RU2596160C2 - Небольшая атомная электростанция на быстрых нейтронах с длительным интервалом замены топлива - Google Patents
Небольшая атомная электростанция на быстрых нейтронах с длительным интервалом замены топлива Download PDFInfo
- Publication number
- RU2596160C2 RU2596160C2 RU2012140426/07A RU2012140426A RU2596160C2 RU 2596160 C2 RU2596160 C2 RU 2596160C2 RU 2012140426/07 A RU2012140426/07 A RU 2012140426/07A RU 2012140426 A RU2012140426 A RU 2012140426A RU 2596160 C2 RU2596160 C2 RU 2596160C2
- Authority
- RU
- Russia
- Prior art keywords
- reactor
- fuel
- core
- nuclear
- wedge
- Prior art date
Links
- 239000000446 fuel Substances 0.000 claims abstract description 105
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 15
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 15
- 239000011734 sodium Substances 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 230000005855 radiation Effects 0.000 claims abstract description 8
- 238000012546 transfer Methods 0.000 claims abstract description 6
- 229910052751 metal Inorganic materials 0.000 claims abstract 3
- 239000002184 metal Substances 0.000 claims abstract 3
- 230000000712 assembly Effects 0.000 claims description 32
- 238000000429 assembly Methods 0.000 claims description 32
- 230000005611 electricity Effects 0.000 claims description 18
- 230000001681 protective effect Effects 0.000 claims description 14
- 230000009257 reactivity Effects 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 10
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052770 Uranium Inorganic materials 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 239000011195 cermet Substances 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 230000006835 compression Effects 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 230000004043 responsiveness Effects 0.000 claims 1
- 239000000919 ceramic Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 239000002826 coolant Substances 0.000 description 7
- 229910001092 metal group alloy Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000005258 radioactive decay Effects 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 239000000306 component Substances 0.000 description 4
- 238000010612 desalination reaction Methods 0.000 description 4
- 239000002915 spent fuel radioactive waste Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001093 Zr alloy Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000011824 nuclear material Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 208000019155 Radiation injury Diseases 0.000 description 1
- 229910001264 Th alloy Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910000711 U alloy Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- JFALSRSLKYAFGM-OIOBTWANSA-N uranium-235 Chemical compound [235U] JFALSRSLKYAFGM-OIOBTWANSA-N 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 238000013316 zoning Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactor types
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/30—Assemblies of a number of fuel elements in the form of a rigid unit
- G21C3/32—Bundles of parallel pin-, rod-, or tube-shaped fuel elements
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactor types
- G21C1/02—Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/20—Arrangements for introducing objects into the pressure vessel; Arrangements for handling objects within the pressure vessel; Arrangements for removing objects from the pressure vessel
- G21C19/205—Interchanging of fuel elements in the core, i.e. fuel shuffling
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C5/00—Moderator or core structure; Selection of materials for use as moderator
- G21C5/02—Details
- G21C5/06—Means for locating or supporting fuel elements
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C7/00—Control of nuclear reaction
- G21C7/06—Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
- G21C7/08—Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C9/00—Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
- G21C9/02—Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency
- G21C9/027—Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency by fast movement of a solid, e.g. pebbles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
Изобретение относится к малым атомным станциям. Система с ядерным реактором на быстрых нейтронах включает в себя реактор с бассейном реактора. Активная зона реактора находится внутри бассейна реактора. Активная зона включает в себя топливную загрузку из металлического или металлокерамического топлива, а жидкий натрий используется в качестве теплопередающей среды. Насос может обеспечивать циркуляцию жидкого натрия через теплообменник. Система может включать в себя неядерное оборудование АЭС, не соответствующее нормам радиационной безопасности. Реактор может быть модульным и может вырабатывать примерно 100 МВт электрической энергии. Технический результат - длительная кампания реактора, компактность. 3 н. и 19 з.п. ф-лы, 9 ил.
Description
Область техники, к которой относится изобретение
Настоящее изобретение относится к атомным электростанциям и, в частности, к ядерным реакторам на быстрых нейтронах с натриевым охлаждением, использующим металлическое топливо.
Уровень техники
Ожидается, что мировой спрос на электроэнергию к 2030 году увеличится в два раза, а к 2050 году - в четыре раза. Прогнозируется, что увеличение мирового спроса на электроэнергию произойдет за счет развитых стран, а также, в еще большей степени, за счет развивающихся стран. Для удовлетворения быстрорастущего спроса со стороны развивающихся стран формы снабжения атомной энергией должны быть адаптированы с учетом их конкретных потребностей.
Краткое описание чертежей
Прилагаемые чертежи, которые позволяют лучше понять изобретение и являются составной частью настоящего описания изобретения, иллюстрируют предпочтительные варианты осуществления изобретения и совместно с подробным описанием служат для объяснения принципов изобретения.
На фиг.1 показан типовой небольшой модульный реактор ("SMR") по одному из вариантов осуществления настоящего изобретения;
на фиг.2 - пример атомной электростанции, оснащенной SMR, по одному из вариантов осуществления настоящего изобретения;
на фиг.3 - типовая структура системы снабжения атомной энергией по одному из вариантов осуществления настоящего изобретения;
на фиг.4 - типовая структура кластера по перегрузке топлива и радиального зонирования обогащения активной зоны реактора по одному из вариантов осуществления настоящего изобретения;
на фиг.5А-5В - типовой клин, используемый для сжатия и разжатия активной зоны реактора во время операций по перегрузке топлива;
на фиг.6А-6С - типовой клин, используемый для усиления отклика по реакционной способности при радиальном расширении активной зоны реактора.
Осуществление изобретения
Далее будет рассмотрен реактор на быстрых нейтронах, с натриевым охлаждением, использующий металлическое топливо.
На фиг.1 показана система 501 с типовым небольшим модульным реактором ("SMR") по настоящему изобретению. Система SMR может включать в себя активную зону 503 реактора, использующую урановое топливо. Состав начальной активной зоны может обогащаться (<20%) сплавом из урана/циркония, а состав последующих активных зон - переработанным ураном/трансурановым цирконием. По некоторым вариантам осуществления изобретения также могут использоваться сплавы из урана 235/тория/циркония.
Активная зона реактора может быть погружена в бассейн 505 с жидким натрием 507 при давлении окружающей среды. Бассейн 505 может быть тонкостенным бассейном из нержавеющей стали такого размера, чтобы его можно было перевозить на барже или по железной дороге. Бассейн 505 может быть помещен в защитную емкость 517, а верхний настил 521 бассейна 505 может быть закрыт съемным куполом 519. Защитная емкость 517 и купол 519 совместно могут образовывать защитную оболочку 523.
Система 501 SMR может быть размещена в бетонированной шахте 515. Активная зона 503 реактора и ее защитная оболочка 523 могут быть помещены в бетонированную шахту с бетонной крышкой. Шахта и ее крышка могут образовывать защитную конструкцию для защиты системы 501 реактора и защитной оболочки 523 от внешних угроз. Защитная конструкция и/или защитная оболочка 523, а также реактор 503 могут быть сейсмоустойчивыми.
Система 501 SMR также может включать в себя стержни 513 регулирования мощности реактора.
Жидкий натрий 507 из бассейна 505 может нагнетаться одним или несколькими насосами 509 через активную зону 503 реактора для отвода тепла из активной зоны 503 реактора. Жидкий натрий 507 может передавать тепло одному или нескольким натрий-натриевым теплообменникам 511. Жидкий натрий 507 может разогреваться примерно от 350°С до примерно 510°С.
На фиг.2 показана система 501 SMR, находящаяся внутри более крупной энергетической установки 601. Нагретый натрий 507 может проходить через теплообменник 511, нагревая вторичный натрий, который в свою очередь проходит через теплообменник 603, где вторичный натрий нагревает сверхкритический (почти жидкий) диоксид углерода. Сверхкритический СO2 сжимается до 21 МПа, что непосредственно выше его критической точки примерно в 7 МПа, при температуре около 31°С. Затем он восстанавливается до температуры ~350°С в регенеративном теплообменнике 609; после чего нагрев продолжается до ~500°С в теплообменнике Na-CO2. Рекуперация и сжатие почти жидкой текучей среды позволяют осуществлять примерно 40% преобразования энергии при относительно низкой температуре по сравнению с идеальным газом для циклов Брайтона. Нагретый сверхкритический диоксид углерода затем может использоваться для вращения газовой турбины 605 с целью выработки электроэнергии в электрическом генераторе 608, находящемся в помещении 607, при этом в цикле Брайтона используется диоксид углерода. За счет высокой плотности СO2 турбина 605 и компрессор 606, вращающий оборудование, очень компактны. Пластинчатые теплообменники с вытравленными каналами, используемые для рекуперации, а также для теплообмена 603 между натрием и сверхкритическим диоксидом углерода, имеют исключительно высокую плотность энергии. Между тем, преобразователи энергии, использующие сверхкритический СО2 с циклом Брайтона, намного более компактны по сравнению с аналогичными преобразователями энергии, использующими паровой цикл Рэнкина. Цикл Брайтона может обеспечивать реактору SMR тепловой кпд (преобразование тепловой энергии в электрическую) примерно от 39% до примерно 41% или более, что значительно выше, чем у паровых турбин с традиционными реакторами ("LWR") на легкой воде. Кроме этого, по отдельным вариантам осуществления настоящего изобретения сбросная теплота может использоваться для восполнения низкотемпературных потребностей, например, для обогрева помещений, опреснения воды, в промышленном производстве или может рассеиваться через градирни.
Небольшие быстрые реакторы с натриевым охлаждением могут обладать присущими им высокими характеристиками по безопасности. Подобные реакторы можно использовать с упрощенными, отказобезопасными средствами управления, позволяющими упростить процесс получения лицензий в регулирующих органах. Например, при возникновении аварийной ситуации, такой как утечка охлаждающей жидкости, переохлаждение теплообменника, выработка стержня регулирования мощности реактора или потеря способности по теплоотводу, контуры реактора могут самостоятельно отключаться без участия человека или задействования систем безопасности. Например, по мере нагрева охлаждающей жидкости реактора, элементы активной зоны могут термически расширяться, что приводит к увеличению утечки быстрых нейтронов из активной зоны, вызывая, в свою очередь, снижение уровня мощности в результате самокоррекции.
