[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2216602C2 - Композиционный материал - Google Patents

Композиционный материал Download PDF

Info

Publication number
RU2216602C2
RU2216602C2 RU2001119053/02A RU2001119053A RU2216602C2 RU 2216602 C2 RU2216602 C2 RU 2216602C2 RU 2001119053/02 A RU2001119053/02 A RU 2001119053/02A RU 2001119053 A RU2001119053 A RU 2001119053A RU 2216602 C2 RU2216602 C2 RU 2216602C2
Authority
RU
Russia
Prior art keywords
copper
composite material
coefficient
thermal expansion
particles
Prior art date
Application number
RU2001119053/02A
Other languages
English (en)
Other versions
RU2001119053A (ru
Inventor
Кондо Ясуо
Канеда ЮНЯ
Аоно ЯСУХИСА
Абе ТЕРУЁШИ
Инагаки МАСАХИСА
Саито РЮИЧИ
Коике ЁШИХИКО
Аракава ХИДЕО
Original Assignee
Хитачи, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хитачи, Лтд. filed Critical Хитачи, Лтд.
Publication of RU2001119053A publication Critical patent/RU2001119053A/ru
Application granted granted Critical
Publication of RU2216602C2 publication Critical patent/RU2216602C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01009Fluorine [F]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0133Ternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12036PN diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • H01L2924/30111Impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Изобретение относится к порошковой металлургии, в частности к получению композиционного материала, который можно использовать, например, в полупроводниковых приборах. Предложен композиционный материал, состоящий из металла и неорганических частиц с меньшим, чем у металла, коэффициентом теплового расширения, которые диспергированы в металле таким образом, что по меньшей мере 95% частиц по площади, занимаемой ими в поперечном сечении, образуют соединенные между собой агрегаты сложной формы. Материал содержит не более 100 отдельных неорганические частицы на 100 мкм2 площади поперечного сечения материала. В диапазоне 20 - 150oС коэффициент теплового расширения материала увеличивается в среднем на (0,025-0,03 5)х10-6/oС при изменении коэффициента теплопроводности при 20oС на 1 Вт/(м•К). Предложенный материал, например, может состоять из меди и частиц оксида меди. Техническим результатом изобретения является получение материала с низким коэффициентом теплового расширения и высоким коэффициентом теплопроводности, который легко поддается обработке давлением. 4 с.п.ф-лы, 21 ил., 4 табл.

Description

Изобретение относится к композиционному материалу с низким коэффициентом теплового расширения и высоким коэффициентом теплопроводности, к способу его получения и к его применению в полупроводниковых приборах.
При создании мощной электронной аппаратуры обычно используют мощные электронные приборы, преобразующие электрическую мощность и электрическую энергию и осуществляющие связанный с этим процесс управления, мощные электронные приборы, работающие в релейном режиме, и построенные на таких приборах системы преобразования мощности.
Преобразование электрической мощности связано с использованием различных полупроводниковых приборов, выполняющих функции переключателей. К такого рода полупроводниковым приборам относятся, в частности, выпрямительные диоды (с р-n- переходом, пропускают ток только в одном направлении) и тиристоры, биполярные транзисторы и МОП-транзисторы (полевые транзисторы с изолированным затвором) (с комбинацией р-n-переходов). К таким полупроводниковым приборам относятся также недавно разработанные биполярные транзисторы с изолированным затвором (БТИЗ) и запираемые тиристоры, переключающиеся при подаче на затвор сигнала управления.
Такие мощные полупроводниковые приборы при возбуждении излучают тепло. Количество излучаемого полупроводниковым прибором тепла увеличивается с возрастанием его мощности и быстродействия. Во избежание выхода полупроводниковых приборов из строя при перегреве под действием излучаемого ими тепла и увеличения срока их службы обычно используются радиаторы, которые препятствуют недопустимому повышению температуры самого полупроводникового прибора и расположенных рядом с ним различных элементов электронной аппаратуры. Для изготовления радиаторов, как правило, используют медь, которая имеет низкую стоимость и обладает высокой теплопроводностью (393 Вт/м). Однако медь нельзя использовать для изготовления радиаторов для мощных полупроводниковых устройств, поскольку она, обладая высоким коэффициентом теплового расширения, равным 17х10-6/oС, плохо соединяется пайкой с кремнием, коэффициент теплового расширения которого равен 4,2х10-6/oС. Один из возможных способов решения этой проблемы заключается в использовании радиаторов, изготовленных из молибдена или вольфрама, которые по своему коэффициенту теплового расширения практически не отличаются от кремния, или изготовленных из молибдена или вольфрама прокладок, устанавливаемых между радиатором из меди и полупроводниковым элементом.
Мощные полупроводниковые элементы отличаются от обычных электронных полупроводниковых элементов. В качестве примера последних можно назвать интегральные схемы (ИС), состоящие из различных электронных схем, объединенных в одну микросхему или один полупроводниковый чип. Такие полупроводниковые чипы в зависимости от их назначения подразделяются на элементы памяти, логические элементы, микропроцессоры и т.д. Проблема, которая препятствует широкому использованию созданных в последнее время электронных полупроводниковых элементов, связана с излучением тепла, количество которого возрастает с увеличением степени интеграции и быстродействия ИС. Эта проблема становится еще более острой из-за того, что отдельные электронные полупроводниковые элементы обычно собираются в модуль в герметичных корпусах, защищающих их от преждевременного выхода из строя под влиянием окружающих условий. Наиболее распространенными корпусами ИС являются керамические корпуса (в которых каждый заключенный в корпус полупроводниковый элемент крепится к керамике методом присоединения кристалла) и пластмассовые корпуса (когда полупроводниковые элементы заливаются в пластмассу). В качестве полупроводникового прибора, обладающего высокой надежностью и большим быстродействием, можно назвать созданный недавно многокристальный модуль (МКМ), состоящий из большого количества полупроводниковых элементов, собранных в микросхему на одной общей подложке.
