RU2688437C1 - Method for increasing permeability of pores of a carbon-graphite workpiece - Google Patents
Method for increasing permeability of pores of a carbon-graphite workpiece Download PDFInfo
- Publication number
- RU2688437C1 RU2688437C1 RU2018101532A RU2018101532A RU2688437C1 RU 2688437 C1 RU2688437 C1 RU 2688437C1 RU 2018101532 A RU2018101532 A RU 2018101532A RU 2018101532 A RU2018101532 A RU 2018101532A RU 2688437 C1 RU2688437 C1 RU 2688437C1
- Authority
- RU
- Russia
- Prior art keywords
- impregnation
- copper
- melt
- carbon
- alloy
- Prior art date
Links
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 31
- 239000010439 graphite Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000011148 porous material Substances 0.000 title description 13
- 230000035699 permeability Effects 0.000 title description 4
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 42
- 239000000956 alloy Substances 0.000 claims abstract description 42
- 238000005470 impregnation Methods 0.000 claims abstract description 36
- 239000011159 matrix material Substances 0.000 claims abstract description 34
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 30
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000002131 composite material Substances 0.000 claims abstract description 19
- 229910052802 copper Inorganic materials 0.000 claims abstract description 19
- 239000010949 copper Substances 0.000 claims abstract description 19
- 239000011248 coating agent Substances 0.000 claims abstract description 16
- 238000000576 coating method Methods 0.000 claims abstract description 16
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 15
- 238000009849 vacuum degassing Methods 0.000 claims abstract description 9
- 238000007872 degassing Methods 0.000 claims abstract description 5
- 239000000155 melt Substances 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 238000007654 immersion Methods 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RIRXDDRGHVUXNJ-UHFFFAOYSA-N [Cu].[P] Chemical compound [Cu].[P] RIRXDDRGHVUXNJ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F3/26—Impregnating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1146—After-treatment maintaining the porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L5/00—Current collectors for power supply lines of electrically-propelled vehicles
- B60L5/18—Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
- B60L5/20—Details of contact bow
- B60L5/205—Details of contact bow with carbon contact members
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
Изобретение относится к области металлургии, а именно к созданию композиционных материалов пропиткой пористого каркаса, имеющих высокую электропроводность, антифрикционные свойства, стойкость в агрессивных средах.The invention relates to the field of metallurgy, in particular to the creation of composite materials by impregnation of a porous frame, having a high electrical conductivity, antifriction properties, resistance in aggressive environments.
Известен способ получения композиционного материала пропиткой с одновременным химическим воздействием. Заготовку устанавливают на специальной графитовой платформе, прогревают над поверхностью расплава кремния или сплавом на основе кремния и меди, имеющим температуру 1700-1800°С, затем постепенно, со скоростью не более 10 см/мин опускают заготовку в ванну с расплавом. Тем самым осуществляя пропитку однонаправленным потоком расплава, распространяющимся фронтом по всему сечению заготовки (патент РФ №2276631 МПК С04В 35/52, опубл. 02.08.2004).A method of obtaining a composite material by impregnation with simultaneous chemical exposure. The workpiece is installed on a special graphite platform, heated over the surface of the silicon melt or an alloy based on silicon and copper, having a temperature of 1700-1800 ° C, then gradually, with a speed of not more than 10 cm / min, lower the workpiece into the bath with the melt. Thus, carrying out the impregnation of the unidirectional flow of the melt, spreading the front over the entire cross section of the workpiece (RF patent №2276631 IPC SW 35/52, publ. 02.08.2004).
Недостатком данного способа является отсутствие в процессе пропитки стадии вакуумирования как сплава, так и заготовки, вследствие чего различные загрязнения в порах углеграфитовой заготовки препятствуют их заполнению матричным сплавом, а так же отсутствие вакуумирования негативно сказывается на расплаве матричного сплава который окисляется взаимодействуя с воздухом, снижая качество композиционного материала.The disadvantage of this method is the absence in the impregnation process of the stage of evacuation of both the alloy and the billet, as a result of which various impurities in the pores of the carbon-graphite billet prevent them from being filled with the matrix alloy, and the absence of vacuuming adversely affects the melt of the matrix alloy, which oxidizes while interacting with air, reducing the quality composite material.
