характеризующийся тем, что в качестве оболочки используется интерферон, а в качестве ядра используются лекарственные препараты группы цефалоспоринов, при осуществлении способа к водному раствору интерферона добавляют лекарственный препарат группы цефалоспоринов и Е472с в качестве поверхностно-активного вещества, полученную смесь перемешивают на магнитной мешалке до растворения компонентов смеси с образованием прозрачного раствора, затем медленно по каплям приливают хлороформ, полученную суспензию отфильтровывают, промывают хлороформом и сушат, при этом соотношение оболочка : ядро составляет 3:1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014141074/15A RU2605848C2 (ru) | 2014-10-10 | 2014-10-10 | Способ получения нанокапсул лекарственных препаратов группы цефалоспоринов в интерфероне |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014141074/15A RU2605848C2 (ru) | 2014-10-10 | 2014-10-10 | Способ получения нанокапсул лекарственных препаратов группы цефалоспоринов в интерфероне |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014141074A RU2014141074A (ru) | 2016-04-27 |
RU2605848C2 true RU2605848C2 (ru) | 2016-12-27 |
Family
ID=55759377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014141074/15A RU2605848C2 (ru) | 2014-10-10 | 2014-10-10 | Способ получения нанокапсул лекарственных препаратов группы цефалоспоринов в интерфероне |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2605848C2 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5049322A (en) * | 1986-12-31 | 1991-09-17 | Centre National De La Recherche Scientifique (C.N.R.S.) | Process for the preparaton of dispersible colloidal systems of a substance in the form of nanocapsules |
RU2134967C1 (ru) * | 1997-05-30 | 1999-08-27 | Шестаков Константин Алексеевич | Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды |
RU2012122886A (ru) * | 2009-11-20 | 2013-12-27 | ДжиПи ФАРМ С.А. | Капсулы активных фармацевтических ингредиентов и сложных эфиров полиненасыщенной жирной кислоты для лечения сердечно-сосудистых заболеваний |
-
2014
- 2014-10-10 RU RU2014141074/15A patent/RU2605848C2/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5049322A (en) * | 1986-12-31 | 1991-09-17 | Centre National De La Recherche Scientifique (C.N.R.S.) | Process for the preparaton of dispersible colloidal systems of a substance in the form of nanocapsules |
RU2134967C1 (ru) * | 1997-05-30 | 1999-08-27 | Шестаков Константин Алексеевич | Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды |
RU2012122886A (ru) * | 2009-11-20 | 2013-12-27 | ДжиПи ФАРМ С.А. | Капсулы активных фармацевтических ингредиентов и сложных эфиров полиненасыщенной жирной кислоты для лечения сердечно-сосудистых заболеваний |
Non-Patent Citations (1)
Title |
---|
СОЛОДОВНИК В.Д., Микрокапсулирование. Издательство "Химия", Москва, 1980 г. * |
Also Published As
Publication number | Publication date |
---|---|
RU2014141074A (ru) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2491939C1 (ru) | Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в хлороформе | |
RU2550918C1 (ru) | Способ получения нанокапсул антибиотиков в геллановой камеди | |
RU2590693C1 (ru) | Способ получения нанокапсул адаптогенов в пектине | |
RU2550950C1 (ru) | Способ получения нанокапсул биопага-д | |
RU2561586C1 (ru) | Способ получения микрокапсул биопага-д в пектине | |
RU2500404C2 (ru) | Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в интерфероне | |
RU2555824C1 (ru) | Способ получения микрокапсул сухого экстракта топинамбура в пектине | |
RU2619331C2 (ru) | Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия | |
RU2563618C2 (ru) | Способ получения микрокапсул биопага-д в пектине | |
RU2550919C1 (ru) | Способ получения нанокапсул антибиотиков в каррагинане | |
RU2550932C1 (ru) | Способ получения нанокапсул цефалоспориновых антибиотиков в ксантановой камеди | |
RU2605614C1 (ru) | Способ получения нанокапсул сухого экстракта топинамбура | |
RU2599007C1 (ru) | Способ получения нанокапсул ципрофлоксацина гидрохлорида в альгинате натрия | |
RU2555466C2 (ru) | Способ биоинкапсуляции | |
RU2605848C2 (ru) | Способ получения нанокапсул лекарственных препаратов группы цефалоспоринов в интерфероне | |
RU2640490C2 (ru) | Способ получения нанокапсул сухого экстракта топинамбура в геллановой камеди | |
RU2595825C1 (ru) | Способ получения нанокапсул иодида калия в пектине | |
RU2564898C1 (ru) | Способ получения нанокапсул антибиотиков | |
RU2580613C1 (ru) | Способ получения нанокапсул антибиотиков в агар-агаре | |
RU2573979C1 (ru) | Способ получения нанокапсул антибиотиков в агар-агаре | |
RU2584226C2 (ru) | Способ получения нанокапсул антибиотиков в интерфероне | |
RU2514113C2 (ru) | Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди | |
RU2634256C2 (ru) | Способ получения нанокапсул сухого экстракта топинамбура | |
RU2640127C2 (ru) | Способ получения нанокапсул сухого экстракта топинамбура | |
RU2538668C1 (ru) | Способ биоинкапсуляции |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170108 |