При изготовлении интегральных схем с пластмассовым корпусом выводы заключенного в корпус полупроводникового элемента соединяются с выводной рамкой соединительными токопроводниками, после чего и сам полупроводниковый элемент, и его выводная рамка заливаются в пластмассу (компаунд). Для решения проблем, связанных с интенсивным выделением тепла, недавно были разработаны ИС, в которых рассеивание тепла осуществляется либо с помощью заключенной в корпус выводной рамки, либо с помощью соответствующего радиатора. Осуществляющие необходимое рассеивание тепла выводная рамка или радиатор обычно изготавливаются из меди, обладающей высокой теплопроводностью. Однако из-за разных коэффициентов теплового расширения меди и кремния в работе ИС можно ожидать появления различного рода неисправностей.
В отличие от ИС с пластмассовыми корпусами в ИС с керамическими корпусами полупроводниковый элемент располагается на керамической подложке, выполненной в виде монтажной платы, и герметично закрывается металлической или керамической крышкой. Обратная сторона керамической подложки покрыта композиционным материалом либо из меди и молибдена (Сu-Мо), либо из меди и вольфрама (Cu-W), либо кобальтоникелевым сплавом (коваром), который выполняет функции радиатора. Для создания дешевых ИС требуются керамические материалы, обладающие низким коэффициентом теплового расширения, высокой теплопроводностью и хорошей обрабатываемостью (технологичностью).
Многокристальный модуль состоит из металлической или керамической подложки, выполненной в виде монтажной платы, нескольких собранных на ней полупроводниковых элементов (выполненных в виде бескорпусного кристалла), керамического корпуса, внутри которого расположена подложка с собранными на ней полупроводниковыми элементами, и герметично закрывающей корпус крышки. При необходимости для отвода тепла используется расположенный на корпусе радиатор или выполненное на нем оребрение. Металлическая подложка изготавливается из меди или алюминия. Преимущество такой изготовленной из меди или алюминия подложки состоит в ее высокой теплопроводности, а недостаток - в высоком коэффициенте теплового расширения, существенно отличающемся от коэффициента теплового расширения полупроводникового элемента. Поэтому для повышения надежности подложки многокристальных модулей изготавливают из кремния или нитрида алюминия (AlN). Радиатор, который должен крепиться к керамической подложке, должен быть изготовлен из материала с высокой теплопроводностью и низким коэффициентом теплового расширения, который по этим показателям мог бы соответствовать материалу, из которого изготовлен корпус модуля.
Как уже отмечалось выше, все полупроводниковые приборы во время работы выделяют тепло и при недостаточном отводе тепла могут выйти из строя. Для эффективного рассеивания тепла необходимо использовать радиатор с высокой теплопроводностью. Для соответствия радиатора полупроводниковому элементу, к которому он крепится непосредственно или через изолирующий слой, материал, из которого он изготовлен, должен обладать не только высоким коэффициентом теплопроводности, но и низким коэффициентом теплового расширения.
Наиболее распространенные полупроводниковые элементы изготавливаются на основе Si или GaAS, коэффициент теплового расширения которых варьируется в пределах от 2,6x10-6/oC до 3,6х10-6/oC и от 5,7x10-6/oC до 6,9х10-6/oC соответственно. К материалам, которые по коэффициенту теплового расширения соответствуют материалу полупроводникового элемента, относятся AlN, SiC, Mo, W и Cu-W. Однако при изготовлении радиаторов только из таких материалов нельзя добиться того, чтобы коэффициент теплопередачи и коэффициент теплопроводности радиатора можно было менять в зависимости от конкретной необходимости. Кроме того, такие материалы трудно обрабатываются, а изготовленные из них радиаторы имеют высокую стоимость. В выложенной заявке на патент Японии Неi 8-78578 предложен спеченный сплав из меди и молибдена (Сu-Мо). В выложенной заявке на патент Японии Hei 9-181220 предложен спеченный сплав из меди, вольфрама и никеля (Cu-W-Ni). В выложенной заявке на патент Японии Hei 9-209058 предложен спеченный сплав из меди и карбида кремния (Сu-SiC). В выложенной заявке на патент Японии Hei 9-15773 предложен композиционный материал, состоящий из алюминия и карбида кремния (Al-SiC). У таких известных в настоящее время материалов за счет изменения соотношения между образующими их компонентами коэффициент теплопередачи и коэффициент теплопроводности можно менять в достаточно широких пределах. Эти материалы, однако, плохо поддаются обработке давлением, и поэтому изготовление из них тонких пластинок сопряжено с большими трудностями и требует выполнения большого количества технологических операций.
Исходя из вышеизложенного, в основу настоящего изобретения была положена задача разработать композиционный материал, который обладал бы низким коэффициентом теплового расширения и высоким коэффициентом теплопроводности и который легко поддавался бы обработке давлением.
Первым объектом настоящего изобретения является композиционный материал, состоящий из металла и неорганических частиц с меньшим, чем у металла, коэффициентом теплового расширения, отличающийся тем, что неорганические частицы диспергированы в металле таким образом, что по меньшей мере 95% частиц по площади, занимаемой ими в поперечном сечении, образуют соединенные между собой агрегаты сложной формы.