За счет подобной особенности, которая позволяет реактору реагировать на изменения нагрузки в электросети, вызванные изменением спроса на электроэнергию, эксплуатационные требования, предъявляемые к SMR, могут быть значительно менее строгими, чем для традиционных ядерных систем.
Топливо из металлических сплавов хорошо себя зарекомендовало как с точки зрения производительности, так и с точки зрения производства и вполне может отвечать требованиям по увеличенным интервалам замены топлива. Кроме этого можно использовать металлокерамическое топливо, хотя металлокерамическое топливо по-прежнему обладает свойствами, присущими металлическим сплавам.
Активная зона реактора может иметь длительный срок службы, вплоть до 20 лет или более. Для работы реактора может не требоваться постоянное наличие на месте оборудования по замене топлива или склада по хранению топлива. Замена топлива может осуществляться сторонним поставщиком услуг, который доставляет оборудование по замене топлива с новой активной зоной реактора, производит замену активной зоны и увозит как отработанную активную зону, так и оборудование по замене топлива после завершения работ. За счет снижения удельной мощности (кВт тепловой энергии/кг топлива) манипуляции с топливом и его доставка могут осуществляться вскоре после остановки реактора. Для обеспечения длительных интервалов замены топлива один или несколько кластеров из нескольких сборок в активной зоне реактора могут иметь сниженные удельные мощности (кВт тепловой энергии/кг топлива), не выходя при этом за пределы значений, определенных в существующих топливных базах данных. Это также может позволить осуществлять операции по замене топлива вскоре после остановки реактора. Операции по замене топлива могут начинаться в течение примерно двух недель после полной остановки реактора и могут завершаться примерно в течение 1 месяца после полной остановки реактора. Вся активная зона реактора может полностью перегружаться примерно раз в 20 лет. Поэтому система реактора не требует загрузки топлива оператором. Вся установка может быть физически загерметизирована и установлены средства электронного наблюдения, поэтому любые попытки проникновения могут быть сразу обнаружены. Отсутствие какой-либо необходимости или возможности получения непосредственного доступа к топливу и использование интеллектуальных систем наблюдения не только снижают потребности в использовании операторов, но также решают проблему нераспространения ядерных материалов. Кроме этого размеры SMR достаточно небольшие, что позволяет устанавливать его под землей, что увеличивает защиту от террористических угроз.
Наконец, компоненты системы имеют достаточно небольшие размеры, что позволяет осуществлять их перевозку на барже, по железной дороге или на грузовике и устанавливать на месте с использованием технологии модульной сборки: подобная возможность дистанционного производства и экономии при серийном производстве является существенным преимуществом.
При возврате топливных картриджей изготовителю/проектировщику/производителю, практически все отработанные ядерные материалы могут подвергаться вторичной переработке и использоваться в качестве топлива в новых картриджах, что существенно снижает объем радиотоксичности конечных отходов, помещаемых в подземные хранилища. В отличие от отработанного топлива из традиционных легководных реакторов материал из реактора SMR не нужно хранить в течение десятков тысяч лет. Материалы SMR, не подлежащие вторичной переработке, хранятся лишь несколько сотен лет, после чего они распадаются до уровня радиоактивности, сопоставимого с уровнем исходной урановой руды.
Концепция реактора и используемая инфраструктура по обороту топлива позволяют предлагать ядерную энергию с учетом потребностей создаваемых рынков электроснабжения в развивающихся странах, а также неизбежных глобальных потребностей в переходе на углеродонесодержащие источники энергии для других областей, кроме электроэнергетики. Подобные системы выработки атомной энергии могут быть основаны на использовании высокой плотности ядерного топлива (>106 раз выше, чем у ископаемых видов топлива), что позволяет создать распределенную сеть небольших быстрых реакторов с длительным (20 лет) интервалом замены топлива и предлагать услуги по снабжению энергией на местном уровне через небольшое количество централизованных центров, занимающихся снабжением топливом и утилизацией отходов для всей сети. Реакторы могут быть рассчитаны на снабжение местных и/или небольших электросетей, они могут быть стандартными, модульными и иметь готовую лицензию на серийное фабричное изготовление и быструю сборку на объекте. Соответственно, централизованная инфраструктура по снабжению топливом может быть рассчитана на экономию за счет расширения производства для обеспечения работы широкой сети реакторов в регионе и может работать под эгидой международных надзорных органов. Конфигурация системы может быть адаптирована с учетом принципов устойчивого развития.
На фиг.3 изображена типовая инфраструктура снабжения атомной энергией на развитом этапе. Региональный центр 701 может снабжать/поставлять топливо и/или забирать отработанное топливо из регионов, например, стран 703. Разные региональные центры 701 могут обмениваться расщепляющимися материалами и топливным сырьем для выравнивания региональных излишков и/или нехваток.
Обзор реактора
Варианты осуществления настоящего изобретения могут включать в себя реактор на быстрых нейтронах с натриевым охлаждением мощностью от 50 МВт электрической энергии (МВтэ) (125 МВтт (МВтт)) до примерно 100 МВтэ (260 МВтт), с длительным (примерно от 15 до примерно 20 лет) циклом полной замены топлива в активной зоне реактора. В качестве первоначальной топливной загрузки может использоваться обогащенный уран (с обогащением<20%) в виде топливных стержней из металлического сплава, связанных натрием или гелием с ферритно-мартензитной оболочкой. Реактор может обладать внутренним коэффициентом воспроизводства около единицы, таким образом, чтобы его реактивное отклонение при выгорании было небольшим, а его активная зона была самодостаточной при расщеплении. Отклонение при выгорании примерно менее 1% Δk/k может способствовать пассивной защите и пассивному отслеживанию нагрузки в электросети. Варианты осуществления настоящего изобретения позволяют обеспечивать в среднем выгорание топлива до 80 МВттД/кг, а после пирометаллургической переработки по завершении 20-летнего цикла выгорания обедненный уран может быть единственным сырьем, используемым для перегрузки активной зоны. После нескольких циклов, состав активной зоны реактора может постепенно смещаться к равновесной композиции из трансуранового топлива, которое также является самодостаточным при расщеплении и которому после переработки требуется лишь подпитка U238.
Тепловой реактор с принудительной циркуляцией может поставлять тепло при температуре ~500°С через промежуточную натриевую петлю, приводящую в действие преобразователь энергии со сверхкритическим СО2 (S-СО2), работающим в цикле Брайтона, коэффициент преобразования которого достигает ~40%, и позволяет использовать сбрасываемое тепло для опреснения воды, обогрева квартала и т.п. По другим вариантам осуществления изобретения может использоваться паровой цикл Рэнкина. Варианты осуществления настоящего изобретения позволяют использовать пассивное удаление теплоты радиоактивного распада; обеспечивать пассивную защиту для ожидаемого переходного процесса без аварийного останова реактора (ATWS); а также использовать пассивное отслеживание нагрузки в электросети. Неядерное оборудование АЭС может не соответствовать нормам радиационной безопасности.
Размеры станции позволяют осуществлять изготовление модулей на заводе, которые могут доставляться баржей или по железной дороге для ускорения сборки на объекте. Варианты осуществления настоящего изобретения могут обладать признаками, направленными на удовлетворение инфраструктурных и муниципальных потребностей быстро растущих городов в развивающихся странах, а также потребностей остальных стран, не связанных с электроэнергией, в промышленной и/или муниципальной областях.
Ориентация на развивающиеся рынки
Атомная энергетика является полностью сформировавшейся отраслью промышленности, появившейся более 35 лет назад, насчитывающей свыше 13000 реактор-часов работы, на долю которой приходится 16% мировых объемов выработки электроэнергии. В промышленно развитых странах атомная энергетика преимущественно существует в виде крупных станций (вырабатывающих свыше или около 1200 МВтэ). В настоящее время в 30 странах существует 436 реакторов. К 2030 году прогнозируется рост атомной энергетики в объеме >66% или даже 100% дополнительных мощностей. Ожидается, что большая часть роста придется на развивающиеся страны, государственные и инфраструктурные условия в которых зачастую отличаются от тех, что в прошлом способствовали созданию крупных электростанций с полным топливным циклом. Развивающиеся страны зачастую имеют небольшие, локальные сети в несколько ГВт, которые не способны принять электроэнергию, вырабатываемую электростанцией мощностью от 1.2 до 1.5 ГВтэ. Варианты осуществления настоящего изобретения, рассчитанные на мощности до 100 МВтэ, не только совместимы с небольшими сетями, но также, за счет меньших капиталозатрат на развертывание, соответствуют потребностям развивающихся стран по разделению ограниченного финансирования между несколькими проектами на ранних этапах их быстрого экономического роста.
Двадцатилетний интервал замены топлива, а также услуги по доставке, переработке и утилизации отходов, оказываемые региональному центру сторонними организациями, позволяют странам добиться беспрецедентной энергетической безопасности даже при отсутствии необходимости предварительно создавать собственную инфраструктуру по снабжению/переработке топлива. Кроме этого централизация мощностей топливного цикла в целях обеспечения экономии за счет расширения производства электроэнергии, поставляемой для промышленности и населения, может упростить контроль за соблюдением международного режима нераспространения даже при широком международном использовании источников атомной энергии.
