[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2438256C2 - Использование dtx и drx в системе беспроводной связи - Google Patents

Использование dtx и drx в системе беспроводной связи Download PDF

Info

Publication number
RU2438256C2
RU2438256C2 RU2009130587/09A RU2009130587A RU2438256C2 RU 2438256 C2 RU2438256 C2 RU 2438256C2 RU 2009130587/09 A RU2009130587/09 A RU 2009130587/09A RU 2009130587 A RU2009130587 A RU 2009130587A RU 2438256 C2 RU2438256 C2 RU 2438256C2
Authority
RU
Russia
Prior art keywords
sleep mode
mobile device
mode
cycle
period
Prior art date
Application number
RU2009130587/09A
Other languages
English (en)
Other versions
RU2009130587A (ru
Inventor
Александар ДАМНЯНОВИЧ (US)
Александар ДАМНЯНОВИЧ
Натан Эдвард ТЕННИ (US)
Натан Эдвард ТЕННИ
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2009130587A publication Critical patent/RU2009130587A/ru
Application granted granted Critical
Publication of RU2438256C2 publication Critical patent/RU2438256C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0071Provisions for the electrical-optical layer interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0077Labelling aspects, e.g. multiprotocol label switching [MPLS], G-MPLS, MPAS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

Настоящее изобретение относится к области беспроводной связи. Технический результат заключается в обеспечении снижения энергопотребления на аппарате связи в системе беспроводной связи. Мобильный аппарат может использовать контроллер спящего режима, который может обеспечивать выбор и/или переключение в нужный спящий режим на основании, отчасти, заранее заданных критериев спящего режима. Спящие режимы могут включать в себя неспящий режим, легкий спящий режим и/или глубокий спящий режим. Мобильный аппарат может использовать анализатор для оценивания информации, относящейся к явным сигналам, неявным сигналам и/или текущему спящему режиму, для определения, выполняется ли условие, на основании, отчасти, заранее заданных критериев спящего режима, в результате чего переход в другой спящий режим подлежит осуществлению. Если условие встречается, контроллер спящего режима может обеспечивать переход из текущего спящего режима в другой спящий режим для обеспечения снижения энергопотребления мобильным аппаратом. 4 н. и 4 з.п. ф-лы, 10 ил.