Вторым объектом настоящего изобретения является композиционный материал, состоящий из металла и неорганических частиц с меньшим, чем у металла, коэффициентом теплового расширения, отличающийся тем, что он содержит не более 100 отдельных неорганических частиц на 100 мкм2 площади поперечного сечения материала, при этом остальные частицы, диспергированные в металле, образуют соединенные между собой агрегаты сложной формы.
Третьим объектом настоящего изобретения является композиционный материал, состоящий из металла и неорганических частиц с меньшим, чем у металла, коэффициентом теплового расширения, отличающийся тем, что в диапазоне от 20 до 150oС его коэффициент теплового расширения увеличивается в среднем на (0,025-0,035)х10-6/oС при изменении коэффициента теплопроводности при 20oС на 1 (Вт/м•К).
Четвертым объектом настоящего изобретения является композиционный материал, состоящий из меди и частиц оксида меди, отличающийся тем, что частицы оксида меди диспергированы в меди таким образом, что по меньшей мере 95% частиц по площади, занимаемой ими в поперечном сечении, образуют соединенные между собой агрегаты сложной формы.
Предлагаемый в настоящем изобретении композиционный материал состоит из металла и неорганических частиц. К металлам относятся Au, Ag, Сu и Аl, из которых медь является наиболее предпочтительной из-за своей высокой температуры плавления и высокой прочности. Неорганические частицы представляют собой предпочтительно частицы, которые остаются достаточно мягкими и стабильными после спекания и у которых средний коэффициент теплового расширения в диапазоне температур от 20 до 150oС равен или меньше 5,0x10-6/oC, предпочтительно равен или меньше 3,5х10-6/oC и твердость которых равна или меньше 300 единиц по Виккерсу. (Эти частица отличаются от обычных частиц, таких как частицы из карбида кремния (SiC) и оксида алюминия (Al2O3), которые по своей твердости существенно отличаются от матричного металла). Композиционный материал с такими мягкими неорганическими частицами после спекания хорошо обрабатывается давлением (в горячем или холодном состоянии). Прокатываемость такого композиционного материала позволяет при непродолжительном времени обработки изготовить из него достаточно тонкие пластины. Полученный в итоге композиционный материал обладает благодаря наличию диспергированных в металле неорганических частиц высокой прочностью. Примерами содержащихся в предлагаемом в изобретении композиционном материале неорганических частиц являются частицы из оксида меди, оксида олова, оксида свинца и оксида никеля. Наиболее предпочтительными являются частицы из оксида меди, который обладает наименьшим из всех перечисленных выше материалов коэффициентом теплового расширения.
Предлагаемый в настоящем изобретении композиционный материал предпочтительно содержит упрочняющие его твердые мелкие керамические частицы, например, из карбида кремния (SiC) или оксида алюминия (Al2O3), с твердостью, превышающей 1000 единиц по Виккерсу, и средним диаметром, равным или меньшим 3 мкм, содержание которых в материале не превышает 5 об.%.
Основу предлагаемого в настоящем изобретении композиционного материала предпочтительно составляет сплав меди (Сu), состоящий на 20-80 об.% из оксида одновалентной меди (Сu2О) и содержащий медную фазу (Сu) и фазу из оксида одновалентной меди (Сu2О), образующих дисперсную структуру.
Коэффициент теплового расширения композиционного материала в диапазоне температур от комнатной до 300oС должен предпочтительно составлять от 5х10-6 до 14х10-6/oС, а коэффициент теплопроводности - от 30 до 325 Вт/(м•К).
В состоящем из меди и оксида меди композиционном материале должно предпочтительно содержаться от 20 до 80 об.% оксида одновалентной меди (Сu2О), остальное - медь. Медная фаза (Сu) и фаза из оксида одновалентной меди (Сu2О) должны иметь ориентированную структуру. Коэффициент теплового расширения такого композиционного материала в диапазоне температур от комнатной до 300o С составляет предпочтительно от 5х10-6 до 14x10-6/oC, а коэффициент теплопроводности - от 30 до 325 Вт/(м•К). Теплопроводность предлагаемого композиционного материала в направлении ориентации должна как минимум в два раза превышать его теплопроводность в направлении, перпендикулярном направлению ориентации.
Предлагаемый в настоящем изобретении композиционный материал получают путем перемешивания медного порошка с порошком из оксида одновалентной меди, последующего прессования порошкообразной смеси, спекания спрессованной заготовки при 800-1050oС и обработки давлением в холодном или горячем состоянии. (Медный порошок представляет собой пример металла, из которого состоит композиционный материал, а порошок из оксида одновалентной меди - пример входящих в его состав неорганических частиц).
Предлагаемый в настоящем изобретении медный композиционный материал получают из перемешенных друг с другом порошка оксида двухвалентной меди (СuО) и медного порошка (Сu), в которых обязательно содержатся определенные примеси. Количество оксида двухвалентной меди в таком материале составляет от 10,8 до 48,8 об. %. Процесс изготовления такого композиционного материала заключается в прессовании смеси порошков, спекании спрессованной заготовки при 800-1050oС, последующем отверждении спрессованной заготовки и образовании Сu2О в процессе реакции между СuО и Сu, прессовании полученного материала в горячем или холодном состоянии (для обработки давлением) и отжиге.