Прогнозируется, что темпы роста снабжения энергией в промышленно развитых странах будут ниже, чем в развивающихся странах. Тем не менее, для замены угольных и атомных электростанций по мере их закрытия после выработки ресурса потребуется строительство новых атомных электростанций. Крупные соединенные между собой электросети в промышленно развитых странах совместимы с крупными электростанциями. Между тем, ожидается быстрое появление рыночных ниш как в развитых, так и в развивающихся странах, связанных с выработкой неэлектрической энергии и/или когенерации с использованием атомной энергии, не создающей выбросов углерода. К числу таких рынков можно отнести опреснение воды, извлечение нефти из нефтеносных песков/битуминозных сланцев, а также модернизацию и переход с угля или биотоплива на жидкое синтетическое топливо. Пассивная безопасность заранее исключает наделение неядерного оборудования АЭС функциями обеспечения радиационной безопасности и параллельно с меньшей потребностью реактора в источниках топлива позволяет размещать его вблизи промышленных или гражданских объектов.
Отличительные особенности топливного цикла
Во-первых, плотность энергии в активной зоне (кВтт/литр) и количество электроэнергии, получаемой из конкретного вида топлива (кВтт/кг топлива), могут быть снижены для достижения 20-летнего цикла замены топлива, не выходя при этом за границы, определенные в экспериментальной базе данных для топлива из металлических сплавов. Это может обеспечить клиенту долгосрочную энергетическую безопасность и высокую степень гарантированной доступности электроэнергии.
Во-вторых, раз в 20 лет полная перегрузка всей активной зоны может осуществляться силами сотрудников завода, которые доставляют перегрузочное оборудование и свежее топливо с другого объекта, проводят операции по перегрузке, а затем возвращают отработанную активную зону реактора и перегрузочное оборудование на завод. Это позволяет обеспечить клиенту энергетическую безопасность, которую ранее приходилось обеспечивать за счет использования собственных средств по обогащению, изготовлению топлива, переработке и помещению в хранилища.
В-третьих, операции по замене топлива могут осуществляться с использованием тепловыделяющих сборок, которые могут состоять из множества составных компонентов. Может использоваться разное количество компонентов, которые могут быть или не быть объединены в кластеры. В качестве примера на фиг.4 показана типовая активная зона реактора, состоящая из семи тепловыделяющих сборок 801. На фиг.4 показана типовая компоновка компонентов активной зоны реактора. Например, внешний слой из защитных сборок 803 может закрывать слой отражателя 805, который может закрывать слой внешней активной зоны 807. Средняя активная зона 809 с меньшим обогащением, в целом, может окружать внутреннюю активную зону 811 с еще меньшим обогащением, а первичная 813 и вторичная 815 регулировочные сборки находиться внутри активной зоны 801. Как можно заметить, для ускорения перегрузки активной зоны реактора топливо, отражатель, защита и стержни регулирования мощности реактора сгруппированы в кластер из семи сборок.
Во время проведения работ кластер, состоящий из семи сборок, может перемещаться через очень короткий период охлаждения, вскоре после остановки реактора для того, чтобы свести к минимуму перерыв в подаче энергии. Такие отличительные признаки, как короткий период охлаждения и кластер из семи сборок, становятся возможны за счет выработки тепла в щадящем режиме (кВтт/кг топлива), с учетом особенностей топлива.
В-четвертых, первая топливная загрузка может состоять из обогащенного урана (с обогащением<20%), а активная зона реактора может быть самодостаточной в плане расщепляющегося материала таким образом, чтобы в конце 20-летнего периода эксплуатации активная зона содержала столько же воспроизведенных расщепляемых материалов, сколько было выжжено. После пирометаллургической переработки отработанной активной зоны реактора для воспроизводства или замены активной зоны реактора может потребоваться лишь U238 в качестве исходного сырья и новая оболочка.
В-пятых, после нескольких переработок состав активной зоны реактора постепенно может изменяться от композиции, насыщенной U235, к равновесной композиции, обогащенной трансурановыми материалами, которая также самодостаточна в плане расщепляющихся материалов. Цепочка утилизации отходов топливного цикла может включать в себя исключительно расщепляющиеся продукты, которые должны быть изолирована лишь на период от 200 до 300 лет, прежде чем они распадутся до фонового уровня радиоактивности, причем все трансурановые материалы могут быть возвращены в реактор в качестве топлива, в котором они превращаются в расщепляемые продукты.
В-шестых, после первой загрузки активной зоны для всех последующих активных зон в качестве сырья может использоваться лишь U238. Это может почти на 100% увеличить продолжительность использования мировых запасов руды и обеспечить снабжение энергией в течение, по меньшей мере, тысячи лет. Использование топлива из металлических сплавов на основе тория позволит расширить ресурсную базу для ее использования в течение многих тысячелетий.
В-седьмых, технология изготовления топлива позволит добавлять дробленые частицы отработанного топлива из легководных реакторов LWR в металлические сплавы для получения металлокерамического топлива. Подобная возможность, при ее использовании с дополнительным этапом (восстановления оксида) во время пирометаллургического процесса переработки, может открыть дорогу к экономически эффективному использованию отработанного топлива из легководных реакторов LWR за счет его включения в замкнутый топливный цикл быстрых реакторов.
Отличительные особенности реактора, используемого в качестве источника тепла
Во-первых, компоновка активной зоны может включать в себя сборные кластеры из тепловыделяющих сборок с индивидуальными каналами и отверстиями. Как отмечалось выше, компоновка активной зоны с типовыми кластерами из семи сборок показана на фиг.4. По другим вариантам осуществления изобретения могут использоваться другое количество и другие компоновки. Сборки могут быть сгруппированы в кластеры для удобства транспортировки топлива, без нарушения индивидуальных тепловыделяющих сборок таким образом, чтобы сохранить диафрагмирование и характеристики отклика по реакционной способности при ограниченном свободном изгибе. Заменяемые сборки отражателя и защиты могут группироваться в кластеры из 3-4 сборок.
Во-вторых, может использоваться подход сжатия активной зоны «с ограниченным свободным изгибом». Подход сжатия может предусматривать использование съемного и вертикально регулируемого горизонтального клина 901, расположенного над центральной частью сборной компоновки активной зоны из канализированных топливных сборок 913, примерно на уровне загрузочных корзин 903, расположенных над активной зоной реактора, как это показано на фиг.5. Следует отметить, что радиальное смещение, показанное на фиг.5А и 5В, преувеличено. Клин 901 может быть прикреплен к приводному устройству 905, сопряженному с вертикально позиционирующим механизмом 907, расположенным на настиле 909 реактора. Предпочтительно клин 901 расположен у нижнего торца приводного устройства 905, когда приводное устройство 905 находится в вертикальном положении. Клин 901 может выниматься/извлекаться для ослабления активной зоны реактора при манипуляциях с топливом, как это показано на фиг.5В. Клин может повторно вставляться для сжатия активной зоны 915 и верхних загрузочных корзин 917 наружу к бывшему кольцу 911 активной зоны на уровне верхней загрузочной корзины после завершения перегрузки топлива. Предпочтительно верхние загрузочные корзины 917 могут окружать одну или несколько канализированных сборок 913 примерно у верхнего торца канализированных тепловыделяющих сборок 913. Загрузочные корзины 903, расположенные над активной зоной, могут окружать одну или несколько канализированных тепловыделяющих сборок 913 выше уровня топлива, но ниже верхних загрузочных корзин 917. Уровень плиты с сеткой крепежных отверстий примерно может соответствовать нижнему торцу канализированных тепловыделяющих сборок 913.
В-третьих, активная зона может сохранять параметры производительности как с точки зрения функциональности, так и безопасности, даже если топливная композиция изменится за 20-летний цикл выгорания, а также дополнительно изменится от одной загрузки переработанного топлива к другой.
В-четвертых, варианты осуществления настоящего изобретения могут включать в себя стратегию мониторинга откликов по реакционной способности на протяжении всего срока службы активной зоны реактора и подстройки их величины при помощи вертикально расположенного регулировочного клина в случае, если они изменятся по мере старения активной зоны реактора в течение ее 20-летнего цикла выгорания. Отклики по полной реакционной способности могу измеряться по месту за счет неинтрузивных незначительных корректировок расхода охлаждающей жидкости, температуры охлаждающей жидкости на входе, а также положения стержня регулирования мощности реактора. Положение покоя зажимного клина 901 активной зоны реактора может использоваться для корректировки величины компонента радиального расширения активной зоны с присущим ей коэффициентом реактивности отрицательной мощности, как это показано на фиг.6А-6С. Следует заметить, что радиальное смещение, показанное на фиг.6А-6С, преувеличено. Как показано на фиг.6А, увеличение мощности может увеличивать изгиб 951 наружу (вправо на фиг.6А-6С) тепловыделяющих сборок 913. Неконтролируемое развертывание при увеличении мощности активной зоны может возникать в результате увеличения радиального теплового градиента в канальных тепловыделяющих сборках 913. Расположенные с внутренней стороны канализированные тепловыделяющие сборки 913 могут выталкиваться наружу, как это показано на фиг.6В. Сдерживание ограниченного свободного изгиба может усиливать радиальное растяжение на уровне топливной зоны канализированных тепловыделяющих сборок 913. Как показано на фиг.6С, увеличение температуры охлаждающей жидкости на выходе может увеличивать температуру приводного устройства 905 клина таким образом, что тепловое расширение приводного устройства может приводить к перемещению клина 901 вниз/вглубь. Это, в свою очередь, может приводить к радиальному изгибу наружу тепловыделяющих сборок 913 активной зоны реактора на уровне топливной зоны, что в результате может увеличивать осевую утечку и снижать реакционную способность. За счет корректирования положения покоя клина 901 при полной мощности и полном потоке можно осуществлять подстройку амплитуды усиления изгиба.
В-пятых, в случае потери потока, потери поглотителя тепла, снижения температуры охлаждающей жидкости на входе, а также временной перегрузки при выработке одиночного стержня во время ожидаемого переходного периода без аварийного останова реактора (ATWS) может подаваться отклик пассивной безопасности. Обязательные отклики о реакционной способности, относящиеся к мощности, топливу, а также температуре охлаждающей жидкости, в сочетании с практически нулевым отклонением при выгорании и естественной возможностью циркуляции при уровне теплоты радиоактивного распада позволяют обеспечить безопасное состояние реактора при возникновении любых ATWS, т.е. не возникает никаких повреждений, а устойчивое положение может быть достигнуто, даже если не произойдет аварийного отключения стержней.