Description

Ссылки на родственные заявки
Данная заявка притязает на приоритет предварительной патентной заявки США № 60/884604 под названием “A METHOD AND APPARATUS FOR USING DTX-DRX MODES IN A WIRELESS COMMUNICATION SYSTEM”, поданной 11 января 2007 г., которая в полном объеме включена сюда в порядке ссылки, и предварительной патентной заявки США № 60/888280 под названием “A METHOD AND APPARATUS FOR USING DTX AND DRX IN A WIRELESS COMMUNICATION SYSTEM”, поданной 5 февраля 2007 г., которая в полном объеме включена сюда в порядке ссылки.
Область техники
Нижеследующее описание относится, в целом, к беспроводной связи и, в частности, к использованию изменяющихся спящих режимов для обеспечения снижения энергопотребления на аппарате связи в системе беспроводной связи.
Уровень техники
Системы беспроводной связи широко используются для обеспечения различных типов связи; например, посредством таких систем беспроводной связи можно передавать речь и/или данные. Типичная система или сеть беспроводной связи может обеспечивать многопользовательский доступ к одному или нескольким ресурсам совместного пользования (например, полосе, передаваемой мощности, …). Например, система может использовать различные методы множественного доступа, в частности мультиплексирование с частотным разделением (FDM), мультиплексирование с временным разделением (TDM), мультиплексирование с кодовым разделением (CDM), системы Long-Term Evolution (LTE), предложенные организацией Third Generation Partnership Project (3GPP), ортогональное мультиплексирование с частотным разделением (OFDM), и др.
В общем случае, системы беспроводной связи множественного доступа могут одновременно поддерживать связь для множественных мобильных аппаратов. Каждый мобильный аппарат может осуществлять связь с одной или несколькими базовыми станциями посредством передач по прямой и обратной линиям связи. Прямая (или нисходящая) линия связи - это линия связи от базовых станций к мобильным аппаратам, и обратная (или восходящая) линия связи - это линия связи от мобильных аппаратов к базовым станциям. Эту линию связи можно устанавливать посредством системы одного входа и одного выхода, нескольких входов и одного выхода или нескольких входов и нескольких выходов (MIMO).
Например, система MIMO может использовать множественные (N T) передающие антенны и множественные (N R) приемные антенны для передачи данных. Канал MIMO, образованный N T передающими и N R приемными антеннами, можно разложить на N S независимых каналов, которые можно именовать пространственными каналами, где
Figure 00000001
. Каждый из N S независимых каналов соответствует отдельному пространственному измерению. Система MIMO может обеспечивать повышенную производительность (например, повышенную пропускную способность и/или повышенную надежность) в случае использования дополнительных пространственных измерений, созданных множественными передающими и приемными антеннами.
Система MIMO может поддерживать системы дуплексной связи с временным разделением (TDD) и дуплексной связи с частотным разделением (FDD). В системе TDD прямая и обратная линии связи передачи могут работать в одном и том же частотном диапазоне, благодаря чему принцип обратимости позволяет устанавливать канал прямой линии связи из канала обратной линии связи. Это может давать возможность точке доступа извлекать коэффициент усиления диаграммы направленности передачи на прямой линии связи при наличии множественных антенн на точке доступа.
Системы беспроводной связи часто используют одну или несколько базовых станций, которые обеспечивают зону покрытия. Типичная базовая станция может передавать множественные потоки данных для широковещательных, многоадресных и/или одноадресных услуг, причем поток данных может представлять собой поток данных, который может представлять независимый интерес для приема на мобильном аппарате. Мобильный аппарат в зоне покрытия такой базовой станции можно использовать для приема одного, более одного или всех потоков данных, переносимых составным потоком. Аналогично мобильный аппарат может передавать данные на базовую станцию или другой мобильный аппарат.
Обычно мобильные аппараты используют мощность (например, мощность батареи) при включении, а также в течение периодов связи с базовой станцией и/или другими мобильными аппаратами через базовую станцию. Величина мощности, потребляемой мобильным аппаратом, может частично зависеть от конфигурации мобильного аппарата и/или функции (например, операции), осуществляемой мобильным аппаратом. Желательно снижать величину мощности, используемой мобильным аппаратом, поскольку такое снижение может приводить к увеличению срока службы батареи и сокращению затрат на использование мобильного аппарата и батареи.
Сущность изобретения
Ниже, в упрощенном виде, представлена сводка одного или нескольких вариантов осуществления для обеспечения понимания сущности таких вариантов осуществления. Эта сводка не является обширным обзором всех мыслимых вариантов осуществления и не призвана ни идентифицировать ключевые или критические элементы всех вариантов осуществления, ни ограничивать объем каких-либо или всех вариантов осуществления. Ее единственной целью является представление некоторых концепций одного или нескольких вариантов осуществления в упрощенной форме в качестве вводной части к более подробному описанию, которое приведено ниже.
Согласно одному или нескольким вариантам осуществления и соответствующему их раскрытию различные аспекты описаны в связи с обеспечением снижения энергопотребления в аппарате связи (например, мобильном аппарате) за счет применения различных спящих режимов в аппарате связи. Мобильный аппарат может использовать контроллер спящего режима, который может обеспечивать выбор и/или переключение в нужный спящий режим на основании, отчасти, заранее заданных критериев спящего режима. Спящие режимы могут включать в себя, например, неспящий режим, легкий спящий режим и/или глубокий спящий режим. Мобильный аппарат может использовать анализатор, который может действовать совместно с контроллером спящего режима для оценивания информации, относящейся к определению переходов спящего режима, например явных сигналов (например, сообщения от базовой станции, предписывающего изменения спящего режима), неявных сигналов (например, отсутствия обменов данными между мобильным аппаратом и базовой станцией в течение заранее определенного периода времени), текущего состояния спящего режима и/или доступных состояний спящего режима для определения, выполняется ли условие, на основании, отчасти, заранее заданных критериев спящего режима, в результате чего переход в другой спящий режим подлежит осуществлению. Если условие выполняется, контроллер спящего режима может обеспечивать переход из текущего спящего режима в другой спящий режим для обеспечения снижения энергопотребления мобильным аппаратом.
Согласно родственным аспектам здесь описан способ, который обеспечивает выбор спящего режима, связанного с мобильным аппаратом. Способ может включать в себя этап, на котором сигнализируют для обеспечения выбора спящего режима. Кроме того, способ может содержать этап, на котором выбирают спящий режим на основании, отчасти, заранее заданных критериев спящего режима.
Еще один аспект предусматривает устройство беспроводной связи. Устройство беспроводной связи может включать в себя память, в которой хранятся инструкции, относящиеся к выбору спящего режима на основании, отчасти, заранее заданных критериев спящего режима. Кроме того, устройство беспроводной связи может включать в себя процессор, подключенный к памяти, сконфигурированный, чтобы выполнять инструкции, хранящиеся в памяти.
Еще один аспект предусматривает устройство беспроводной связи, которое обеспечивает выбор спящего режима. Устройство беспроводной связи может включать в себя средство для сигнализации для обеспечения выбора спящего режима. Кроме того, устройство беспроводной связи может содержать средство для выбора спящего режима на основании, отчасти, заранее заданных критериев спящего режима.
Еще один аспект предусматривает машиночитаемый носитель, на котором хранятся машиноисполняемые инструкции для сигнализации для обеспечения перехода из первого спящего режима в другой спящий режим; и выбора спящего режима на основании, отчасти, заранее заданных критериев спящего режима.
Согласно еще одному аспекту устройство в системе беспроводной связи может включать в себя процессор, причем процессор может быть сконфигурирован, чтобы сигнализировать для выбора спящего режима при выполнении условия на основании, отчасти, заранее заданных критериев спящего режима. Кроме того, процессор может быть сконфигурирован, чтобы выбирать спящий режим на основании, отчасти, заранее заданных критериев спящего режима.
Согласно другим аспектам здесь описан способ, который обеспечивает переходы спящего режима, связанные с мобильным аппаратом. Способ может включать в себя этап, на котором оценивают информацию, относящуюся к переходам спящего режима, связанным с мобильным аппаратом. Кроме того, способ может включать в себя этап, на котором передают сигнал для обеспечения перехода из первого спящего режима в другой спящий режим на основании, отчасти, заранее заданных критериев спящего режима.
Еще один аспект предусматривает устройство беспроводной связи, которое может включать в себя память, в которой хранятся инструкции, относящиеся к сигнализации, связанной с выбором спящего режима, и выбору спящего режима, связанного с мобильным аппаратом, на основании, отчасти, заранее заданных критериев спящего режима. Кроме того, устройство беспроводной связи может содержать процессор, подключенный к памяти, сконфигурированный, чтобы выполнять инструкции, хранящиеся в памяти.
Еще один аспект предусматривает устройство беспроводной связи, которое обеспечивает выбор спящего режима, связанного с мобильным аппаратом в среде беспроводной связи. Устройство беспроводной связи может включать в себя средство для сигнализации для обеспечения выбора спящего режима. Кроме того, устройство беспроводной связи может включать в себя средство для выбора спящего режима на основании, отчасти, заранее заданных критериев спящего режима.
Еще один аспект предусматривает машиночитаемый носитель, на котором хранятся машиноисполняемые инструкции для оценивания информации, связанной с переходом в конкретный спящий режим, на основании, отчасти, заранее заданных критериев спящего режима, и сигнализации перехода в конкретный спящий режим при выполнении условия перехода, связанного с заранее заданными критериями спящего режима.
Согласно еще одному аспекту устройство в системе беспроводной связи может включать в себя процессор, причем процессор может быть сконфигурирован, чтобы оценивать информацию, связанную с переходами спящего режима на основании, отчасти, критериев спящего режима. Кроме того, процессор может быть сконфигурирован, чтобы выбирать спящий режим, связанный с мобильным аппаратом. Кроме того, процессор может быть сконфигурирован, чтобы передавать, по меньшей мере, один сигнал, связанный с переходом из первого спящего режима в другой спящий режим. Процессор может дополнительно быть сконфигурирован, чтобы планировать обмены данными, связанные с мобильным аппаратом.
Для достижения вышеозначенных и родственных целей один или несколько вариантов осуществления содержат признаки, полностью описанные ниже и конкретно указанные в формуле изобретения. В нижеследующем описании и прилагаемых чертежах подробно представлены некоторые иллюстративные аспекты одного или нескольких вариантов осуществления. Однако эти аспекты указывают лишь некоторые возможные пути применения принципов различных вариантов осуществления, и описанные варианты осуществления призваны включать в себя все такие аспекты и их эквиваленты.
Краткое описание чертежей
Фиг.1 - система беспроводной связи согласно различным изложенным здесь аспектам.
Фиг.2 - схема примерной системы, которая может обеспечивать переходы между разными спящими режимами, связанными с мобильным аппаратом в среде беспроводной связи.
Фиг.3 - схема примерной системы, которая может обеспечивать переходы между разными спящими режимами, связанными с мобильным аппаратом в среде беспроводной связи.
Фиг.4 - схема примерного способа, который может обеспечивать выбор спящего режима в мобильном аппарате, связанном с системой беспроводной связи.
Фиг.5 - схема примерного способа, который может обеспечивать переход в спящий режим в мобильном аппарате, связанном с системой беспроводной связи.
Фиг.6 - схема примерного мобильного аппарата, который может обеспечивать переходы между спящими режимами в мобильном аппарате, связанном с системой беспроводной связи.
Фиг.7 - схема примерной системы, которая может обеспечивать переходы между спящими режимами в мобильном аппарате, связанном с системой беспроводной связи.
Фиг.8 - схема примерной беспроводной сетевой среды, которую можно использовать совместно с различными описанными здесь системами и способами.
Фиг.9 - схема примерной системы, которая может обеспечивать переходы между разными спящими режимами в мобильном аппарате, связанном со средой беспроводной связи.
Фиг.10 - схема примерной системы, которая может обеспечивать переходы между разными спящими режимами в мобильном аппарате, связанном со средой беспроводной связи.
ПОДРОБНОЕ ОПИСАНИЕ
Различные варианты осуществления будут описаны ниже со ссылкой на чертежи, снабженные сквозной системой обозначений. В нижеследующем описании, в целях объяснения, многочисленные конкретные детали представлены для обеспечения исчерпывающего понимания одного или нескольких вариантов осуществления. Однако очевидно, что такой(ие) вариант(ы) осуществления можно реализовать на практике без этих конкретных деталей. В других случаях общеизвестные структуры и аппараты показаны в виде блок-схемы для обеспечения описания одного или нескольких вариантов осуществления.
Используемые в этой заявке термины “компонент”, “модуль”, “система” и т.п. относятся к компьютерной сущности, оборудованию, программно-аппаратному обеспечению, комбинации оборудования и программного обеспечения, программному обеспечению или выполняющемуся программному обеспечению. Например, компонент может представлять собой, но без ограничения, процесс, выполняющийся на процессоре, процессор, объект, исполнимый модуль, поток выполнения, программу и/или компьютер. В порядке иллюстрации компонентом может быть как приложение, выполняющееся на вычислительном аппарате, так и вычислительный аппарат. Один или несколько компонентов могут располагаться в процессе и/или потоке выполнения, и компонент может располагаться на одном компьютере и/или распределяться между двумя или более компьютерами. Кроме того, эти компоненты могут выполняться с различных компьютерно-считываемых носителей, на которых хранятся различные структуры данных. Компоненты могут осуществлять связь посредством локальных и/или удаленных процессов, например согласно сигналу, имеющему один или несколько пакетов данных (например, данных от одного компонента, взаимодействующего с другим компонентом в локальной системе, распределенной системе и/или по сети, например, интернету, с другими системами посредством сигнала).
Кроме того, различные варианты осуществления описаны здесь связи с мобильным аппаратом. Мобильный аппарат также может называться системой, абонентским блоком, абонентской станцией, мобильной станцией, мобильником, удаленной станцией, удаленным терминалом, терминалом доступа, пользовательским терминалом, терминалом, аппаратом беспроводной связи, пользовательским агентом, пользовательским аппаратом или пользовательским оборудованием (UE). Мобильный аппарат может представлять собой сотовый телефон, беспроводной телефон, телефон протокола инициирования сеанса [Session Initiation Protocol] (SIP), станцию беспроводного местного доступа (WLL), карманный персональный компьютер (КПК), карманный аппарат, имеющий возможность беспроводного соединения, вычислительный аппарат или другой аппарат обработки, подключенный к беспроводному модему. Кроме того, различные варианты осуществления описаны здесь в связи с базовой станцией. Базовую станцию можно использовать для связи с мобильным(и) аппаратом(ами) и также можно именовать точкой доступа, Узлом B или иным термином.
Кроме того, различные описанные здесь аспекты или признаки можно реализовать как способ, устройство или изделие производства с использованием стандартных методов программирования и/или проектирования. Используемый здесь термин "изделие производства" призван охватывать компьютерную программу, доступную с любого компьютерно-считываемого устройства, несущей или носителя. Например, компьютерно-считываемый носитель может включать в себя, но без ограничения, магнитное запоминающее устройство (например, жесткий диск, флоппи-диск, магнитные полоски, и т.д.), оптический диск (например, компакт-диск (CD), цифровой универсальный диск (DVD), и т.д.), смарт-карты и устройства флэш-памяти (например, ЭППЗУ, карту, линейку, флэш-ключ, и т.д.). Дополнительно различные описанные здесь носители данных могут представлять одно или несколько устройств и/или другие машиночитаемые носители для хранения информации. Термин “машиночитаемый носитель” может включать в себя, без ограничения, беспроводные каналы и различные другие носители, способные хранить, содержать и/или переносить инструкции и/или данные.
На фиг.1 показана система беспроводной связи 100 согласно различным представленным здесь вариантам осуществления. Система 100 содержит базовую станцию 102, которая может включать в себя множественные группы антенн. Например, одна группа антенн может включать в себя антенны 104 и 106, другая группа может содержать антенны 108 и 110, и дополнительная группа может включать в себя антенны 112 и 114. Для каждой группы антенн показаны две антенны; однако для каждой группы можно использовать больше или меньше антенн. Базовая станция 102 может дополнительно включать в себя цепь передатчика и цепь приемника, каждая из которых может содержать совокупность компонентов, связанных с передачей и приемом сигнала (например, процессоры, модуляторы, мультиплексоры, демодуляторы, демультиплексоры, антенны, и т.д.), что очевидно специалисту в данной области техники.
Базовая станция 102 может осуществлять связь с одним или несколькими мобильными аппаратами, например мобильным аппаратом 116 и мобильным аппаратом 122; однако, очевидно, что базовая станция 102 может осуществлять связь с, по существу, любым количеством мобильных аппаратов, аналогичных мобильным аппаратам 116 и 122. Мобильные аппараты 116 и 122 могут представлять собой, например, сотовые телефоны, смартфоны, портативные компьютеры, карманные аппараты связи, карманные вычислительные аппараты, спутниковые радиостанции, навигационные системы, КПК и/или любые другие аппараты, способные осуществлять связь в системе беспроводной связи 100. Как указано, мобильный аппарат 116 осуществляет связь с антеннами 112 и 114, где антенны 112 и 114 передают информацию на мобильный аппарат 116 по прямой линии связи 118 и принимают информацию от мобильного аппарата 116 по обратной линии связи 120. Кроме того, мобильный аппарат 122 осуществляет связь с антеннами 104 и 106, где антенны 104 и 106 передают информацию на мобильный аппарат 122 по прямой линии связи 124 и принимают информацию от мобильного аппарата 122 по обратной линии связи 126. В системе дуплексной связи с частотным разделением (FDD), например, прямая линия связи 118 может использовать иную полосу частот, чем обратная линия связи 120, и прямая линия связи 124 может использовать иную полосу частот, чем обратная линия связи 126. Кроме того, в системе дуплексной связи с временным разделением (TDD) прямая линия связи 118 и обратная линия связи 120 могут использовать общую полосу частот, и прямая линия связи 124 и обратная линия связи 126 могут использовать общую полосу частот.
Каждую группу антенн и/или область, в которой они призваны осуществлять связь, можно именовать сектором базовой станции 102. Например, группы антенн могут быть предназначены для связи с мобильными аппаратами (например, 116) в секторе зоны покрытия базовой станции 102. При осуществлении связи по прямым линиям связи 118 и 124 передающие антенны базовой станции 102 могут использовать формирование диаграммы направленности для повышения отношения сигнал/шум прямых линий связи 118 и 124 для мобильных аппаратов 116 и 122. Кроме того, в случае, когда базовая станция 102 использует формирование диаграммы направленности для передачи на мобильные аппараты 116 и 122, произвольно распределенные по ее зоне покрытия, мобильные аппараты в соседних сотах могут испытывать меньшие помехи, чем в случае, когда базовая станция передает через одну антенну на все мобильные аппараты.
Согласно аспекту мобильный аппарат (например, 116) может быть сконфигурирован так, что мобильный аппарат может выполнять переходы (например, переключаться) между разными режимами, например глубоким спящим режимом (DS), легким спящим режимом (LS) и/или режимом непрерывного приема (CRX) на основании, отчасти, заранее заданных критериев спящего режима. В одном аспекте мобильный аппарат (например, 116) может иметь циклы (например, прерывистую передачу (DTX)), где каждый цикл может включать в себя период «включения», когда мобильный аппарат может отслеживать передачи от базовой станции 102 и/или период «выключения», когда генератор радиочастоты (РЧ) может быть отключен в мобильном аппарате для обеспечения снижения энергопотребления. Продолжительность конкретного цикла, связанного с конкретным режимом, может частично зависеть от полной продолжительности соответствующего периода «выключения», объединенного с соответствующим периодом «включения» в цикле. Так, например, поскольку период «выключения», связанный с режимом DS, может быть длиннее периода «выключения», связанного с режимом LS, цикл DRX для режима DS может быть более продолжительным, чем цикл DRX для режима LS. В одном аспекте режим DS может иметь цикл (например, DRX цикл) с указанным периодом «выключения», связанным с прерывистым приемом (DRX), который может быть длиннее, чем указанный период «выключения» для цикла, связанного с режимом LS, или указанный период «выключения» для цикла, связанного с режимом CRX (например, период «выключения» которого может быть задан равным 0) для обеспечения снижения энергопотребления (например, снижения использования мощности батареи). В течение периода «выключения» мобильный аппарат (например, 116) может выключать (например, деактивировать) свой генератор РЧ (например, при наличии также периода прерывистой передачи (DTX)), когда в течение периода «выключения» мобильный аппарат не способен принимать данные или информацию управления, для обеспечения снижения энергопотребления. Режим DS также может иметь указанный период «выключения», связанный с DTX, который может быть длиннее периода «выключения», связанного с режимом LS или режимом CRX (например, период «выключения» которого может быть задан равным 0) для обеспечения снижения энергопотребления. Режим DS может дополнительно иметь указанный период времени «включения» в течение цикла, где период «включения» может иметь место менее часто, чем период «включения» для режима LS, и когда мобильный аппарат (например, 116) может принимать определенную информацию (например, информацию управления) в течение таких периодов ”включения”. Режим DS также может иметь указанный период времени «включения» в течение цикла DTX. Находясь в режиме DS, мобильный аппарат (например, 116) не способен передавать данные по каналу данных, но может принимать и/или передавать информацию управления по каналу управления в течение периода «включения» (например, интервалов “включения”). Для обмена данными с базовой станцией 102 мобильный аппарат (например, 116) должен перейти из режима DS в режим LS либо в режим CRX.
Режим LS может иметь другой цикл, чем режим DS, поскольку период «выключения», связанный с DRX, по сравнению с режимом DS, может быть более коротким промежутком времени, чем период “выключения” связанный с DRX режима DS. Режим LS также может иметь заданный период «выключения», связанный с DTX, который может быть короче, чем период «выключения», связанный с DTX режима DS. Режим LS может дополнительно иметь заданный период времени «включения», относящийся к DRX, который может иметь место более часто, чем периоды ”включения” для режима DS (но может иметь место менее часто, чем режим CRX, который может быть “включен” непрерывно для приема информации), когда данные и/или информация управления могут приниматься в течение таких слотов не-DRX. Режим LS может иметь заданный период времени «включения», связанный с DTX. Находясь в режиме LS, мобильный аппарат (например, 116) может передавать и/или принимать данные по каналу данных и/или информацию управления по каналу управления. В режиме LS мобильный аппарат (например, 116) может обеспечивать снижение энергопотребления, хотя снижение энергопотребления обычно не столь велико, как снижение энергопотребления в режиме DS.
В режиме CRX мобильный аппарат (например, 116) может находиться в состоянии, когда он “включен” (например, в режиме не-DRX) все время, будучи в таком режиме, и способен принимать данные и/или информацию управления. Таким образом, в режиме CRX период «выключения» можно задать равным 0, в связи с чем “период выключения” отсутствует в течение цикла. Согласно варианту осуществления режим CRX (например, неспящий режим) можно рассматривать как особый режим, связанный с режимом LS, где, для режима CRX, период «выключения» можно задать равным 0, где цикл может быть построен из ряда слотов “включения”, например, таким образом, чтобы мобильный аппарат (например, 116) мог непрерывно находиться в состоянии “включения”. Таким образом, режим LS можно настроить так, чтобы период «выключения» был задан равным 0, и мобильный аппарат (например, 116) мог непрерывно находиться в состоянии “включения”. Находясь в режиме CRX, мобильный аппарат (например, 116) обычно может потреблять больше мощности, чем когда мобильный аппарат находится в режиме LS или режиме DS.
Длительность периода «выключения» (например, соответственно, связанного с DRX и DTX) можно регулировать, по желанию, в пределах от 0, что может быть связано с режимом CRX, например, до нужного количества секунд (например, 2 секунд), когда длительность периода «выключения» обычно может быть больше для режима DS, чем для режима LS. Длительность периода «включения» (например, соответственно, связанного с DRX и DTX) можно регулировать, по желанию, в пределах от 1 мс до более чем 1 мс. Соответствующие длительности периода «выключения» и/или периода «включения» могут частично зависеть от типа режима (например, режима DS, режима LS, режима CRX). Базовая станция 102 может планировать и/или обрабатывать передачи данных между базовой станцией 102 и мобильным аппаратом (например, 116), когда мобильный аппарат находится в периоде «включения» (например, в слоте “включения”), за исключением того, что, находясь в режиме DS, мобильный аппарат (например, 116) не может обмениваться данными с базовой станцией 102, но может обмениваться информацией управления с базовой станцией 102.
Каждый из режима DS, режима LS и режима CRX можно дополнительно конфигурировать на основании, отчасти, соответствующих атрибутов CQI, соответствующих атрибутов опорного сигнала зондирования (SRS), соответствующих событий измерения и/или соответствующих значений таймера, где значения таймера можно использовать для обеспечения определения, когда мобильный аппарат (например, 116) должен перейти из одного режима в другой режим. Например, атрибуты CQI можно регулировать или обновлять на основании, отчасти, типа спящего режима, или перехода из одного спящего режима в другой спящий режим.
