[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2457526C2 - Способ и устройство для получения поляризационных голограмм - Google Patents

Способ и устройство для получения поляризационных голограмм Download PDF

Info

Publication number
RU2457526C2
RU2457526C2 RU2008136052/28A RU2008136052A RU2457526C2 RU 2457526 C2 RU2457526 C2 RU 2457526C2 RU 2008136052/28 A RU2008136052/28 A RU 2008136052/28A RU 2008136052 A RU2008136052 A RU 2008136052A RU 2457526 C2 RU2457526 C2 RU 2457526C2
Authority
RU
Russia
Prior art keywords
polarization
hologram
phase
calculated
polarisation
Prior art date
Application number
RU2008136052/28A
Other languages
English (en)
Other versions
RU2008136052A (ru
Inventor
Жан-Мишель АСФУР (DE)
Жан-Мишель АСФУР
Штефан ШНАЙДЕР (DE)
Штефан ШНАЙДЕР
Дитмар ЭБЕРХАРД (DE)
Дитмар ЭБЕРХАРД
Вольфганг РИДЕЛЬ (DE)
Вольфганг Ридель
Доминик ГИЛЬ (DE)
Доминик ГИЛЬ
Штефан ФЕЛЬКЕНИНГ (DE)
Штефан ФЕЛЬКЕНИНГ
Харди ЮНГЕРМАНН (DE)
Харди ЮНГЕРМАНН
Original Assignee
Байер Инновейшн Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Байер Инновейшн Гмбх filed Critical Байер Инновейшн Гмбх
Publication of RU2008136052A publication Critical patent/RU2008136052A/ru
Application granted granted Critical
Publication of RU2457526C2 publication Critical patent/RU2457526C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0891Processes or apparatus adapted to convert digital holographic data into a hologram
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H1/0011Adaptation of holography to specific applications for security or authentication
    • G03H2001/0016Covert holograms or holobjects requiring additional knowledge to be perceived, e.g. holobject reconstructed only under IR illumination
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0476Holographic printer
    • G03H2001/0478Serial printer, i.e. point oriented processing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0841Encoding method mapping the synthesized field into a restricted set of values representative of the modulator parameters, e.g. detour phase coding
    • G03H2001/085Kinoform, i.e. phase only encoding wherein the computed field is processed into a distribution of phase differences
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2276Polarisation dependent holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/31Polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/34Multiple light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/20Nature, e.g. e-beam addressed
    • G03H2225/24Having movable pixels, e.g. microelectromechanical systems [MEMS]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/30Modulation
    • G03H2225/36Polarisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2240/00Hologram nature or properties
    • G03H2240/20Details of physical variations exhibited in the hologram
    • G03H2240/26Structural variations, e.g. structure variations due to photoanchoring or conformation variations due to photo-isomerisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/30Details of photosensitive recording material not otherwise provided for
    • G03H2260/35Rewritable material allowing several record and erase cycles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/50Reactivity or recording processes
    • G03H2260/51Photoanisotropic reactivity wherein polarized light induces material birefringence, e.g. azo-dye doped polymer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