Известен способ получения композиционного материала пропиткой пористой заготовки металлом, при котором армирующий пористый каркас предварительно нагревают, затем заливают его матричным сплавом, проводят вакуумную дегазацию и пропитывают под воздействии избыточного давления 15±3 МПа на заготовку за счет термического расширения расплава в замкнутом объеме емкости при нагреве (патент РФ №1759932, МПК С22С 1/09, B22F 3/26, опубл. 07.09.92).A method of obtaining a composite material by impregnation of a porous billet with metal, in which the reinforcing porous frame is preheated, then it is poured with a matrix alloy, vacuum degassing is carried out and impregnated under the effect of overpressure 15 ± 3 MPa on the workpiece due to thermal expansion of the melt in a closed volume of the vessel during heating (RF patent №1759932,
Недостатком этого способа при его использовании для получения КМ пропиткой является ограничение номенклатуры металлов для использования их в качестве матричного сплава, только свинец или его сплавы.The disadvantage of this method when it is used to obtain KM impregnation is to limit the range of metals for use as a matrix alloy, only lead or its alloys.
Наиболее близким является способ изготовления композиционных материалов, включающий погружение пористой заготовки в расплав матричного сплава алюминия, находящегося в камере для пропитки, вакуумную дегазацию в расплаве, нагрев на 100°С выше температуры ликвидус сплава алюминия одновременно с расплавом свинца, находящимся в камере для создания давления, и воздействие избыточным давлением на заготовку за счет термического расширения расплава в замкнутом объеме емкости для пропитки (патент РФ №2539528, МПК B22F 3/26, С22С 1/04, опубл. 20.01.2015).The closest is a method of manufacturing composite materials, including immersion of a porous billet in a molten matrix aluminum alloy in the impregnation chamber, vacuum degassing in the melt, heating 100 ° C above the liquidus temperature of the aluminum alloy simultaneously with the lead melt , and the effect of excessive pressure on the workpiece due to thermal expansion of the melt in a closed volume of the tank for impregnation (RF patent №2539528,
Недостатком этого способа является большие потери затраты времени на нагрев оснастки и ее охлаждения для проведения дегазации камеры для пропитки.The disadvantage of this method is the large loss of time spent on heating the equipment and its cooling to conduct the degassing of the impregnation chamber.
Задача - разработка способа максимального заполнения пор в углеграфитовой заготовке при пропитке ее матричным сплавом.The task is to develop a method for maximally filling pores in a carbon-graphite billet when it is impregnated with a matrix alloy.
Техническим результатом изобретения является повышение качества композиционных материалов (КМ).The technical result of the invention is to improve the quality of composite materials (KM).
Технический результат достигается в способе повышения проницаемости пор углеграфитовой заготовки, включающем вакуумную дегазацию пористой заготовки, ее пропитку в камере пропитки расплавом матричного сплава под воздействием избыточного давления за счет термического расширения расплава свинца в камере давления при нагреве на 100°С выше температуры ликвидус матричного сплава одновременно с расплавом свинца, при этом в качестве матричного сплава используют медно-фосфористый сплав, дегазацию проводят до погружения пористой заготовки в расплав матричного сплава, а перед пропиткой пористую заготовку покрывают двухслойным гальваническим покрытием, состоящим из внутреннего медного и наружного никелевого слояThe technical result is achieved in the method of increasing the permeability of the pores of a carbon-graphite billet, including vacuum degassing a porous billet, impregnating it in an impregnation chamber with molten matrix alloy under the influence of overpressure due to thermal expansion of lead melt in the pressure chamber when heated to 100 ° C above the liquidus temperature of the matrix alloy simultaneously with molten lead, while a copper-phosphorous alloy is used as the matrix alloy, degassing is carried out before the porous billet is immersed in Melt of matrix alloy, and before impregnation, the porous billet is coated with a two-layer electroplated coating consisting of an internal copper and outer nickel layer
Сущность изобретения заключается в разделении технологии на более простые этапы: разделение операций вакуумной дегазации углеграфитовой заготовки и пропитки, нанесение перед пропиткой на заготовку двухслойного гальванического покрытия, состоящего из внутреннего медного и наружного никелевого слоя, что способствует лучшему смачиванию углеграфитового каркаса, увеличивает проницаемость его пор и, соответственно, повышает качество композиционных материалов (КМ), а также позволяет повысить производительность процесса (за счет сокращения времени на получение КМ).The invention consists in dividing the technology into simpler steps: separation of the operations of vacuum degassing of a carbon-graphite blank and impregnation, drawing before impregnation on the blank of a two-layer electroplating coating consisting of an internal copper and outer nickel layer, which contributes to a better wetting of the carbon-graphitic framework, increases the permeability of its pores and , accordingly, improves the quality of composite materials (KM), and also improves the productivity of the process (due to reduced time to get a CM).
