[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2537002C1 - Способ получения триблоксополимеров метакриловых мономеров - Google Patents

Способ получения триблоксополимеров метакриловых мономеров Download PDF

Info

Publication number
RU2537002C1
RU2537002C1 RU2013158261/04A RU2013158261A RU2537002C1 RU 2537002 C1 RU2537002 C1 RU 2537002C1 RU 2013158261/04 A RU2013158261/04 A RU 2013158261/04A RU 2013158261 A RU2013158261 A RU 2013158261A RU 2537002 C1 RU2537002 C1 RU 2537002C1
Authority
RU
Russia
Prior art keywords
catalyst
activator
initiator
monomers
carried out
Prior art date
Application number
RU2013158261/04A
Other languages
English (en)
Inventor
Иван Дмитриевич Гришин
Елена Сергеевна Тюрмина
Дмитрий Федорович Гришин
Original Assignee
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Нижегородский Государственный Университет Им. Н.И. Лобачевского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Нижегородский Государственный Университет Им. Н.И. Лобачевского" filed Critical Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Нижегородский Государственный Университет Им. Н.И. Лобачевского"
Priority to RU2013158261/04A priority Critical patent/RU2537002C1/ru
Application granted granted Critical
Publication of RU2537002C1 publication Critical patent/RU2537002C1/ru

Links

Images

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Настоящее изобретение относится к способу получения триблок-сополимера метакриловых мономеров. Способ включает последовательную радикальную полимеризацию трех мономеров в присутствии катализатора, в качестве которого используют комплексное соединение рутения с карборановым фрагментом, инициатора, в качестве которого используют четыреххлористый углерод, и активатора. В качестве мономеров используют метилметакрилат, изоборнилметакрилат и трет.-бутилметакрилат. В качестве активатора используют изопропиламин, а в качестве катализатора используют 3,3-{[1′,1′-дифенил-6′-фенил-6′-(6′,8-µ-(о-фенилен))]-1′,6′-дифосфагексан}-3-хлор-клозо-3,1,2-дикарболлилрутений. Техническим результатом является получение сополимеров требуемого состава с низкой полидисперсностью при использовании более низких концентраций катализатора. 1 з.п. ф-лы, 3 пр., 1 ил.