Предлагаемый в настоящем изобретении композиционный материал состоит из Сu и Сu2О, при этом медь имеет высокий коэффициент теплового расширения, равный 17,6х10-6/oС, и высокий коэффициент теплопроводности, равный 391 Вт/(м•К), а оксид одновалентной меди имеет низкий коэффициент теплового расширения, равный 2,7х10-6/oС, и низкий коэффициент теплопроводности, равный 12 Вт/(м•К). Путем спекания порошка из такого материала изготавливают пластинчатый радиатор, предназначенный для охлаждения полупроводниковых приборов. В порошковом фасонном изделии содержание Сu и Сu2О составляет от 20 до 80 об.%. Коэффициент теплового расширения этого изделия колеблется от 5х10-6 до 14х10-6/oС, а коэффициент теплопроводности составляет 30-325 Вт/(м•К) в интервале температур от комнатной до 300o С. Композиционный материал, в котором содержание Сu2О превышает 20 об.%, имеет высокий коэффициент теплопроводности и отвечает по этому показателю требованиям, предъявляемым к пластинчатым радиаторам. Композиционный материала, в котором содержание Сu2О составляет 80% или меньше, обладает достаточно высокой теплопроводностью и конструкционной прочностью.
Предлагаемый в настоящем изобретении композиционный материал получают по существу методами порошковой металлургии. Медный композиционный материал получают из порошка Сu и порошка Сu2О или порошка СuО. Эти порошки (исходные материалы) смешивают друг с другом в определенной пропорции, затем полученную порошковую смесь в холодном состоянии прессуют в соответствующей пресс-форме и полученную в результате заготовку спекают. При необходимости порошковое фасонное изделие подвергают обработке давлением в горячем или холодном состоянии.
Исходные материалы перемешивают друг с другом в смесителе V-образного типа, в шаровой мельнице или в мельнице с механическим плавлением частиц. Размер частиц исходных порошковых материалов влияет на режим прессования и на распределение Сu2О в полученном после спекания материале. Поэтому частицы медного порошка должны иметь диаметр, не превышающий 100 мкм, а частицы порошка из Сu2О и СuО должны иметь диаметр, меньший 10 мкм и предпочтительно равный 1-2 мкм.
Перемешанные порошки в холодном состоянии прессуют в пресс-форме под давлением 400-1000 кг/см. По мере увеличения содержания в порошке Сu2О давление прессования должно предпочтительно увеличиваться.
Полученную из смеси порошков заготовку спекают в атмосфере аргона при нормальном давлении или же подвергают горячему изостатическому прессованию либо прессуют в горячем состоянии при определенном давлении. Процесс спекания должен продолжаться в течение приблизительно 3-х часов и протекать при температуре 800-1050o С. Температура, при которой происходит спекание порошков, должна пропорционально увеличиваться с увеличением количества содержащегося в перемешанном порошке оксида одновалентной меди (Сu2О). Температура спекания меняется в зависимости от вида матричного металла. При использовании в качестве матричного металла меди при температуре спекания, равной или меньшей 800oС, порошковое фасонное изделие будет иметь низкую плотность. С другой стороны, при температуре спекания, равной или большей 1050oС, в спекаемом порошке происходит эвтектическое взаимодействие между Сu и Сu2О, сопровождающееся их частичным плавлением. Поэтому оптимальной для спекания температурой будет температура, лежащая в интервале от 900oС до 1000oС.
Предлагаемый в настоящем изобретении медный композиционный материал состоит из меди (Сu) и оксида одновалентной меди (Сu2О), который имеет низкую твердость. Поэтому такой композиционный материал при необходимости после спекания можно обрабатывать давлением в холодном или горячем состоянии, например прокаткой или горячим прессованием. При такой обработке теплопроводность композиционного материала становится анизотропной, что придает ему прочность и создает предпосылки для его использования в тех случаях, когда процесс передачи тепла за счет теплопроводности должен носить строго направленный характер.
В соответствии с настоящим изобретением исходным материалом, из которого получают предлагаемый в нем композиционный материал, может служить и оксид двухвалентной меди (СuО). В этом случае порошок из СuО смешивают с порошком Сu и полученную смесь порошков подвергают прессованию. Полученную в результате прессования заготовку спекают с одновременным окислением Сu. В результате получают деталь, состоящую из медной матрицы и диспергрированной в ней фазы Сu2О. При высоких температурах в результате взаимодействия между СuО и Сu по приведенному ниже уравнению (1) образуется (обладающий тепловой устойчивостью) оксид одновалентной меди (Сu2О):
2Cu+CuO-->Cu+Cu2O (1)
До достижения равновесия в процессе протекания реакции, описываемой уравнением (1), должно пройти определенное время. В том случае, когда спекание порошков происходит при 900oС, необходимое равновесие наступает приблизительно через три часа.
Частицы Сu2О в спеченной массе должны иметь по возможности небольшие размеры, поскольку от их диаметра существенно зависит плотность, прочность и способность к обработке давлением получаемого композиционного материала. Диаметр частиц существенным образом зависит от способа перемешивания исходных порошков. Увеличение затраченной на перемешивание мощности сопровождается меньшей коагуляцией частиц, из которых состоят перемешиваемые порошки. При оптимальном режиме перемешивания порошков можно добиться того, чтобы содержащиеся в полученной после спекания массе частицы Сu2О имели небольшие размеры.