Способ получения поляризационной голограммы заключается в том, что на первом этапе рассчитывают фазовую голограмму, которая имеет комплексное распределение амплитуды и фазы. На втором этапе из фазовой голограммы путем замены значений для распределения фазы направлениями поляризации рассчитывают поляризационную голограмму. На третьем этапе переносят рассчитанную поляризационную голограмму на материал-носитель, содержащий вещество, в котором можно при помощи света локально создать ориентированное двулучепреломление. Устройство для получения поляризационной голограммы содержит вычислительный блок, посредством которого могут быть проведены математические расчеты; источник света, посредством которого может быть получен поляризованный свет, имеющий регулируемое направление поляризации, представляющий собой записывающий лазер, в котором направление поляризации может быть установлено по меньшей мере в две стадии. Также устройство содержит блок, посредством которого поляризованный свет может быть направлен на материал, в частности, таким образом, чтобы можно было осветить различные точки в и (или) на материале светом различного направления поляризации, и фазовращатель, поворачивающий поляризацию на π/2, посредством которого можно установить дополнительную поляризацию. Технический результат заключается в обеспечении возможности записи на материал-носитель синтезированной на компьютере поляризационной голограммы. 3 н. и 5 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к способу получения поляризационных голограмм, устройству для получения поляризационных голограмм и применению поляризационных голограмм согласно изобретению в качестве хранилищ данных, признаков защиты или дифракционных оптических элементов для выполнения обычных оптических функций.
Синтезированная на компьютере голограмма (CGH) является цифровой голограммой. Структуры CGH вычисляются с использованием специальных алгоритмов, которые моделируют на компьютере процесс голографической записи на виртуальной дифракционной решетке. Эти структуры затем переносятся на материальный носитель, например, методами литографии.
В отличие от CGH, в способах классической, аналоговой записи изготовления голографические структуры получают посредством интерференции, то есть суперпозиция лазерных лучей с постоянной фазой.
Преимущество CGH заключается в возможности получать голограммы нереальных, компьютерных объектов или изображений объектов, которые существуют в виде математического описания. Таким образом, применение CGH повышает гибкость при изготовлении дифракционных структур по сравнению с аналоговым подходом. Кроме того, конструкция записывающего устройства для цифровых голограмм более надежна, чем для аналоговых голограмм, поскольку нет необходимости принимать в расчет постоянную во времени фазовую связь по меньшей мере двух лазерных лучей.
Синтезированные на компьютере голограммы широко используются, например, для интерферометрической проверки формы деталей, для изготовления защитных элементов для защиты от подделок и в качестве дифракционных оптических элементов (ДОЭ) для выполнения обычных оптических функций (линз, призм).
Способы получения CGH и их применение в качестве защитных элементов известны из уровня техники и описаны, например, в немецкой патентной заявке DE 19926698 A1. Такие голограммы бывают фазовыми и амплитудными.
Поляризационные голограммы - это особый вид голограмм, которые до настоящего времени производились аналоговым способом, то есть посредством интерференции лазерных лучей. Суперпозиция лазерных лучей создает узор из направлений поляризации, который фиксируется на оптически анизотропном материале.
В частности, в защитных элементах поляризационные голограммы обладают рядом преимуществ над традиционными голограммами с установившейся фазой или амплитудой. Например, поляризационная голограмма чувствительна к направлению вращения считывающего луча с круговой поляризацией; поляризационная голограмма отклоняет свет с правой и левой круговой поляризацией в различных направлениях (Р.Rochon, V.Dronyan, A.Natansohn: Polarization Holographic Gratings in Azopolymers for Detecting and Producing Circularly Polarized Light, submitted for publication in International Conference on Applications of Photonics Technology (SPIE), Technical Report No. 48, Office of Naval Research, Grant: N00014-93-1-0615, R&T Code: 3132081). Следовательно, поляризационная голограмма обеспечивает лучшую защиту от подделки.
Для переноса GCH на носитель для получения поляризационной голограммы требуется материал, который может сохранять направление поляризации записывающего луча. С обычными материалами, на которые обычно переносят CGH, это невозможно. Кроме того, при обычном литографическом переносе CGH на материал-носитель получается постоянная дифракционная структура, которая не может быть изменена. Перенос CGH на перезаписываемый носитель обеспечивает существенно большую гибкость.
Оба аспекта реализуются при помощи так называемых фотомодифицируемых полимеров. Фотомодифицируемые полимеры известны (Polymers as Electrooptical and Photooptical Active Media, V.P.Shibaev (editor). Springer Verlag, New York J 995). Эти вещества характеризуются способностью формировать двулучепреломление при воздействии поляризованного света. Записанные узоры двулучепреломления можно сделать видимыми в поляризованном свете. Примерами этого типа служат полимеры боковых групп согласно патенту США 5173381, которые содержат азобензольные группы.
Кроме того, известно, что локализованное двулучепреломление можно записать в слоях этих полимеров в любой требуемой точке при помощи поляризованного света, причем предпочтительная ось этого двулучепреломления перемещается при вращении направления поляризации (K.Anderle, R.Birenheide, M.Eich, J.H.Wendorff, Makromol. Chem., Rapid Commun. 10, 477-483 (1989)).
В Европейской патентной заявке ЕР 0622789 А1 описано, как в целом можно осуществить запись фотомодифицируемых полимеров: под влиянием актиничного света в слое полимера создаются упорядоченные состояния. Предпочтительно использовать свет с линейной или круговой поляризацией, длина волны которого находится в области полосы поглощения боковых групп, изменяющих конфигурацию под действием света. При падении поляризованного света перпендикулярно поверхности пленки создается предпочтительная ориентация, лежащая в плоскости пленки, которая одинакова по всей пленке в случае линейного поляризованного света, тогда как при использовании света с круговой поляризацией предпочтительное направление периодически изменяется в соответствии с вектором напряженности электрического поля возбуждающего света, падающего перпендикулярно поверхности. Воздействие неполяризованного света создает предпочтительную ориентацию перпендикулярно плоскости пленки.