Description

Настоящее изобретение относится к способам получения органических высокомолекулярных соединений, а именно к получению триблок-сополимеров метакриловых мономеров методами «живой» (контролируемой) радикальной полимеризации, которое может найти применение в микролитографии для получения основы фоторезистивных композиций печатных плат, дифракционных решеток.
Полимеризация в режиме «живых» цепей представляет собой эффективный способ получения полимеров с четко заданной внутримолекулярной структурой и определенными значениями молекулярных масс. Главным ее преимуществом по сравнению с обычной радикальной полимеризацией является возможность получения узкодисперсных гомо- и сополимеров, а также привитых и блок-сополимеров.
Одним из наиболее эффективных способов осуществления «живой» радикальной полимеризации является осуществление процесса по механизму полимеризации с переносом атома с использованием в качестве катализаторов соединений переходных металлов [Macromolecules, v.28, p.1721 (1995); J. Am. Chem. Soc, v.117, p.5614 (1995)].
Известны акриловые триблок-сополимеры (US 5264527 A, C08F 4/00, C08F 293/00, C08F 297/00, C08F 122/40, C08F 122/00, C08F 297/08, C08F 4/48, опубл. 23.11.1993 г.) и ABC полимеры триблокметалакрилата (US 5219945 A, C08F 297/02, C08F 293/00, C08F 297/00, C08L 53/00, опубл. 15.06.1993 г.), их получение методом живой ионной полимеризации для производства эластомерных изделий. Достоинством данного метода является получение узкодисперсных сополимеров. Основным недостатком является то, что за основу взят метод живой анионной полимеризации, характеризующийся сложностью осуществления, необходимостью тщательной дегазации и осушки исходных веществ от следов влаги.
Наиболее близким по технической сущности и получаемому результату к заявляемому изобретению является способ получения полиметилметакрилата, защищенный патентом на изобретение RU 2348655 C1, C08F 20/18, C08F 4/00, опубл. 10.03.2009 г., принятый за ближайший аналог (прототип).
Способ по прототипу осуществляют путем «живой» радикальной полимеризации в присутствии комплексных соединений рутения с карборановыми лигандами в качестве катализатора, четыреххлористого углерода в качестве инициатора и трет.-бутиламина в качестве активатора. Полимеризацию метилметакрилата проводят в массе мономера при 80°C при мольном соотношении компонентов катализатор : инициатор : амин : ММА, равном 1:2:4:600. Данный способ обеспечивает эффективное получение гомополимера. Конверсия мономера превышает 80% за 2-3 часа.
Недостатками известного способа является высокая концентрация используемого катализатора, обуславливающая высокую себестоимость конечного продукта и вызывающая необходимость последующей очистки полимера, а также применимость указанного способа лишь для получения гомополимеров.
Задачей изобретения является создание нового способа получения триблок-сополимеров метакриловых мономеров методом контролируемой радикальной полимеризации.
Технический результат от использования предлагаемого изобретения заключается в снижении концентрации катализатора, а также оптимизации процесса получения узкодисперсных высокомолекулярных соединений на основе блок-сополимеров.
Поставленная задача достигается тем, что в способе получения триблок-сополимера метакриловых мономеров, включающем последовательную радикальную полимеризацию трех мономеров в присутствии катализатора, в качестве которого используют комплексное соединение рутения с карборановым фрагментом, инициатора, в качестве которого используют четыреххлористый углерод, и активатора, в качестве мономеров используют метилметакрилат, изоборнилметакрилат и трет.-бутилметакрилат, в качестве активатора используют изопропиламин, а в качестве катализатора используют 3,3-{[1′,1′-дифенил-6′-фенил-6′-(6′,8-µ-(о-фенилен))]-1′,6′-дифосфагексан}-3-хлор-клозо-3,1,2-дикарболлилрутений; процесс проводят при 80°C, а катализатор, инициатор, активатор и мономер берут в мольном соотношении 1:(10÷50):(2÷4):(1000÷10000).
В соответствии с предлагаемым изобретением синтез триблок-сополимеров проводят в три стадии следующим образом.
На первой стадии получают макроинициатор на основе полиметилметакрилата. Для этого приготавливают композицию из четыреххлористого углерода, изопропиламина, метилметакрилата и рутениевого катализатора, смешивая компоненты в определенной пропорции. Полученную смесь тщательно перемешивают, дегазируют и помещают в термостат, нагретый до 80°C. Полимеризацию проводят в течение 2-8 часов, что позволяет обеспечить продукт с конверсией, равной 30-80% в зависимости от соотношения между компонентами системы и времени проведения процесса. Полученный полимер очищают путем переосаждения и высушивания при пониженном давлении (в вакууме).
На второй стадии проводят синтез блок-сополимера на основе полученного макроинициатора и изоборнилметакрилата. Для этого в реакционный сосуд помещают навеску катализатора, синтезированного на первой стадии макроинициатора, и заливают заранее приготовленным раствором амина в изоборнилметакрилате. Полученную смесь перемешивают, дегазируют и проводят полимеризацию и выделение блок-сополимера по методике, аналогичной синтезу макроинициатора.
На третьей стадии проводят синтез триблок-сополимера. В реакционный сосуд помещают полученный на второй стадии блок-сополимер, катализатор и заливают приготовленный раствор амина в трет.-бутилметакрилате. После этого проводят полимеризацию и выделение полимера.
Наиболее оптимальным соотношением между изопропиламином и рутениевым катализатором является (2÷4):1. Дальнейшее увеличение концентрации амина не приводит к улучшению молекулярно-массовых характеристик или увеличению скорости процесса. При мольном соотношении [амин] : [катализатор] меньшим чем 2:1 полимеризация метилметакрилата протекает с меньшей скоростью.