Перед нанесением гальваническим способом слоя меди проводится вакуумная дегазация углеграфитового каркаса в медном электролите, вследствие чего происходит частичное заполнение пор медным электролитом, после чего на углеграфитовый каркас наносят гальваническим способом медный слой, который образуется и в порах заполненных медным электролитом, затем, гальванически наносится никелевое покрытие, а после - внешнее никелевое покрытие, что позволяет получить легирующие действие нанесенных особо чистых металлов на межфазной границе углеграфитовый каркас/пропитывающий сплав. Это позволяет снизить величину краевого угла смачивания и поверхностного натяжения.Before electroplating a copper layer, vacuum degassing of the carbon-graphite carcass is carried out in the copper electrolyte, as a result of which the pores are partially filled with copper electrolyte, after which the nickel coating is electroplated onto the carbon-graphite carcass, which is formed in the pores filled with copper electrolyte, then the nickel coating is electroplated , and after - an external nickel coating, which allows to obtain the alloying effect of the deposited highly pure metals at the coal interface afitovy frame / infiltrant alloy. This allows you to reduce the magnitude of the wetting angle and surface tension.
Погружение пористой заготовки с нанесенным на нее гальваническим покрытием в расплав матричного медно-фосфористого сплава, находящегося в камере для пропитки ведет к лучшей заполняемости пор матричным сплавом.Immersion of a porous preform with an electroplated coating on it into the melt of a matrix copper-phosphorous alloy in the impregnation chamber leads to a better filling of the pores with a matrix alloy.
Пластиковые емкости для нанесения гальванических покрытий наполняют:Plastic tanks for electroplating fill:
- для нанесения медного покрытия - сернокислым электролитом меднения состоящим из медного купороса, дистиллированной воды, серной кислоты;- for the application of copper coating - copper plating with copper sulfate electrolyte consisting of copper sulfate, distilled water, sulfuric acid;
- для нанесения никелевого покрытия - сульфатным электролитом никелирования, состоящим из сульфата никеля, сульфата натрия, сульфата магния, сухой борной кислоты, дистиллированной воды;- for the application of nickel coating - by sulphate electrolyte of nickel plating consisting of nickel sulphate, sodium sulphate, magnesium sulphate, dry boric acid, distilled water;
После нанесения гальванических покрытий углеграфитовый каркас помещается в устройство для пропитки.After electroplating, the carbon-graphite frame is placed in the impregnator.