Кроме того, в ЕР 0622789 А1 утверждается, что фотомодифицируемые полимеры особенно подходят для обработки изображений и для обработки информации посредством голограмм, воспроизведение которых может быть осуществлено посредством освещения опорной волной. В этой выложенной заявке голограмма получается в результате суперпозиции двух источников света с постоянной фазой в материале для хранения данных.
В ней также утверждается, что в случае аналогового сохранения значения шкалы серого можно регулировать непрерывно и с высокой точностью позиционирования.
Описание получения поляризационных голограмм посредством записи оцифрованного узора направлений поляризации отсутствует.
Поляризационные голограммы, которые записывают аналоговым методом записи на фотомодифицируемые полимеры, известны из уровня техники. Устройство, при помощи которого можно записать поляризационные голограммы на фотомодифицируемые полимеры посредством суперпозиции двух лазерных лучей с круговой поляризацией, описано в заявке WO 99/57719 А1 (с.10, строка - с.14, строка 16). Однако при помощи этого устройства невозможно записать синтезируемые компьютером голограммы непосредственно на фотомодифицируемые полимеры.
В немецкой патентной заявке DE 19620588 А1 описан способ, отличающийся от вышеупомянутых способов и предназначенный для записи на фотомодифицируемые полимеры.
В первом процессе генерации всю поверхность слоя фотомодифицируемого полимера освещают источником поляризованного света и таким образом получают анизотропное двулучепреломление. На втором этапе таким образом подготовленный материал освещают короткими световыми импульсами, и созданная по всей поверхности анизотропия меняется в локализованных областях. Описание записи синтезированной компьютером поляризационной голограммы отсутствует.
Таким образом, задачей настоящего изобретения является разработка способа, посредством которого можно рассчитать поляризационные голограммы и затем перенести при помощи записывающей системы на материал-носитель.
Неожиданно было обнаружено, что эта задача решается описанным ниже способом согласно изобретению и устройством согласно изобретению для получения поляризационных голограмм.
В первую очередь изобретение относится к способу получения поляризационных голограмм.
Способ согласно изобретению для получения поляризационных голограмм содержит, на первом этапе, расчет поляризационной голограммы, которая имеет по меньшей мере две поляризационных стадии, и, на втором этапе, перенос рассчитанной поляризационной голограммы на материал-носитель, содержащий вещество, в котором при помощи света может быть локально получено ориентированное двулучепреломление.
Расчет поляризационных голограмм
Объект описывается в трехмерном пространстве комплексной величиной, составленной из амплитуды и фазы. Амплитуда объекта - это распределение значений яркости (амплитудное распределение), фаза объекта может быть выбрана произвольно. Предпочтительно выбрать случайное распределение.
Объект, предназначенный для сохранения в топографическом виде, представлен в цифровой форме, то есть имеется матрица дискретных значений амплитуды и фазы.
Поляризационные голограммы - это особая форма фазовой голограммы, поэтому для объекта рассчитывается фазовая голограмма. Для этой цели необходимо найти фазовую голограмму, которая воссоздает объект при освещении ее считывающим лучом. Фазовая голограмма модулирует фазу считывающего луча. Это означает, что необходимо найти фазовую голограмму, которая модулирует фазу считывающего луча таким образом, чтобы восстановить амплитудное распределение объекта.
В литературе описан ряд походов к решению; в качестве примера можно привести итерационный алгоритм преобразования Фурье (IFTA), описанный Gerchberg & Saxton (R.W.Gerberg, W.O.Saxton; A Practical Algorithm for the Detection of Phase from Image and Diffraction Plane Pictures; Optik 35 (1972), page 237). Цель алгоритма - найти представление объекта в частотном пространстве, которое содержит минимальное количество ошибок.
Определения:
А(O) - амплитуда объекта
Р(O) - фаза объекта
А(С) - амплитуда CGH
Р(С) - фаза CGH
A(L) - амплитуда считывающего луча, предоставленного для процесса считывания
В случае фурье-голограмм преобразование Фурье позволяет восстановить требуемый объект. Для получения фурье-CGH комплексное распределение амплитуды/фазы в плоскости голограммы вычисляется посредством преобразования Фурье из объекта (А(O), Р(O)), имеющегося в цифровом виде.
В результате вновь получается комплексное распределение амплитуды/фазы (А(С), Р(С)). Для амплитудного распределения А(С) используется амплитудное распределение считывающего луча A(L), предоставленного для процесса считывания, и выполняется обратное преобразование Фурье для (A(L), P(C)).
Результатом является амплитудное и фазовое распределение в пространстве объекта (А'(O), Р'(O)). Оно больше не соответствует первоначальному распределению (А(O), Р(O)), поскольку А(С) было заменено A(L). Фазовое распределение Р'(O) сохраняется, А'(O) заменяется А(O) и выполняется еще одно преобразование Фурье.
Так продолжается до тех пор, пока комплексное распределение амплитуды/фазы не приведет к комплексному распределению амплитуды/фазы в плоскости объекта, которое согласуется с первоначальным распределением А(O), Р(O) с достаточной точностью.
Результатом является цифровая фазовая голограмма, комплексное распределение амплитуды/фазы А(С), Р(С) которой при освещении считывающим лучом воссоздает объект (А(O), Р(O)) с достаточной точностью.
Существенной особенностью этого способа расчета является изменение алгоритма таким образом, что фазовое распределение в плоскости голограммы подвергается дискретизации (так сказать "округляется") на каждом шаге итерации так, что рассчитанная поляризационная голограмма имеет по меньшей мере две поляризационных стадии. Причина дискретизации связана с тем, что по техническим причинам невозможно установить для фазы любое произвольное значение при переносе рассчитанной поляризационной голограммы на материал-носитель. Дискретизация Р(С) выполняется в зависимости от того, сколько и какие дискретные значения могут быть установлены в материале при помощи используемого способа. В предпочтительном варианте выполнения дискретизация выполняется таким образом, чтобы рассчитанная поляризационная голограмма имела четыре стадии поляризации.