При осуществлении синтеза блок-сополимеров в соответствии с предлагаемым изобретением мольное соотношение между рутениевым катализатором, макроинициатором, амином и прививаемым мономером составляет 1:(10÷50):(2÷4):(1000÷6000). Указанное соотношение позволяет получить узкодисперсные блок-сополимеры с требуемыми значениями длин блоков.
Использование карборановых комплексов рутения совместно с изопропиламином обеспечивает эффективное получение триблок-сополимеров. Положительный эффект достигается за счет взаимодействия амина и рутенакарборана в реакционной системе, приводящего к образованию соединения рутения, катализирующего процесс полимеризации. При реализации предлагаемого изобретения имеет место снижение концентрации используемого катализатора по сравнению с прототипом в 10 раз. Так, применение предложенного рутенакарборанового катализатора позволяет проводить процесс при соотношении между катализатором и мономером, равном 1:(1000÷10000), что позволяет снизить затраты на катализатор и последующую очистку готового продукта.
Триблок-сополимеры, полученные в соответствии с настоящим изобретением, имеют среднечисловую молекулярную массу от 40000 до 120000 и значение коэффициента полидисперсности в интервале 1,4-1,7. Блочное строение сополимеров обуславливает более высокую разрешающую способность фоторезистивных композиций по сравнению с композициями на основе статистических сополимеров, применяющихся в настоящее время.
Ниже приведены примеры конкретного осуществления предполагаемого изобретения:
Пример 1
1. Готовят раствор изопропиламина в метилметакрилате с концентрацией 0,04 мол %. К 9,22 мг (1,3×10-5 моль) соединения 1 прибавляют 3,325 мл 0,1 М раствора четыреххлористого углерода в толуоле и 14 мл раствора изопропиламина в метилметакрилате при комнатной температуре. Мольное соотношение между катализатором, инициатором, активатором и мономером в полученной смеси составляет 1:25:4:10000. Подготовленную таким образом смесь дегазируют. Полимеризацию проводят без доступа воздуха, в герметично закрытом сосуде при остаточном давлении (2-5)×10-2 мм рт. столба. Температура реакции составляет 80°C, время - 5 ч. По окончании реакции реакционную смесь растворяют в 5 мл хлористого метилена и высаживают в 100 мл перемешиваемого гексана. Полученный осадок полимера отделяют фильтрацией и высушивают в вакууме, получая полиметилметакрилат с выходом 37%. По данным анализа, проведенного методом гель-проникающей хроматографии, полимер характеризуется Mn=19800, PDI=1,45.
2. В реакционный сосуд помещают 1 мг (1,44×10-6 моль) соединения 1 и 113,5 мг (1,43×10-4 ммоль) синтезированного полиметилметакрилатного инициатора. Готовят раствор изопропиламина в изоборнилметакрилате с концентрацией 0,03 мол %. Приготовленный раствор амина в мономере заливают в реакционный сосуд и перемешивают до полного растворения макроинициатора. Мольное соотношение между катализатором, макроинициатором, активатором и мономером в полученной смеси составляет 1:40:4:1250. Подготовленную таким образом смесь дегазируют. Полимеризацию проводят без доступа воздуха, в герметично закрытом сосуде при остаточном давлении (2-5)×10-2 мм рт. столба. Температура реакции составляет 80°C, время - 20 мин. По окончании реакции реакционную смесь растворяют в 2 мл хлористого метилена и выливают в 50 мл перемешиваемого изопропилового спирта. Полученный осадок полимера отделяют фильтрацией и высушивают в вакууме, получая блок-сополимер с выходом 10%. По данным анализа, проведенного методом гель-проникающей хроматографии, полимер характеризуется Mn=33100, PDI=1,33.
3. В реакционный сосуд помещают 3,4 мг (4,9×10-6 моль) соединения 1 и 65,5 мг (2×10-6 моль) диблок-сополимера ПММА-б-ПИБМА, выступающего в роли макроинициатора. Готовят раствор изопропиламина в трет.-бутилметакрилате с концентрацией 0,04 мол %. Приготовленный раствор амина в мономере заливают в реакционный сосуд и перемешивают до полного растворения макроинициатора. Мольное соотношение между катализатором, макроинициатором, активатором и мономером в полученной смеси составляет 1:40:4:3150. Полимеризацию проводят без доступа воздуха, в герметично закрытом сосуде при остаточном давлении (2-5)×10-2 мм рт. столба. Температура реакции составляет 80°C, время - 5 ч. По окончании реакции реакционную смесь растворяют в 2 мл хлористого метилена и выливают в 100 мл перемешиваемую смесь изопропиламина и воды (1:4). Полученный осадок полимера отделяют фильтрацией и высушивают в вакууме, получая целевой триблок-сополимер с выходом 30,5%. По данным анализа, проведенного методом гель-проникающей хроматографии, полимер характеризуется Mn=91600, PDI=1,4.
Пример 2
Полиметилметакрилатный макроинициатор на первой стадии получают аналогично примеру 1, но на второй стадии процесс проводят в течение 40 минут, получая диблок-сополимер с выходом 15%. По данным анализа, проведенного методом гель-проникающей хроматографии, полимер характеризуется Mn=35500, PDI=1,33.
На третьем этапе время реакции составляет 2,5 часа. Получается полимер с Mn=54300, PDI=1,39.
Пример 3
Полиметилметакрилатный макроинициатор на первой стадии получают аналогично примеру 1, но на второй стадии процесс проводят в течение 50 минут, получая сополимер с выходом 17%). По данным анализа, проведенного методом гель-проникающей хроматографии, полимер характеризуется Mn=38900, PDI=1,49.
На третьем этапе время реакции составляет 6 ч. Получен триблок-сополимер с выходом 49%, значениями Mn=121700, PDI=1,67.
Как видно из приведенных примеров, применение систем на основе карборановых комплексов рутения и изопропиламина позволяет осуществлять целенаправленное получение узкодисперсных триблок-сополимеров на основе метилметакрилата, изоборнилметакрилата и трет.-бутилметакрилата. При этом удается использовать катализатор в концентрации в 10 раз меньше по сравнению с прототипом.
На фиг.1 приведена структурная формула используемого карборанового комплекса рутения (соединение 1).