В-шестых, в качестве постоянного резервного устройства для активных каналов по отводу теплоты радиоактивного распада может использоваться пассивный канал удаления теплоты соединенного с атмосферой конечного поглотителя тепла. Пассивные каналы всегда могут функционировать при мощности менее или примерно равной 1% от полной мощности, а их функционирование на всех этапах срока службы активной зоны может контролироваться за счет проведения неинтрузивных измерений. Теплоемкость активной зоны и внутренняя конструкция достаточны для поглощения на начальном переходном процессе излишков теплоты радиоактивного распада, превышающих пропускную способность пассивного канала.
Отличительные особенности электростанции
Во-первых, реактор для выработки тепла, приводящий в действие преобразователь энергии S-CO2, работающий в цикле Брайтона, способен обеспечивать коэффициент преобразования тепла в электричество почти в 40% или более в диапазоне рабочей текучей среды от ~500°С, 21 МПа до 31°С, ~7 МПа. Для подобного преобразования могут использоваться ротационное оборудование с исключительно высокой плотностью энергии и рекуперативные теплообменники с исключительно высокой плотностью энергии.
Во-вторых, реактор для выработки тепла может пассивно отслеживать потребности преобразователя энергии по теплоте с учетом нагрузки в электросети. Реактор может регистрировать потребности неядерного оборудования АЭС, передаваемые в виде расхода и температуры в обратной промежуточной теплопередающей петле. Штатные отклики реактора по реакционной способности позволяют выравнивать выработку тепла с учетом отвода тепла через промежуточную петлю в течение десятых долей секунды, без активной корректировки стержней регулирования мощности реактора.
В-третьих, может использоваться неядерное оборудование АЭС, к которому не предъявляются требования по радиационной безопасности и которое может изготавливаться, эксплуатироваться и обслуживаться в соответствии с общепринятыми промышленными нормами. В реакторе могут быть пассивно реализованы любые физически возможные комбинации расхода и температуры в обратном трубопроводе, проходящем от неядерного оборудования АЭС через промежуточную теплопередающую петлю. Пассивные каналы по отводу теплоты радиоактивного распада могут быть независимы от неядерного оборудования АЭС, а почти нулевое регулировочное отклонение при выгорании не делает повышение мощности в переходном режиме при выработке стержня в результате ошибки системы контроля аварийным событием. Поэтому неядерное оборудование АЭС может не соответствовать нормам радиационной безопасности.
В-четвертых, варианты осуществления настоящего изобретения позволяют привязывать огромное разнообразие конфигураций неядерного оборудования АЭС к стандартным, тепловым реакторам с готовой лицензией, поскольку неядерное оборудование АЭС не соответствует требованиям радиационной безопасности. В цикле Брайтона с S-CO2 может теряться ~60% подаваемого тепла, причем это может происходить в диапазоне от ~100°С до 31°С. Для подобного диапазона температур может использоваться много разных вариантов когенерации, в том числе многоцелевое опреснение воды, обогрев муниципальных объектов, подача холодной воды для муниципальных объектов, приготовление льда и т.п. Как вариант, принимая во внимание функции автоматической защиты, небольшое потребление топлива, функцию пассивного отслеживания нагрузки в электросети, а также высокую степень работоспособности, тепловой реактор может быть размещен рядом с различными промышленными производствами, не являющимися потребителями электроэнергии.
Хотя в представленном выше описании предложены предпочтительные варианты осуществления изобретения, следует отметить, что специалисты в данной области техники могут вносить в них изменения и модификации, не выходя за объем и сущность изобретения. Кроме этого, признаки, рассмотренные для одного варианта осуществления изобретения, могут использоваться для других вариантов осуществления, даже если это не оговорено отдельно выше.
Claims (22)
1. Система ядерного реактора на быстрых нейтронах, содержащая:
реактор, который содержит:
бассейн реактора;
активную зону реактора, которая расположена внутри бассейна реактора и содержит топливную загрузку из металлического или металлокерамического топлива, при этом в качестве теплопередающей среды используется жидкий натрий;
насос для обеспечения циркуляции жидкого натрия через теплообменник;
по меньшей мере, одну систему пассивной безопасности, получающую отклики по реакционной способности;
по меньшей мере, одну систему отслеживания нагрузки в электросети;
неядерное оборудование АЭС, не соответствующее нормам радиационной безопасности; и
реактор для выработки тепла, приводящий в действие тепловой преобразователь со сверхкритическим CO2, использующий цикл Брайтона и обладающий коэффициентом преобразования 40% или более;
при этом реактор является модульным,
система выполнена с возможностью выработки от 50 до 100 МВт электроэнергии, и
первая загрузка состоит из обогащенного урана с обогащением менее 20%, а все последующие загрузки состоят из переработанного урана, трансурановых материалов и циркония.
реактор, который содержит:
бассейн реактора;
активную зону реактора, которая расположена внутри бассейна реактора и содержит топливную загрузку из металлического или металлокерамического топлива, при этом в качестве теплопередающей среды используется жидкий натрий;
насос для обеспечения циркуляции жидкого натрия через теплообменник;
по меньшей мере, одну систему пассивной безопасности, получающую отклики по реакционной способности;
по меньшей мере, одну систему отслеживания нагрузки в электросети;
неядерное оборудование АЭС, не соответствующее нормам радиационной безопасности; и
реактор для выработки тепла, приводящий в действие тепловой преобразователь со сверхкритическим CO2, использующий цикл Брайтона и обладающий коэффициентом преобразования 40% или более;
при этом реактор является модульным,
система выполнена с возможностью выработки от 50 до 100 МВт электроэнергии, и
первая загрузка состоит из обогащенного урана с обогащением менее 20%, а все последующие загрузки состоят из переработанного урана, трансурановых материалов и циркония.
2. Система по п. 1, дополнительно содержащая защитную конструкцию, состоящую из защитной емкости и купола над настилом реактора, причем защитная конструкция помещена в шахтную защитную, сейсмоустойчивую конструкцию.
3. Система по п. 1, в которой на объекте отсутствует оборудование по перегрузке топлива или склад топлива.
4. Система по п. 1, в которой интервал перегрузки топлива составляет примерно 20 лет, причем во время перегрузки топлива активная зона реактора заменяется полностью.
5. Система по п. 1, дополнительно содержащая один или несколько кластеров из нескольких сборок.
6. Система по п. 5, в которой один или несколько кластеров из нескольких сборок имеют пониженную удельную мощность (кВт тепловой энергии/кг топлива), позволяющую осуществлять перегрузку топлива через длительные интервалы, а также позволяющую начинать перегрузку топлива примерно через две недели после остановки реактора.
7. Система по п. 1, дополнительно содержащая съемный и регулируемый клин в активной зоне реактора на уровне загрузочных корзин, расположенных над активной зоной, предназначенный для сжатия активной зоны и корректирующей подстройки откликов по реакционной способности.
8. Система по п. 1, в которой тепловой кпд системы составляет от 39% до 41%.
9. Система по п. 1, в которой внутренний коэффициент воспроизводства составляет около единицы.
10. Способ получения ядерной энергии, включающий в себя:
обеспечение системы ядерного реактора на быстрых нейтронах, содержащей:
реактор, который содержит:
бассейн реактора;
активную зону реактора, расположенную внутри бассейна реактора и содержащую топливную загрузку из металлического или металлокерамического топлива, при этом в качестве теплопередающей среды используется жидкий натрий; и
насос для обеспечения циркуляции жидкого натрия через теплообменник; и
по меньшей мере, одну систему пассивной безопасности с откликами по реакционной способности;
по меньшей мере, одну систему отслеживания нагрузки в электросети;
неядерное оборудование АЭС, не соответствующее нормам радиационной безопасности; и
реактор для выработки тепла, приводящий в действие преобразователь энергии со сверхкритическим CO2, использующий цикл Брайтона и обладающий коэффициентом преобразования 40% или более,
запуск системы;
преобразование тепла в электричество; и
снабжение электричеством,
при этом реактор является модульным,
система выполнена с возможностью выработки от 50 до 100 МВт электроэнергии, и
первая загрузка состоит из обогащенного урана с обогащением менее 20%, а все последующие загрузки состоят из переработанного урана, трансурановых материалов и циркония.
обеспечение системы ядерного реактора на быстрых нейтронах, содержащей:
реактор, который содержит:
бассейн реактора;
активную зону реактора, расположенную внутри бассейна реактора и содержащую топливную загрузку из металлического или металлокерамического топлива, при этом в качестве теплопередающей среды используется жидкий натрий; и
насос для обеспечения циркуляции жидкого натрия через теплообменник; и
по меньшей мере, одну систему пассивной безопасности с откликами по реакционной способности;
по меньшей мере, одну систему отслеживания нагрузки в электросети;
неядерное оборудование АЭС, не соответствующее нормам радиационной безопасности; и
реактор для выработки тепла, приводящий в действие преобразователь энергии со сверхкритическим CO2, использующий цикл Брайтона и обладающий коэффициентом преобразования 40% или более,
запуск системы;
преобразование тепла в электричество; и
снабжение электричеством,
при этом реактор является модульным,
система выполнена с возможностью выработки от 50 до 100 МВт электроэнергии, и
первая загрузка состоит из обогащенного урана с обогащением менее 20%, а все последующие загрузки состоят из переработанного урана, трансурановых материалов и циркония.
11. Способ по п. 10, в котором реактор дополнительно содержит защитную конструкцию, состоящую из защитной емкости и купола над настилом реактора, причем защитная конструкция помещена в шахтную защитную, сейсмоустойчивую конструкцию.
12. Способ по п. 10, в котором на объекте отсутствует оборудование по перегрузке топлива или склад топлива.
13. Способ по п. 10, в котором интервал перегрузки топлива составляет примерно 20 лет, причем во время перегрузки топлива активная зона реактора заменяется полностью.