На последнем этапе расчета рассчитываемых поляризационных голограмм значения для фазового распределения Р(С) заменяются направлениями поляризации. Фазовое распределение предполагает значения в интервале от 0 до 2 π. Эти значения отображаются на распределения направлений поляризации в интервале между 0° и 180°. В простейшем случае выполняется линейное отображение, то есть значения между 0 и 2π в фазовом распределении заменяются линейным образом значениями между 0° и 180°. Возможны также отображения, отличные от линейных. Предпочтительно экспериментально определить характеристику материала, которая указывает, какое направление поляризации к какому фазовому сдвигу приводит.
Одна итерация измененного алгоритма обратного преобразования Фурье содержит следующие этапы:
Этап 1: Расчет А(С) и Р(С) из А(O) и Р(O) посредством преобразования Фурье
Этап 2: Замена А(С) на A(L)
Этап 3: Дискретизация Р(С) дает Pq(C)
Этап 4: Расчет А'(О) и Р'(O) из A(L) и Pq(C) при помощи обратного преобразования Фурье
Этап 5: Замена А'(O) на А(O) и переход к этапу 1 с новыми значениями А(O) и Р(O); (А(O), Р'(O))
Способ завершается, когда преобразование Фурье комплексного распределения амплитуды/фазы в плоскости голограммы приводит к комплексному распределению амплитуды/фазы в плоскости объекта, которое соответствует с достаточной точностью первоначальному распределению А(O), Р(O). Результатом является рассчитанная фазовая голограмма. Точность соответствия определяется областью применения. Например, если в виде голограммы записывают двоичные, двумерные коды данных (матричные коды, такие как, например, матричный код данных), восстановление должно быть достаточно хорошим, чтобы обеспечить надлежащую коррекцию ошибок, содержащихся в матричном коде, для восстановления данных. В случае топографического хранения изображения восстановление должно быть достаточно хорошим, чтобы человеческий глаз не мог заметить отличия между оригиналом и восстановленным изображением. Обычно этапы итерации выполняются многократно таким образом, чтобы результат расчета перестал изменяться на следующем шаге итерации или изменялся на величину среднего отклонения на каждом последующем шаге итерации.
Расчет рассчитанной фазовой голограммы осуществляется предпочтительно с использованием компьютера.
После расчета фазовой голограммы производится вышеописанная замена значений для фазового распределения Р(С) направлениями поляризации. В результате получается поляризационная голограмма.
После расчета поляризационная голограмма на втором этапе переносится на материал-носитель.
Перенос рассчитанной поляризационной голограммы на материал-носитель
Если фазовая голограмма переносится на материал-носитель, он модулирует фазу считывающего луча. На фазу считывающего луча может влиять оптический путь в материале. Оптический путь (ОР) - это произведение толщины слоя d и коэффициента преломления материала n:
OP=n·d
В случае обычных фазовых голограмм, описанных, например, в DE 19926698 А1, толщина слоя материала изменяется для создания фазовой модуляции считывающего луча. В случае настоящего изобретения коэффициент преломления материала изменяется для создания фазовой модуляции считывающего луча.
Материал-носитель
В качестве материала-носителя можно использовать все вещества, в которых при помощи света может быть локально создано ориентированное двулучепреломление (Polymers as Electrooptical and Photooptical Active Media, V.P.Shibaev (editor). Springer Verlag, New York 1995; Natansohn et al, Chem. Mater. 1993, 403-511). Особенно подходящими полимерами являются полимеры, в которых при помощи света может быть локально создано ориентированное двулучепреломление. Такие полимеры называются фотомодифицируемыми полимерами. Таковыми являются, в частности, полимеры с боковыми группами, которые можно использовать для настоящего изобретения и которые описаны в следующих публикациях: ЕР 0622789 В1 (с.3-5), DE 4434966 A1 (с.2-5), DE 19631864 А1 (с.2-16), DE 19620588 А1 (с.3-4), DE 19720288 А1 (с.2-8), DE 4208328 А1 (с.3, строки 3-4, 9-11, 34-40, 56-60), DE 10027153 А1 (с.2-е. 8, строка 61), DE 10027152 А1 (с.2-8), WO 196038410 А1, US 5496670 (столбец 1 строки 42-67, столбец 6 строка 22 - столбец 12 строка 20), US 5543267 (столбец 2 строка 48 - столбец 5 строка 3), ЕР 0622789 В1 (с.3, строка 17 - с.5, строка 31), WO 9202930 А1 (с.6, строки 26-35, с.7 строка 25 - с.14 строка 20), WO 1992002930 А1.
При освещении поляризационных голограмм поляризованным светом отдельные направления волны испытывают фазовый сдвиг. Он зависит от уровня локального двулучепреломления в сохраняющем материале. Если в качестве сохраняющего материала используется так называемый фотомодифицируемый полимер, то свет может вызвать двулучепреломление (R.Hagen, Т.Bieringer. Photoaddressable Polymers for Optical Data Storage. In: Advanced Materials, WILEY-VCH Verlag GmbH (2001), No. 13/23, pages 1805-1810).
Если объяснять простыми словами, в результате падения линейно поляризованнго света хромофоры ориентируются перпендикулярно направлению поляризации.
Для записи рассчитанной голограммы на чувствительный к поляризации материал используется линейно поляризованный свет, предпочтительно с длиной волны в интервале от 380 нм до 580 нм. Особенно предпочтительно осуществлять запись при помощи света с длиной волны 400-420 нм или 500-550 нм.
Существует две возможности переноса рассчитанной поляризационной голограммы на материал-носитель: последовательная и параллельная запись.
Последовательная запись
Для последовательной записи голограммы, то есть точка за точкой, записывающий луч должен быть способен распространяться в двух направлениях. Такое распространение обеспечивается системой с быстрым отклонением зеркала. Она состоит из зеркала, которое может отклоняться на два угла двумя пьезоприводами. В альтернативном варианте возможно также использование двух зеркал, каждое из которых может отклоняться только на один угол.
В одном варианте выполнения настоящего изобретения лазерный луч неподвижен, а среда хранения перемещается в двух направлениях относительно лазерного луча. Это можно осуществить, например, посредством смещаемого стола. Возможно также сочетание зеркал для перемещения лазерного луча и смещения среды хранения относительно лазерного луча.