Claims (2)

1. Способ получения триблоксополимера метакриловых мономеров, включающий последовательную радикальную полимеризацию трех мономеров в присутствии катализатора, в качестве которого используют комплексное соединение рутения с карборановым фрагментом, инициатора, в качестве которого используют четыреххлористый углерод, и активатора, отличающийся тем, что в качестве мономеров используют метилметакрилат, изоборнилметакрилат и трет.-бутилметакрилат, в качестве активатора используют изопропиламин, а в качестве катализатора используют 3,3-{[1′,1′-дифенил-6′-фенил-6′-(6′,8-µ-(о-фенилен))]-1′,6′-дифосфагексан}-3-хлор-клозо-3,1,2-дикарболлилрутений.
2. Способ по п.1, отличающийся тем, что процесс проводят при 80°C, а катализатор, инициатор, активатор и мономер берут в мольном соотношении 1:(10÷50):(2÷4):(1000÷10000).
RU2013158261/04A 2013-12-26 2013-12-26 Способ получения триблоксополимеров метакриловых мономеров RU2537002C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013158261/04A RU2537002C1 (ru) 2013-12-26 2013-12-26 Способ получения триблоксополимеров метакриловых мономеров

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013158261/04A RU2537002C1 (ru) 2013-12-26 2013-12-26 Способ получения триблоксополимеров метакриловых мономеров

Publications (1)

Publication Number Publication Date
RU2537002C1 true RU2537002C1 (ru) 2014-12-27

Family

ID=53287543

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013158261/04A RU2537002C1 (ru) 2013-12-26 2013-12-26 Способ получения триблоксополимеров метакриловых мономеров

Country Status (1)

Country Link
RU (1) RU2537002C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824737A (zh) * 2019-03-20 2019-05-31 上海应用技术大学 一种半夹心铱配合物及其制备和应用
CN110016061A (zh) * 2019-04-10 2019-07-16 上海应用技术大学 含碳硼烷基苯并咪唑结构的钌配合物及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219945A (en) * 1992-02-20 1993-06-15 E. I. Du Pont De Nemours And Company ABC triblock methacrylate polymers
WO2008012116A1 (de) * 2006-07-28 2008-01-31 Evonik Röhm Gmbh Verfahren zur herstellung von aba-triblockcopolymeren auf (meth)acrylatbasis
RU2348655C1 (ru) * 2007-10-23 2009-03-10 Научно-исследовательский институт химии ГОУ ВПО "Нижегородский государственный университет им. Н.И. Лобачевского" Способ получения полиметилметакрилата