Что касается заранее заданных критериев спящего режима, такие критерии могут относиться, например, к явному сигналу (например, сообщению управления) от базовой станции 102, указывающему и/или предписывающему мобильному аппарату (например, 116) перейти из одного режима в другой режим (например, из режима LS в режим DS), и/или к неявному сигналу (например, отсутствию передачи данных, связанной с мобильным аппаратом, в течение заранее определенного периода времени или более). Мобильный аппарат (например, 116) может отслеживать и анализировать принятую информацию, например сообщения управления, сообщения данных и/или информацию относительно промежутка времени между событиями (например, приемом или отправкой передачи данных или информации управления), и/или тип происходящих событий, и может управлять выбором, и/или переключением между различными режимами на основании, отчасти, заранее заданных критериев спящего режима. Мобильный аппарат (например, 116) также может отслеживать промежуток времени между событиями для обеспечения определения, истек ли заранее определенный период времени между конкретными событиями, чтобы инициировать переход из одного режима в другой режим. Мобильный аппарат (например, 116) может переходить в режим LS или режим DS на основании, отчасти, заранее заданных критериев спящего режима для обеспечения снижения энергопотребления. В результате мобильный аппарат (например, 116) может обеспечивать снижение энергопотребления по сравнению с традиционными мобильными аппаратами.
В одном аспекте, когда мобильный аппарат (например, 116) находится в режиме DS, неявный сигнал перехода из режима DS в режим LS может включать в себя прием информации относительно передачи данных по нисходящей линии связи, например, планирование передачи данных по нисходящей линии связи от базовой станции 102 на мобильный аппарат (например, 116), или доступ к, или планирование передачи данных восходящей линии связи (например, запланированной передачи восходящей линии связи), и после наступления любого из вышеупомянутых событий заранее заданные критерии спящего режима могут указывать, что мобильный аппарат должен перейти из режима DS в режим LS. Мобильный аппарат (например, 116) может переходить из режима DS в режим LS по наступлении любого такого события(й) на основании, отчасти, заранее заданных критериев спящего режима.
Находясь в режиме DS, мобильный аппарат (например, 116) все же может передавать сигналы управления восходящей линии связи в заранее заданные моменты времени (например, в течение периодов ”включения”). Мобильный аппарат (например, 116) также может оставаться в режиме DS, если он принимает “особую” информацию управления по каналу управления (например, PDCCH). Например, находясь в режиме DS, мобильный аппарат (например, 116) может принимать информацию управления мощностью, сообщение канала управления уровня 1 (например, физического уровня)/уровня 2 (например, канального уровня) (L1/L2) или команды Up/Down. Например, когда мобильный аппарат (например, 116) принимает информацию, мобильный аппарат (например, 116) может сигнализировать базовой станции 102, что успешно декодировано только управление L1/L2 (например, когда передача данных по нисходящей линии связи не декодирована успешно), и сигнал может представлять собой отрицательное квитирование (NAK); или мобильный аппарат может сигнализировать, что управление L1/L2 и запланированная нисходящая линия связи (например, данных) успешно декодированы, например, посредством положительного квитирования (ACK).
В качестве примера другого неявного сигнала, когда мобильный аппарат (например, 116) находится в режиме LS, если мобильный аппарат не обменивается данными (например, не передает и/или не принимает) с базовой станцией 102 в течение заранее определенного промежутка времени, заранее заданные критерии спящего режима могут указывать, что мобильный аппарат должен перейти из режима LS в режим DS, и мобильный аппарат может переключаться из режима LS в режим DS для обеспечения снижения энергопотребления в мобильном аппарате. Мобильный аппарат (например, 116) можно настроить так, чтобы неявные сигналы для переходов из режима DS в режим LS и из режима LS в режим DS, связанные с DRX, могли соответствовать или ограничиваться переходами из режима DS в режим LS и из режима LS в режим DS, связанными с DTX, или переходы, соответственно связанные с DRX и DTX можно настроить независимо друг от друга. Когда мобильный аппарат (например, 116) осуществляет доступ в режиме DS, связанный с DRX, мобильный аппарат обычно не может выйти из режима DS, пока не примет неявное или явное подтверждения относительно доступа от базовой станции 102.
Еще один пример неявного сигнала может относиться к переходу между режимом CRX и режимом LS. Когда мобильный аппарат (например, 116) находится в режиме CRX, если мобильный аппарат (например, 116) не обменивается данными (например, не передает и/или не принимает) с базовой станцией 102 в течение заранее определенного промежутка времени, заранее заданные критерии спящего режима могут указывать, что мобильный аппарат должен перейти из режима CRX в режим LS, и мобильный аппарат может переключиться из режима CRX в режим LS для обеспечения снижения энергопотребления в мобильном аппарате.
В отношении явного сигнала, явный сигнал может включать в себя сообщение управления L1/L2 и/или сообщение управления L1/L2 и запланированную нисходящую линию связи для передачи данных (например, канал управления L1/L2 + DL SCH), передаваемое от базовой станции 102 на мобильный аппарат (например, 116), где заранее заданные критерии спящего режима могут предусматривать, что после приема такого явного сигнала мобильный аппарат должен перейти из режима DS в режим LS (например, в отношении DRX и/или DTX), и мобильный аппарат может переходить из режима DS в режим LS. Явный сигнал может генерироваться базовой станцией 102 и передаваться на мобильный аппарат (например, 116), например, когда базовая станция 102 знает, что обмены данными отсутствуют и/или что обмены данными, между базовой станцией 102 и мобильным аппаратом не происходили в течение заранее заданного периода времени, на основании, отчасти, заранее заданных критериев спящего режима. Базовая станция 102 также может отслеживать промежуток времени, прошедший между обменами данными с мобильным аппаратом (например, 116), для обеспечения определения, истек ли заранее заданный период времени между обменами данными.
В порядке еще одного примера явного сигнала, явный сигнал также может указывать сообщение управления L1/L2 и/или сообщение управления L1/L2 и запланированную нисходящую линию связи для передачи данных, отправленное от базовой станции 102 на мобильный аппарат (например, 116), где заранее заданные критерии спящего режима могут предусматривать, что после приема такого явного сигнала мобильный аппарат должен перейти из режима LS в режим DS (например, в отношении DRX и/или DTX), и мобильный аппарат может переходить из режима LS в режим DS.
Еще один пример явного сигнала может относиться к переходу из/в режим CRX в/из режима LS или режима DS. Такой явный сигнал может включать в себя сообщение управления L1/L2 и/или сообщение управления L1/L2 и запланированную нисходящую линию связи для передачи данных, отправленных от базовой станции 102 на мобильный аппарат (например, 116), где заранее заданные критерии спящего режима могут предусматривать, что после приема такого явного сигнала мобильный аппарат должен перейти из/в режим CRX в/из режима LS или режима DS (например, в отношении DRX и/или DTX), и мобильный аппарат может переходить из/в режим CRX в/из нужного режима (например, режима LS, режима DS), как указано в сообщении, обеспечивающем явный сигнал.
Согласно еще одному аспекту мобильный аппарат (например, 116) может быть способен передавать информацию CQI. Смещение CQI может составлять, например, от 0 до нескольких слотов. Желательно синхронизировать восходящие линии связи при отправке информации CQI. CQI обычно нельзя отправить, если период «выключения» (например, связанный с DRX) является значительным периодом времени (например, 2 секунды или более) и существует возможность потери синхронизации. Желательно также управлять мощностью при передаче информации CQI, поскольку от передачи CQI может быть мало пользы, если вероятность успешного декодирования на базовой станции 102 низка. Для обеспечения управления мощностью совместно с CQI можно обеспечить дополнительный широкополосный опорный сигнал. Например, можно использовать SRS при отправке CQI с мобильного аппарата (например, 116) на базовую станцию 102. Базовая станция 102 может использовать информацию CQI для обеспечения определения надлежащих скоростей передачи данных между базовой станцией 102 и мобильным аппаратом (например, 116), поскольку канал с более высоким индикатором качества обычно может поддерживать более высокую скорость передачи данных, чем канал с более низким индикатором качества.
Согласно одному варианту осуществления мобильный аппарат (например, 116) может использовать режим CRX, режим LS и режим DS (например, DRX и/или DTX). Такой вариант осуществления изобретения предусматривает существенное снижение энергопотребления мобильным аппаратом (например, 116), по сравнению с традиционными мобильными аппаратами, и также обеспечивает необходимую поддержку некоторых приложений, например, игр или протокола Voice over Internet Protocol (VoIP). Мобильный аппарат может переходить между режимом LS и режимом DS (например, DRX и/или DTX) на основании, отчасти, явной сигнализации и/или неявной сигнализации. Явную сигнализацию также можно использовать для обеспечения перехода в и/или из режима CRX (например, в отношении DRX и/или DTX).
Согласно другому варианту осуществления мобильный аппарат (например, 116) может использовать режим CRX и режим LS (например, DRX и/или DTX). В результате можно обеспечить снижение энергопотребления (например, за счет перехода в режим LS) на мобильном аппарате (например, 116), по сравнению с традиционными мобильными аппаратами, и также обеспечить необходимую поддержку некоторых приложений, например игр или VoIP. Переходы между режимом CRX и режимом LS можно осуществлять с использованием явной сигнализации и/или неявной сигнализации.
Согласно еще одному варианту осуществления мобильный аппарат (например, 116) может использовать режим CRX и режим DS (например, DRX и/или DTX). В результате можно обеспечить значительное снижение энергопотребления (например, за счет перехода в режим DS) на мобильном аппарате (например, 116), по сравнению с традиционными мобильными аппаратами. Переходы между режимом CRX и режимом DS можно осуществлять, например, с использованием явной сигнализации и/или неявной сигнализации.
На фиг.2 показана система 200, которая может обеспечивать переходы между разными спящими режимами, связанными с мобильным аппаратом в среде беспроводной связи. Система 200 включает в себя базовую станцию 102, которая может осуществлять связь с одним или несколькими мобильными аппаратами, например мобильным аппаратом 116. Очевидно, что на фиг.2 изображен только один мобильный аппарат для ясности и краткости. Кроме того, базовая станция 102 может осуществлять связь с другой(ими) базовой(ыми) станцией(ями) и/или любыми другими аппаратами (например, серверами) (не показаны), которые могут осуществлять такие функции, как, например, аутентификацию, авторизацию, поддержку лицевых счетов, тарификацию и т.п. Базовая станция 102 и мобильный аппарат 116 могут, соответственно, быть подобными или такими же, и/или могут содержать, соответственно, подобные или такие же функции, как соответствующие компоненты, которые более подробно описаны здесь, например, в отношении системы 100.
Мобильный аппарат 116 может быть соединен с возможностью связи (например, посредством беспроводного соединения) с базовой станцией 102, где соединение может содержать канал данных и канал управления. Канал данных может обеспечивать передачу данных между мобильным аппаратом 116 и базовой станцией 102, и канал управления может обеспечивать передачу информации управления между мобильным аппаратом и базовой станцией 102.
В одном аспекте мобильный аппарат 116 может включать в себя контроллер 202 спящего режима, который может обеспечивать переход мобильного аппарата 116 между различными спящими режимами, например режимом DS, режимом LS и/или режимом CRX (например, в отношении DRX и DTX) на основании, отчасти, заранее заданных критериев спящего режима, которые могут храниться в хранилище 204 данных. Контроллер 202 спящего режима может обеспечивать извлечение информации, связанной с заранее заданными критериями спящего режима, из хранилища 204 данных, и может выдавать заранее заданные критерии спящего режима на компонент анализа 206, который может оценивать принятую информацию относительно активности (например, обменов данными связанными с мобильным аппаратом 116) и может сравнивать такую принятую информацию с заранее заданными критериями спящего режима для обеспечения определения, должен ли мобильный аппарат 116 перейти из одного режима в другой режим.
Очевидно, что описанное здесь хранилище данных 204 может быть либо энергозависимой памятью, либо энергонезависимой памятью или может включать в себя энергозависимую и энергонезависимую память. В порядке иллюстрации, но не ограничения, энергонезависимая память может включать в себя постоянную память (ПЗУ), программируемую ПЗУ (ППЗУ), электрически программируемую ПЗУ (ЭППЗУ), электрически стираемую ППЗУ (ЭСППЗУ), флэш-память и/или энергонезависимую оперативную память (NVRAM). Энергозависимая память может включать в себя оперативную память (ОЗУ), которая выступает в роли внешней кэш-памяти. В порядке иллюстрации, но не ограничения, ОЗУ доступна в различных формах, например синхронной ОЗУ (SRAM), динамической ОЗУ (DRAM), синхронной DRAM (SDRAM), SDRAM с удвоенной скоростью передачи данных (DDR SDRAM), расширенной SDRAM (ESDRAM), Synchlink DRAM (SLDRAM) и ОЗУ прямого доступа от Rambus (DRRAM). Память 608 рассматриваемых систем и способов призвана содержать, без ограничения, эти любые пригодные типы памяти.
Мобильный аппарат 116 может дополнительно включать в себя таймер 208, который может отсчитывать промежуток времени, прошедший между наступлением событий, например, промежуток времени, прошедший между обменами данными, связанными с мобильным аппаратом 116. Таймер 208 может выдавать информацию относительно истекшего времени между событиям на контроллер 202 спящего режима и/или анализатор 206 для обеспечения определения, был ли мобильный аппарат 116 неактивным в отношении обменов данными в течение заранее определенного промежутка времени или более, где такой заранее определенный промежуток времени может быть указан посредством заранее заданных критериев спящего режима и где различные заранее определенные промежутки времени могут использоваться в отношении разных типов переходов (например, один заранее определенный промежуток времени, связанный с определением необходимости перехода из режима CRX в режим LS; другой заранее определенный промежуток времени, связанный с определением необходимости перехода между режимом LS и режимом DS) и/или в отношении разных типов передач (например, приема данных, передачи данных).
Например, мобильный аппарат 116 может находиться в режиме CRX, и компонент анализа 206 может принимать от таймера 208 информацию времени, указывающую, что обмен данными между мобильным аппаратом 116 и базовой станцией 102 не происходил в течение двух секунд. Анализатор 206 может сравнивать такую информацию времени с заранее заданными критериями спящего режима, которые, в этом примере, могут указывать, что мобильный аппарат 116 должен перейти из режима CRX в режим LS, если после последнего обмена данными прошло две или более секунды. Анализатор 206 может определять, что заранее заданные критерии спящего режима выполнены для перехода из режима CRX в режим LS и может передавать это определение на контроллер 202 спящего режима. Контроллер 202 спящего режима может обеспечивать переход (например, переключение) мобильного аппарата 116 из режима CRX в режим LS на основании, отчасти, определения и/или заранее заданных критериев спящего режима. Истекшее время, которое отвечает заранее заданным критериям спящего режима для перехода из режима CRX в режим LS, может быть неявным сигналом для осуществления такого перехода.
В порядке другого примера мобильный аппарат 116 может находиться в режиме LS. Мобильный аппарат 116 может принимать от базовой станции 102 явный сигнал, например канал управления L1/L2 или канал управления L1/L2 + DL SCH, который указывает, что мобильный аппарат 116 должен перейти из режима LS в режим DS. Такое сообщение может поступать на анализатор 206, который может сравнивать принятое сообщение с заранее заданными критериями спящего режима, где такие критерии могут указывать, что переход из режима LS в режим DS должен осуществляться после приема такого сообщения, и анализатор 206 может определять, что необходим переход из режима LS в режим DS. Анализатор 206 может передавать такое определение на контроллер 202 спящего режима, и контроллер 202 спящего режима может обеспечивать переход мобильного аппарата 116 из режима LS в режим DS.
На фиг.3 показана система 300, которая может обеспечивать переходы между разными спящими режимами, связанными с мобильным аппаратом в среде беспроводной связи. Система 300 включает в себя базовую станцию 102, которая может осуществлять связь с одним или несколькими мобильными аппаратами, например, мобильным аппаратом 116. Очевидно, что на фиг.3 изображен только один мобильный аппарат для ясности и краткости. Кроме того, базовая станция 102 может осуществлять связь с другой(ими) базовой(ыми) станцией(ями) и/или любыми другими аппаратами (например, серверами) (не показаны), которые могут осуществлять такие функции, как, например, аутентификацию, авторизацию, поддержку лицевых счетов, тарификацию и т.п. Базовая станция 102 и мобильный аппарат 116 могут, соответственно, быть подобными или такими же, и/или могут содержать соответственно подобные или такие же функции, как соответствующие компоненты, которые более подробно описаны здесь, например, в отношении системы 100 и/или системы 200.
Базовая станция 102 может включать в себя контроллер 302, который может обеспечивать управление переходами между различными спящими режимами в мобильном аппарате 116. Например, контроллер 302, совместно с анализатором 304, может обеспечивать оценивание и/или сравнение информации, относящейся к определениям перехода согласно заранее заданным критериям спящего режима для обеспечения определения необходимости генерации и передачи явного сигнала (например, сообщения управления) на мобильный аппарат 116, предписывающего мобильному аппарату 116 перейти из одного спящего режима в другой режим.
Базовая станция 102 также может включать в себя таймер 306, который может отсчитывать промежуток времени, прошедший между обменами данными, или от последнего обмена данными, между базовой станцией 102 и мобильным аппаратом 116. Таймер 306 может выдавать такую информацию времени на контроллер 302 и/или анализатор 304 и такую информацию времени можно оценивать (например, сравнивать) согласно заранее заданным критериям спящего режима для обеспечения определения, нужно ли осуществлять переход.
Базовая станция 102 также может содержать планировщик 308, который может планировать передачи восходящей линии связи и/или нисходящей линии связи между базовой станцией 102 и мобильным аппаратом 116. Планировщик 308 может планировать передачи нисходящей линии связи, когда мобильный аппарат 116 находится в периоде или состоянии «включения» (например, периоде ”включения” режима LS или режима CRX, который может постоянно находиться в состоянии “включения”). Планировщик 308 также может планировать передачи восходящей линии связи, когда мобильный аппарат 116 находится в периоде «включения» (например, периоде ”включения” режима LS или режима CRX, который может постоянно находиться в состоянии “включения”). Планировщик 308 может обеспечивать передачу необходимых сообщений управления и/или соответствующих данных в рамках конкретной передачи.
На фиг.4 и 5 представлены способы, относящиеся к выбору спящего режима и/или переходу между спящими режимами, связанными с мобильным аппаратом, в среде беспроводной связи. Хотя, для простоты объяснения, способ представлен в виде последовательности действий, очевидно и понятно, что способ не ограничивается порядком действий, поскольку некоторые действия могут, согласно одному или нескольким вариантам осуществления, происходить в других порядках и/или одновременно с другими показанными и описанными здесь действиями. Например, специалистам в данной области техники очевидно, что способ можно альтернативно представить в виде нескольких взаимосвязанных состояний или событий, например, на диаграмме состояний. Кроме того, не все показанные действия могут требоваться для реализации способа согласно одному или нескольким вариантам осуществления.
На фиг.4 показан способ 400, который может обеспечивать выбор спящего режима в мобильном аппарате, связанном с системой беспроводной связи. На этапе 402 спящий режим можно выбрать на основании, отчасти, заранее заданных критериев спящего режима. В одном аспекте спящие режимы, доступные для выбора, могут включать в себя режим LS, режим DS и/или неспящий режим (например, режим CRX). Мобильный аппарат может обеспечивать выбор нужного спящего режима. На этапе 404 можно осуществлять сигнализацию для обеспечения выбора спящего режима. Например, сигнализация может быть явной сигнализацией, например сообщением управления от базовой станции (например, 102) на мобильный аппарат (например, 116), предписывающее мобильному аппарату переходить из одного спящего режима в другой спящий режим путем выбора другого спящего режима; или может быть неявной сигнализацией, которая может частично зависеть от выполнения условия, например, истечения заранее определенного промежутка времени между последним обменом данными между базовой станцией и мобильным аппаратом, где условие(я) могут определяться, например, заранее заданными критериями спящего режима.
На фиг.5 показан способ 500, который может обеспечивать переход в спящий режим в мобильном аппарате, связанном с системой беспроводной связи. На этапе 502 можно оценивать информацию, относящуюся к спящему режиму(ам). В одном аспекте анализатор, связанный с мобильным аппаратом (например, 116) или базовой станцией (например, 102), может оценивать информацию, относящуюся к спящему режиму, например, информацию, относящуюся к промежутку времени, прошедшему после последнего обмена данными между базовой станцией и мобильным аппаратом. На этапе 504 можно произвести определение относительно необходимости осуществления перехода из первого спящего режима в другой спящий режим, на основании, отчасти, заранее заданных критериев спящего режима. Например, анализатор может производить определение, следует ли переходить из режима LS в режим DS, после оценивания принятой информации, относящейся к спящим режимам, и сравнения такой принятой информации с заранее заданными критериями спящего режима, для определения, выполнено ли условие перехода. На этапе 506 может существовать сигнал для обеспечения перехода из первого спящего режима в другой спящий режим. Например, если определено, что условие перехода не выполнено, на основании, отчасти, принятой информации и/или заранее заданных критериев спящего режима, явный и/или неявный сигнал может генерироваться для обеспечения перехода из первого спящего режима в другой спящий режим. Явная сигнализация может быть сообщением управления от базовой станции на мобильный аппарат, указывающим, что мобильный аппарат должен перейти из первого спящего режима в другой спящий режим. Неявная сигнализация может быть, например, выполнением определенного условия, относящегося к заранее заданным критериям спящего режима, где выполнение определенного условия может указывать (например, неявно сигнализировать) мобильному аппарату и/или базовой станции, что мобильный аппарат должен перейти из первого спящего режима в другой спящий режим. На этапе 508 может существовать переход из первого спящего режима в другой спящий режим. Например, сигнал может указывать, что мобильный аппарат должен перейти из первого спящего режима (например, режим LS) в другой спящий режим (например, режим DS).
Очевидно, что, согласно одному или нескольким описанным здесь аспектам, можно делать заключения относительно выбора спящего режима и/или определение, когда осуществлять переход между спящими режимами в отношении мобильного аппарата. Используемый здесь термин “заключать” или “заключение” относится, в общем случае, к процессу рассуждения о или определения состояний системы, среды и/или пользователя на основании совокупности наблюдений, сделанных на основе событий и/или данных. Заключение можно применять для идентификации конкретного контекста или действия или, например, для генерации распределения вероятности по состояниям. Заключение может носить вероятностный характер, т.е. опираться на вычисление распределения вероятности по нужным состояниям на основании изучения данных и событий. Заключение также может относиться к методам, применяемым для составления событий более высокого уровня из множества событий и/или данных. Такое заключение приводит к построению новых событий или действий из множества наблюдаемых событий и/или сохраненных данных событий, в зависимости от того, коррелируют ли события в тесной временной близости, и от того, приходят ли события и данные из одного или нескольких источников событий и данных.
Согласно примеру один или несколько из представленных выше способов могут включать в себя составление заключений относящихся к выбору спящего режима и/или переходу из одного спящего режима в другой спящий режим. В порядке дополнительной иллюстрации заключение можно делать в связи с определением, подлежит ли осуществлению или произошел ли переход между одним спящим режимом и другим спящим режимом. Очевидно, что вышеприведенные примеры носят иллюстративный характер и не призваны ограничивать количество заключений, которые можно делать или манеру составления таких заключений в связи с различными описанными здесь вариантами осуществления и/или способами.
На фиг.6 показан мобильный аппарат 600, который может обеспечивать переходы между спящими режимами в мобильном аппарате, связанном с системой беспроводной связи. Мобильный аппарат 600 содержит приемник 602, который принимает сигнал, например, от приемной антенны (не показана), и осуществляет над ним типичные действия (например, фильтрует, усиливает, понижает частоту и т.д.) принятый сигнал и цифрует преобразованный сигнал для получения выборок. Приемник 602 может представлять собой, например, приемник MMSE, и может содержать демодулятор 604, который может демодулировать принятые символы и выдавать их на процессор 606 для оценивания канала. Процессор 606 может представлять собой процессор, предназначенный для анализа информации, принятой приемником 602, и/или генерации информации для передачи передатчиком 608, процессор, который управляет одним или несколькими компонентами мобильного аппарата 600, и/или процессор, который анализирует информацию, принятую приемником 602, генерирует информацию для передачи передатчиком 608 и управляет одним или несколькими компонентами мобильного аппарата 600. Мобильный аппарат 600 также может содержать модулятор 610, который может работать совместно с передатчиком 608 для обеспечения передачи сигналов (например, данных), например, на базовую станцию 102, другой мобильный аппарат и т.д.
Процессор 606 также может содержать контроллер 202 спящего режима, который может обеспечивать определение и/или управление переходами между различными спящими режимами, связанными с мобильным аппаратом 116. Очевидно, что контроллер 202 спящего режима может быть подобным или таким же, или может содержать подобные или такие же функции, как соответствующие компоненты, например, более подробно описанные здесь, например, в отношении системы 200. Кроме того, очевидно, что контроллер 202 спящего режима может входить в состав процессора 606 (как указано), может быть автономным блоком, может входить в состав другого компонента и/или фактически любой подходящей их комбинации, по желанию.