Направление поляризации должно быть непрерывно или дискретно регулируемым в интервале от 0 до 180°, на котором имеется по меньшей мере две поляризационных стадии. Предпочтительно осуществляется запись по меньшей мере четырех поляризационных стадий, равномерно распределенных в интервале от 0 до 180°.
Для достижения достаточно высокой скорости записи необходимо уметь очень быстро изменять направление поляризации. В одном варианте выполнения настоящего изобретения используется конструкция, содержащая четыре лазера, которая приведена схематически на фиг.2. Достоинство такой конструкции заключается в отсутствии механических компонентов для записи поляризационных направлений. Каждый лазер создает свет с различным направлением поляризации. Предпочтительные направления поляризации - 0°, 45°, 90° и 135°.
В процессе записи лазеры попеременно включаются и выключаются, так чтобы в коллимированном выходном луче имелось требуемое направление поляризации (см. фиг.2). Тем самым на материал с высокой скоростью можно записать четыре стадии поляризации. При помощи дополнительного фазовращателя, поворачивающего поляризацию на π/2 (см. фиг.3), можно установить дополнительную поляризацию, при помощи которой среда хранения может быть "отформатирована". На первом этапе по всей площади голограммы записывается направление поляризации. Затем удаляется дополнительный фазовращатель, сдвигающий фазу на π/2, и на втором этапе записываются остальные направления поляризации в режиме дифракционной решетки при помощи лазеров, которые можно попеременно включать и выключать. Таким образом, посредством вышеописанного устройства можно записать голограммы, имеющие пять поляризационных стадий.
В другой реализации изобретения используется только один лазер, в котором направление поляризации можно непрерывно регулировать. Например, для этой цели можно использовать волоконно-оптический регулятор поляризации. Он действует аналогично плоскости, преломляющей плоскую волну, в классической оптике. Оптическое волокно свернуто в катушки. В результате искривления оптического волокна его поперечное сечение деформируется, и оно становится эллиптическим и, следовательно, двулучепреломляющим. Посредством вращения катушек относительно непрерывного оптического волокна можно изменять состояние поляризации и вращать плоскость поляризации во всем интервале.
Можно также установить поляризатор с возможностью вращения и тем самым непрерывно поворачивать плоскость поляризации.
Помимо поляризационных голограмм при помощи лазера на материал-носитель можно записывать и другие структуры, например особые позиционные метки для поиска голограмм.
Параллельная запись
При параллельной записи все точки рассчитанной поляризационной голограммы, имеющие ту же поляризацию, записываются на материал-носитель одновременно. Это можно обеспечить, например, при помощи технологии DLP (цифровой обработки света). Технология DLP основана на микроскопически маленьких зеркалах, которые установлены на чипе DMD (цифрового микрозеркального устройства).
Зеркала имеют два устойчивых конечных состояния, между которыми они могут переходить за короткий промежуток времени. Зеркала приводятся в движение извне при помощи компьютера. В результате отклонения отдельных микрозеркал на чипе DMD свет либо непосредственно отражается оптической системой, либо направляется на поглотитель.
Для параллельной записи поляризационных голограмм на чип DMD направляется расходящийся линейно поляризованный луч света с регулируемым направлением поляризации.
Зеркала чипа DMD представляют пикселы поляризационной голограммы. Все зеркала, которые относятся к заданному поляризационному направлению, отклоняются в направлении оптической системы. Все остальные зеркала отклоняются в направлении поглотителя.
Затем выбирается новое направление поляризации и процесс продолжается аналогичным образом до тех пор, пока не будут записаны все направления поляризации.
В альтернативном варианте параллельная запись может быть также осуществлена при помощи устройства из элементов, посредством которых можно управляемым образом устанавливать направления поляризации. В данном случае отдельные имеющиеся направления поляризации не требуется записывать одно за другим, но все имеющиеся направления поляризации могут быть записаны одновременно одно рядом с другим. В качестве такого устройства из элементов можно использовать жидкокристаллический дисплей.
Изобретение также относится к устройству для изготовления поляризационных голограмм, которое содержит (см. фиг.1) вычислительный блок (1), посредством которого могут выполняться математические расчеты. Оно также содержит источник света (2), посредством которого можно получить поляризованный свет (3), имеющий регулируемое направление поляризации. Кроме того, оно содержит блок (4), посредством которого поляризованный свет может быть направлен на материал (5), в частности, таким образом, чтобы можно было осветить различные точки в и (или) на материале светом с различным направлением поляризации.
В возможном варианте выполнения устройства используется записывающий лазер, в котором направление поляризации может быть установлено по меньшей мере в двух стадиях.
В другом возможном варианте выполнения устройства используется множество лазеров, каждый из которых имеет по меньшей мере одно отличающееся направление поляризации, то есть различные лазеры используются для записи различных направлений поляризации. Один лазер для каждого записываемого направления поляризации. Используя фазовращатели на угол π/2, которые могут быть введены в траекторию луча лазера и вновь выведены, можно даже записать больше направлений поляризации, чем имеющееся количество лазеров.
Номера позиций
(1) Вычислительный блок
(2) Источник света, имеющий регулируемое направление поляризации
(3) Луч света, имеющий определенное направление поляризации
(4) Блок для направления луча света на материал-носитель
(5) Материал-носитель
(6) Куб расщепления луча
(7) Пластина расщепления луча
(8) Фазовращатель на угол π/2
Настоящее изобретение относится также к поляризационным голограммам, получаемым способом согласно изобретению, и к применению этих поляризационных голограмм в качестве хранилищ данных, признаков защиты и дифракционных оптических элементов для выполнения обычных оптических функций, например, линз или призм.