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219945A (en) * 1992-02-20 1993-06-15 E. I. Du Pont De Nemours And Company ABC triblock methacrylate polymers
WO2008012116A1 (de) * 2006-07-28 2008-01-31 Evonik Röhm Gmbh Verfahren zur herstellung von aba-triblockcopolymeren auf (meth)acrylatbasis
RU2348655C1 (ru) * 2007-10-23 2009-03-10 Научно-исследовательский институт химии ГОУ ВПО "Нижегородский государственный университет им. Н.И. Лобачевского" Способ получения полиметилметакрилата

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГРИШИН И.Д. и др., Контролируемый синтез полиметилметакрилата, катализируемый 17-электронными клозо-рутенакарборанами и алифатическими аминами, Высокомолекулярные соединения, Серия Б, 2012, т. 54, N 8, с. 1304-1313. ГРИШИН И.Д. и др., Эффективные каталитические системы на основе парамагнитных клозо-рутенкарборанов для контролируемого синтеза полимеров, Известия Академии наук, Сер. хим., 2011, N 11, с. 2328-2336. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824737A (zh) * 2019-03-20 2019-05-31 上海应用技术大学 一种半夹心铱配合物及其制备和应用
CN109824737B (zh) * 2019-03-20 2021-03-05 上海应用技术大学 一种半夹心铱配合物及其制备和应用
CN110016061A (zh) * 2019-04-10 2019-07-16 上海应用技术大学 含碳硼烷基苯并咪唑结构的钌配合物及其制备方法与应用

Similar Documents

Publication Publication Date Title
JP3100354B2 (ja) (メタ)アクリル単量体及びビニル単量体を制御下でラジカル重合又は共重合する方法並びに該方法により得られる(共)重合体
JP2001500914A (ja) 擬似リビングラジカル重合のためのno化合物
JP2001316409A (ja) アルコキシアミン存在下の制御されたラジカル重合による多モードポリマー
EP0184863A2 (en) Tris(dimethylamino)sulfonium bifluoride catalysts
JPS61188404A (ja) ルイス塩基触媒による重合法
KR100520267B1 (ko) 소량의안정한자유라디칼을사용한제어된라디칼중합방법
KR101282844B1 (ko) 공액디엔계 분절 공중합체의 제조 방법
RU2537002C1 (ru) Способ получения триблоксополимеров метакриловых мономеров
Li et al. A facile one pot strategy for the synthesis of well-defined polyacrylates from acrylic acid via RAFT polymerization
RU2348655C1 (ru) Способ получения полиметилметакрилата
CN1215087C (zh) 可控/活性自由基聚合方法及聚合物、控制剂及制备方法
JP2001508090A (ja) ポリアルキル(メタ)アクリラートの製造方法
KR100481267B1 (ko) 안정한자유라디칼및자유라디칼개시제존재하의중합
Miura et al. Well-defined graft copolymers of methacrylate, acrylate, and styrene via ruthenium-catalyzed living radical polymerization
EP0215888A1 (en) Improved methacrylate polymers and compositions
Liu et al. Functional block copolymers from controlled radical and ring opening polymerization
US6258905B1 (en) Stabilized, unimolecular initiators for hydrocarbon polymerization
JPH038647B2 (ru)
Tsuruta et al. Reaction and polymerization of methyl α‐chloroacrylate with organozinc compounds
Malins et al. Utilising alternative modifications of α-olefin end groups to synthesise amphiphilic block copolymers
JP2007297526A (ja) 重合体の製造方法
JPS6357644A (ja) ジメチルシロキサン系ブロツク共重合体の製造方法
JP3377916B2 (ja) ビニルエステル系重合体及びその製造方法
Kitaura et al. Anionic polymerization of (meth) acrylates with trialkylsilyl-protected lithium N-benzylamide
EP1095073B1 (en) A polymerisation process

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201227