Мобильный аппарат 600 может дополнительно содержать хранилище 204 данных, которое может быть оперативно подключено к процессору 606 и может хранить данные, подлежащие передаче, принятые данные, информацию, относящуюся к заранее заданным критериям спящего режима, информацию (например, истекшее время между обменами данными, явные сигналы, неявные сигналы, …), относящуюся к определению относительно переходов между различными спящими режимами, и любую другую подходящую информацию, которая может обеспечивать определение, необходим ли переход из одного спящего режима в другой режим. В хранилище 204 данных могут дополнительно храниться протоколы и/или алгоритмы, связанные с и обеспечивающие определение, необходим ли переход из одного спящего режима в другой режим. Очевидно, что хранилище 204 данных может быть подобным или таким же, или может содержать подобные или такие же функции, как соответствующие компоненты, например, более подробно описанные здесь, например, в отношении системы 200.
Процессор 606 может быть оперативно подключен к анализатору 206, который может оценивать информацию, например, информацию, относящуюся к определению относительно переходов между различными спящими режимами. Очевидно, что анализатор 206 может быть подобным или таким же, или может содержать подобные или такие же функции, как соответствующие компоненты, например, более подробно описанные здесь, например, в отношении системы 200. Кроме того, очевидно, что анализатор 206 может быть автономным блоком (как указано), может входить в состав процессора 606, может входить в состав другого компонента и/или фактически любой подходящей их комбинации, по желанию.
Процессор 606 также может быть оперативно подключен к таймеру 208, который может отсчитывать истекшее время между обменами данными, или после последнего обмена данными, между мобильным аппаратом 116 и базовой станцией 102 для обеспечения определения относительно переходов между различными спящими режимами. Очевидно, что таймер 208 может быть подобным или таким же, или может содержать подобные или такие же функции, как соответствующие компоненты, например, более подробно описанные здесь, например, в отношении системы 200. Кроме того, очевидно, что таймер 208 может быть автономным блоком (как указано), может входить в состав процессора 606, может входить в состав другого компонента и/или фактически любой подходящей их комбинации, по желанию.
На фиг.7 показана система 700, которая может обеспечивать переходы между спящими режимами в мобильном аппарате, связанном с системой беспроводной связи. Система 700 содержит базовую станцию 102 (например, точку доступа, …) с приемником 702, который может принимать сигнал(ы) от одного или нескольких мобильных аппаратов 116 через совокупность приемных антенн 704, и передатчиком 706, который может передавать сигналы (например, данные) на одно или несколько мобильных аппаратов 116 через передающую антенну 708. Приемник 702 может принимать информацию от приемных антенн 704 и может быть оперативно связан с демодулятором 710, который может демодулировать принятую информацию. Демодулированные символы могут анализироваться процессором 712, который может представлять собой процессор, предназначенный для анализа информации, принятой приемником 702, и/или генерации информации для передачи передатчиком 706, процессор, который управляет одним или несколькими компонентами базовой станции 102, и/или процессор, который анализирует информацию, принятую приемником 702, генерирует информацию для передачи передатчиком 706 и управляет одним или несколькими компонентами базовой станции 102. Базовая станция 102 также может содержать модулятор 714, который может работать совместно с передатчиком 706 для обеспечения передачи сигналов (например, данных), например на мобильный аппарат 116, другой аппарат и т.д.
Процессор 712 может быть подключен к памяти 716, в которой может храниться информация, относящаяся к данным, подлежащим передаче, принятым данным, информация, относящаяся к заранее заданным критериям спящего режима, информация (например, истекшее время между обменами данными, явные сигналы, неявные сигналы, …) относящаяся к определению относительно переходов между различными спящими режимами, и любая другая подходящая информация, которая может обеспечивать определение, необходим ли переход из одного спящего режима в другой режим. В памяти 716 могут дополнительно храниться протоколы и/или алгоритмы, связанные с и обеспечивающие определение, должен ли мобильный аппарат 116 перейти из одного спящего режима в другой режим.
Процессор 712 может представлять собой и/или может содержать контроллер 302, который может обеспечивать производство определений, связанных с переходами между различными спящими режимами в мобильном аппарате 116. Очевидно, что контроллер 302 может быть подобным или таким же, или может содержать подобные или такие же функции, как, соответствующие компоненты, например, более подробно описанные здесь, например, в отношении системы 300. Кроме того, очевидно, что контроллер 302 может входить в состав процессора 712 (как указано), может быть автономным блоком, может входить в состав другого компонента и/или фактически любой подходящей их комбинации, по желанию.
Процессор 712 может быть подключен к анализатору 304, который может оценивать информацию, относящуюся к мобильному аппарату 116, например информацию, относящуюся к определению относительно переходов между различными спящими режимами в мобильном аппарате 116, и может анализировать заранее заданные критерии спящего режима для обеспечения определения, должен ли мобильный аппарат 116 перейти из одного спящего режима в другой режим. Анализатор 304 может принимать информацию, полученную от мобильного аппарата 116 и/или информацию (например, информацию истекшего времени, относящегося к обменам данными), генерируемую на базовой станции 102, и такую информацию можно оценивать для обеспечения производства определения перехода. Очевидно, что анализатор 304 может быть подобным или таким же, или может содержать подобные или такие же функции, как, соответствующие компоненты, например, более подробно описанные здесь, например, в отношении системы 300. Кроме того, очевидно, что анализатор 304 может быть автономным блоком (как указано), может входить в состав процессора 712, может входить в состав другого компонента и/или фактически любой подходящей их комбинации, по желанию.
Процессор 712 может быть оперативно подключен к таймеру 306, который может отсчитывать истекшее время между обменами данными, или после последнего обмена данными, между мобильным аппаратом 116 и базовой станцией 102 для обеспечения определения относительно переходов между различными спящими режимами. Очевидно, что таймер 306 может быть подобным или таким же, или может содержать подобные или такие же функции, как, соответствующие компоненты, например, более подробно описанные здесь, например, в отношении системы 300. Кроме того, очевидно, что таймер 306 может быть автономным блоком (как указано), может входить в состав процессора 712, может входить в состав другого компонента и/или фактически любой подходящей их комбинации, по желанию.
Процессор 712 также может быть оперативно подключен к планировщику 308, который может планировать передачи данных (например, восходящих линий связи, нисходящих линий связи) между базовой станцией 102 и мобильным аппаратом 116. Очевидно, что планировщик 308 может быть подобным или таким же, или может содержать подобные или такие же функции, как, соответствующие компоненты, например, более подробно описанные здесь, например, в отношении системы 300. Кроме того, очевидно, что планировщик 308 может быть автономным блоком (как указано), может входить в состав процессора 712, может входить в состав другого компонента и/или фактически любой подходящей их комбинации, по желанию.
На фиг.8 показана иллюстративная система беспроводной связи 800. В системе беспроводной связи 800 для простоты, показаны одна базовая станция 810 и один мобильный аппарат 850. Однако очевидно, что система 800 может включать в себя более одной базовой станции и/или более одного мобильного аппарата, причем дополнительные базовые станции и/или мобильные аппараты могут быть, по существу, аналогичны или отличаться от иллюстративных базовой станции 810 и мобильного аппарата 850, описанных ниже. Кроме того, очевидно, что базовая станция 810 и/или мобильный аппарат 850 могут использовать описанные здесь системы (фиг.1-3, 6-7 и 9-10) и/или способы (фиг.4 и 5) для обеспечения беспроводной связи между ними. Очевидно, что базовая станция 810 и мобильный аппарат 850 могут быть, соответственно, подобными или такими же и/или могут содержать, соответственно, подобные или такие же функции, как соответствующие компоненты, которые более подробно описаны здесь, например, в отношении системы 100, системы 200, системы 300, системы 600 и/или системы 700.
На базовой станции 810 данные трафика для нескольких потоков данных поступают от источника данных 812 на процессор 814 данных передачи (TX). Согласно примеру каждый поток данных можно передавать через соответствующую антенну. Процессор 814 данных TX форматирует, кодирует и перемежает поток данных трафика на основании конкретной схемы кодирования, выбранной для этого потока данных для обеспечения кодированных данных.
Кодированные данные для каждого потока данных можно мультиплексировать с пилотными данными с использованием методов мультиплексирования с ортогональным частотным разделением (OFDM). Дополнительно или альтернативно пилотные символы можно мультиплексировать с частотным разделением (FDM), мультиплексировать с временным разделением (TDM) или мультиплексировать с кодовым разделением (CDM). Пилотные данные обычно представляют собой известный шаблон данных, который обрабатывается известным образом и который можно использовать на мобильном аппарате 850 для оценивания канального отклика. Мультиплексированные пилот-сигнал и кодированные данные для каждого потока данных можно модулировать (например, отображать в символы) на основании конкретной схемы модуляции (например, двоичной фазовой манипуляции (BPSK), квадратурной фазовой манипуляции (QPSK), M-ичной фазовой манипуляции (M-PSK), M-ичной квадратурной амплитудной модуляции (M-QAM), и т.д.), выбранной для этого потока данных для обеспечения символов модуляции. Скорость передачи данных, кодирование и модуляцию для каждого потока данных можно определить согласно инструкциям, осуществляемым или обеспечиваемым процессором 830.
Символы модуляции для потоков данных могут поступать на процессор 820 MIMO TX, который может дополнительно обрабатывать символы модуляции (например, для OFDM). Затем процессор 820 MIMO TX выдает N T потоков символов модуляции на N T передатчиков (перед.) 822a-822t. В различных вариантах осуществления процессор 820 MIMO TX применяет весовые коэффициенты формирования диаграммы направленности к символам потоков данных и к антенне, с которой передается символ.
Каждый передатчик 822 принимает и обрабатывает соответствующий поток символов для обеспечения одного или нескольких аналоговых сигналов и дополнительно преобразует (например, усиливает, фильтрует и повышает частоту) аналоговые сигналы для обеспечения модулированного сигнала, пригодного для передачи по каналу MIMO. Кроме того, N T модулированных сигналов от передатчиков 822a-822t передаются с N T антенн 1424a-1424t, соответственно.
На мобильном аппарате 850 переданные модулированные сигналы принимаются N R антеннами 852a-852r и принятый сигнал от каждой антенны 852 поступает на соответствующий приемник (прием.) 854a-854r. Каждый приемник 854 преобразует (например, фильтрует, усиливает и понижает частоту) соответствующий сигнал, цифрует преобразованный сигнал для обеспечения выборок и дополнительно обрабатывает выборки для обеспечения соответствующего “принятого” потока символов.
Процессор 860 данных RX может принимать и обрабатывать N R принятых потоков символов от N R приемников 854 на основании конкретного метода обработки приемника для обеспечения N T “детектированных” потоков символов. Процессор 860 данных RX может демодулировать, устранять перемежение и декодировать каждый детектированный поток символов для восстановления данных трафика из потока данных. Обработка, выполняемая процессором 860 данных RX, дополнительна обработке, выполняемой процессором 820 MIMO TX и процессором 814 данных TX на базовой станции 810.
Процессор 870 может периодически определять, какую матрицу предварительного кодирования использовать (рассмотрено ниже). Кроме того, процессор 870 может формировать сообщение обратной линии связи, содержащее часть индекса и часть значения ранга матрицы.
Сообщение обратной линии связи может содержать различные типы информации, относящейся к линии связи и/или принятому потоку данных. Сообщение обратной линии связи может обрабатываться процессором 838 данных TX, который также принимает данные трафика для нескольких потоков данных от источника данных 836, модулироваться модулятором 880, преобразовываться передатчиками 854a-854r и передаваться обратно на базовую станцию 810.
На базовой станции 810 модулированные сигналы от мобильного аппарата 850 принимаются антеннами 824, преобразуются приемниками 822, демодулируются демодулятором 840 и обрабатываются процессором 842 данных RX для извлечения сообщения обратной линии связи, переданного мобильным аппаратом 850. Кроме того, процессор 830 может обрабатывать извлеченное сообщение и может определять, какую матрицу предварительного кодирования использовать для определения весовых коэффициентов формирования диаграммы направленности.
Процессоры 830 и 870 могут направлять (например, управлять, координировать, манипулировать, и т.д.) работу на базовой станции 810 и мобильном аппарате 850, соответственно. Соответствующие процессоры 830 и 870 могут быть связаны с памятью 832 и 872, в которой хранятся программные коды и данные. Процессоры 830 и 870 также могут осуществлять расчеты для получения оценок частотной и импульсной характеристики для восходящей и нисходящей линии связи, соответственно.
Согласно аспекту логические каналы подразделяются на каналы управления и каналы трафика. Логические каналы управления могут содержать Broadcast Control Channel (широковещательный канал управления) (BCCH), который является каналом DL (нисходящей линии связи) для вещания информации управления системы. Paging Control Channel (Пейджинговый канал управления) (PCCH), который является каналом DL, переносящим пейджинговую информацию. Например, PCCH можно использовать, когда сеть не знает, в какой соте находится UE. Common control channel (Общий канал управления) (CCCH), который является каналом, который можно использовать для передачи информации управления между UE и сетью. Этот канал могут использовать UE, не имеющие соединения RRC с сетью. Multicast Control Channel (MCCH), который является каналом DL от одной точки к нескольким точкам, используемый для передачи информации планирования и управления Multimedia Broadcast and Multicast Service (мультимедийных широковещательных и многоадресных услуг) (MBMS) для одного или нескольких MTCH. В общем случае после установления соединения RRC этот канал используется только UE, которые принимают MBMS (примечание: старые MCCH+MSCH). Заметим, что подлежит дальнейшему изучению, как MBMS передается посредством сигнализации L2/3 на MCCH либо сигнализации L1. Dedicated Control Channel (выделенный канал управления) (DCCH) является двусторонним каналом двухточечной связи, который передает выделенную информацию управления и используется UE, имеющими соединение RRC. Согласно аспекту логические каналы трафика могут содержать Dedicated Traffic Channel (выделенный канал трафика) (DTCH), который является двусторонним каналом двухточечной связи, выделенным одному UE, для переноса пользовательской информации. DTCH можно использовать на UL и DL. Кроме того, Multicast Traffic Channel (MTCH) для канала DL от одной точки к нескольким точкам для передачи данных трафика. Этот канал могут использовать UE, которые принимают MBMS.
Согласно аспекту транспортные каналы подразделяются на DL и UL. Транспортные каналы DL содержат Broadcast Channel (широковещательный канал) (BCH), Downlink Shared Data Channel (канал данных нисходящей линии связи) (DL-SDCH), Paging Channel (пейджинговый канал) (PCH) и Multicast Channel (многоадресный канал) (MCH). BCH может характеризоваться фиксированным заранее заданным форматом и может вещать во всей зоне покрытия соты. DL-SDCH может характеризоваться наличием поддержки смешанного автоматического запроса повторения (HARQ); поддержки динамической адаптации линии связи за счет изменения модуляции, кодирования и передаваемой мощности; возможностью вещания во всей соте; возможностью использования формирования диаграммы направленности; поддержкой динамического и полустатического выделения ресурсов; поддержкой прерывистого приема (DRX) UE для обеспечения энергосбережения UE; поддержкой передачи MBMS. Заметим, что возможность использования медленного управления мощностью может частично зависеть от физического уровня. PCH может характеризоваться наличием поддержки энергосбережения UE (сеть указывает цикл DRX для UE); возможностью вещания во всей зоне покрытия соты и может отображаться в физические ресурсы, которые можно динамически использовать для каналов трафика или других каналов управления. MCH может характеризоваться наличием возможности вещания во всей зоне покрытия соты; поддержки MBSFN, объединяющего передачу MBMS в множественных сотах; и поддержки полустатического выделения ресурсов (например, с помощью временного кадра длинного циклического префикса). Транспортные каналы UL содержат Uplink Shared Channel (канал общего пользования восходящей линии связи) (UL-SCH), Random Access Channel (канал произвольного доступа) (RACH) и совокупность PHY (физических) каналов. UL-SCH может характеризоваться наличием возможности использовать формирование диаграммы направленности; поддержки динамической адаптации линии связи за счет изменения передаваемой мощности и, возможно, модуляции и кодирования; поддержки HARQ; поддержки динамического и полустатического выделения ресурсов. Заметим, что возможность использования синхронизации UL и временного опережения может частично зависеть от физического уровня. RACH может характеризоваться наличием ограниченной информации управления и риском конфликтов. Заметим, что возможность использования управления мощностью с открытым циклом может частично зависеть от решения физического уровня. Физические каналы содержат набор каналов DL и каналов UL.
Физические каналы (например, для E-ULTRA) могут представлять собой: Physical broadcast канал (физический широковещательный канал) (PBCH), кодированный транспортный блок BCH может отображаться в четыре подкадра в течение интервала 40 мс, хронирование 40 мс можно обнаруживать вслепую (например, не существует явной сигнализации, указывающей хронирование 40 мс, причем можно предполагать, что каждый подкадр является самодекодируемым (например, BCH может быть декодером из единичного приема при условии достаточно хороших канальных условий; Physical control format indicator channel (физический канал индикатора формата управления) (PCFICH), который может информировать UE о количестве символов OFDM, используемых для каналов PDCCH, и может передаваться в каждом подкадре; Physical Downlink Control Channel (физический канал управления нисходящей линии связи) (PDCCH), который может информировать UE о выделении ресурсов PCH и DL-SCH, и информация смешанного ARQ, относящаяся к DL-SCH, и может переносить предоставление планирования восходящей линии связи; Physical hybrid ARQ indicator channel (физический канал индикатора смешанного ARQ) (PHICH), который может переносить ACK/NAK смешанного ARQ в ответ на передачи восходящей линии связи; Physical Downlink shared channel (физический канал общего пользования нисходящей линии связи) (PDSCH), который может переносить DL-SCH и PCH; Physical multicast channel (физический многоадресный канал) (PMCH), который может переносить MCH; Physical Uplink Control Channel (физический канал управления восходящей линии связи) (PUCCH), который может переносить ACK/NAK смешанного ARQ в ответ на передачу нисходящей линии связи, может нести планирование (SR) и может нести отчеты CQI; Physical Uplink shared Channel (физический канал общего пользования восходящей линии связи) (PUSCH), который может переносить UL-SCH; и Physical random access Channel (физический канал произвольного доступа) (PRACH), который может переносить преамбулу произвольного доступа.
Согласно аспекту обеспечена структура каналов, которая сохраняет низкие свойства PAR (в любой данный момент времени канал является непрерывным или равномерно распределенным по частоте) одной несущей волны.
Следует понимать, что описанные здесь варианты осуществления можно реализовать в виде оборудования, программного обеспечения, программно-аппаратного обеспечения, промежуточного программного обеспечения, микрокода или любой их комбинации. Для аппаратной реализации блоки обработки можно реализовать в одной(ом) или нескольких специализированных интегральных схемах (ASIC), цифровых сигнальных процессорах (ЦСП), аппаратах цифровой обработки сигнала (DSPD), программируемых логических аппаратах (ПЛУ), вентильных матрицах, программируемых пользователем (FPGA), процессорах, контроллерах, микроконтроллерах, микропроцессорах, других электронных блоках, предназначенных для осуществления описанных здесь функций, или их комбинациях.
Когда варианты осуществления реализованы в виде программного обеспечения, программно-аппаратного обеспечения, промежуточного программного обеспечения или микрокода, программного кода или сегментов кода, они могут храниться на машиночитаемом носителе, например компоненте хранения. Сегмент кода может представлять процедуру, функцию, подпрограмму, программу, процедуру, подпроцедуру, модуль, пакет программного обеспечения, класс или любую комбинацию инструкций, структур данных или операторов программы. Сегмент кода может быть подключен к другому сегменту кода или аппаратной схеме путем передачи и/или приема информации, данных, аргументов, параметров или содержимого памяти. Информацию, аргументы, параметры, данные и т.д. можно переносить, пересылать или передавать с использованием любого подходящего средства, включая совместное использование памяти, передачу сообщений, передачу жетонов, сетевую передачу и т.д.
Для программной реализации описанные здесь методы можно реализовать в виде модулей (например, процедур, функций и т.д.), которые осуществляют описанные здесь функции. Программные коды могут храниться в блоках памяти и выполняться процессорами. Блок памяти можно реализовать в процессоре или вне процессора, в каковом случае он может быть подключен с возможностью обмена данными к процессору различными средствами, известными в технике.
На фиг.9 показана система 900, которая может обеспечивать переходы между разными спящими режимами в мобильном аппарате, связанном со средой беспроводной связи. Например, система 900 может располагаться, по меньшей мере частично, в мобильном аппарате (например, 116). Очевидно, что система 900 представлена как включающая в себя функциональные блоки, которые могут представлять собой функциональные блоки, которые представляют функции, реализуемые процессором, программным обеспечением или их комбинацией (например, программно-аппаратным обеспечением). Система 900 включает в себя логическую группировку 902 электрических компонентов, которые могут действовать совместно.
Например логическая группировка 902 может включать в себя электрический компонент для выбора спящего режима на основании, отчасти, заранее заданных критериев спящего режима, причем спящий режим может представлять собой режим LS, режим DS или неспящий режим (например, режим CRX) 904. Например выбор спящего режима может предусматривать переключение из одного спящего режима в другой спящий режим. Согласно аспекту неспящий режим можно рассматривать как особый режим, связанный с режимом LS, где, для неспящего режима, период «выключения» можно задать равным 0, чтобы мобильный аппарат (например, 116) мог непрерывно находиться в состоянии “включения”. Кроме того, логическая группировка 902 может содержать электрический компонент для сигнализации, относящейся к спящему режиму 906. Например, сигнализация может содержать явную сигнализацию (например, сигнал управления) и/или неявную сигнализацию (например, выполнение заранее заданного условия, связанного с заранее заданными критериями спящего режима). Дополнительно система 900 может включать в себя память 908, в которой хранятся инструкции по выполнению функций, связанных с электрическими компонентами 904 и 906. Хотя показано, что они являются внешними по отношению к памяти 908, следует понимать, что один или несколько электрических компонентов 904 и 906 может существовать в памяти 908.
На фиг.10 показана система 1000, которая может обеспечивать переходы между разными спящими режимами в мобильном аппарате, связанном со средой беспроводной связи. Система 1000 может располагаться, например, на базовой станции (например, 102). Как указано, система 1000 включает в себя функциональные блоки, которые могут представлять функции, реализуемые процессором, программным обеспечением или их комбинацией (например, программно-аппаратным обеспечением). Система 1000 включает в себя логическую группировку 1002 электрических компонентов, которые могут действовать совместно. Логическая группировка 1002 может включать в себя электрический компонент для выбора спящего режима на основании, отчасти, заранее заданных критериев спящего режима, причем спящий режим может представлять собой режим LS, режим DS или неспящий режим (например, режим CRX) 1004. Например выбор спящего режима может предусматривать переключение из одного спящего режима в другой спящий режим в мобильном аппарате (например, 116), связанный с базовой станцией. Согласно аспекту неспящий режим можно рассматривать как особый режим, связанный с режимом LS, где, для неспящего режима, период «выключения» можно задать равным 0, чтобы мобильный аппарат (например, 116) мог непрерывно находиться в состоянии “включения”. Кроме того, логическая группировка 1002 может содержать электрический компонент для сигнализации, относящейся к спящему режиму 1006. Например сигнализация может содержать явную сигнализацию (например, сигнал управления) и/или неявную сигнализацию (например, выполнение заранее заданного условия, связанного с заранее заданными критериями спящего режима). Кроме того, логическая группировка 1002 может включать в себя электрический компонент для планирования передач данных 1008. Например, планирование передач данных может относиться к восходящей линии связи и передачам нисходящей линии связи для данных и/или информации управления между базовой станцией и мобильным аппаратом. Планирование передач данных может быть таким, что передачи данных можно осуществлять, когда мобильный аппарат находится в периоде ”включения” для передачи нисходящей линии связи и/или периоде «включения» для передачи восходящей линии связи. Планирование передач данных может частично зависеть от спящего режима, связанного с мобильным аппаратом (например, 116). Дополнительно система 1000 может включать в себя память 1010, в которой хранятся инструкции по выполнению функций, связанных с электрическими компонентами 1004, 1006 и 1008. Хотя показано, что они являются внешними по отношению к памяти 1010, следует понимать, что один или несколько электрических компонентов 1004, 1006 и 1008 может существовать в памяти 1010.
Выше были описаны примеры одного или нескольких вариантов осуществления. Конечно, невозможно описать все мыслимые комбинации компонентов или способов в целях описания вышеупомянутых вариантов осуществления, но специалисту в данной области техники очевидно, что возможны многие дополнительные комбинации и перестановки различных вариантов осуществления. Соответственно описанные варианты осуществления призваны охватывать все такие изменения, модификации и вариации, которые отвечают сущности и объему формулы изобретения. Кроме того, в той степени, в которой термин “включает в себя” используется в подробном описании или в формуле изобретения, такой термин призван быть включительным аналогично термину “содержащий”, поскольку “содержащий” интерпретируется при использовании в качестве переходного слова в формуле изобретения.