Claims (8)

1. Способ получения поляризационной голограммы, отличающийся тем, что на первом этапе рассчитывают фазовую голограмму, которая имеет комплексное распределение амплитуды А(С) и фазы Р(С), на втором этапе из фазовой голограммы путем замены значений для распределения фазы Р(С) направлениями поляризации рассчитывают поляризационную голограмму и на третьем этапе переносят рассчитанную поляризационную голограмму на материал-носитель, содержащий вещество, в котором можно при помощи света локально создать ориентированное двулучепреломление.
2. Способ по п.1, отличающийся тем, что в качестве материала-носителя используют фотомодифицируемый полимер.
3. Способ по п.1, отличающийся тем, что помимо поляризационной голограммы на материал-носитель записывают позиционные метки.
4. Способ по любому из пп.1-3, отличающийся тем, что расчет рассчитанной поляризационной голограммы осуществляют посредством итерационного преобразования Фурье, причем рассчитанное фазовое распределение в плоскости голограммы дискретизируют в каждом цикле итерации таким образом, что рассчитанная поляризационная голограмма имеет по меньшей мере две поляризационные стадии.
5. Способ по п.4, отличающийся тем, что рассчитанное фазовое распределение в плоскости голограммы дискретизируют в каждом цикле итерации таким образом, что рассчитанная поляризационная голограмма имеет по меньшей мере четыре поляризационные стадии.
6. Устройство для получения поляризационной голограммы, содержащее вычислительный блок (1), посредством которого могут быть проведены математические расчеты; источник света (2), посредством которого может быть получен поляризованный свет (3), имеющий регулируемое направление поляризации, блок (4), посредством которого поляризованный свет может быть направлен на материал (5), в частности, таким образом, чтобы можно было осветить различные точки в и(или) на материале светом различного направления поляризации, и фазовращатель, поворачивающий поляризацию на π/2, посредством которого можно установить дополнительную поляризацию, причем источник света представляет собой записывающий лазер, в котором направление поляризации может быть установлено по меньшей мере в две стадии.
7. Устройство по п.6, отличающееся тем, что используется множество лазеров, каждый из которых имеет по меньшей мере одно отличающееся направление поляризации.
8. Применение поляризационной голограммы, полученной способом по любому из пп.1-5, в качестве хранилища данных.
RU2008136052/28A 2006-02-09 2007-01-31 Способ и устройство для получения поляризационных голограмм RU2457526C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006005860.7 2006-02-09
DE102006005860A DE102006005860A1 (de) 2006-02-09 2006-02-09 Verfahren und Vorrichtung zur Herstellung von Polarisationshologrammen