В соответствии с настоящим изобретением размер частиц, образующих в композиционном материале фазу Сu2О, определяется в зависимости от того, на каком оборудовании происходит перемешивание исходных порошков. При перемешивании порошков в смесителе V-типа или в шаровой мельнице, заполненной стальными шарами, (т.е. при небольшой затрачиваемой на перемешивание мощности) 50 об.% (или больше) частиц будут иметь диаметр, равный 50 мкм или меньше, а при перемешивании с механическим плавлением частиц (т.е. при большой затрачиваемой на перемешивание мощности) 50 об.% (или больше) частиц будут иметь диаметр, равный 10 мкм или меньше, при этом диаметр остальных частиц будет лежать в пределах от 50 до 200 мкм. При размере частиц, равном или большем 200 мкм, полученный композиционный материал будет иметь высокую пористость, и поэтому его обработка давлением будет сопряжена с определенными проблемами. Полученный композиционный материал, в котором содержание фазы Сu2О превышает 50 об.%, обладает низкой теплопроводностью и имеет нестабильные свойства и поэтому не может использоваться для изготовления пластинчатых радиаторов для полупроводниковых приборов. Предпочтительной структурой является структура, состоящая из медной фазы (Сu) и равномерно распределенной в ней фазы из оксида одновалентной меди (Сu2О) (размеры частиц которой не превышают 50 мкм). Частицы Сu2О имеют крайне нерегулярную форму и до спекания соединяются друг с другом; поэтому их размеры можно определить под микроскопом только при очень большом увеличении. Предпочтительно, чтобы размер образующих фазу Сu2О частиц не превышал 10 мкм.
На прилагаемых к описанию чертежах показано:
на фиг. 1 - микроснимок, на котором изображена микроструктура спеченной массы (состоящей из Сu и 55 об.% Сu2О) предлагаемого в настоящем изобретении композиционного материала, полученного по технологии, описанной в примере 1 (образец 4),
на фиг. 2 - микроснимок, на котором изображена микроструктура спеченной массы (состоящей из Сu и 55 об.% Сu2О) предлагаемого в настоящем изобретении композиционного материала, полученного по технологии, описанной в примере 2,
на фиг. 3 - микроснимок, на котором изображена микроструктура спеченной массы (состоящей из Сu и 40 об.% Сu2О) предлагаемого в настоящем изобретении композиционного материала, полученного по технологии, описанной в примере 3,
на фиг.4 - микроснимок, на котором в плоскости, параллельной направлению деформации частиц при горячей штамповке, изображена микроструктура полученного горячей штамповкой по технологии, описанной в примере 4, предлагаемого в настоящем изобретении композиционного материала (состоящего из Сu и 55 об.% Сu2О),
на фиг. 5 - микроснимок, на котором изображена микроструктура спеченной массы (состоящей из Сu и 32,2 об.% СuО) предлагаемого в настоящем изобретении композиционного материала, полученного по технологии, описанной в примере 5 (образец 14),
на фиг.6 - график зависимости коэффициента теплового расширения композиционного материала от коэффициента его теплопроводности,
на фиг. 7 - вид сверху выполненного в соответствии с настоящим изобретением и описанного в примере 6 БТИЗ-модуля (биполярного транзистора с изолированным затвором),
на фиг.8 - поперечный разрез БТИЗ-модуля, описанного в примере 6,
на фиг.9А-9Г - схемы, иллюстрирующие последовательность операций, выполняемых при изготовлении БТИЗ-модуля, описанного в примере 6,
на фиг. 10 - график, на котором показана деформация (прогиб) основания, выполненного в соответствии с настоящим изобретением и описанного в примере 6 БТИЗ-модуля на каждом этапе его изготовления,
на фиг. 11 - вид сверху и поперечный разрез преобразователя мощности с выполненным в соответствии с настоящим изобретением и описанным в примере 6 БТИЗ-модулем,
на фиг. 12А и 12Б - графики, на которых показана деформация преобразователя мощности без выполненного в соответствии с настоящим изобретением и описанного в примере 6 БТИЗ-модуля,
на фиг. 13А и 13Б - графики, на которых показана деформация преобразователя мощности при наличии в нем выполненного в соответствии с настоящим изобретением и описанного в примере 6 БТИЗ-модуля,
на фиг.14 - поперечный разрез описанного в примере 7 пластмассового корпуса полупроводникового прибора со встроенным в него пластинчатым радиатором, выполненным в соответствии с настоящим изобретением,
на фиг.15 - поперечный разрез описанного в примере 7 пластмассового корпуса полупроводникового прибора с расположенным снаружи пластинчатым радиатором, выполненным в соответствии с настоящим изобретением,
на фиг. 16 - поперечный разрез описанного в примере 8 и выполненного в соответствии с настоящим изобретением корпуса полупроводникового прибора,
на фиг. 17 - поперечный разрез керамического корпуса полупроводникового прибора с описанным в примере 8 и выполненным в соответствии с настоящим изобретением радиатором с рассеивающими тепло ребрами,
на фиг. 18 - поперечный разрез выполненного в соответствии с настоящим изобретением и описанного в примере 9 полупроводникового прибора,
на фиг.19 - еще один поперечный разрез выполненного в соответствии с настоящим изобретением и описанного в примере 9 полупроводникового прибора,
на фиг. 20 - поперечный разрез выполненного в соответствии с настоящим изобретением и описанного в примере 10 многокристального модуля (МКМ) и
на фиг. 21 - поперечный разрез предлагаемого в настоящем изобретении электростатического аттрактора.