Claims (8)

1. Способ беспроводной связи, содержащий:
чередование между первым периодом выключения цикла прерывистого приема (DRX) и первым периодом включения цикла DRX в первом спящем режиме мобильного аппарата;
чередование между первым периодом выключения цикла прерывистой передачи (DTX) и первым периодом включения цикла DTX в первом спящем режиме;
переход из первого спящего режима во второй спящий режим;
чередование между вторым периодом выключения цикла DRX и вторым периодом включения цикла DRX во втором спящем режиме мобильного аппарата; и
чередование между вторым периодом выключения цикла DTX и вторым периодом включения цикла DTX во втором спящем режиме;
отслеживание передачи только от базовой станции во время периодов включения цикла DRX; и
отключение генерации радиочастоты мобильного аппарата во время периодов выключения цикла DTX.
2. Способ по п.1, в котором, по меньшей мере, один из периодов включения цикла DRX, периодов выключения цикла DRX, периодов включения цикла DTX и периодов выключения цикла DTX являются конфигурируемыми.
3. Способ по п.1, дополнительно содержащий:
конфигурирование длины, по меньшей мере, одного из периодов включения цикла DRX, периодов выключения цикла DRX, периодов включения цикла DTX или периодов выключения цикла DTX в ответ на соответствующие атрибуты CQI.
4. Устройство для беспроводной связи, содержащее:
средство для чередования между первым периодом выключения цикла прерывистого приема (DRX) и первым периодом включения цикла DRX в первом спящем режиме мобильного аппарата;
средство для чередования между первым периодом выключения цикла прерывистой передачи (DTX) и первым периодом включения цикла DTX в первом спящем режиме;
средство для перехода из первого спящего режима во второй спящий режим;
средство для чередования между вторым периодом выключения цикла DRX и вторым периодом включения цикла DRX во втором спящем режиме мобильного аппарата; и
средство для чередования между вторым периодом выключения цикла DTX и вторым периодом включения цикла DTX во втором спящем режиме;
средство для отслеживания передачи только от базовой станции во время периодов включения цикла DRX; и
средство для отключения генерации радиочастоты мобильного аппарата во время периода выключения цикла DTX.
5. Устройство по п.4, в котором, по меньшей мере, один из периодов включения цикла DRX, периодов выключения цикла DRX, периодов включения цикла DTX и периодов выключения цикла DTX являются конфигурируемыми.
6. Устройство по п.4, дополнительно содержащее:
средство для конфигурирования длины, по меньшей мере, одного из периодов включения цикла DRX, периодов выключения цикла DRX, периодов включения цикла DTX или периодов выключения цикла DTX в ответ на соответствующие атрибуты CQI.
7. Устройство беспроводной связи, работающее в системе беспроводной связи, при этом устройство содержит:
память; и
по меньшей мере, один процессор, соединенный с памятью и сконфигурированный для выполнения способов по любому из пп.1-3.
8. Считываемый компьютером носитель, имеющий программные коды, записанные на нем, при этом программный код включает в себя инструкции для выполнения способов по любому из пп.1-3.
RU2009130587/09A 2007-01-11 2008-01-11 Использование dtx и drx в системе беспроводной связи RU2438256C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US88460407P 2007-01-11 2007-01-11
US60/884,604 2007-01-11
US88828007P 2007-02-05 2007-02-05
US60/888,280 2007-02-05

Publications (2)

Publication Number Publication Date
RU2009130587A RU2009130587A (ru) 2011-02-20
RU2438256C2 true RU2438256C2 (ru) 2011-12-27

Family

ID=39471762

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009130587/09A RU2438256C2 (ru) 2007-01-11 2008-01-11 Использование dtx и drx в системе беспроводной связи

Country Status (17)

Country Link
US (3) US8755313B2 (ru)
EP (3) EP2515587B1 (ru)
JP (3) JP2010516208A (ru)
KR (1) KR101122368B1 (ru)
CN (1) CN101637051B (ru)
AU (1) AU2008204768A1 (ru)
BR (1) BRPI0806527B1 (ru)
CA (1) CA2674429C (ru)
DK (1) DK2515587T3 (ru)
ES (1) ES2843027T3 (ru)
HU (1) HUE051741T2 (ru)
MX (1) MX2009007456A (ru)
PL (1) PL2515587T3 (ru)
PT (1) PT2515587T (ru)
RU (1) RU2438256C2 (ru)
SI (1) SI2515587T1 (ru)
WO (1) WO2008086532A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2578166C1 (ru) * 2012-05-11 2016-03-20 Интел Корпорейшн Экономия энергии пользовательским оборудованием для межмашинной связи
US9788306B2 (en) 2012-06-01 2017-10-10 Huawei Technologies Co., Ltd. Wireless communication method, base station, and terminal
RU2749181C1 (ru) * 2017-09-07 2021-06-07 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ прерывистого приема, сетевое устройство и терминальное устройство
RU2757574C1 (ru) * 2018-03-28 2021-10-18 Виво Мобайл Комьюникэйшн Ко., Лтд. Способ контроля сообщения системы поискового вызова, абонентское оборудование мобильной связи и сервер