При этом верхняя камера для пропитки устройства снабжена разделительной мембраной, на которую устанавливается углеграфитовый каркас с нанесенным на него двухслойным гальваническим покрытием, состоящим из внутреннего медного и внешнего никелевого слоев. После установки углеграфитового каркаса (заготовки) камера для пропитки заполняется медно-фосфористым сплавом. Нижняя камера для создания давления предварительно заполнена расплавом свинца и позволяет осуществлять пропитку пористой заготовки при нагреве, под действием избыточного давления медно-фосфористого матричного сплава и получаемого за счет дополнительного термического расширения свинца, через металлическую мембрану при увеличении объема свинца в замкнутом объеме устройства для пропитки.At the same time, the upper chamber for impregnation of the device is equipped with a separating membrane on which a carbon-graphite frame is installed with a double-layer electroplated coating on it consisting of an internal copper and an external nickel layer. After installing the carbon-graphite frame (blank), the impregnation chamber is filled with a copper-phosphorous alloy. The lower pressure chamber is pre-filled with lead melt and allows the porous preform to be impregnated during heating, under the influence of an overpressure of a copper-phosphorous matrix alloy and obtained through additional thermal expansion of lead through a metal membrane with an increase in lead impregnation volume.
Определение температуры ликвидус с перегревом в 100°С позволяет учесть величину нагрева, обеспечивает создание требуемого давления пропитки, что позволяет получить КМ высокого качества с высокой степенью заполнения объема открытых пор пористой заготовки медно-фосфористым матричным сплавом меди.Determining the liquidus temperature with overheating at 100 ° C allows to take into account the amount of heating, provides the required impregnation pressure, which allows to obtain high quality CM with a high degree of filling the open pore volume of the porous billet with copper-phosphorous matrix copper alloy.
Использование в качестве матричного расплава - медно-фосфористого сплава, а в качестве пористого тела углеграфитовой заготовки позволяет получать композиционные материалы, широко применяемые в машиностроении для изготовления токосъемников, вставок пантографов, электрических щеток, уплотнителей, вкладышей подшипников скольжения.The use of a copper-phosphorous alloy as a matrix melt, and a carbon-graphite billet as a porous body makes it possible to obtain composite materials widely used in mechanical engineering for the manufacture of current collectors, pantograph inserts, electric brushes, compactors, and sliding bearings.
На фиг. 1 показана гальваническая камера, на фиг. 2 показано устройство для пропитки углеграфитовой заготовки.FIG. 1 shows a galvanic chamber; FIG. 2 shows a device for impregnating a carbon-graphite blank.
Гальваническая камера состоит из пластиковой емкости 1 с электролитом 2 и анодами 3, купола 4, герметично закрывающего емкость 1. В емкости 1 помещена углеграфитовая заготовка 5. В куполе 4 выполнено отверстие 6, которое соединено с вакуумным насосом.The galvanic chamber consists of a
Устройство для пропитки углеграфитовой заготовки 5 состоит из двух камер: камеры для пропитки 7 и камеры для создания давления 8. Между камерами 7 и 8 установлена металлическая мембрана 9. В верхней камере для пропитки 7 размещена углеграфитовая заготовка 5 с нанесенным гальваническим покрытием 10. Камера для пропитки 7 заполнена расплавом медно-фосфористого матричного сплава 11. Нижняя камера для создания давления 8 заполнена расплавом свинца 12. Устройство для пропитки герметично закрывается крышкой 13 с пробкой 14.A device for impregnating a carbon-
ПримерExample
По предложенному способу был получен КМ углеграфит - медно-фосфористый сплав с использованием углеграфита марки АГ-1500 имеющего открытую пористость 15%. Образец углеграфита был выполнен в виде куба со стороной 30 мм. Таким образом, объем углеграфитового каркаса составлял 900 мм3, объем пор в каркасе составлял 135 мм3. В качестве медно-фосфористого сплава использовался матричный сплав на основе меди согласно патента на изобретение RU 2430983 (МПК С22С 9/00, С22С 1/04, опубл. 10.10.2011).According to the proposed method, KM carbon-graphite was obtained - a copper-phosphorous alloy using an AG-1500 carbon graphite having an open porosity of 15%. The carbon graph sample was made in the form of a cube with a side of 30 mm. Thus, the volume of the carbon frame was 900 mm 3 , the pore volume in the frame was 135 mm 3 . As the copper-phosphorous alloy, a matrix alloy based on copper was used in accordance with the patent for invention RU 2430983 (