14. Способ по п. 10, в котором реактор дополнительно содержит один или несколько кластеров из нескольких сборок.
15. Способ по п. 14, в котором один или несколько кластеров из нескольких сборок имеют пониженную удельную мощность (кВт тепловой энергии/кг топлива), позволяющую осуществлять перегрузку топлива через длительные интервалы, а также позволяющую начинать перегрузку топлива примерно через две недели после остановки реактора.
16. Способ по п. 10, в котором реактор дополнительно содержит съемный и регулируемый клин в активной зоне реактора на уровне загрузочных корзин, расположенных над активной зоной, предназначенный для сжатия активной зоны и корректирующей подстройки откликов по реакционной способности.
17. Способ по п. 10, в котором тепловой кпд системы составляет от 39% до 41%.
18. Способ по п. 10, в котором внутренний коэффициент воспроизводства составляет около единицы.
19. Система сжатия активной зоны реактора, содержащая:
активную зону реактора, содержащую одну или несколько канализированных тепловыделяющих сборок, а также центральную область сборки активной зоны;
одну или несколько верхних загрузочных корзин, сопряженных с каждой из одной или нескольких канализированных тепловыделяющих сборок рядом с верхними торцами одной или нескольких канализированных тепловыделяющих сборок;
одну или несколько загрузочных корзин, расположенных над активной зоной и сопряженных с каждой из одной или нескольких канализированных тепловыделяющих сборок снизу одной или нескольких верхних загрузочных корзин;
активную зону, образующую кольцо, расположенное вокруг реактора примерно на уровне верхней загрузочной корзины, причем кольцо, образующее активную зону, соприкасается с одной или несколькими верхними загрузочными корзинами во время работы активной зоны реактора;
съемный и регулируемый клин, вставляемый в центральную сборную область активной зоны реактора; и
приводное устройство клина, соединенное с клином для введения, удаления и регулирования положения клина.
активную зону реактора, содержащую одну или несколько канализированных тепловыделяющих сборок, а также центральную область сборки активной зоны;
одну или несколько верхних загрузочных корзин, сопряженных с каждой из одной или нескольких канализированных тепловыделяющих сборок рядом с верхними торцами одной или нескольких канализированных тепловыделяющих сборок;
одну или несколько загрузочных корзин, расположенных над активной зоной и сопряженных с каждой из одной или нескольких канализированных тепловыделяющих сборок снизу одной или нескольких верхних загрузочных корзин;
активную зону, образующую кольцо, расположенное вокруг реактора примерно на уровне верхней загрузочной корзины, причем кольцо, образующее активную зону, соприкасается с одной или несколькими верхними загрузочными корзинами во время работы активной зоны реактора;
съемный и регулируемый клин, вставляемый в центральную сборную область активной зоны реактора; и
приводное устройство клина, соединенное с клином для введения, удаления и регулирования положения клина.
20. Система по п. 19, в которой клин вставляется примерно на уровне загрузочных корзин, расположенных над активной зоной, для сжатия активной зоны и корректирующей подстройки откликов по реакционной способности.
21. Система по п. 19, в которой приводное устройство клина выполнено с возможностью теплового расширения для корректирующей подстройки отклика по реакционной способности.
22. Система по п. 19, в которой во время проведения операции по перегрузке топлива клин ослабляется и удаляется.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30675410P | 2010-02-22 | 2010-02-22 | |
US61/306,754 | 2010-02-22 | ||
PCT/US2011/025455 WO2011142869A2 (en) | 2010-02-22 | 2011-02-18 | Small, fast neutron spectrum nuclear power plant with a long refueling interval |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016131332A Division RU2713473C2 (ru) | 2010-02-22 | 2011-02-18 | Система ядерного реактора и способ получения ядерной энергии |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012140426A RU2012140426A (ru) | 2014-03-27 |
RU2596160C2 true RU2596160C2 (ru) | 2016-08-27 |
Family
ID=44476489
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012140426/07A RU2596160C2 (ru) | 2010-02-22 | 2011-02-18 | Небольшая атомная электростанция на быстрых нейтронах с длительным интервалом замены топлива |
RU2016131332A RU2713473C2 (ru) | 2010-02-22 | 2011-02-18 | Система ядерного реактора и способ получения ядерной энергии |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016131332A RU2713473C2 (ru) | 2010-02-22 | 2011-02-18 | Система ядерного реактора и способ получения ядерной энергии |
Country Status (5)
Country | Link |
---|---|
US (4) | US8767902B2 (ru) |
JP (2) | JP6001457B2 (ru) |
KR (1) | KR101834845B1 (ru) |
RU (2) | RU2596160C2 (ru) |
WO (1) | WO2011142869A2 (ru) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101680727B1 (ko) | 2010-01-13 | 2016-11-29 | 어드밴스드 리액터 컨셉트 엘엘씨 | 피복된 환형의 금속 핵 연료 |
US8767902B2 (en) | 2010-02-22 | 2014-07-01 | Advanced Reactor Concepts LLC | Small, fast neutron spectrum nuclear power plant with a long refueling interval |
US8726989B2 (en) * | 2010-07-14 | 2014-05-20 | Donald Nevin | Method for removing contaminants from wastewater in hydraulic fracturing process |
CN104126206B (zh) * | 2011-12-20 | 2017-05-10 | 日本内切塞尔株式会社 | 小型核能发电系统 |
US9540999B2 (en) | 2012-01-17 | 2017-01-10 | Peregrine Turbine Technologies, Llc | System and method for generating power using a supercritical fluid |
CN105027223B (zh) * | 2012-09-12 | 2018-07-17 | 标识技术有限责任公司 | 模块化的能够运输的核发电机 |
US9881706B2 (en) | 2013-08-23 | 2018-01-30 | Global Energy Research Associates, LLC | Nuclear powered rotary internal engine apparatus |
US11557404B2 (en) | 2013-08-23 | 2023-01-17 | Global Energy Research Associates, LLC | Method of using nanofuel in a nanofuel internal engine |
US9947423B2 (en) | 2013-08-23 | 2018-04-17 | Global Energy Research Associates, LLC | Nanofuel internal engine |
US11450442B2 (en) | 2013-08-23 | 2022-09-20 | Global Energy Research Associates, LLC | Internal-external hybrid microreactor in a compact configuration |
RU2542740C1 (ru) * | 2013-11-11 | 2015-02-27 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Ядерный реактор для сжигания трансурановых химических элементов |
EP2899725B1 (en) * | 2014-01-27 | 2018-04-25 | Urenco Limited | Controlling the temperature of uranium material in a uranium enrichment facility |
WO2015130898A1 (en) | 2014-02-26 | 2015-09-03 | Peregrine Turbine Technologies, Llc | Power generation system and method with partially recuperated flow path |
GB2586102B (en) | 2014-04-14 | 2021-05-05 | Advanced Reactor Concepts LLC | Ceramic nuclear fuel dispersed in a metallic alloy matrix |
US10101092B2 (en) | 2014-08-22 | 2018-10-16 | Peregrine Turbine Technologies, Llc | Power generation system including multiple cores |
JP2016156729A (ja) * | 2015-02-25 | 2016-09-01 | 株式会社 シー・アール・ワイ | 原子炉 |
RU2594889C1 (ru) * | 2015-05-29 | 2016-08-20 | Общество с ограниченной ответственностью "Научно-технический центр инноваций" | Ядерный реактор |
CN105280250A (zh) * | 2015-09-15 | 2016-01-27 | 西安交通大学 | 用于蒸汽发生器和乏燃料水池的非能动冷却系统及方法 |
CN105405475B (zh) * | 2015-10-30 | 2017-04-19 | 西安交通大学 | 长寿命超临界二氧化碳冷却小堆 |
JP6842191B2 (ja) | 2016-04-26 | 2021-03-17 | 株式会社クリア | 液体金属一次冷却材を用いた負荷追随型制御小型原子炉システム |
WO2018075096A1 (en) * | 2016-06-03 | 2018-04-26 | Advanced Reactor Concepts LLC | Upgrading power output of previously-deployed nuclear power plants |
CN106128517B (zh) * | 2016-06-24 | 2017-11-28 | 西安交通大学 | 一种采用棒状燃料组件的超临界二氧化碳冷却小堆 |
WO2018107170A1 (en) * | 2016-12-11 | 2018-06-14 | Advanced Reactor Concepts LLC | Small modular reactor power plant with load following and cogeneration capabilities and methods of using |
CN109616229B (zh) * | 2019-01-11 | 2024-07-30 | 哈尔滨电气股份有限公司 | 用于钠冷快堆的梯级供热超临界二氧化碳循环热电联供系统 |
RU2764061C1 (ru) * | 2021-07-29 | 2022-01-13 | Акционерное общество «АКМЭ-инжиниринг» | Узел крепления тепловыделяющей сборки ядерного реактора |
CN115234330B (zh) * | 2022-08-30 | 2024-05-07 | 西安热工研究院有限公司 | 一种高效安全的空间核电源系统及其工作方法 |