Publications (2)

Publication Number Publication Date
RU2008136052A RU2008136052A (ru) 2010-03-20
RU2457526C2 true RU2457526C2 (ru) 2012-07-27

Family

ID=38022839

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008136052/28A RU2457526C2 (ru) 2006-02-09 2007-01-31 Способ и устройство для получения поляризационных голограмм

Country Status (15)

Country Link
US (1) US8208185B2 (ru)
EP (1) EP1984793A1 (ru)
JP (1) JP5180101B2 (ru)
KR (1) KR20090003172A (ru)
CN (1) CN101379444B (ru)
AU (1) AU2007214061A1 (ru)
BR (1) BRPI0707713A2 (ru)
CA (1) CA2641566A1 (ru)
DE (1) DE102006005860A1 (ru)
IL (1) IL192822A0 (ru)
NO (1) NO20083627L (ru)
RU (1) RU2457526C2 (ru)
TW (1) TW200745798A (ru)
WO (1) WO2007090546A1 (ru)
ZA (1) ZA200806700B (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4137850A1 (en) * 2012-10-15 2023-02-22 ImagineOptix Corporation Optical element
DE102020114693A1 (de) 2020-06-03 2021-12-09 Bayerische Motoren Werke Aktiengesellschaft Scheibenverbund mit einem integrierten holografisch optischen Element für eine Blickfeldanzeigevorrichtung zum Einsatz in einem Fahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1513413A2 (ru) * 1988-02-23 1989-10-07 Харьковский государственный университет им.А.М.Горького Голографическое устройство
EP0425088A2 (en) * 1989-10-23 1991-05-02 International Business Machines Corporation Information storage in holograms
US5384221A (en) * 1990-12-12 1995-01-24 Physical Optics Corporation Birefringent azo dye polymer erasable optical storage medium
US6376655B1 (en) * 1995-06-02 2002-04-23 Riso National Laboratory Physically functional materials
JP2006005319A (ja) * 2004-06-21 2006-01-05 Canon Inc 照明光学系及び方法、露光装置及びデバイス製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056249B2 (ja) 1990-08-02 2000-06-26 バイエル・アクチエンゲゼルシヤフト 液晶性ポリマー類および可逆的な情報記憶に対してそれらを光誘導配向させる方法
US5173381A (en) * 1991-08-05 1992-12-22 Queen's University Azo polymers for reversible optical storage
DE4208328C2 (de) 1992-03-16 2002-11-14 Bayer Ag Verfahren und Vorrichtung zur löschbaren Speicherung von Information
EP0622789B1 (de) * 1993-03-30 2002-08-07 Bayer Ag Flächenhafte Gebilde aus Seitengruppenpolymeren
US5496670A (en) * 1993-08-30 1996-03-05 Riso National Laboratory Optical storage medium
GB2286058A (en) * 1994-01-21 1995-08-02 Sharp Kk Switchable holographic apparatus
JP3226072B2 (ja) 1994-02-18 2001-11-05 キヤノン株式会社 偏波変調可能な半導体レーザとその使用法
DE4434966A1 (de) * 1994-09-30 1996-04-04 Bayer Ag Neue Seitengruppenpolymere und ihre Verwendung für optische Bauelemente
EP0900239B1 (de) * 1996-05-22 2002-03-27 Bayer Ag Schnell fotoadressierbare substrate sowie fotoadressierbare seitengruppenpolymere mit hoher induzierbarer doppelbrechung
DE19620588A1 (de) 1996-05-22 1997-11-27 Bayer Ag Schnell fotoadressierbare Substrate, ein Verfahren zum Beschreiben dieser Substrate und ihre Verwendung
DE19631864A1 (de) * 1996-08-07 1998-02-12 Bayer Ag Photoadressierbare Seitengruppenpolymere hoher Empfindlichkeit
KR100204569B1 (ko) * 1996-08-28 1999-06-15 정선종 편광 제어된 표면 방출 레이저 어레이의 구조 및 그 제조 방법
DE19720288A1 (de) * 1997-05-15 1998-11-19 Bayer Ag Homopolymere mit hoher photoinduzierbarer Doppelbrechung
JPH1152826A (ja) * 1997-08-06 1999-02-26 Central Glass Co Ltd ホログラムの多重露光方法
CN1080898C (zh) * 1997-10-26 2002-03-13 刘威 一种激光全息防伪商标标识及其制造方法
HU9801029D0 (en) 1998-05-05 1998-06-29 Optilink Ab Method and system for recording information on a holographic card
DE69942970D1 (de) * 1998-08-27 2011-01-05 Dainippon Printing Co Ltd Vorrichtung zum echtheitsnachweis und verfahren zur verwendung eines films zum echtheitsnachweis
JP2000082213A (ja) * 1998-09-03 2000-03-21 Fuji Xerox Co Ltd 光記録方法、光記録装置、光読み取り方法および光読み取り装置
DE19926698A1 (de) 1999-06-11 2000-12-14 Hsm Gmbh Computergeneriertes Sicherheitsmerkmal
DE10027152A1 (de) * 2000-05-31 2001-12-13 Bayer Ag Moschpolymere zur optischen Datenspeicherung
DE10027153A1 (de) * 2000-05-31 2001-12-06 Bayer Ag Blockcopolymere zur optischen Datenspeicherung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1513413A2 (ru) * 1988-02-23 1989-10-07 Харьковский государственный университет им.А.М.Горького Голографическое устройство
EP0425088A2 (en) * 1989-10-23 1991-05-02 International Business Machines Corporation Information storage in holograms
US5384221A (en) * 1990-12-12 1995-01-24 Physical Optics Corporation Birefringent azo dye polymer erasable optical storage medium
US6376655B1 (en) * 1995-06-02 2002-04-23 Riso National Laboratory Physically functional materials
JP2006005319A (ja) * 2004-06-21 2006-01-05 Canon Inc 照明光学系及び方法、露光装置及びデバイス製造方法