При осуществлении способа углеграфитовую заготовку 5 закрепленную медной проволокой погружают в емкость 1 наполненную медным электролитом 2, состоящим из 200 г/л сернокислой меди, 70 г/л серной кислоты и 10-15 мл спирта, температура электролита 20-25°С. Затем емкость 1 накрывают герметичным куполом 4, после чего через отверстие 6 в куполе проводят вакуумную дегазацию в течение 5-7 минут. Далее в емкость 1 погружают два медных анода 3 соединенных между собой медной проволокой, после чего аноды 3 и углеграфитовая заготовка 5 подключаются к источнику постоянного тока, положительный заряд к анодам, а отрицательный к углеграфитовой заготовке 5, сила тока устанавливается 1,5 А с выдержкой в 40-60 мин. После нанесения на углеграфитовый каркас медного покрытия, наносится слой никеля. Для этого используется емкость, аналогичная емкости 1, наполненная никелевым электролитом 2, состоящим из 140 г/л сульфата никеля, 50 г/л сульфата натрия, 30 г/л сульфата магния, 20 г/л сухой борной кислоты, и установленными в ней анодами 3 выполненных из никеля соединенными между собой медной проволокой. Затем сила тока устанавливается на 2 А с выдержкой 60 минут. Подключение к источнику постоянного тока аналогично ванне меднения. Процесс дегазации повторно не проводится.In the process of implementation, a carbon-
Далее углеграфитовая заготовка 5 с нанесенным двухслойным гальваническим покрытием 10, состоящим из внутреннего медного и наружного никелевого слоев, промывают в воде, сушат и помещают в емкость для пропитки матричным сплавом меди.Next, the carbon-
При осуществлении способа устройство для пропитки углеграфитовой заготовки 5, выполненное из двух камер 7 и 8 нагревают до температуры 400°С и заполняют камеру 8 расплавом свинца 12. Устанавливают металлическую мембрану 9 между камер и скручивают их так, чтобы мембрана 9 герметизировала соединение. Затем, в камере 7 размещают углеграфитовую заготовку 5 с нанесенным гальваническим покрытием 10, закрывают камеру 7 крышкой 13. В камеру 7 заливают расплав медно-фосфористого матричного сплава 11, полностью покрывая им пористую заготовку 5, затем крышку 13 притирают пробкой 14, предварительно нагретой до 900°С и шплинтуют ее.In the process, a device for impregnating a carbon-
После этого устройство для пропитки углеграфитовой заготовки 5 нагревают на 100°С выше температуры ликвидус расплава медно-фосфористого матричного сплава с изотермической выдержкой 20 мин при достижении указанной температуры и расчетного давления. За счет разницы коэффициентов термического расширения емкости и расплава медно-фосфористого матричного сплава 11, а также за счет разницы, коэффициентов термического расширения расплава свинца 12 внутри камеры 8 и расплава медно-фосфористого матричного сплава 11, при котором увеличивается объем камеры 7, создается оптимальное давление пропитки.After that, the device for impregnating the carbon-
Пропитка производилась при давлении 3-5 МПа, что обеспечивалось температурой нагрева емкости для пропитки, равной 950-980°С.Impregnation was carried out at a pressure of 3-5 MPa, which was ensured by the heating temperature of the impregnation tank equal to 950-980 ° C.
По окончании пропитки, удаляют пробку 14, сливают третью часть расплава медно-фосфористого матричного сплава 11, отворачивают крышку 13, извлекают полученный КМ и производят его охлаждение с кристаллизацией расплава медно-фосфористого матричного сплава 11 в порах.At the end of the impregnation, remove the
Полученный КМ испытывался на прочность при сжатии, степень заполнения открытых пор (плотность пропитки) оценивалась по удельному весу КМ до и после пропитки, структура КМ оценивалась по результатам металлографических исследований.The resulting CM was tested for compressive strength, the degree of filling of open pores (density of impregnation) was evaluated by the specific gravity of CM, before and after impregnation, the structure of CM was evaluated by the results of metallographic studies.