CN115862914B (zh) * | 2022-11-17 | 2024-09-24 | 中国核动力研究设计院 | 集推进和发电两用的空间超临界二氧化碳核动力系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3178354A (en) * | 1961-07-25 | 1965-04-13 | Jackson & Moreland Inc | Steam cooled nuclear reactor system with improved fuel element assembly |
US3708393A (en) * | 1970-12-01 | 1973-01-02 | Atomic Energy Commission | Radial restraint mechanism for reactor core |
US4147590A (en) * | 1965-09-01 | 1979-04-03 | The United States Of America As Represented By The United States Department Of Energy | Nuclear propulsion apparatus with alternate reactor segments |
SU714505A1 (ru) * | 1978-01-19 | 1980-02-05 | Государственный Научно-Исследовательский Институт Им. Г.М.Кржижановского | Ядерна энергетическа установка |
US4943409A (en) * | 1987-03-31 | 1990-07-24 | National Nuclear Corporation Limited | Reactivity control in nuclear reactors |
US5196159A (en) * | 1990-07-24 | 1993-03-23 | Kabushiki Kaisha Toshiba | Fast reactor |
Family Cites Families (153)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1624704A (en) | 1926-03-15 | 1927-04-12 | Lamore Tile Machine Company | Pneumatic core for block machines |
US3197375A (en) * | 1958-10-28 | 1965-07-27 | Dow Chemical Co | Nuclear power reactor |
US3098024A (en) | 1959-01-27 | 1963-07-16 | Engelhard Ind Inc | Composite fuel elements for nuclear reactors |
US2983663A (en) * | 1959-02-10 | 1961-05-09 | Charles H Bassett | Fuel element for nuclear reactors |
US2992179A (en) * | 1959-03-17 | 1961-07-11 | Charles H Bassett | Fuel element for nuclear reactors |
NL261178A (ru) | 1960-03-07 | 1900-01-01 | ||
DE1464128A1 (de) * | 1961-06-27 | 1969-03-27 | Westinghouse Electric Corp | Langgestreckte Bauelemente und Verfahren zu ihrer Herstellung |
BE639122A (ru) * | 1962-10-26 | |||
NL301862A (ru) | 1962-12-26 | 1900-01-01 | ||
DE1199748B (de) | 1963-05-15 | 1965-09-02 | Kernforschung Mit Beschraenkte | Verfahren zum Aufarbeiten von bestrahlten Kernbrennstoffen |
US3372213A (en) | 1963-12-16 | 1968-03-05 | Sumitomo Electric Industries | Method of manufacturing oxide nuclear fuel containing a boride |
US3328133A (en) | 1964-02-10 | 1967-06-27 | Japan Atomic Energy Res Inst | Method for direct recovery of plutonium from irradiated nuclear fuel |
GB1051954A (ru) | 1964-04-08 | |||
GB1102815A (en) | 1964-06-02 | 1968-02-14 | Atomic Energy Authority Uk | Improvements in or relating to nuclear reactors |
FR1437073A (fr) * | 1964-06-11 | 1966-07-22 | Atomic Energy Board | élément de combustion pour réacteur nucléaire et ses applications |
US3413383A (en) | 1964-10-28 | 1968-11-26 | Hitachi Ltd | Vibratory compaction method for the fabrication of ceramic nuclear fuel elements |
US3215608A (en) * | 1965-02-19 | 1965-11-02 | Ralph W Guenther | Nuclear reactor core clamping system |
GB1198051A (en) | 1966-06-21 | 1970-07-08 | Atomic Energy Authority Uk | Improvements in or relating to Ceramic Nuclear Fuel Materials |
GB1246275A (en) * | 1967-12-20 | 1971-09-15 | Atomic Energy Authority Uk | Improvements in or relating to nuclear reactor fuel elements |
US3627634A (en) | 1968-11-26 | 1971-12-14 | Gen Electric | Nuclear reactor core clamping system |
SE324019B (ru) * | 1968-12-02 | 1970-05-19 | Asea Ab | |
JPS5014318B1 (ru) | 1969-02-05 | 1975-05-27 | ||
DE1926827A1 (de) | 1969-05-27 | 1970-12-03 | Kernforschungsanlage Juelich | Verfahren zum Aufarbeiten von Brenn- und/oder Brutelementen fuer Kernreaktoren |
BE754855A (fr) | 1969-08-14 | 1971-02-15 | Westinghouse Electric Corp | Element combustible a pression interne |
US3682774A (en) * | 1969-09-26 | 1972-08-08 | North American Rockwell | Core clamping system for a nuclear reactor |
US3683975A (en) | 1971-02-12 | 1972-08-15 | Atomic Energy Commission | Method of vibratory loading nuclear fuel elements |
US3778348A (en) * | 1971-02-12 | 1973-12-11 | Atomic Energy Commission | Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein |
US3823067A (en) * | 1971-08-02 | 1974-07-09 | United Nuclear Corp | Shaped nuclear fissionable bodies |
JPS549279B2 (ru) * | 1972-07-12 | 1979-04-23 | ||
SE383223B (sv) | 1973-02-02 | 1976-03-01 | Atomenergi Ab | Kernbrensleelement for kraftreaktorer. |
JPS5014318A (ru) | 1973-06-06 | 1975-02-14 | ||
US4050638A (en) * | 1974-04-24 | 1977-09-27 | Ngk Insulators, Ltd. | Radioactive matter containing waste gas treating installation |
US4000617A (en) * | 1975-01-27 | 1977-01-04 | General Atomic Company | Closed cycle gas turbine system |
US4057465A (en) * | 1975-08-08 | 1977-11-08 | Westinghouse Electric Corporation | Nuclear reactor auxiliary heat removal system |
JPS5847039B2 (ja) | 1977-04-01 | 1983-10-20 | 石川島播磨重工業株式会社 | 核燃料の処理方法及び核方法に用いる処理装置 |
US4131511A (en) * | 1977-02-04 | 1978-12-26 | Combustion Engineering, Inc. | Nuclear fuel element |
JPS5433991A (en) * | 1977-08-19 | 1979-03-13 | Hitachi Ltd | Fast breeder |
US4257846A (en) * | 1978-01-19 | 1981-03-24 | Westinghouse Electric Corp. | Bi-brayton power generation with a gas-cooled nuclear reactor |
US4292127A (en) | 1978-04-14 | 1981-09-29 | United Kingdom Atomic Energy Authority | Nuclear fuel pins |
US4229942A (en) * | 1978-06-06 | 1980-10-28 | Kms Fusion, Inc. | Radiolytic dissociative gas power conversion cycles |
USRE31697E (en) * | 1978-06-06 | 1984-10-09 | Kms Fusion, Inc. | Radiolytic dissociative gas power conversion cycles |
US4257847A (en) * | 1978-10-06 | 1981-03-24 | The United States Of America As Represented By The United States Department Of Energy | Nuclear breeder reactor fuel element with axial tandem stacking and getter |
DE3016402A1 (de) * | 1980-04-29 | 1981-11-05 | GHT Gesellschaft für Hochtemperaturreaktor-Technik mbH, 5060 Bergisch Gladbach | Hochtemperaturreaktor in modul-bauweise |
JPS57184510A (en) | 1981-05-07 | 1982-11-13 | Nippon Kokan Kk <Nkk> | Automatic measuring method of pressing center of extrusion press and its device |
JPS5983082A (ja) * | 1982-11-04 | 1984-05-14 | 株式会社日立製作所 | 高速増殖炉の炉心構造 |
JPS5987696A (ja) | 1982-11-10 | 1984-05-21 | アドバンスト・マイクロ・デイバイシズ・インコ−ポレ−テツド | センス率の制御装置 |
US4548347A (en) | 1982-11-30 | 1985-10-22 | The United States Of America As Represented By The United States Department Of Energy | Automated fuel pin loading system |
US4508677A (en) * | 1983-02-09 | 1985-04-02 | General Electric Company | Modular nuclear reactor for a land-based power plant and method for the fabrication, installation and operation thereof |
SE436078B (sv) * | 1983-03-30 | 1984-11-05 | Asea Atom Ab | Brenslestav for kernreaktor brenslestav for kernreaktor |
US4853177A (en) * | 1983-05-06 | 1989-08-01 | The Babcock & Wilcox Company | Void plug for annular fuel pellets |
US4526741A (en) * | 1983-06-10 | 1985-07-02 | The United States Of America As Represented By The United States Department Of Energy | Fuel assembly for the production of tritium in light water reactors |
US4624828A (en) | 1983-12-29 | 1986-11-25 | Battelle Memorial Institute | Metal-actinide nitride nuclear fuel |
JPS60181694A (ja) | 1984-02-28 | 1985-09-17 | 株式会社日立製作所 | 燃料要素の製造方法およびその装置 |
US4863675A (en) * | 1984-10-04 | 1989-09-05 | General Atomics | Nuclear power system |
US4717534A (en) | 1985-02-19 | 1988-01-05 | Westinghouse Electric Corp. | Nuclear fuel cladding containing a burnable absorber |
US4687605A (en) | 1985-02-19 | 1987-08-18 | Westinghouse Electric Corp. | Manufacturing automation system for nuclear fuel rod production |
US4687629A (en) * | 1986-01-27 | 1987-08-18 | Westinghouse Electric Corp. | Fuel rod with annular nuclear fuel pellets having same U-235 enrichment and different annulus sizes for graduated enrichment loading |
JPS62207995A (ja) * | 1986-03-07 | 1987-09-12 | 株式会社東芝 | 高速増殖炉 |
JPS633292A (ja) * | 1986-06-24 | 1988-01-08 | 株式会社東芝 | 高速増殖炉 |
JPS6373191A (ja) * | 1986-09-17 | 1988-04-02 | 株式会社東芝 | 高速増殖炉の運転方法 |
SU1764783A1 (ru) | 1986-12-08 | 1992-09-30 | Центральный научно-исследовательский дизельный институт | Способ лить чугунных полых заготовок |
US4759911A (en) * | 1987-04-27 | 1988-07-26 | The Babcock & Wilcox Company | Gas cooled nuclear fuel element |