Предпочтительный вариант выполнения изобретения
Пример 1
В этом примере в качестве исходных порошковых материалов использовали порошок электролитической меди (с диаметром частиц до 75 мкм) и порошок Сu2О (с диаметром частиц 1-2 мкм и показателем чистоты, равным 3N). Эти порошки смешивали друг с другом в разных пропорциях, указанных в таблице 1. Полученную смесь (1400 г) тщательно перемешивали в течение 10 ч в шаровой мельнице, заполненной стальными шарами. Полученный после перемешивания в шаровой мельнице порошок помещали в пресс-форму диаметром 150 мм и в холодном состоянии прессовали при разном (в зависимости от содержания Сu2О) давлении в интервале от 400 до 1000 кг/см. В итоге из порошка получали круглые заготовки диаметром 150 мм и высотой 17-19 мм. Затем эти заготовки спекали в атмосфере аргона. Полученные в результате спекания детали подвергали химическому анализу, исследовали их структуру и измеряли коэффициент теплового расширения, коэффициент теплопроводности и твердость по Виккерсу. Следует отметить, что спекание спрессованного порошка проводили в течение 3 ч при разной зависящей от содержания Сu2О температуре в интервале от 900 до 1000oС. Коэффициент теплового расширения измеряли при разных температурах в интервале от комнатной до 300oС, используя для этого устройство для ТМА (термомеханический анализ). Теплопроводность полученного материала измеряли методом лазерной вспышки. Полученные при измерениях результаты приведены в таблице 1. Микроструктура спеченной детали (образец 4) показана на фиг.1.
Результаты химического анализа подтверждают соответствие химического состава полученной после спекания детали составу исходной смеси порошков. Из таблицы 1 следует, что коэффициент теплового расширения полученного материала и его коэффициент теплопроводности меняются в широких пределах в зависимости от соотношения между Сu и Сu2О. Этот результат подтверждает возможность изготовления спеченного композиционного материала, который по своим тепловым характеристикам отвечает требованиям, предъявляемым пластинчатым радиаторам.
На показанном на фиг.1 микроснимке (снятом при 300-кратном увеличении) микроструктуры полученного материала видно, что содержащиеся в нем частицы фазы Cu2О, размеры которых не превышают 50 мкм, равномерно диспергированы в фазе Сu. (Во время перемешивания порошков происходит коагуляция частиц Сu2О, а во время спекания происходит некоторое увеличение их размеров). На микроснимке белым цветом окрашена фаза Сu, а черным цветом - фаза Сu2О.
Как показано на фиг.1, на 99% (или больше) площади поперечного сечения диспергированные в медной фазе частицы Сu2О имеют неправильную форму.
Твердость фазы Сu и фазы Сu2О (Нv) равна соответственно 210-230 и 75-80. Полученная после спекания деталь хорошо поддается механической обработке (точением и сверлением), и поэтому при необходимости ей можно придать любую требуемую форму.
Пример 2
В этом примере предлагаемый в изобретении композиционный материал был получен по такой же технологии, что и в примере 1, за исключением того, что порошки перемешивали в смесителе V-образного типа. Полученная после спекания деталь состояла из Сu и 55 об.% Сu2О. У этой детали таким же способом, как и в примере 1, определяли микроструктуру, коэффициент теплового расширения и коэффициент теплопроводности.
На фиг. 2 показан микроснимок (снятый при 300-кратном увеличении), полученной после спекания детали, состоящей из Сu и Сu2О (в количестве 55 об. %). На основании микроснимка можно сделать вывод о том, что в микроструктуре полученного материала содержатся частицы Сu2О, которые существенно отличаются друг от друга своими размерами. Крупные частицы Сu2О образовались за счет коагуляции мелких частиц в процессе перемешивания порошков в смесителе V-образного типа. По коэффициенту теплового расширения и по коэффициенту теплопроводности полученная в этом примере после спекания порошков деталь практически не отличается от такой же по химическому составу детали, в которой фаза Сu2О равномерно диспергирована в фазе Сu. Однако этот материал отличается большим разбросом полученных в результате измерений величин, которые отличаются друг от друга в зависимости от того, в каком месте образца проводятся измерения. Аналогично примеру 1 (фиг.1) диспергированные в медной фазе этого материала частицы Сu2О имеют в основном неправильную форму и образуют более крупные, чем в примере 1, агрегаты.
Пример 3
В этом примере в качестве исходных порошковых материалов использовали порошок электролитической меди (с диаметром частиц до 74 мкм) и порошок СuО (с диаметром частиц 1-2 мкм и показателем чистоты, равным 3N). Эти порошки смешивали друг с другом таким образом, чтобы содержание СuО в полученной смеси составило 22,4 об.%. Полученную смесь (300 г) тщательно перемешивали с механическим плавлением частиц в течение 25 часов в шаровой мельнице планетарного типа (120 мм в диаметре), заполненной стальными шарами (8 мм в диаметре). Полученный после перемешивания порошок помещали в пресс-форму диаметром 80 мм и в холодном состоянии прессовали при давлении 1000 кг/см2. В итоге из порошка получили имеющую соответствующие размеры круглую заготовку. Затем эту заготовку спекали в атмосфере аргона в течение 2 часов. У полученной в результате спекания детали исследовали структуру и измеряли коэффициент теплового расширения и коэффициент теплопроводности (таким же, как и в примере 1, способом). Помимо этого полученный материал исследовали на рентгеновском дифрактометре.
На показанном на фиг.3 микроснимке (снятом при 1000-кратном увеличении) хорошо видна микроструктура полученного материала после его спекания. Видимые на этом микроснимке частицы Сu2О, размер которых (до 10 мкм) меньше размера частиц Сu2О, содержащихся в материалах, полученных в примерах 1 и 2, равномерно диспергированы в медной фазе. Уменьшение размера частиц Сu2О в полученном композиционном материале повышает его прочность и способность к прокатке в холодном состоянии. Следует отметить, что в этом материале, как и в материале, показанном на фиг.1, свыше 95% диспергированных в нем частиц Сu2О имеют неправильную форму, при этом, однако, некоторые частицы Сu2О (около 20 на площади 100 мкм) имеют сферическую форму.