Результаты испытаний приведены в таблице.The test results are shown in the table.
Таким образом, способ повышения проницаемости пор углеграфитовой заготовки, включающий вакуумную дегазацию пористой заготовки до ее погружения в расплав матричного сплава, перед пропиткой пористую заготовку покрывают двухслойным гальваническим покрытием, состоящим из внутреннего медного и наружного никелевого слоев, и пропитку в камере пропитки расплавом медно-фосфористого матричного сплава под воздействием избыточного давления за счет термического расширения расплава свинца в камере давления при нагреве на 100°С выше температуры ликвидус матричного сплава одновременно с расплавом свинца, обеспечивает повышение качества композиционных материалов (КМ).Thus, a method for increasing the pore permeability of a carbon-graphite billet, including vacuum degassing a porous billet prior to its immersion in the matrix alloy melt, before impregnation, the porous billet is coated with a two-layer electroplated coating consisting of internal copper and outer nickel layers, and the copper-phosphorus impregnated with the melt impregnated with the melt matrix alloy under the influence of excess pressure due to thermal expansion of lead melt in the pressure chamber when heated to 100 ° C above the temperature ikvidus matrix alloy melt simultaneously with the lead, enhances the quality of composite materials (CM).
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018101532A RU2688437C1 (en) | 2018-01-16 | 2018-01-16 | Method for increasing permeability of pores of a carbon-graphite workpiece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018101532A RU2688437C1 (en) | 2018-01-16 | 2018-01-16 | Method for increasing permeability of pores of a carbon-graphite workpiece |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2688437C1 true RU2688437C1 (en) | 2019-05-21 |
Family
ID=66636832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018101532A RU2688437C1 (en) | 2018-01-16 | 2018-01-16 | Method for increasing permeability of pores of a carbon-graphite workpiece |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2688437C1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2725524C1 (en) * | 2019-12-28 | 2020-07-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Method of producing carbon-graphite composite material |
RU2749980C1 (en) * | 2020-12-22 | 2021-06-21 | Федеральное государственное бюджетное образовательное учреж-дение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Method for producing carbon-graphite composite material |
RU2750066C1 (en) * | 2020-12-22 | 2021-06-21 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Method for producing carbon-graphite composite material |
RU2750074C1 (en) * | 2020-12-21 | 2021-06-21 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Method for producing carbon-graphite composite material |
RU2750168C1 (en) * | 2020-12-22 | 2021-06-22 | Федеральное государственное бюджетное образовательное учреж-дение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Method for producing carbon-graphite composite material |
RU2753633C1 (en) * | 2020-12-22 | 2021-08-18 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Method for producing carbon-graphite composite material |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1759932A1 (en) * | 1990-01-19 | 1992-09-07 | Волгоградский Политехнический Институт | Method of producing composite materials |
SU1831413A3 (en) * | 1989-07-18 | 1993-07-30 | Lanxide Technology Co Ltd | Method of getting compound material with metallic matrix |
RU2124418C1 (en) * | 1996-07-08 | 1999-01-10 | Товарищество с ограниченной ответственностью МИФИ - АМЕТО | Method of producing composite materials |
US6699410B2 (en) * | 1998-12-09 | 2004-03-02 | Hoffman & Co Elektrokohle Aktiengesellschaft | Method of impregnating porous workpieces |
RU2276631C2 (en) * | 2004-08-02 | 2006-05-20 | Открытое Акционерное Общество "Челябинский Электродный завод" | Carbon carbide-silicon composition material producing method |
RU2539528C1 (en) * | 2013-07-04 | 2015-01-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) | Composite materials manufacturing method |
RU2571295C1 (en) * | 2014-05-19 | 2015-12-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) | Production of composite materials |
-
2018
- 2018-01-16 RU RU2018101532A patent/RU2688437C1/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1831413A3 (en) * | 1989-07-18 | 1993-07-30 | Lanxide Technology Co Ltd | Method of getting compound material with metallic matrix |