Also Published As

Publication number Publication date
JP5180101B2 (ja) 2013-04-10
NO20083627L (no) 2008-08-22
AU2007214061A1 (en) 2007-08-16
JP2009526250A (ja) 2009-07-16
TW200745798A (en) 2007-12-16
EP1984793A1 (en) 2008-10-29
DE102006005860A1 (de) 2007-08-30
IL192822A0 (en) 2009-02-11
US20090219590A1 (en) 2009-09-03
ZA200806700B (en) 2009-11-25
RU2008136052A (ru) 2010-03-20
CA2641566A1 (en) 2007-08-16
US8208185B2 (en) 2012-06-26
CN101379444A (zh) 2009-03-04
KR20090003172A (ko) 2009-01-09
BRPI0707713A2 (pt) 2011-05-10
WO2007090546A1 (en) 2007-08-16
CN101379444B (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
Ashley et al. Holographic data storage technology
JP5466833B2 (ja) ページに基づくホログラフィー記録および読み出しを実行する方法
US5719691A (en) Phase correlation multiplex holography
US8077366B2 (en) Holographic storage device having an adjustment mechanism for a reference beam
JP4175204B2 (ja) ホログラム消去方法及びホログラム消去装置
US5943145A (en) Phase distance multiplex holography
KR20110036648A (ko) 위상 엔코딩 균질화된 푸리에 변환 홀로그래픽 데이터 저장 및 복구를 위한 방법 및 장치
JP2009146542A (ja) 光情報記録装置および方法
KR20100080459A (ko) 광 데이터 저장 디스크를 복제하는 방법
RU2457526C2 (ru) Способ и устройство для получения поляризационных голограмм
Ramanujam et al. Polarisation-sensitive optical elements in azobenzene polyesters and peptides
US7813017B2 (en) Method and system for increasing holographic data storage capacity using irradiance-tailoring element
JP4007267B2 (ja) ホログラム記録方法及びホログラム記録装置
Anderson et al. Holographic data storage: rebirthing a commercialization effort
JP2007305218A (ja) 角度多重ホログラム記録再生装置および角度多重ホログラム記録再生方法
MX2008010092A (en) Method and apparatus for the production of polarization holograms
US7995443B2 (en) Apparatus and method to store information in a holographic data storage medium
US7773274B2 (en) Apparatus and method to store information in a holographic data storage medium
EP2390731B1 (en) Monocular holographic data storage system architecture
US20060082850A1 (en) Covert surface relief hologram design, fabrication and optical reconstruction for security applications
US20030147327A1 (en) Holographic storage device with faceted surface structures and associated angle multiplexing method
Yatagai et al. Optical mass-storage based on vector wave holography

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150201