Для идентификации содержащихся в полученном после спекания материале оксидов проводили исследования на рентгеновском дифрактометре. Результаты этих исследований показали, что в полученном материале содержится только оксид одновалентной меди (Cu2O). Из этого следует, что в процессе спекания произошло полное превращение оскида двухвалентной меди (СuО) в оксид одновалентной меди (Cu2O). В результате анализа химического состава материала было установлено, что он, как и предполагалось, состоит из меди (Сu) и оксида одновалентной меди (Сu2О) (40 об.%).
Полученный в этом примере после спекания порошка композиционный материал по коэффициенту теплового расширения и коэффициенту теплопроводности ничем не отличается от полученного после спекания порошка материала того же состава, о котором идет речь в рассмотренном ниже примере 5.
Пример 4
В качестве исходных материалов в этом примере использовали такие же порошки, что и в примере 1. После их перемешивания получали смесь, состоящую из порошка меди (Сu) и порошка из оксида одновалентной меди (Сu2О) (55 об.%). Полученную смесь (550 г) тщательно перемешивали в смесителе V-образного типа. Полученный после перемешивания порошок помещали в пресс-форму диаметром 80 мм и в холодном состоянии прессовали при давлении 600 кг/см2. В итоге из порошка получали круглую заготовку диаметром 80 мм и толщиной 22 мм. Затем эту заготовку в течение 3 часов спекали в атмосфере аргона при температуре 975oС. Полученную после спекания деталь нагревали до 800oС и в горячем виде прессовали на 200-тонном прессе (при коэффициенте горячего объемного прессования, равном 1,8). Спрессованную в горячем виде деталь отпускали и отжигали при температуре 500oС. Тем же способом, что и в примере 1, определяли структуру полученного в итоге композиционного материала, его коэффициент теплового расширения и коэффициент теплопроводности.
Не считая наличия на краях небольших по размеру трещин, во всем остальном полученное в процессе горячего прессования изделие по своим качествам полностью отвечало всем предъявляемым к нему требованиям. Вывод, который можно сделать на основании этого, заключается в том, что предлагаемый в настоящем изобретении композиционный материал является материалом с исключительно высокими свойствами, определяющими возможность его обработки давлением.
На фиг. 4 показан микроснимок (снятый при 300-кратном увеличении) микроструктуры полученного горячим прессованием изделия. У этого изделия и медная фаза (Сu), и фаза Сu2О деформированы и упорядочены в направлении усилия горячего прессования, при этом следует отметить отсутствие в них каких-либо пороков или трещин. В этой связи необходимо также отметить, что 95% (или больше) диспергированных в медной фазе частиц Сu2О соединены друг с другом и имеют неправильную форму. При этом все эти частицы вытянуты в определенном направлении под действием усилия, создаваемого при обработке спеченного материала давлением в процессе горячего прессования.
У детали, полученной после спекания порошка, и у изделия, полученного после горячего прессования, методом лазерной вспышки определяли коэффициент теплопроводности (см. таблицу 2). Деталь, полученная после спекания, по своей теплопроводности является практически изотропной. В отличие от нее, изделие, полученное после горячего прессования, обладает по этому показателю определенной анизотропностью. Теплопроводность полученного материала в направлении L (в котором упорядочены и медная фаза (Сu), и фаза Сu2О) более чем в два раза превышает его теплопроводность в направлении С (направлении усилия, создаваемого при горячем прессовании), перпендикулярном направлению L. Полученный материал в интервале температур от комнатной до 300oС по своему тепловому расширению является практически однородным (изотропным) и в этом отношении аналогичен материалу, описанному в примере 1.
Пример 5
В этом примере в качестве исходных порошковых материалов использовали порошок электролитической меди (с диаметром частиц до 74 мкм) и порошок СuО (с диаметром частиц 1-2 мкм и показателем чистоты, равным 3N). Эти порошки смешивали друг с другом в разных пропорциях, указанных в таблице 3. Полученную смесь (1400 г) тщательно перемешивали в течение 10 часов в шаровой мельнице сухого помола, заполненной стальными шарами. Полученный после перемешивания в шаровой мельнице сухого помола порошок помещали в пресс-форму диаметром 150 мм и в холодном состоянии прессовали при разном (в зависимости от содержания СuО) давлении в интервале от 400 до 1000 кг/см2. В итоге из порошка получали заготовки, которые спекали в атмосфере аргона. Полученные в результате спекания детали подвергали химическому анализу, исследовали их структуру и измеряли коэффициент теплового расширения и коэффициент теплопроводности. Кроме этого, их исследовали на рентгеновском дифрактометре с целью идентификации содержащихся в них оксидов. Следует отметить, что спекание спрессованного порошка проводили в течение 3 часов при разной зависящей от содержания СuО температуре в интервале от 900 до 1000oС. Коэффициент теплового расширения измеряли при разных температурах в интервале от комнатной до 300oС, используя для этого устройство для ТМА. Теплопроводность полученного материала измеряли методом лазерной вспышки. Полученные при измерениях результаты приведены в таблице 3.
Для идентификации содержащихся в полученном после спекания материале оксидов проводили исследования на рентгеновском дифрактометре. Результаты этих исследований показали, что в полученном материале содержится только оксид одновалентной меди (Cu2O). Из этого следует, что в процессе спекания произошло полное превращение оксида двухвалентной меди (СuО) в оксид одновалентной меди (Сu2О).
