[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2619331C2 - Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия - Google Patents

Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия Download PDF

Info

Publication number
RU2619331C2
RU2619331C2 RU2014141023A RU2014141023A RU2619331C2 RU 2619331 C2 RU2619331 C2 RU 2619331C2 RU 2014141023 A RU2014141023 A RU 2014141023A RU 2014141023 A RU2014141023 A RU 2014141023A RU 2619331 C2 RU2619331 C2 RU 2619331C2
Authority
RU
Russia
Prior art keywords
microcapsules
nanocapsules
sodium alginate
umifenovir
producing
Prior art date
Application number
RU2014141023A
Other languages
English (en)
Other versions
RU2014141023A (ru
Inventor
Александр Александрович Кролевец
Илья Александрович Богачев
Кирилл Сергеевич Никитин
Яна Владимировна Медведева
Original Assignee
Александр Александрович Кролевец
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Priority to RU2014141023A priority Critical patent/RU2619331C2/ru
Publication of RU2014141023A publication Critical patent/RU2014141023A/ru
Application granted granted Critical
Publication of RU2619331C2 publication Critical patent/RU2619331C2/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

Изобретение относится в области нанотехнологии, медицины, фармакологии и фармацевтике. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование умифеновира и оболочки нанокапсул альгинат натрия, а также использование осадителя - петролейного эфира при получении нанокапсул физико-химическим методом осаждения нерастворителем. 4 пр.

Description

Изобретение относится к области нанотехнологии, медицины, фармакологии и фармацевтике.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. РФ № 2092155 МПК A61K 047/02, A61K 009/16, опубл. 10.10.1997, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат. РФ № 2095055 МПК A61K 9/52, A61K 9/16, A61K 9/10, опубл. 10.11.1997, предложен способ получения твердых непористых микросфер, включающий расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.
Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.
В пат. РФ № 2076765 МПК B01D 9/02, опубл. 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.
В пат. РФ № 2101010 МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, опубл. 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.
В пат. РФ № 2139046 МПК A61K 9/50, A61K 49/00, A61K 51/00, опубл. 10.10.1999, предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.
Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.
В пат. РФ № 2159037 МПК A01N 25/28, A01N 25/30, опубл. 20.11.2000, предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащие твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.
Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.
В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135, описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°C), термическое разложение его в пиролизной печи (650°C при остаточном давлении 0,5 мм рт. ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°C, остаточное давление 0,1 мм рт. ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.
Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.
В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, т. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина pH водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.
Недостатком предложенного способа получения микрокапсул является сложность процесса, а отсюда плавающий выход целевых капсул.
В пат. РФ № 2173140 МПК A61K 009/50, A61K 009/127, опубл. 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. РФ 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).
В пат. WO/2010/076360 ES МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубл. 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.
Недостатком предложенного способа является сложность и длительность процесса процесса.
В пат. WO/2010/119041 EP МПК A23L 1/00, опубл. 21.10.2010, предложен способ получения микрошариков, содержащих активный компонент инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения, и последующее отверждение микрошариков в растворе анионный полисахарид с pH 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является тепло-денатурирующим, хотя и другие методы денатурации, также применимы, например денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°C до 80°C, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, продкет подлежит фильтрации, который осуществляется через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров пор, например, от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG,. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.
Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных денным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.
В пат. WO/2011/003805 EP МПК B01J 3/18; B65D 83/14; C08G 18/00, опубл. 13.01.2011, описан способ получения микрокапсул, которые подходят для использования в композициях образующих герметики, пены, покрытия или клеи.
Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.
В пат. 20110223314 МПК B05D 7/00 20060101 B05D 007/00, B05C 3/02 20060101 B05C 003/02; B05C 11/00 20060101 B05C 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03.2011 US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.
Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.
В пат. WO/2011/150138 US МПК C11D 3/37; B01J 13/08; C11D 17/00, опубл. 01.12.2011, описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.
Недостатками данного способа являются сложность исполнения и длительность процесса.
В пат. WO/2011/127030 US МПК A61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, опубл. 13.10.2011, предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.
Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).
В пат. WO/2011/104526 GB МПК B01J 13/00; B01J 13/14; C09B 67/00; C09D 11/02, опубл. 01.09.2011, предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых, изделий, по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц, которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.
Недостаткакми предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика неприменима.
В пат. WO/2011/056935 US МПК C11D 17/00; A61K 8/11; B01J 13/02; C11D 3/50, опубл. 12.05.2011, описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонаты, полиэфиры, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемым для материала сердечника и материалов в окружающей среде, в которой инкапсулируются агент выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воска, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.
В пат. WO/2011/160733 EP МПК B01J 13/16, опубл. 29.12.2011, описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (A) и (B) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°C до формирования микрокапсул.
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.
Наиболее близким методом является способ, предложенный в пат. РФ № 2134967 МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул умифеновира в альгинате натрия, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул умифеновира, отличающийся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - петролейного эфира.
Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул антибиотиков альгината натрия, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - петролейного эфира.
Результатом предлагаемого метода являются получение нанокапсул умифеновира, в альгинате натрия при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.
ПРИМЕР 1. Получение нанокапсул умифеновира в альгинате натрия, соотношение ядро:оболочка 1:3
В суспензию 1,5 г альгината натрия в бензоле и 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества, небольшими порциями добавляют 0,5 г порошка умифеновира. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 2 г белого порошка. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул умифеновира в альгинате натрия, соотношение ядро:оболочка 1:1
В суспензию 0,5 г альгината натрия в бензоле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества, добавляют 0,5 г порошка умифеновира. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 1 г белого порошка. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул умифеновира в альгинате натрия, соотношение ядро:оболочка 5:1
В суспензию 0,1 г альгината натрия в бензоле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества, добавляют 0,5 г порошка умифеновира. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 0,6 г белого порошка. Выход составил 100%.
ПРИМЕР 4. Определение размеров нанокапсул методом NTA
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Claims (1)