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6961595B2 (en) * 2002-08-08 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple states
US7363039B2 (en) 2002-08-08 2008-04-22 Qualcomm Incorporated Method of creating and utilizing diversity in multiple carrier communication system
US8190163B2 (en) * 2002-08-08 2012-05-29 Qualcomm Incorporated Methods and apparatus of enhanced coding in multi-user communication systems
EP1597883B1 (en) * 2003-02-19 2012-11-21 QUALCOMM Incorporated Controlled superposition coding in multi-user communication systems
US8593932B2 (en) 2003-05-16 2013-11-26 Qualcomm Incorporated Efficient signal transmission methods and apparatus using a shared transmission resource
US7925291B2 (en) * 2003-08-13 2011-04-12 Qualcomm Incorporated User specific downlink power control channel Q-bit
TWI530133B (zh) 2006-06-09 2016-04-11 進化無線責任有限公司 行動通訊系統中傳送資料之方法和裝置
RU2438256C2 (ru) 2007-01-11 2011-12-27 Квэлкомм Инкорпорейтед Использование dtx и drx в системе беспроводной связи
AR065086A1 (es) * 2007-01-30 2009-05-13 Interdigital Tech Corp Control del ajuste de la longitud del ciclo implicito de drx en modo activo-lte
WO2008100209A1 (en) * 2007-02-13 2008-08-21 Telefonaktiebolaget Lm Ericsson (Publ) Detection and efficient use of broadcast-only modes of cellular communication system operation
US7782749B2 (en) * 2007-03-21 2010-08-24 Samsung Electronics Co., Ltd Method for mapping physical downlink control channel to resources and apparatus for transmitting/receiving the mapped physical downlink control channel in a wireless communication system
US7916676B2 (en) * 2007-03-23 2011-03-29 Broadcom Corporation Method and system for holistic energy management in ethernet networks
US8023442B2 (en) * 2007-03-26 2011-09-20 Samsung Electronics Co., Ltd Discontinuous reception method and apparatus of user equipment in a mobile communication system
EP2144452A1 (en) * 2007-04-24 2010-01-13 NTT DoCoMo, Inc. Mobile communication method, wireless base station, mobile station, and processor
US20080267105A1 (en) * 2007-04-27 2008-10-30 Interdigital Technology Corporation Active mode discontinuous reception synchronization and resynchronization operation
KR101325920B1 (ko) 2007-05-02 2013-11-07 삼성전자주식회사 업링크 제어 정보 전송 방법 및 이를 위한 단말 장치
KR100937030B1 (ko) * 2007-05-31 2010-01-15 한국전자통신연구원 디지털 방송 신호의 전송 방법, 전송 장치, 수신 방법 및수신 장치
CN101682914B (zh) 2007-06-08 2012-10-24 夏普株式会社 移动通讯系统、基站装置及移动站装置
US8406173B2 (en) * 2007-06-12 2013-03-26 Sharp Kabushiki Kaisha Mobile communication system, base station apparatus, mobile station apparatus, and mobile communication method
US8537786B2 (en) * 2007-08-02 2013-09-17 Innovative Sonic Limited Method and apparatus for improving continuous packet connectivity in a wireless communications system
ES2749438T3 (es) * 2007-08-17 2020-03-20 Ericsson Telefon Ab L M Numeración de canales de frecuencias de radio
JP4517009B2 (ja) 2007-09-06 2010-08-04 シャープ株式会社 通信装置及び通信方法
US8189506B2 (en) * 2007-09-12 2012-05-29 Nokia Corporation Deep sleep mode for mesh points
WO2009096752A1 (en) 2008-02-03 2009-08-06 Lg Electronics Inc. Method and apparatus for supporting harq
KR101558571B1 (ko) 2008-02-03 2015-10-08 엘지전자 주식회사 Harq를 지원하는 방법 및 장치
US8184579B2 (en) * 2008-02-15 2012-05-22 Texas Instruments Incorporated ACK/NAK repetition schemes in wireless networks
US7957329B2 (en) * 2008-03-16 2011-06-07 Lg Electronics Inc. Method of performing hybrid automatic repeat request (HARQ) in wireless communication system
EP2255578B1 (en) * 2008-03-19 2017-09-13 Telefonaktiebolaget LM Ericsson (publ) A method and a base station for detecting loss of synchronization
US8606336B2 (en) 2008-03-20 2013-12-10 Blackberry Limited System and method for uplink timing synchronization in conjunction with discontinuous reception
US8427986B2 (en) * 2008-06-13 2013-04-23 Research In Motion Limited Apparatus and method for transmitting messages in mobile telecommunications system user equipment
WO2009157443A1 (ja) * 2008-06-24 2009-12-30 シャープ株式会社 無線通信システム、移動局装置および無線受信方法
RU2011108044A (ru) * 2008-08-11 2012-09-20 Нтт Досомо Инк. (Jp) Базовая станция и способ управления связью
KR101520708B1 (ko) * 2008-08-12 2015-05-15 엘지전자 주식회사 다중반송파 무선통신시스템에서 하향링크 제어정보를 송수신하는 방법 및 장치
US8179783B2 (en) 2008-08-13 2012-05-15 Telefonaktiebolaget L M Ericsson (Publ) System and method of modulation and coding scheme adjustment for a LTE shared data channel
BRPI0918219B1 (pt) 2008-09-04 2020-11-17 Sharp Kabushiki Kaisha aparelho de estação base, aparelho de estação móvel, método de comunicação de um aparelho de estação base e método de comunicação de um aparelho de estação móvel
EP2334114B1 (en) 2008-09-22 2016-10-12 Sharp Kabushiki Kaisha Wireless communication system, base station device, mobile station device, and wireless communication method
US8238279B2 (en) * 2008-09-29 2012-08-07 Intel Corporation Network controller wake on communications request
KR101674940B1 (ko) 2009-01-29 2016-11-10 엘지전자 주식회사 전송 전력을 제어하는 방법 및 이를 위한 장치
WO2010087175A1 (ja) * 2009-01-29 2010-08-05 パナソニック株式会社 基地局装置、移動局装置及び送信方法
KR101697596B1 (ko) 2009-01-29 2017-01-18 엘지전자 주식회사 전송 전력을 제어하는 방법 및 이를 위한 장치
US8305986B2 (en) * 2009-03-09 2012-11-06 Samsung Electronics Co., Ltd. Method and apparatus for uplink transmissions and CQI reports with carrier aggregation
EP2773147B1 (en) 2009-04-02 2016-02-03 Telefonaktiebolaget L M Ericsson (publ) Techniques for handling network traffic
EP2417802B1 (en) * 2009-04-08 2013-03-20 Telefonaktiebolaget LM Ericsson (publ) Data communication scheduling
US8542620B2 (en) * 2009-05-05 2013-09-24 Qualcomm Incorporated Dynamic energy saving mechanism for access points
JP5187277B2 (ja) * 2009-06-16 2013-04-24 ソニー株式会社 情報処理装置、及びモード切り替え方法
US20110013574A1 (en) * 2009-07-16 2011-01-20 Chia-Chun Hsu Method of Handling Unicast Transmission on Multimedia Broadcast Multicast Service Subframe and Related Communication Device
CN102088433B (zh) * 2009-12-08 2015-01-28 中兴通讯股份有限公司 多载波系统中分量载波激活去激活的优化方法和系统
US9859949B2 (en) * 2010-01-11 2018-01-02 Qualcomm Incorporated Blind uplink interference cancellation in wireless networking
US8537733B1 (en) 2010-02-12 2013-09-17 Qualcomm Incorporated Dynamic power mode switch in a wireless ad-hoc system
EP2543219B1 (en) * 2010-03-05 2014-12-03 Nokia Solutions and Networks Oy Method, apparatus and user equipment for use in a mobile communications system comprising a relay node
US9311446B1 (en) 2010-03-19 2016-04-12 Qualcomm Incorporated Multicast transmission for power management in an ad-hoc wireless system
US8588156B1 (en) 2010-04-27 2013-11-19 Qualcomm Incorporated Direct data communication in infrastructure mode in wireless communication systems
KR101662251B1 (ko) * 2010-06-01 2016-10-04 엘지전자 주식회사 이동 단말기 및 이동 단말기의 제어 방법
EP3367252B1 (en) 2010-07-26 2019-10-16 Seven Networks, LLC Context aware traffic management for resource conservation in a wireless network
WO2013015835A1 (en) 2011-07-22 2013-01-31 Seven Networks, Inc. Mobile application traffic optimization
EP3407673B1 (en) 2010-07-26 2019-11-20 Seven Networks, LLC Mobile network traffic coordination across multiple applications
US10492207B2 (en) * 2010-07-29 2019-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Handling network traffic via a fixed access
EP2444864A1 (de) * 2010-10-22 2012-04-25 Siemens Aktiengesellschaft Einrichtung und Verfahren zur Reduzierung des Energieverbrauchs einer Maschine aus der Automatisierungstechnik
ES2472692T3 (es) 2010-11-29 2014-07-02 Telefonaktiebolaget L M Ericsson (Publ) Aparato receptor y método
US20120195248A1 (en) * 2011-02-01 2012-08-02 Innovative Sonic Corporation Method and apparatus to avoid in-device coexistence interference in a wireless communication system
JP2014514831A (ja) 2011-04-01 2014-06-19 インターデイジタル パテント ホールディングス インコーポレイテッド ネットワークへの接続性を制御する方法および装置
US8599711B2 (en) * 2011-04-08 2013-12-03 Nokia Siemens Networks Oy Reference signal port discovery involving transmission points
WO2012149322A1 (en) * 2011-04-29 2012-11-01 Research In Motion Limited Managing group messages for lte wakeup
US9226241B2 (en) * 2011-09-02 2015-12-29 Qualcomm Incorporated Systems and methods for low power medium access
US9066240B2 (en) * 2011-09-30 2015-06-23 Qualcomm Incorporated Discontinuous reception (DRX) based mechanisms for connection setup
US8774804B2 (en) * 2011-10-31 2014-07-08 Intel Corporation Context-retention controller and method for context retention in wirless access networks
US9386526B2 (en) * 2011-10-31 2016-07-05 Qualcomm Incorporated Methods and apparatus for determining and entering power saving mode in a wireless network
WO2013103235A1 (en) * 2012-01-02 2013-07-11 Samsung Electronics Co., Ltd. Method and apparatus for dynamically managing a non-discontinuous reception mode specific to user equipments, and system thereof
US9049658B2 (en) 2012-03-06 2015-06-02 Qualcomm Incorporated Power save mechanism for peer-to-peer communication networks
US9681382B2 (en) 2012-05-11 2017-06-13 Intel Corporation Radio coexistence in wireless networks
CN104322113B (zh) * 2012-05-16 2018-06-22 索尼移动通信株式会社 使用终端建议的drx/dtx模式的电信网络中的非连续业务
US8873371B2 (en) * 2012-09-28 2014-10-28 Broadcom Corporation User equipment optimization for multimedia broadcast multicast service
US20140169246A1 (en) * 2012-12-17 2014-06-19 Qualcomm Incorporated Devices and methods for facilitating dynamic power reduction during discontinous reception
US9426743B2 (en) 2013-01-08 2016-08-23 Qualcomm Incorporated Systems and methods to optimize power consumption for LTE eMBMS
US9161107B2 (en) * 2013-01-29 2015-10-13 Nec Laboratories America, Inc. Switching for a MIMO-OFDM based flexible rate intra-data center network
US9055475B2 (en) * 2013-03-15 2015-06-09 Qualcomm Incorporated Power optimizations for challenging WAN service conditions
KR102029041B1 (ko) * 2013-03-26 2019-10-08 삼성전자주식회사 무선 통신 시스템에서 아이들 모드 동작 방법 및 장치
US10313913B2 (en) * 2013-05-09 2019-06-04 Qualcomm Incorporated Overload control and supervision for wireless devices
CN104144030B (zh) * 2013-05-09 2019-05-10 中兴通讯股份有限公司 数据发送、接收方法、数据发送及接收端
CN104244380B (zh) * 2013-06-09 2018-05-11 华为技术有限公司 一种确定ue激活时间的方法及装置
EP3008946B1 (en) 2013-06-11 2018-08-08 Seven Networks, LLC Offloading application traffic to a shared communication channel for signal optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols
WO2014205739A1 (zh) * 2013-06-27 2014-12-31 华为技术有限公司 数据接收方法、发送方法及设备
US9326122B2 (en) 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
US9564958B2 (en) * 2013-08-08 2017-02-07 Intel IP Corporation Power saving mode optimizations and related procedures
US9681354B2 (en) 2013-08-08 2017-06-13 Intel IP Corporation Signaling radio bearer optimizations and other techniques for supporting small data transmissions
ES2716903T3 (es) 2013-08-08 2019-06-17 Intel Ip Corp Método, aparato y sistema para ajuste de inclinación hacia abajo eléctrica en un sistema de múltiple entrada múltiple salida
US9499995B2 (en) 2013-08-08 2016-11-22 Intel IP Corporation Coverage extension level for coverage limited device
JP6428620B2 (ja) * 2013-08-12 2018-11-28 ソニー株式会社 通信制御装置、通信制御方法、無線通信システム及び端末装置
US9463915B2 (en) 2013-10-28 2016-10-11 John McDonald Compressible packaging assembly
US9199761B2 (en) 2013-10-28 2015-12-01 John McDonald Compressible packaging assembly
CN104601352B (zh) 2013-10-30 2019-02-12 华为技术有限公司 一种网络上下行数据处理方法、电子设备及系统
EP2903349B1 (en) * 2014-01-31 2017-04-12 Fujitsu Limited Access method of wireless communication network
US9544898B2 (en) 2014-07-10 2017-01-10 Alcatel Lucent Coordinating base station downlink transmissions in unlicensed frequency bands
US20160073446A1 (en) * 2014-09-08 2016-03-10 Qualcomm Incorporated Apparatus and methods for performing discontinuous reception (drx) and long timescale discontinuous transmission (ldtx) in a wireless communications system
CN106465268B (zh) * 2015-01-23 2019-09-27 华为技术有限公司 一种用户设备省电方法及设备
CN104684055B (zh) * 2015-02-12 2018-06-12 南京邮电大学 一种正交频分和空分混合的mimo-ofdm系统dtx功率优化方法
EP3275248B1 (en) 2015-03-25 2020-09-16 Sony Corporation Apparatus, systems and methods for discontinuous signaling in a mobile communication network
WO2016204519A1 (en) 2015-06-15 2016-12-22 Samsung Electronics Co., Ltd. Method and apparatus for group communication in wireless communication system
CN108352874B (zh) * 2015-10-20 2021-09-03 瑞典爱立信有限公司 用于执行波束成形的方法和设备
EP3586549B1 (en) 2017-02-23 2023-12-27 Sony Group Corporation Slotted transmission for battery recovery
US10588171B2 (en) * 2017-05-12 2020-03-10 Qualcomm Incorporated Techniques for multi-state DRX in new radio
HUE049896T2 (hu) * 2018-04-03 2020-11-30 Ericsson Telefon Ab L M Feloldás/felfüggesztés során megadott paraméterek kezelése
DK3738331T3 (da) 2018-04-05 2021-05-31 Ericsson Telefon Ab L M Konfigurering af radioressourcer
WO2020091469A1 (en) 2018-10-31 2020-05-07 Samsung Electronics Co., Ltd. Apparatus and method for controlling measurement operations in wireless communication system
US10841971B1 (en) 2019-03-18 2020-11-17 Sprint Communications Company L.P. Wireless discontinuous reception (DRX) based on user equipment (UE) subscriber data
US11405864B2 (en) 2019-07-23 2022-08-02 Qualcomm Incorporated Discontinuous reception wakeup techniques
CN110572868B (zh) * 2019-09-09 2023-01-24 紫光展锐(重庆)科技有限公司 降低电子设备功耗的方法与设备
US11239881B2 (en) * 2020-01-31 2022-02-01 Apple Inc. Next-generation ultra-wideband frame formats
CN111405530B (zh) * 2020-03-20 2022-05-03 集美大学诚毅学院 一种毫米波场景下基于波束测量的非连续接收节能方法
US20240341003A1 (en) * 2023-04-04 2024-10-10 Samsung Electronics Co., Ltd. Method and apparatus for providing l1/l2 signaling for activation/deactivation of cell dtx/drx in wireless communication system