GB2234849B (en) * | 1987-07-28 | 1991-05-01 | Nat Nuclear Corp Ltd | Nuclear reactor-based power source |
US4859402A (en) * | 1987-09-10 | 1989-08-22 | Westinghouse Electric Corp. | Bottom supported liquid metal nuclear reactor |
JPS6473290A (en) * | 1987-09-16 | 1989-03-17 | Westinghouse Electric Corp | Liquid metal fast furnace |
USH689H (en) | 1987-11-24 | 1989-10-03 | The United States of America as reprsented by the United States Department of Energy | Fuel pin |
JP2510648B2 (ja) | 1988-01-22 | 1996-06-26 | 株式会社日立製作所 | 燃料要素 |
US4814046A (en) | 1988-07-12 | 1989-03-21 | The United States Of America As Represented By The United States Department Of Energy | Process to separate transuranic elements from nuclear waste |
JPH02184792A (ja) | 1989-01-11 | 1990-07-19 | Hitachi Ltd | 原子炉の炉心 |
US5044911A (en) | 1989-04-06 | 1991-09-03 | United States Department Of Energy | Apparatus for injection casting metallic nuclear energy fuel rods |
US4971753A (en) | 1989-06-23 | 1990-11-20 | General Electric Company | Nuclear fuel element, and method of forming same |
US4997596A (en) | 1989-09-18 | 1991-03-05 | General Electric Company | Fissionable nuclear fuel composition |
DE3938345A1 (de) * | 1989-11-17 | 1991-05-23 | Interatom | Fluessigmetallgekuehlter kernreaktor |
US5112534A (en) | 1990-03-05 | 1992-05-12 | The United States Of America As Represented By The United States Department Of Energy | Yttrium and rare earth stabilized fast reactor metal fuel |
US6113982A (en) | 1990-06-25 | 2000-09-05 | Lanxide Technology Company, Lp | Composite bodies and methods for making same |
EP0469616B1 (en) | 1990-08-03 | 1996-05-01 | Kabushiki Kaisha Toshiba | Transuranium elements transmuting reactor core, transuranium elements transmuting fuel pin and transuranium elements transmuting fuel assembly |
DE4032521A1 (de) | 1990-10-11 | 1992-04-16 | Mannesmann Ag | Stranggiesskokille |
JP2500390B2 (ja) * | 1990-12-14 | 1996-05-29 | 動力炉・核燃料開発事業団 | 深海調査船用原子炉 |
JPH04270992A (ja) * | 1991-02-27 | 1992-09-28 | Toshiba Corp | 免震高速増殖炉 |
JP3031644B2 (ja) * | 1991-07-31 | 2000-04-10 | 株式会社日立製作所 | 燃料集合体及び炉心 |
JP2703428B2 (ja) | 1991-08-29 | 1998-01-26 | 株式会社東芝 | 小型高速炉 |
JPH0713662B2 (ja) * | 1992-01-06 | 1995-02-15 | 財団法人電力中央研究所 | 小型液体金属冷却高速炉 |
US5219519A (en) | 1992-02-21 | 1993-06-15 | General Electric Company | Increased fuel column height for boiling water reactor fuel rods |
US5317611A (en) * | 1992-05-05 | 1994-05-31 | Westinghouse Electric Corp. | Stackable truncated conical shell fuel element and an assembly thereof for a nuclear thermal engine |
JP2740995B2 (ja) * | 1992-07-29 | 1998-04-15 | 動力炉・核燃料開発事業団 | 液体金属冷却型高速炉及びそれを用いた発電システム |
US5377246A (en) | 1992-10-28 | 1994-12-27 | General Electric Company | Elliptical metal fuel/cladding barrier and related method for improving heat transfer |
JPH06194477A (ja) | 1992-12-24 | 1994-07-15 | Hitachi Ltd | 核燃料棒 |
US5519748A (en) | 1993-04-23 | 1996-05-21 | General Electric Company | Zircaloy tubing having high resistance to crack propagation |
US5437747A (en) | 1993-04-23 | 1995-08-01 | General Electric Company | Method of fabricating zircalloy tubing having high resistance to crack propagation |
JPH06324169A (ja) | 1993-05-14 | 1994-11-25 | Central Res Inst Of Electric Power Ind | 高速増殖炉用金属燃料被覆管 |
US5341407A (en) | 1993-07-14 | 1994-08-23 | General Electric Company | Inner liners for fuel cladding having zirconium barriers layers |
JP2668646B2 (ja) | 1993-11-17 | 1997-10-27 | 動力炉・核燃料開発事業団 | 高速炉炉心 |
US5419886A (en) | 1994-03-08 | 1995-05-30 | Rockwell International Corporation | Method for generation of finely divided reactive plutonium oxide powder |
JPH07294676A (ja) | 1994-04-27 | 1995-11-10 | Toshiba Corp | 燃料集合体および原子炉の炉心 |
US5742653A (en) * | 1994-05-19 | 1998-04-21 | General Electric Company | Vertical and lateral restraint stabilizer for core shroud of boiling water reactor |
US5608768A (en) * | 1995-01-17 | 1997-03-04 | General Electric Company | Threaded fuel rod end plugs and related method |
US5502754A (en) * | 1995-02-02 | 1996-03-26 | General Electric Company | Lateral restraint for core plate of boiling water reactor |
JPH0933687A (ja) | 1995-07-25 | 1997-02-07 | Hitachi Ltd | 使用済原子燃料の再処理方法 |
JPH0943389A (ja) | 1995-07-27 | 1997-02-14 | Toshiba Corp | アクチニドリサイクルシステム |
JPH0943391A (ja) | 1995-07-27 | 1997-02-14 | Toshiba Corp | 核燃料リサイクルシステム |
JPH09119994A (ja) | 1995-08-22 | 1997-05-06 | Hitachi Ltd | 燃料棒及びその製造方法並びに燃料集合体 |
US5828715A (en) | 1995-08-22 | 1998-10-27 | Hitachi, Ltd. | Fuel rods, its manufacturing method and fuel assembly |
JPH09251088A (ja) | 1996-03-14 | 1997-09-22 | Toshiba Corp | 核燃料要素 |
US6056703A (en) | 1996-04-03 | 2000-05-02 | Rush Presbyterian-St Luke's Medical Center | Method and apparatus for characterizing gastrointestinal sounds |
US5711826A (en) | 1996-04-12 | 1998-01-27 | Crs Holdings, Inc. | Functionally gradient cladding for nuclear fuel rods |
US5822388A (en) | 1996-11-15 | 1998-10-13 | Combustion Engineering Inc. | MOX fuel arrangement for nuclear core |
JPH10170677A (ja) * | 1996-12-06 | 1998-06-26 | Kawasaki Heavy Ind Ltd | 高速炉燃料集合体のグリッドスペーサの構造 |
JPH10319169A (ja) * | 1997-05-21 | 1998-12-04 | Japan Atom Energy Res Inst | ヘリウム冷却高速増殖炉 |
RU2124767C1 (ru) | 1997-08-26 | 1999-01-10 | Государственный научный центр РФ Всероссийский научно-исследовательский институт неорганических материалов им.акад. А.А.Бочвара | Твэл ядерного реактора |
US6091791A (en) * | 1997-08-29 | 2000-07-18 | General Electric Company | Shroud attachment for a boiling water reactor |
JPH11326571A (ja) | 1998-05-14 | 1999-11-26 | Central Res Inst Of Electric Power Ind | 原子炉用金属燃料要素 |
KR100293482B1 (ko) | 1998-09-08 | 2001-07-12 | 이종훈 | 핵연료소결체의제조방법 |
JP2000180572A (ja) * | 1998-12-15 | 2000-06-30 | Toshiba Corp | 液体金属冷却型原子炉 |
US6233298B1 (en) * | 1999-01-29 | 2001-05-15 | Adna Corporation | Apparatus for transmutation of nuclear reactor waste |
US6243433B1 (en) | 1999-05-14 | 2001-06-05 | General Electic Co. | Cladding for use in nuclear reactors having improved resistance to stress corrosion cracking and corrosion |
US6298108B1 (en) | 1999-07-21 | 2001-10-02 | Yousef M. Farawila | Nuclear fuel rod with upward-shifted pellet stack and a device to realize same |
US6259760B1 (en) * | 1999-09-08 | 2001-07-10 | Westinghouse Electric Company Llc | Unitary, transportable, assembled nuclear steam supply system with life time fuel supply and method of operating same |
AU7845900A (en) | 1999-09-29 | 2001-04-30 | Siemens Corporate Research, Inc. | Multi-modal cardiac diagnostic decision support system and method |
US7139352B2 (en) * | 1999-12-28 | 2006-11-21 | Kabushiki Kaisha Toshiba | Reactivity control rod for core |
US6343107B1 (en) * | 2000-02-01 | 2002-01-29 | General Electric Company | Shroud repair apparatus |
FR2805075B1 (fr) | 2000-02-15 | 2002-05-10 | Franco Belge Combustibles | Procede de controle d'une operation de fermeture etanche par soudage de l'extremite d'un canal de remplissage traversant le bouchon superieur d'un crayon de combustible nucleaire |
CN1262341C (zh) * | 2000-09-04 | 2006-07-05 | 热载体标准反应堆私人有限公司 | 核反应堆 |
JP2002131459A (ja) | 2000-10-25 | 2002-05-09 | Central Res Inst Of Electric Power Ind | 原子炉用金属燃料要素 |
JP2002181976A (ja) | 2000-12-14 | 2002-06-26 | Central Res Inst Of Electric Power Ind | 原子炉及びこれを備える原子力プラント |
US6888713B2 (en) | 2000-12-21 | 2005-05-03 | Douglas Wayne Stamps | Device and method to mitigate hydrogen explosions in vacuum furnaces |
JP4312969B2 (ja) | 2001-03-02 | 2009-08-12 | 東京電力株式会社 | 使用済原子燃料の再処理方法 |
JP3530939B2 (ja) | 2001-08-09 | 2004-05-24 | 東京工業大学長 | 原子炉プラント |
US6840913B2 (en) | 2001-03-09 | 2005-01-11 | Biomedical Acoustic Research Corp. | Acoustic detection of gastric motility dysfunction |
JP2004101199A (ja) | 2002-09-04 | 2004-04-02 | Japan Nuclear Cycle Development Inst States Of Projects | 振動充填型原子炉燃料棒 |
RU2244347C2 (ru) | 2002-10-24 | 2005-01-10 | Открытое акционерное общество "Машиностроительный завод" | Стержневой тепловыделяющий элемент водоводяного энергетического реактора |