  1. Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия, характеризующийся тем, что в качестве оболочки используется альгинат натрия, который осаждают из суспензии в бензоле в присутствии сложного эфира глицерина с одно-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты путем добавления петролейного эфира в качестве осадителя, при этом массовое соотношение ядро:оболочка альгината натрия составляет 1:1, 1:3 или 5:1.
RU2014141023A 2014-10-10 2014-10-10 Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия RU2619331C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014141023A RU2619331C2 (ru) 2014-10-10 2014-10-10 Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014141023A RU2619331C2 (ru) 2014-10-10 2014-10-10 Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия

Publications (2)

Publication Number Publication Date
RU2014141023A RU2014141023A (ru) 2016-04-27
RU2619331C2 true RU2619331C2 (ru) 2017-05-15

Family

ID=55759372

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014141023A RU2619331C2 (ru) 2014-10-10 2014-10-10 Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия

Country Status (1)

Country Link
RU (1) RU2619331C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2677242C1 (ru) * 2018-03-02 2019-01-16 Александр Александрович Кролевец Способ получения нанокапсул диакамфа в альгинате натрия
RU2677248C1 (ru) * 2018-02-15 2019-01-16 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта эвкалипта
RU2678971C1 (ru) * 2018-03-19 2019-02-05 Александр Александрович Кролевец Способ получения нанокапсул диакамфа в гуаровой камеди

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021341483A1 (en) 2020-09-14 2023-04-20 Istanbul Universitesi Rektorlugu Use of active substances with antiviral, anti malarial, and/or mucolytic properties in the treatment of viral lung diseases including covid-19 by soft mist inhaler or vibration mesh technology nebulizer through inhalation route

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды
WO2011056935A1 (en) * 2009-11-06 2011-05-12 The Procter & Gamble Company Delivery particle
WO2011127030A1 (en) * 2010-04-06 2011-10-13 The Procter & Gamble Company Encapsulates
WO2011160733A1 (en) * 2010-06-25 2011-12-29 Cognis Ip Management Gmbh Process for producing microcapsules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды
WO2011056935A1 (en) * 2009-11-06 2011-05-12 The Procter & Gamble Company Delivery particle
WO2011127030A1 (en) * 2010-04-06 2011-10-13 The Procter & Gamble Company Encapsulates
WO2011160733A1 (en) * 2010-06-25 2011-12-29 Cognis Ip Management Gmbh Process for producing microcapsules

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2677248C1 (ru) * 2018-02-15 2019-01-16 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта эвкалипта
RU2677242C1 (ru) * 2018-03-02 2019-01-16 Александр Александрович Кролевец Способ получения нанокапсул диакамфа в альгинате натрия
RU2678971C1 (ru) * 2018-03-19 2019-02-05 Александр Александрович Кролевец Способ получения нанокапсул диакамфа в гуаровой камеди

Also Published As

Publication number Publication date
RU2014141023A (ru) 2016-04-27

Similar Documents

Publication Publication Date Title
RU2491939C1 (ru) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в хлороформе
RU2550918C1 (ru) Способ получения нанокапсул антибиотиков в геллановой камеди
RU2561586C1 (ru) Способ получения микрокапсул биопага-д в пектине
RU2569736C1 (ru) Способ получения нанокапсул аденина в альгинате натрия
RU2619331C2 (ru) Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия
RU2555824C1 (ru) Способ получения микрокапсул сухого экстракта топинамбура в пектине
RU2554763C1 (ru) Способ получения нанокапсул сульфата хондроитина в конжаковой камеди
RU2502510C1 (ru) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в четыреххлористом углероде
RU2550919C1 (ru) Способ получения нанокапсул антибиотиков в каррагинане
RU2550932C1 (ru) Способ получения нанокапсул цефалоспориновых антибиотиков в ксантановой камеди
RU2599007C1 (ru) Способ получения нанокапсул ципрофлоксацина гидрохлорида в альгинате натрия
RU2605614C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2578403C2 (ru) Способ получения нанокапсул цитокининов
RU2580613C1 (ru) Способ получения нанокапсул антибиотиков в агар-агаре
RU2564898C1 (ru) Способ получения нанокапсул антибиотиков
RU2573979C1 (ru) Способ получения нанокапсул антибиотиков в агар-агаре
RU2561683C1 (ru) Способ получения нанокапсул цефалоспориновых антибиотиков в альгинате натрия
RU2564890C1 (ru) Способ получения нанокапсул антибиотиков в конжаковой камеди
RU2640490C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура в геллановой камеди
RU2634256C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2599885C2 (ru) Способ получения нанокапсул умифеновира (арбидола) в каррагинане
RU2555782C1 (ru) Способ получения нанокапсул сульфата глюкозамина в конжаковой камеди в гексане
RU2595825C1 (ru) Способ получения нанокапсул иодида калия в пектине
RU2576236C1 (ru) Способ получения нанокапсул антибиотиков в агар-агаре
RU2577689C1 (ru) Способ получения нанокапсул антибиотиков в агар-агаре

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171011