Family Cites Families (269)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2330263A1 (de) 1973-06-14 1975-01-09 Licentia Gmbh Uebertragungs- und vermittlungsverfahren mit hilfe der amplitudenselektion
JPS60182825A (ja) 1984-02-29 1985-09-18 Nec Corp 無線電話方式
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US4833701A (en) 1988-01-27 1989-05-23 Motorola, Inc. Trunked communication system with nationwide roaming capability
US5128938A (en) 1989-03-03 1992-07-07 Motorola, Inc. Energy saving protocol for a communication system
US5095529A (en) 1989-05-30 1992-03-10 Motorola, Inc. Intersystem group call communication system and method
US5056109A (en) 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5369781A (en) 1989-12-27 1994-11-29 Motorola, Inc. Dispatch communication system with adjacent system signal repeating
FI88985C (fi) 1991-08-29 1993-07-26 Telenokia Oy Foerfarande foer bildning av ett gruppsamtal i ett cellradiosystem
FI88986C (fi) 1991-10-03 1993-07-26 Telenokia Oy Foerfarande foer genomfoering av ett gruppsamtal i digitalt radionaet
WO1993010601A1 (en) 1991-11-11 1993-05-27 Motorola, Inc. Method and apparatus for reducing interference in a radio communication link of a cellular communication system
CA2081008A1 (en) 1992-01-30 1993-07-31 Michael D. Sasuta Method for receiving a communication after initiating a ptt
US5267261A (en) 1992-03-05 1993-11-30 Qualcomm Incorporated Mobile station assisted soft handoff in a CDMA cellular communications system
US5353352A (en) 1992-04-10 1994-10-04 Ericsson Ge Mobile Communications Inc. Multiple access coding for radio communications
US5387905A (en) 1992-10-05 1995-02-07 Motorola, Inc. Mutli-site group dispatch call method
US5311543A (en) 1992-10-23 1994-05-10 Schreiber William F Television transmission system using two stages of spead-spectrum processing
US6201785B1 (en) 1992-12-01 2001-03-13 Thomson-Csf Process for transmitting a digitized signal according to OFDM type multicarrier modulation, transmitter and receiver for the implementation of the said process
US5325432A (en) 1993-02-04 1994-06-28 Motorola, Inc. Method for updating encryption key information in communication units
US5513381A (en) 1993-03-24 1996-04-30 Sasuta; Michael D. Method for placing a communication group call in a multiple site trunked system
US5450405A (en) 1993-04-02 1995-09-12 Motorola, Inc. Method for establishing and maintaining communication processing information for a group call
SE500830C2 (sv) 1993-05-17 1994-09-12 Ericsson Telefon Ab L M Förfarande och anordning vid kanalutnyttjandet i ett radiokommunikationssystem
JP2908175B2 (ja) 1993-05-18 1999-06-21 日本電気株式会社 周波数安定化装置
US5627882A (en) 1993-06-02 1997-05-06 U.S. Philips Corporation Enhanced power saving method for hand-held communications system and a hand-held communications system therefor
US5420909A (en) 1993-06-23 1995-05-30 Motorola, Inc. Method for allocating telephone and communication resources
FI95428C (fi) 1993-08-12 1996-01-25 Nokia Telecommunications Oy Menetelmä, radiopuhelinkeskus ja radiopuhelinjärjestelmän tilaaja-asema korkeaprioriteettisen puhelun tai korkeaprioriteettisen ryhmäpuhelunmuodostamiseksi
US6157668A (en) 1993-10-28 2000-12-05 Qualcomm Inc. Method and apparatus for reducing the average transmit power of a base station
US5491835A (en) 1994-02-18 1996-02-13 Motorola, Inc. Method for maintaining audience continuity of a communication group call
US5625882A (en) 1994-03-01 1997-04-29 Motorola, Inc. Power management technique for determining a device mode of operation
US5590396A (en) 1994-04-20 1996-12-31 Ericsson Inc. Method and apparatus for a deep-sleep mode in a digital cellular communication system
US5623511A (en) 1994-08-30 1997-04-22 Lucent Technologies Inc. Spread spectrum code pulse position modulated receiver having delay spread compensation
US5535432A (en) * 1994-09-14 1996-07-09 Ericsson Ge Mobile Communications Inc. Dual-mode satellite/cellular phone with a frequency synthesizer
US6334219B1 (en) 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
US5463617A (en) 1994-09-30 1995-10-31 Grube; Gary W. Method for providing caller interrupt in a time division multiplexed wireless communication system
US5566366A (en) 1994-11-30 1996-10-15 Motorola, Inc. Method of power conservation in a data communications system
US5511232A (en) 1994-12-02 1996-04-23 Motorola, Inc. Method for providing autonomous radio talk group configuration
JPH08162998A (ja) 1994-12-09 1996-06-21 Ricoh Co Ltd スペクトル拡散パルス位置変調通信方式
US5809419A (en) 1994-12-14 1998-09-15 Motorola, Inc. Method for reducing channel scanning time
US6212380B1 (en) 1995-02-20 2001-04-03 Nokia Telecommunications Oy Method and arrangement for a handover between base station controllers
US5473605A (en) 1995-02-28 1995-12-05 Grube; Gary W. Method for a communication unit to participate in multiple calls
IL112939A (en) 1995-03-08 1998-06-15 Powerspectrum Technology Ltd An appointments unit that has sleep mode and off mode
JP3145003B2 (ja) 1995-03-23 2001-03-12 株式会社東芝 直交周波数分割多重伝送方式とその送信装置および受信装置
US5710982A (en) 1995-06-29 1998-01-20 Hughes Electronics Power control for TDMA mobile satellite communication system
US6058289A (en) 1995-09-26 2000-05-02 Pacific Communication Sciences, Inc. Method and apparatus for low power mobile unit for cellular communications system
US6125150A (en) 1995-10-30 2000-09-26 The Board Of Trustees Of The Leland Stanford, Junior University Transmission system using code designed for transmission with periodic interleaving
JP3274337B2 (ja) 1995-12-27 2002-04-15 株式会社東芝 Cdmaセルラ無線システム
US6236674B1 (en) * 1996-02-23 2001-05-22 Teletransactions, Inc. Transceiver control with sleep mode operation
US5844894A (en) 1996-02-29 1998-12-01 Ericsson Inc. Time-reuse partitioning system and methods for cellular radio telephone systems
US6130602A (en) 1996-05-13 2000-10-10 Micron Technology, Inc. Radio frequency data communications device
WO1997046038A2 (en) 1996-05-28 1997-12-04 Northern Telecom Limited Cellular radio systems and methods for their operation
US5884196A (en) 1996-06-06 1999-03-16 Qualcomm Incorporated Method and apparatus of preserving power of a remote unit in a dispatch system
US5815531A (en) 1996-06-12 1998-09-29 Ericsson Inc. Transmitter for encoded data bits
US6185259B1 (en) 1996-06-12 2001-02-06 Ericsson Inc. Transmitter/receiver for GMSK and offset-QAM
US5831479A (en) * 1996-06-13 1998-11-03 Motorola, Inc. Power delivery system and method of controlling the power delivery system for use in a radio frequency system
US5999818A (en) 1996-08-06 1999-12-07 Cirrus Logic, Inc. Frequency re-used and time-shared cellular communication system having multiple radio communication systems
JPH10112695A (ja) 1996-08-09 1998-04-28 Ricoh Co Ltd スペクトル拡散パルス位置変調通信方式
US6496543B1 (en) 1996-10-29 2002-12-17 Qualcomm Incorporated Method and apparatus for providing high speed data communications in a cellular environment
JPH10135893A (ja) * 1996-10-30 1998-05-22 Mitsubishi Electric Corp 間欠受信方法およびセルラー電話機
US5720455A (en) 1996-11-13 1998-02-24 Westinghouse Air Brake Company Intra-train radio communication system
KR19980063990A (ko) 1996-12-11 1998-10-07 윌리엄비.켐플러 로컬 다지점 분배 서비스 시스템 내에서 전송 자원을 할당 및할당해제하는 방법
US5991635A (en) * 1996-12-18 1999-11-23 Ericsson, Inc. Reduced power sleep modes for mobile telephones
US5923651A (en) 1996-12-23 1999-07-13 Alcatel Usa Sourcing, L.P. Increasing data throughput in a wireless telecommunications environment
FI102703B (fi) 1997-03-27 1999-01-29 Nokia Telecommunications Oy Kanavan allokointimenetelmä
JPH10313286A (ja) 1997-05-13 1998-11-24 Sony Corp 受信装置
US6308080B1 (en) 1997-05-16 2001-10-23 Texas Instruments Incorporated Power control in point-to-multipoint systems
US5982760A (en) 1997-06-20 1999-11-09 Qualcomm Inc. Method and apparatus for power adaptation control in closed-loop communications
US6347081B1 (en) * 1997-08-25 2002-02-12 Telefonaktiebolaget L M Ericsson (Publ) Method for power reduced transmission of speech inactivity
US6456627B1 (en) 1997-08-29 2002-09-24 Telefonaktiebolaget Lm Ericsson (Publ) Method for communicating information in a communication system that supports multiple modulation schemes
EP0899923A1 (en) 1997-08-29 1999-03-03 Sony International (Europe) GmbH Transmission of power control signals in a multicarrier modulation system
US6125148A (en) 1997-08-29 2000-09-26 Telefonaktiebolaget Lm Ericsson Method for demodulating information in a communication system that supports multiple modulation schemes
US6307849B1 (en) 1997-09-08 2001-10-23 Qualcomm Incorporated Method and system for changing forward traffic channel power allocation during soft handoff
US6377809B1 (en) * 1997-09-16 2002-04-23 Qualcomm Incorporated Channel structure for communication systems
US6108560A (en) 1997-09-26 2000-08-22 Nortel Networks Corporation Wireless communications system
SE518376C2 (sv) 1997-10-20 2002-10-01 Ericsson Telefon Ab L M Förfarande och anordning i ett radiokommunikationsnätverk
US6078815A (en) 1997-10-23 2000-06-20 Nortel Networks Corporation Method and apparatus for allocating radio channels
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US7705602B2 (en) * 1997-11-03 2010-04-27 Midtronics, Inc. Automotive vehicle electrical system diagnostic device
GB9723743D0 (en) * 1997-11-12 1998-01-07 Philips Electronics Nv Battery economising in a communications system
JPH11178050A (ja) 1997-12-10 1999-07-02 Sony Corp 制御情報伝送方法及び送信装置並びに送受信装置
JP3778397B2 (ja) 1997-12-27 2006-05-24 ソニー株式会社 送信方法、送信電力制御方法及び基地局装置
US6175588B1 (en) 1997-12-30 2001-01-16 Motorola, Inc. Communication device and method for interference suppression using adaptive equalization in a spread spectrum communication system
JPH11205166A (ja) 1998-01-19 1999-07-30 Mitsubishi Electric Corp ノイズ検出装置
KR100414932B1 (ko) 1998-01-24 2004-04-03 삼성전자주식회사 이동통신시스템의데이타통신방법
US7787514B2 (en) 1998-02-12 2010-08-31 Lot 41 Acquisition Foundation, Llc Carrier interferometry coding with applications to cellular and local area networks
US6243584B1 (en) 1998-03-30 2001-06-05 Verizon Laboratories Inc. System and method for increasing CDMA capacity by frequency assignment
KR100314353B1 (ko) 1998-04-28 2001-12-28 전주범 직교분할대역수신시스템
US6266529B1 (en) 1998-05-13 2001-07-24 Nortel Networks Limited Method for CDMA handoff in the vicinity of highly sectorized cells
ATE220283T1 (de) 1998-05-29 2002-07-15 Cit Alcatel Datenmodulationsverfahren und dazugehörige modulation- und demodulationseinrichtungen
US6222851B1 (en) 1998-05-29 2001-04-24 3Com Corporation Adaptive tree-based contention resolution media access control protocol
KR100407342B1 (ko) 1998-05-30 2003-11-28 삼성전자주식회사 부호분할다중접속 통신시스템의 통신장치 및 방법
KR100326320B1 (ko) 1998-07-13 2002-03-08 윤종용 이동통신시스템의 패킷데이터 통신장치 및 방법
EP1014609B1 (en) 1998-07-13 2004-09-22 Sony Corporation Multicarrier communication method, transmitter and receiver
US6463307B1 (en) * 1998-08-14 2002-10-08 Telefonaktiebolaget Lm Ericsson Method and apparatus for power saving in a mobile terminal with established connections
KR100339034B1 (ko) 1998-08-25 2002-10-11 삼성전자 주식회사 부호분할다중접속통신시스템의제어유지상태에서역방향폐루프전력제어장치및방법
FI107861B (fi) * 1998-08-28 2001-10-15 Nokia Mobile Phones Ltd Naapurisolumittaukset solun uudelleenvalintaa varten
FI105437B (fi) 1998-09-08 2000-08-15 Domiras Oy Menetelmä langattomassa tietoliikennejärjestelmässä, järjestelmä, lähetin ja vastaanotin
EP0986278A1 (en) 1998-09-15 2000-03-15 Lucent Technologies Inc. Cellular radio network and method for increasing capacity
JP2000115116A (ja) 1998-10-07 2000-04-21 Nippon Columbia Co Ltd 直交周波数分割多重信号発生装置、直交周波数分割多重信号発生方法及び通信装置
EP1129567B1 (de) 1998-11-13 2005-11-23 Robert Bosch Gmbh Verfahren für einen stromsparenden betrieb von kommunikationsendgeräten in einem insbesondere drahtlosen kommunikationssystem
RU2242095C2 (ru) * 1998-11-24 2004-12-10 Телефонактиеболагет Лм Эрикссон (Пабл) Эффективная внутриполосная передача сигналов для осуществления прерывистой передачи и изменений конфигураций систем связи с многоскоростной адаптивной передачей сигналов
US6546252B1 (en) 1998-12-18 2003-04-08 Telefonaktiebolaget Lm Ericsson (Publ) System and method for estimating interfrequency measurements used for radio network function
US6611506B1 (en) 1999-01-21 2003-08-26 Lucent Technologies Inc. Enhanced channel allocation among multiple carriers in a spread spectrum communications system
US6275712B1 (en) 1999-02-26 2001-08-14 Nokia Mobile Phones Ltd Mobile station control states based on available power
US6148203A (en) 1999-03-08 2000-11-14 Motorola, Inc. Method for registering a communication device for communication service
US6498934B1 (en) 1999-03-24 2002-12-24 Telefonaktiebologet Lm Ericsson (Publ) Channel allocation using enhanced pathloss estimates
US6321095B1 (en) * 1999-03-26 2001-11-20 Sherman Gavette Wireless communications approach
US6334047B1 (en) 1999-04-09 2001-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive power control in a mobile radio communications system
AU4634900A (en) 1999-04-30 2000-11-17 Telefonaktiebolaget Lm Ericsson (Publ) System and method for efficient usage of broadcast power while minimizing co-channel cell site interference
US6538985B1 (en) 1999-05-25 2003-03-25 3Com Corporation Channel reservation media access control protocol using orthogonal frequency division multiplexing
AU757471B2 (en) 1999-05-31 2003-02-20 Samsung Electronics Co., Ltd. Apparatus and method for gated transmission in CDMA communication system
US7054296B1 (en) 1999-08-04 2006-05-30 Parkervision, Inc. Wireless local area network (WLAN) technology and applications including techniques of universal frequency translation
JP3704003B2 (ja) 1999-08-16 2005-10-05 株式会社東芝 無線基地局装置、無線端末装置及び情報通信方法
EP1079578A3 (en) 1999-08-23 2001-11-07 Motorola, Inc. Data allocation in multicarrier systems
GB9921007D0 (en) 1999-09-06 1999-11-10 Nokia Telecommunications Oy Quality measurement
US6661771B1 (en) 1999-09-17 2003-12-09 Lucent Technologies Inc. Method and apparatus for interleaver synchronization in an orthogonal frequency division multiplexing (OFDM) communication system
SG148029A1 (en) 1999-11-04 2008-12-31 Ntt Docomo Inc Method, base station and mobile station for timeslot selection and timeslot assignment
US6967937B1 (en) 1999-12-17 2005-11-22 Cingular Wireless Ii, Llc Collision-free multiple access reservation scheme for multi-tone modulation links
US6553019B1 (en) 1999-12-23 2003-04-22 Flarion Technologies, Inc. Communications system employing orthogonal frequency division multiplexing based spread sprectrum multiple access
US6804521B2 (en) 2000-01-18 2004-10-12 Nortel Networks Limited Multi-beam antenna system for high speed data
US6917603B2 (en) 2000-01-20 2005-07-12 Nortel Networks Limited Servicing multiple high speed data users in shared packets of a high speed wireless channel
US6473624B1 (en) 2000-03-21 2002-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Determining a reference power level for diversity handover base stations
US6952454B1 (en) 2000-03-22 2005-10-04 Qualcomm, Incorporated Multiplexing of real time services and non-real time services for OFDM systems
US6765893B1 (en) * 2000-03-31 2004-07-20 Qualcomm Incorporated Dynamic recognition of an empty general paging message
JP4337228B2 (ja) 2000-04-13 2009-09-30 ソニー株式会社 Ofdm受信装置及び方法
US6396803B2 (en) 2000-06-29 2002-05-28 California Amplifier, Inc. Modulation methods and structures for wireless communication systems and transceivers
US6738808B1 (en) 2000-06-30 2004-05-18 Bell South Intellectual Property Corporation Anonymous location service for wireless networks
US6721267B2 (en) 2000-08-01 2004-04-13 Motorola, Inc. Time and bandwidth scalable slot format for mobile data system
US6424678B1 (en) 2000-08-01 2002-07-23 Motorola, Inc. Scalable pattern methodology for multi-carrier communication systems
US6859652B2 (en) 2000-08-02 2005-02-22 Mobile Satellite Ventures, Lp Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US6694147B1 (en) 2000-09-15 2004-02-17 Flarion Technologies, Inc. Methods and apparatus for transmitting information between a basestation and multiple mobile stations
US6801759B1 (en) 2000-09-25 2004-10-05 Qualcomm, Incorporated Method and apparatus for power control in a wireless communication system
US6999799B1 (en) * 2000-09-28 2006-02-14 Texas Instruments Incorporated System and method for adaptive deep-sleep slotted operation
US6731939B1 (en) 2000-10-20 2004-05-04 Nokia Corporation Apparatus, and associated method, for allocating channels in a radio communication system
US6690936B1 (en) 2000-10-31 2004-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Air-interface efficiency in wireless communication systems
US6609008B1 (en) 2000-11-09 2003-08-19 Qualcomm Incoporated Method and apparatus for controlling signal power level in a communication system
US6781570B1 (en) * 2000-11-09 2004-08-24 Logitech Europe S.A. Wireless optical input device
US7203158B2 (en) 2000-12-06 2007-04-10 Matsushita Electric Industrial Co., Ltd. OFDM signal transmission system, portable terminal, and e-commerce system
US6947748B2 (en) 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
US20020077152A1 (en) 2000-12-15 2002-06-20 Johnson Thomas J. Wireless communication methods and systems using multiple overlapping sectored cells
US7391819B1 (en) 2002-10-08 2008-06-24 Urbain Alfred von der Embse Capacity bound and modulation for communications
US6657988B2 (en) 2001-01-12 2003-12-02 Nokia Mobile Phones Ltd. Method and apparatus for timing adjustment for uplink synchronous transmission in wide code division multiple access
US7158482B2 (en) 2001-02-07 2007-01-02 Motorola, Inc. Method and apparatus for preventing received data from corrupting previously processed data in a wireless communications system
FR2821708B1 (fr) * 2001-03-01 2003-05-23 Eads Defence & Security Ntwk Procede de transfert intercellulaire dans un systeme de radiocommunications avec le mobile
US7143299B1 (en) * 2001-03-20 2006-11-28 3Com Corporation Method for power management of intelligent hardware
US6771706B2 (en) 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US7099266B2 (en) 2001-03-26 2006-08-29 Victor Company Of Japan, Limited Orthogonal frequency division multiplexed signal transmitting apparatus, orthogonal frequency division multiplexed signal receiving apparatus, and orthogonal frequency division multiplexed signal transmitting/receiving system
US7209524B2 (en) 2001-04-27 2007-04-24 The Directv Group, Inc. Layered modulation for digital signals
US7173981B1 (en) 2001-04-27 2007-02-06 The Directv Group, Inc. Dual layer signal processing in a layered modulation digital signal system
US20020172165A1 (en) 2001-05-15 2002-11-21 Eric Rosen Communication device for reducing latency in a mobile-originated group communication request
EP1402673B1 (en) 2001-06-21 2008-01-16 Koninklijke Philips Electronics N.V. Transmission method and apparatus in a radio communications network
US7209511B2 (en) 2001-08-31 2007-04-24 Ericsson Inc. Interference cancellation in a CDMA receiving system
US7123662B2 (en) 2001-08-15 2006-10-17 Mediatek Inc. OFDM detection apparatus and method for networking devices
US7089298B2 (en) 2001-08-20 2006-08-08 Nokia Corporation Naming distribution method for ad hoc networks
US7318185B2 (en) 2001-08-23 2008-01-08 Nortel Networks Limited Method and apparatus for scrambling based peak-to-average power ratio reduction without side information
US7280504B2 (en) 2001-09-28 2007-10-09 Kabushiki Kaisha Toshiba OFDM transmitting and receiving apparatus
CN101340382A (zh) * 2001-10-19 2009-01-07 美商内数位科技公司 用于下行链路的全非连续传输操作模式中改良省电功能的用户设备
US6967970B2 (en) * 2001-10-19 2005-11-22 Interdigital Technology Corporation User equipment having improved power savings during full and partial DTX modes of operation
US8045935B2 (en) 2001-12-06 2011-10-25 Pulse-Link, Inc. High data rate transmitter and receiver
US7269145B2 (en) 2001-12-20 2007-09-11 Samsung Electronics Co., Ltd. Mode transition method for wireless data service in a mobile station
JP3927038B2 (ja) 2001-12-21 2007-06-06 日本碍子株式会社 Si含有ハニカム構造体及びその製造方法
US6799038B2 (en) 2002-01-09 2004-09-28 Motorola, Inc. Method and apparatus for wireless network selection
US7684380B2 (en) * 2002-01-22 2010-03-23 Freescale Semiconductor, Inc. System and method for handling asynchronous data in a wireless network
CN100521590C (zh) 2002-01-29 2009-07-29 三菱电机株式会社 一种移动站
US6865398B2 (en) 2002-02-04 2005-03-08 Sprint Spectrum L.P. Method and system for selectively reducing call-setup latency through management of paging frequency and buffering of user speech in a wireless mobile station
US6961582B2 (en) 2002-02-13 2005-11-01 Accton Technology Corporation Transmission power control method and system for CDMA communication system
JP3815344B2 (ja) 2002-02-21 2006-08-30 株式会社日立製作所 多値変調に適した符号語マッピング方法
WO2003084268A1 (en) 2002-04-01 2003-10-09 Schema Ltd. Hybrid channel allocation in a cellular network
US7031383B2 (en) 2002-04-05 2006-04-18 Scintera Networks, Inc. Compensation circuit for reducing intersymbol interference products caused by signal transmission via dispersive media
US7593367B2 (en) 2002-06-14 2009-09-22 Qualcomm Incorporated Frequency scan for CDMA acquisition
JP4016383B2 (ja) 2002-06-14 2007-12-05 日本電気株式会社 携帯電話機及びこの携帯電話機における通信方法
US6947732B2 (en) * 2002-06-18 2005-09-20 General Motors Corporation Method and system for communicating with a vehicle in a mixed communication service environment
US6763243B2 (en) 2002-07-02 2004-07-13 Motorola, Inc. Method and apparatus for providing prioritized multi-party communication sessions in a wireless communication system
JP4000933B2 (ja) 2002-07-19 2007-10-31 ソニー株式会社 無線情報伝送システム及び無線通信方法、無線端末装置
US7162203B1 (en) 2002-08-01 2007-01-09 Christopher Brunner Method and system for adaptive modification of cell boundary
US6961595B2 (en) 2002-08-08 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple states
US7363039B2 (en) 2002-08-08 2008-04-22 Qualcomm Incorporated Method of creating and utilizing diversity in multiple carrier communication system
US8190163B2 (en) 2002-08-08 2012-05-29 Qualcomm Incorporated Methods and apparatus of enhanced coding in multi-user communication systems
US6788963B2 (en) 2002-08-08 2004-09-07 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple a states
CN100379312C (zh) * 2002-08-27 2008-04-02 高通股份有限公司 空闲模式小区的重新获取和重新选择
US7526312B2 (en) 2002-09-17 2009-04-28 Broadcom Corporation Communication system and method in a hybrid wired/wireless local area network
TWI242335B (en) 2002-10-04 2005-10-21 Winbond Electronics Corp Wireless communication method for channel shared
US20050105593A1 (en) 2002-10-07 2005-05-19 Takashi Dateki Transmission power control method and transmission power control apparatus in OFDM-CDMA
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
JP3647837B2 (ja) 2002-10-28 2005-05-18 株式会社エヌ・ティ・ティ・ドコモ 移動局における周波数選択方法、移動局及び周波数選択用プログラム
US7317750B2 (en) 2002-10-31 2008-01-08 Lot 41 Acquisition Foundation, Llc Orthogonal superposition coding for direct-sequence communications
MXPA05004764A (es) * 2002-11-04 2005-08-02 Research In Motion Ltd Metodo y sistema de conservacion de bateria de dispositivo inalambrico.
GB2395622B (en) 2002-11-19 2004-09-29 Nec Technologies Cellular network acquisition method and apparatus
GB2395619B (en) 2002-11-19 2004-09-29 Nec Technologies Cellular network acquisition method and apparatus
US7158804B2 (en) 2002-11-27 2007-01-02 Lucent Technologies Inc. Uplink scheduling for wireless networks
US7623861B2 (en) * 2002-12-05 2009-11-24 Qualcomm Incorporated Method and apparatus to optimize off-frequency pilot searching by wireless mobile station
US7925246B2 (en) 2002-12-11 2011-04-12 Leader Technologies, Inc. Radio/telephony interoperability system
US7321578B2 (en) 2002-12-31 2008-01-22 Carlos Rios Multiprotocol WLAN access point devices
KR101127174B1 (ko) 2003-02-03 2012-03-22 소니 주식회사 통신 방법 및 통신 장치 및 컴퓨터 프로그램
US7274754B2 (en) 2003-02-14 2007-09-25 Focus Enhancements, Inc. Method and apparatus for frequency division multiplexing
US7098821B2 (en) 2003-02-14 2006-08-29 Atheros Communications, Inc. Receiving and transmitting signals having multiple modulation types using sequencing interpolator
US8099099B2 (en) 2003-02-19 2012-01-17 Qualcomm Incorporated Methods and apparatus related to assignment in a wireless communications system
EP1597883B1 (en) 2003-02-19 2012-11-21 QUALCOMM Incorporated Controlled superposition coding in multi-user communication systems
US7218948B2 (en) 2003-02-24 2007-05-15 Qualcomm Incorporated Method of transmitting pilot tones in a multi-sector cell, including null pilot tones, for generating channel quality indicators
EP1450536A1 (en) 2003-02-24 2004-08-25 STMicroelectronics Limited Routing of data streams
US7295632B2 (en) * 2003-03-20 2007-11-13 Texas Instruments Incorporated Method and apparatus for decoding punctured subframes
GB2399985B (en) 2003-03-25 2005-05-25 Nec Technologies Method of network acquisition and related cellular radio communication device
CN100596213C (zh) 2003-04-23 2010-03-24 高通股份有限公司 增强无线通信系统性能的方法和设备
RU2295830C2 (ru) 2003-04-30 2007-03-20 Самсунг Электроникс Ко., Лтд Система и способ для управления переходом из состояния в состояние в спящем режиме и активном режиме в системе связи с широкополосным беспроводным доступом
KR100665457B1 (ko) 2003-04-30 2007-01-04 삼성전자주식회사 광대역 무선 접속 통신 시스템에서 슬립 모드 및 어웨이크 모드에서의 상태 천이 제어 시스템 및 방법
US20040219925A1 (en) * 2003-04-30 2004-11-04 Motorola, Inc. Image data transfer over a dispatch voice channel
US20040224684A1 (en) 2003-05-07 2004-11-11 Dorsey Donald A. Method for a radiotelephone to search for higher priority networks
US6961569B2 (en) 2003-05-07 2005-11-01 Motorola Inc Method for a radiotelephone to scan for higher priority public land mobile network
WO2004105337A1 (en) 2003-05-16 2004-12-02 Thomson Licensing S.A. Repetition coding in a satellite-based communications system
US8593932B2 (en) 2003-05-16 2013-11-26 Qualcomm Incorporated Efficient signal transmission methods and apparatus using a shared transmission resource
US7590188B2 (en) 2003-05-21 2009-09-15 Regents Of The University Of Minnesota Channel estimation for block transmissions over time- and frequency-selective wireless fading channels
EP1615365A4 (en) 2003-06-30 2011-05-11 Fujitsu Ltd MULTIPLE INPUT MULTIPLE OUTPUT TRANSMISSION SYSTEM
JP2005039471A (ja) 2003-07-18 2005-02-10 Toshiba Corp 移動通信端末の間欠受信制御方法及び移動通信端末
US7280612B2 (en) 2003-07-25 2007-10-09 Zarbana Digital Fund Llc Digital branch calibrator for an RF transmitter
TWI330021B (en) 2003-07-25 2010-09-01 Panasonic Corp Communication network system, and transmission/reception apparatus, method and integrated circuit for use therein
US7925291B2 (en) 2003-08-13 2011-04-12 Qualcomm Incorporated User specific downlink power control channel Q-bit
CN1839574B (zh) 2003-08-13 2012-12-19 高通股份有限公司 无线通信系统中功率控制的方法和设备
US7978637B2 (en) * 2003-08-26 2011-07-12 Avaya Inc. Power-saving mechanisms for 802.11 clients
US7130668B2 (en) * 2003-09-01 2006-10-31 Samsung Electronics Co., Ltd. Method and system for controlling sleep mode in broadband wireless access communication system
KR100606065B1 (ko) * 2003-09-01 2006-07-26 삼성전자주식회사 무선 접속 통신 시스템의 슬립 모드 제어 시스템 및 그 방법
US7221680B2 (en) 2003-09-02 2007-05-22 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
JP4269858B2 (ja) 2003-09-10 2009-05-27 株式会社日立製作所 適応変復調方式及び無線通信システム
US7542437B1 (en) 2003-10-02 2009-06-02 Bbn Technologies Corp. Systems and methods for conserving energy in a communications network
US7480234B1 (en) 2003-10-31 2009-01-20 Cisco Technology, Inc. Initial timing estimation in a wireless network receiver
US7809020B2 (en) 2003-10-31 2010-10-05 Cisco Technology, Inc. Start of packet detection for multiple receiver combining and multiple input multiple output radio receivers
US7085595B2 (en) * 2003-12-16 2006-08-01 Intel Corporation Power saving in a wireless local area network
US20050136960A1 (en) 2003-12-17 2005-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Power control method
US7197341B2 (en) * 2003-12-22 2007-03-27 Interdigital Technology Corporation Precise sleep timer using a low-cost and low-accuracy clock
JP2005197968A (ja) 2004-01-06 2005-07-21 Fujitsu Ltd 信号処理回路並びに直交復調装置およびその誤差推定方法
US7701917B2 (en) 2004-02-05 2010-04-20 Qualcomm Incorporated Channel estimation for a wireless communication system with multiple parallel data streams
JP4599128B2 (ja) 2004-03-08 2010-12-15 株式会社東芝 移動通信端末及びその間欠受信方法
US8391410B2 (en) 2004-07-29 2013-03-05 Qualcomm Incorporated Methods and apparatus for configuring a pilot symbol in a wireless communication system
KR100606084B1 (ko) * 2004-08-17 2006-07-28 삼성전자주식회사 광대역 무선 접속 통신 시스템에서 이동 단말기의 슬립 식별자 업데이트 시스템 및 방법
US7349355B2 (en) * 2004-10-27 2008-03-25 Intel Corporation Methods and apparatus for providing a communication proxy system
KR100580836B1 (ko) 2004-12-03 2006-05-16 한국전자통신연구원 직교주파수분할다중화 시스템의 송신 장치 및 그 방법
US7653035B2 (en) 2004-12-20 2010-01-26 Intel Corporation Interference rejection in wireless receivers
US8073469B2 (en) * 2005-01-31 2011-12-06 Jasper Wireless, Inc. Paging for non-real-time communications wireless networks
US20060194577A1 (en) 2005-02-25 2006-08-31 Yu-Li Su Carrier search methods and related devices
US7706456B2 (en) 2005-03-08 2010-04-27 Qualcomm Incorporated Methods and apparatus for combining and/or transmitting multiple symbol streams
US7627770B2 (en) * 2005-04-14 2009-12-01 Mips Technologies, Inc. Apparatus and method for automatic low power mode invocation in a multi-threaded processor
DE102005020062B4 (de) * 2005-04-29 2011-07-21 Globalfoundries Inc. Mobile drahtlose Datenspeichereinrichtung und entsprechendes Verfahren zum speichern von Daten
US7496060B2 (en) * 2005-05-20 2009-02-24 Freescale Semiconductor, Inc. Extending battery life in communication devices having a plurality of receivers
US8045981B2 (en) 2005-08-18 2011-10-25 Qualcomm Incorporated System search to detect for a wireless communication network in a crowded frequency band
KR20070024302A (ko) * 2005-08-26 2007-03-02 한국전자통신연구원 셀룰러 시스템의 수면 모드 제어 장치 및 제어 방법
US8094595B2 (en) 2005-08-26 2012-01-10 Qualcomm Incorporated Method and apparatus for packet communications in wireless systems
EP1943861B9 (en) * 2005-10-31 2014-09-03 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for activity detection in a telecommunication system
US7746896B2 (en) 2005-11-04 2010-06-29 Intel Corporation Base station and method for allocating bandwidth in a broadband wireless network with reduced latency
US7558572B2 (en) 2005-12-21 2009-07-07 Qualcomm Incorporated Methods and apparatus for determining and/or communicating parameter switching point information in wireless communications systems including wireless terminals supporting multiple wireless connections
ES2376284T3 (es) * 2005-12-22 2012-03-12 Electronics And Telecommunications Research Institute Procedimiento para operación de transmisión/recepción discontinua para reducir el consumo de energ�?a en un sistema celular.
US7813451B2 (en) 2006-01-11 2010-10-12 Mobileaccess Networks Ltd. Apparatus and method for frequency shifting of a wireless signal and systems using frequency shifting
US8644286B2 (en) 2006-02-14 2014-02-04 Broadcom Corporation Method and system for fast cell search using psync process in a multimode WCDMA terminal
US7953410B2 (en) 2006-03-02 2011-05-31 Research In Motion Limited Cross-technology coverage mapping system and method for modulating scanning behavior of a wireless user equipment (UE) device
US8189456B2 (en) 2006-03-21 2012-05-29 Texas Instruments Incorporated Apparatus for and method of minimizing backoff for orthogonal frequency division multiplexing transmission
CN101411095B (zh) * 2006-03-28 2013-06-19 三星电子株式会社 用于移动通信系统中的连接终端的非连续接收的方法和设备
US8139660B2 (en) 2006-04-14 2012-03-20 Qualcomm Incorporated Methods and apparatus related to using a wireless terminal scrambling identifier
US7680478B2 (en) * 2006-05-04 2010-03-16 Telefonaktiebolaget Lm Ericsson (Publ) Inactivity monitoring for different traffic or service classifications
US7751858B2 (en) * 2006-05-05 2010-07-06 Intel Corporation Sleep-mode statistics apparatus, systems, and methods
US7916675B2 (en) * 2006-06-20 2011-03-29 Nokia Corporation Method and system for providing interim discontinuous reception/transmission
WO2007149949A1 (en) * 2006-06-20 2007-12-27 Rain Bird Corporation Sensor device for interrupting irrigation
KR20070121505A (ko) * 2006-06-21 2007-12-27 엘지전자 주식회사 무선링크 재설정 방법
EP1876846B1 (en) * 2006-07-03 2009-09-09 Samsung Electronics Co., Ltd. System and method for performing periodic ranging in sleep mode in a communication system
US20080046132A1 (en) * 2006-08-18 2008-02-21 Nokia Corporation Control of heat dissipation
US8094554B2 (en) * 2006-10-26 2012-01-10 Qualcomm Incorporated Compressed mode operation and power control with discontinuous transmission and/or reception
TWI463894B (zh) * 2006-10-27 2014-12-01 Interdigital Tech Corp 無線系統中增強不連續接收方法及裝置
WO2008055247A1 (en) 2006-11-01 2008-05-08 Qualcomm Incorporated Inter-cell power control for interference management
CN101529776B (zh) 2006-11-01 2013-06-19 高通股份有限公司 管理多个子带的方法及装置
JP5113184B2 (ja) 2006-11-06 2013-01-09 クゥアルコム・インコーポレイテッド サブ帯域に依存するアップリンク負荷管理
US8619652B2 (en) * 2006-12-04 2013-12-31 Samsung Electronics Co., Ltd. System and method for adaptive sleep of wirelessly networked devices
EP2127417B1 (en) * 2007-01-08 2016-11-02 Nokia Technologies Oy Method, apparatus and system for providing reports on channel quality of a communication system
RU2438256C2 (ru) 2007-01-11 2011-12-27 Квэлкомм Инкорпорейтед Использование dtx и drx в системе беспроводной связи
US8417279B2 (en) 2009-03-13 2013-04-09 Intel Corporation Techniques to control transmitter power level