SU1759932A1 (en) * | 1990-01-19 | 1992-09-07 | Волгоградский Политехнический Институт | Method of producing composite materials |
RU2124418C1 (en) * | 1996-07-08 | 1999-01-10 | Товарищество с ограниченной ответственностью МИФИ - АМЕТО | Method of producing composite materials |
US6699410B2 (en) * | 1998-12-09 | 2004-03-02 | Hoffman & Co Elektrokohle Aktiengesellschaft | Method of impregnating porous workpieces |
RU2276631C2 (en) * | 2004-08-02 | 2006-05-20 | Открытое Акционерное Общество "Челябинский Электродный завод" | Carbon carbide-silicon composition material producing method |
RU2539528C1 (en) * | 2013-07-04 | 2015-01-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) | Composite materials manufacturing method |
RU2571295C1 (en) * | 2014-05-19 | 2015-12-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) | Production of composite materials |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2725524C1 (en) * | 2019-12-28 | 2020-07-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Method of producing carbon-graphite composite material |
RU2750074C1 (en) * | 2020-12-21 | 2021-06-21 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Method for producing carbon-graphite composite material |
RU2749980C1 (en) * | 2020-12-22 | 2021-06-21 | Федеральное государственное бюджетное образовательное учреж-дение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Method for producing carbon-graphite composite material |
RU2750066C1 (en) * | 2020-12-22 | 2021-06-21 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Method for producing carbon-graphite composite material |
RU2750168C1 (en) * | 2020-12-22 | 2021-06-22 | Федеральное государственное бюджетное образовательное учреж-дение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Method for producing carbon-graphite composite material |
RU2753633C1 (en) * | 2020-12-22 | 2021-08-18 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Method for producing carbon-graphite composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2688538C1 (en) | Method for increasing permeability of pores of a carbon-graphite workpiece | |
RU2688437C1 (en) | Method for increasing permeability of pores of a carbon-graphite workpiece | |
RU2688529C1 (en) | Method for increasing permeability of pores of graphite workpiece | |
RU2688772C1 (en) | Method for increasing permeability of pores of a graphite workpiece | |
RU2688560C1 (en) | Method for increasing permeability of pores of a graphite workpiece | |
RU2688471C1 (en) | Method for increasing permeability of pores of graphite workpiece | |
RU2688555C1 (en) | Method for increasing permeability of pores of a graphite workpiece | |
RU2688779C1 (en) | Method for increasing permeability of pores of a carbon-graphite workpiece | |
RU2688781C1 (en) | Method for increasing permeability of pores of a carbon-graphite workpiece | |
RU2688775C1 (en) | Method for increasing permeability of pores of a carbon-graphite workpiece | |
RU2688782C1 (en) | Method for increasing permeability of pores of a carbon-graphite workpiece | |
RU2688535C1 (en) | Method for increasing permeability of pores of a carbon-graphite workpiece | |
RU2688368C1 (en) | Method for increasing permeability of pores of a carbon-graphite workpiece | |
RU2688557C1 (en) | Method for increasing permeability of pores of graphite workpiece | |
RU2688531C1 (en) | Method for increasing permeability of pores of a carbon-graphite workpiece | |
RU2725524C1 (en) | Method of producing carbon-graphite composite material | |
RU2688780C1 (en) | Method for increasing permeability of pores of a carbon-graphite workpiece | |
RU2688778C1 (en) | Method for increasing permeability of pores of graphite workpiece | |
RU2688474C1 (en) | Method for increasing permeability of pores of graphite workpiece | |
RU2688476C1 (en) | Method for increasing permeability of pores of graphite workpiece | |
RU2688484C1 (en) | Method for increasing permeability of pores of graphite workpiece | |
RU2688543C1 (en) | Method for increasing permeability of pores of a carbon-graphite workpiece | |
RU2688774C1 (en) | Method for increasing permeability of pores of graphite workpiece | |
RU2688776C1 (en) | Method for increasing permeability of pores of graphite workpiece | |
RU2688522C1 (en) | Method for increasing permeability of pores of a carbon-graphite workpiece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200117 |