US6768781B1 (en) * | 2003-03-31 | 2004-07-27 | The Boeing Company | Methods and apparatuses for removing thermal energy from a nuclear reactor |
JP2005232522A (ja) | 2004-02-18 | 2005-09-02 | Ebara Corp | 原子力発電プラントにおける水素製造システム |
DE112005000402T5 (de) | 2004-02-18 | 2008-06-12 | Ebara Corp. | Verfahren und Vorrichtung zur Wasserstoffproduktion |
JP4247410B2 (ja) | 2004-07-16 | 2009-04-02 | 独立行政法人 日本原子力研究開発機構 | 使用済み燃料の再利用方法及び高速炉の炉心構造 |
US7521007B1 (en) | 2004-10-04 | 2009-04-21 | The United States Of America As Represented By The United States Department Of Energy | Methods and apparatuses for the development of microstructured nuclear fuels |
JP2006226905A (ja) | 2005-02-18 | 2006-08-31 | Japan Nuclear Cycle Development Inst States Of Projects | 金属燃料高速炉炉心 |
US20080144762A1 (en) | 2005-03-04 | 2008-06-19 | Holden Charles S | Non Proliferating Thorium Nuclear Fuel Inert Metal Matrix Alloys for Fast Spectrum and Thermal Spectrum Thorium Converter Reactors |
JP2006328260A (ja) | 2005-05-27 | 2006-12-07 | Japan Electronic Materials Corp | 熱交換媒体 |
US7961835B2 (en) * | 2005-08-26 | 2011-06-14 | Keller Michael F | Hybrid integrated energy production process |
JP4724848B2 (ja) * | 2006-04-21 | 2011-07-13 | 独立行政法人 日本原子力研究開発機構 | 核熱利用コンバインドブレイトンサイクル発電システム装置 |
FR2901627B1 (fr) | 2006-05-24 | 2009-05-01 | Commissariat Energie Atomique | Procede de retraitement d'un combustible nucleaire use et de preparation d'un oxyde mixte d'uranium et de plutonium |
KR100804406B1 (ko) * | 2006-07-15 | 2008-02-15 | 한국원자력연구원 | 이중 냉각 핵연료봉의 상, 하부 봉단마개 |
JP4936906B2 (ja) | 2007-01-11 | 2012-05-23 | 株式会社東芝 | 原子力システム |
JP4825763B2 (ja) * | 2007-09-21 | 2011-11-30 | 株式会社東芝 | 反射体制御方式の高速炉 |
WO2009150710A1 (ja) * | 2008-06-09 | 2009-12-17 | 原子燃料工業株式会社 | 重水炉または黒鉛炉用燃料及びその製造方法 |
JP4909951B2 (ja) | 2008-07-14 | 2012-04-04 | 株式会社東芝 | 中性子遮蔽体 |
KR101023233B1 (ko) * | 2009-04-06 | 2011-03-21 | 한국수력원자력 주식회사 | 무연삭 환형 핵연료 소결체 제조방법 |
US8571167B2 (en) | 2009-06-01 | 2013-10-29 | Advanced Reactor Concepts LLC | Particulate metal fuels used in power generation, recycling systems, and small modular reactors |
KR101680727B1 (ko) | 2010-01-13 | 2016-11-29 | 어드밴스드 리액터 컨셉트 엘엘씨 | 피복된 환형의 금속 핵 연료 |
US8767902B2 (en) | 2010-02-22 | 2014-07-01 | Advanced Reactor Concepts LLC | Small, fast neutron spectrum nuclear power plant with a long refueling interval |
JP5906408B2 (ja) * | 2011-07-15 | 2016-04-20 | パナソニックIpマネジメント株式会社 | 照明光通信装置及びそれを用いた照明器具、並びに照明システム |
CA2883966A1 (en) | 2012-09-05 | 2014-03-13 | Transatomic Power Corporation | Nuclear reactors and related methods and apparatus |
GB2586102B (en) | 2014-04-14 | 2021-05-05 | Advanced Reactor Concepts LLC | Ceramic nuclear fuel dispersed in a metallic alloy matrix |
-
2011
- 2011-02-18 US US13/030,740 patent/US8767902B2/en active Active
- 2011-02-18 RU RU2012140426/07A patent/RU2596160C2/ru active
- 2011-02-18 WO PCT/US2011/025455 patent/WO2011142869A2/en active Application Filing
- 2011-02-18 JP JP2012554058A patent/JP6001457B2/ja active Active
- 2011-02-18 RU RU2016131332A patent/RU2713473C2/ru active
- 2011-02-18 KR KR1020127021096A patent/KR101834845B1/ko active IP Right Grant
-
2014
- 2014-05-30 US US14/291,890 patent/US9640283B2/en active Active
-
2016
- 2016-09-01 JP JP2016170494A patent/JP6407222B2/ja active Active
-
2017
- 2017-05-01 US US15/583,838 patent/US20170337992A1/en not_active Abandoned
-
2019
- 2019-07-22 US US16/518,925 patent/US20200027575A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3178354A (en) * | 1961-07-25 | 1965-04-13 | Jackson & Moreland Inc | Steam cooled nuclear reactor system with improved fuel element assembly |
US4147590A (en) * | 1965-09-01 | 1979-04-03 | The United States Of America As Represented By The United States Department Of Energy | Nuclear propulsion apparatus with alternate reactor segments |
US3708393A (en) * | 1970-12-01 | 1973-01-02 | Atomic Energy Commission | Radial restraint mechanism for reactor core |
SU714505A1 (ru) * | 1978-01-19 | 1980-02-05 | Государственный Научно-Исследовательский Институт Им. Г.М.Кржижановского | Ядерна энергетическа установка |
US4943409A (en) * | 1987-03-31 | 1990-07-24 | National Nuclear Corporation Limited | Reactivity control in nuclear reactors |
US5196159A (en) * | 1990-07-24 | 1993-03-23 | Kabushiki Kaisha Toshiba | Fast reactor |
Non-Patent Citations (1)
Title |
---|
Гольдин В. Я. и др. Проект активной зоны реактора типа БН-800, работающего без запаса реактивности с минимальным управлением в течение длительного времени. Матем. моделирование, т. 21 N 10, 2009, с. 76. Small Reactors without On-Site Refueling (2004-2008). CRP l25001. NPTD. IAEA, 15.10.2008, p. 1-3. Kadak et al. Nuclear Power Plant. Design Project A Response to the Environmental and Economic Challenge Of Global Warming. Phase 1 Review of Options & Selection of Technology of Choice. Massachusetts Institute of Technology. IAP. January 1998. С. 8, 20. Cha et al. Development of a Supercritical CO2 Brayton Energy Conversion System Coupled with a Sodium Cooled Fast Reactor Nucl. Eng. and Technol., Vol.41 N.8 Oct. 2009, p.1025. Innovative small and medium sized reactors: Design features, safety approaches and R&D trends. IAEA, VIENNA, 2005, р. 1, 187. * |
Also Published As
Publication number | Publication date |
---|---|
KR101834845B1 (ko) | 2018-03-06 |
US8767902B2 (en) | 2014-07-01 |
RU2016131332A3 (ru) | 2019-11-20 |
JP6407222B2 (ja) | 2018-10-17 |
US20200027575A1 (en) | 2020-01-23 |
WO2011142869A2 (en) | 2011-11-17 |
US20140321590A1 (en) | 2014-10-30 |
US20170337992A1 (en) | 2017-11-23 |
JP2017015722A (ja) | 2017-01-19 |
RU2012140426A (ru) | 2014-03-27 |
US20110206173A1 (en) | 2011-08-25 |
RU2016131332A (ru) | 2018-12-07 |
KR20120123085A (ko) | 2012-11-07 |
US9640283B2 (en) | 2017-05-02 |
JP6001457B2 (ja) | 2016-10-05 |
JP2013520657A (ja) | 2013-06-06 |
RU2713473C2 (ru) | 2020-02-05 |
WO2011142869A3 (en) | 2012-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2596160C2 (ru) | Небольшая атомная электростанция на быстрых нейтронах с длительным интервалом замены топлива | |
KR20190092508A (ko) | 부하추종 및 열병합 발전 능력을 갖춘 소형 모듈형 원자로 전력 플랜트 및 사용 방법 | |
Sinha | Advanced nuclear reactor systems–an Indian perspective | |
Marcus et al. | New designs for the nuclear renaissance | |
Choi | Small modular reactors (SMRs): The case of the Republic of Korea | |
Lommers et al. | AREVA Modular Steam Cycle–High Temperature Gas-Cooled Reactor Development Progress | |
Penner et al. | Steps toward passively safe, proliferation-resistant nuclear power | |
Brey | Development history of the gas turbine modular high temperature reactor | |
Khan et al. | Nuclear power plant systems | |
Shepherd et al. | The possibilities of achieving high temperatures in a gas cooled reactor | |
Shenoy et al. | Steam cycle modular helium reactor | |
US20240339230A1 (en) | A low pressure water reactor and a method for controlling a low pressure water reactor | |
Kozier | The nuclear battery: a very small reactor power supply for remote locations | |
Petrovic et al. | Iris project update: status of the design and licensing activities | |
Khan et al. | A review: Activities in the field of small and medium sized nuclear power plants | |
JP2024542300A (ja) | 低加圧水型原子炉及びその制御方法 | |
Hussein | Small Reactors: The Promise and Challenges [View Point] | |
Kugeler et al. | Development of HTR Technology | |
Stahlkopf et al. | Perspective on small and medium size reactors | |
Kozier | The Nuclear Battery: a very small reactor power supply for remote locations | |
Melese-d'Hospital et al. | Status of helium-cooled nuclear power systems | |
Kim et al. | Conceptual System Design of a Supercritical CO {sub 2} cooled Micro Modular Reactor-18492 | |
Berglund et al. | Progress on PRISM, an advanced liquid metal reactor power plant concept for the future | |
Glasstone et al. | Advanced Plants and the Future | |
Ponomarev-Stepnoi | Modular HTGR for countries and regions with small and medium power networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HE9A | Changing address for correspondence with an applicant |