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2578166C1 (ru) * 2012-05-11 2016-03-20 Интел Корпорейшн Экономия энергии пользовательским оборудованием для межмашинной связи
US9788306B2 (en) 2012-06-01 2017-10-10 Huawei Technologies Co., Ltd. Wireless communication method, base station, and terminal
RU2749181C1 (ru) * 2017-09-07 2021-06-07 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ прерывистого приема, сетевое устройство и терминальное устройство
US11363668B2 (en) 2017-09-07 2022-06-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Discontinuous reception method, network device and terminal device
RU2757574C1 (ru) * 2018-03-28 2021-10-18 Виво Мобайл Комьюникэйшн Ко., Лтд. Способ контроля сообщения системы поискового вызова, абонентское оборудование мобильной связи и сервер
US11711783B2 (en) 2018-03-28 2023-07-25 Vivo Mobile Communication Co., Ltd. Method for monitoring paging message, mobile terminal and server

Also Published As

Publication number Publication date
KR20090106603A (ko) 2009-10-09
US9432942B2 (en) 2016-08-30
SI2515587T1 (sl) 2021-02-26
EP2127269A1 (en) 2009-12-02
CA2674429A1 (en) 2008-07-17
BRPI0806527A2 (pt) 2014-04-22
MX2009007456A (es) 2009-07-22
EP3410785A3 (en) 2019-02-20
BRPI0806527B1 (pt) 2020-06-16
EP2515587B1 (en) 2020-10-14
CN101637051A (zh) 2010-01-27
US20090122736A1 (en) 2009-05-14
CA2674429C (en) 2013-10-08
EP2515587A3 (en) 2013-12-25
EP3410785A2 (en) 2018-12-05
AU2008204768A1 (en) 2008-07-17
ES2843027T3 (es) 2021-07-15
CN101637051B (zh) 2012-10-31
RU2009130587A (ru) 2011-02-20
JP2015159591A (ja) 2015-09-03
JP5886073B2 (ja) 2016-03-16
EP2515587A2 (en) 2012-10-24
PL2515587T3 (pl) 2021-04-19
US9674786B2 (en) 2017-06-06
JP2012138931A (ja) 2012-07-19
PT2515587T (pt) 2020-12-09
WO2008086532A1 (en) 2008-07-17
JP2010516208A (ja) 2010-05-13
KR101122368B1 (ko) 2012-03-27
US20130336186A1 (en) 2013-12-19
US8755313B2 (en) 2014-06-17
EP2127269B1 (en) 2017-08-30
US20160330690A1 (en) 2016-11-10
DK2515587T3 (da) 2020-12-14
HUE051741T2 (hu) 2021-03-29

Similar Documents

Publication Publication Date Title
RU2438256C2 (ru) Использование dtx и drx в системе беспроводной связи
US8588054B2 (en) Silence intervals in wireless communications
RU2433571C2 (ru) Гибкие прерывистая передача (dtx) и прерывистый прием (drx) в системе беспроводной связи
US11647464B2 (en) Wake-up dci for wireless devices in connected mode
CN101932023B (zh) 载波聚合的不连续接收方法、调度方法及装置
US20080227449A1 (en) Pich-hs timing and operation
AU2017238161B2 (en) Uplink channel quality measurement using a subframe with high-intensity reference signal bursts
JP7562801B2 (ja) 集積回路
WO2021104615A1 (en) Selective wake-up signal monitoring
CN109644403B (zh) 无线通信的方法和设备
EP4443987A1 (en) Balancing latency reduction and user equipment power saving
EP4447547A2 (en) Method and terminal for measurement in wireless communication system
RU2445752C2 (ru) Синхронизация и функционирование канала pich и высокоскоростных каналов