Микроструктура образца 14 показана на фиг.5. По микроснимку (снятому с 300-кратным увеличением) можно судить, что при одном и том же химическом составе по своей структуре материал этого образца не отличается от материала, полученного в примере 1. Фаза Сu2О в этом материале состоит из Сu2О, который образовался из Сu и СuО при их окислении, и из Сu2О, который образовался при разложении СuО. По своим размерам и форме частицы Сu2О, содержащиеся в полученном материале, не отличаются от частиц Сu2О, содержащихся в материале из примера 1.
Как следует из таблицы 3, по коэффициенту теплового расширения полученный в этом примере материал после спекания незначительно отличается от материала, полученного из порошка Сu2О. Однако его теплопроводность больше теплопроводности материала, полученного из порошка Сu2О (когда содержание Сu2О превышает 50 об.%). Объясняется это тем, что спеченный материал, полученный из порошка СuО, имеет большую по сравнению с материалом, полученным из порошка Сu2О, плотность.
На фиг.6 показан график зависимости между коэффициентом теплопроводности (ось х) и коэффициентом теплого расширения (ось у), построенный по данным, приведенным в таблице 3. Отдельные точки, соответствующие разным образцам полученного материала, лежат в промежутке между двумя прямыми линиями, описываемыми уравнениями у = 0,031х + 4,65 и у = 0,031х + 5,95. Поэтому для данного материала в диапазоне температур от 20 до 250oС изменение коэффициента теплового расширения при изменении коэффициента теплопроводности при 20oС на 1 Вт/(м•K) будет в среднем составлять (0,025-0,035)х10-6/oС.
Пример 6
В этом примере описано возможное применение предлагаемого в настоящем изобретении медного композиционного материала. Конкретно в этом примере рассматривается его использование для изготовления пластинчатого радиатора для БТИЗ (биполярного транзистора с изолированным затвором), который представляет собой один из мощных полупроводниковых элементов.
На фиг.7 в виде сверху показано внутреннее устройство полупроводникового блока, состоящего из 24 сгруппированных в модули биполярных транзисторов с изолированным затвором. На фиг.8 показано поперечное сечение одного из модулей с такого рода транзисторами. Модуль содержит четыре БТИЗ-элемента 101 и два диода 102, которые припоем 201 соединены с AlN-подложкой 103. AlN-подложка 103 состоит из двух листов медной фольги 202 и 203 и AlN-платы 204, которые соединены друг с другом серебряным припоем (не показан). В AlN-подложке 103 выполнены участки для эмиттерных межсоединений 104, коллекторных межсоединений 105 и межсоединений 106 затворов. БТИЗ-элемент 101 и диод 102 припаяны к коллекторному межсоединению 105. Каждый элемент соединен с эмиттерным межсоединением 104 металлическим проводом 107. На участке межсоединения 106 затворов расположен резистор 108, который металлическим проводом 107 соединен с контактной площадкой затвора БТИЗ-элемента 101. Шесть AlN-подложек с расположенными на них полупроводниковыми элементами припоем 205 соединены с пластинчатым радиатором 109. Пластинчатый радиатор 109, поверхность которого покрыта слоем Ni, изготовлен из описанного в примерах 1-5 композиционного материала, содержащего Cu-Cu2O. AlN-подложка 103 соединена припоем 209 с выводом 206. Вывод 206 и пластмассовый корпус 207 образуют основание 208 модуля. Корпус 207 соединен с пластинчатым радиатором 109 клейкой силиконовой резиной 210. Выводы, идущие от основания 208 модуля, соединены с расположенными на каждой AlN-подложке двумя эмиттерными выводами 110, двумя контрольными эмиттерными выводами 111, двумя коллекторными выводами 112 и одним выводом 113 затвора. Все выводы модуля залиты силиконовым гелем 212, который инжектируется внутрь корпуса через крышку 211 (в которой с этой целью предусмотрено специальное отверстие). После этого все внутреннее пространство корпуса заполняется заливаемой в него термореактивной эпоксидной смолой 213. На этом процесс изготовления модуля заканчивается. Пластинчатый радиатор 109 крепится к алюминиевому основанию восемью болтами, которые проходят через восемь имеющихся в нем отверстий 114. Отверстия 114 под болты выполняются в пластинчатом радиаторе механическим способом. Другими восемью болтами, которые проходят через отверстия 115, радиатор соединяется (в дополнение к клею 210) с корпусом 207 модуля.
В таблице 4 приведены данные, которые позволяют сравнить тепловое расширение и теплопроводность обычно используемых для изготовления основания полупроводникового модуля материалов и медного композиционного материала, предлагаемого в настоящем изобретении (в котором содержится 30 об.% Cu2O). Следует отметить, что полупроводниковый элемент, основание которого изготовлено из медного композиционного материала (Cu-Cu2O), имеет меньший коэффициент теплового расширения, чем модуль, у которого основание изготовлено из обычной меди. Наличие припоя 209, которым AlN-подложка 103 соединена с основанием 109 модуля (пластинчатым радиатором), повышает надежность модуля. Основание модуля, изготовленное для повышения надежности припоя 106 в неблагоприятных условиях из Мо или Al-SiC, имеет меньший по сравнению с основанием, изготовленным из композиционного материала Cu-Cu2O, коэффициент теплового расширения. При этом, однако, основание, изготовленное из таких материалов, имеет и небольшой коэффициент теплопроводности, и поэтому модуль с таким основанием обладает высоким тепловым сопротивлением. Срок службы модуля, у которого основание изготовлено из предлагаемого в настоящем изобретении композиционного материала, состоящего из Cu-Cu2O, как минимум в пять раз превышает срок службы модуля, у которого основание изготовлено из меди, а его тепловое сопротивление на 20% меньше теплового сопротивления модуля, у которого основание изготовлено из Мо (при одинаковой толщине основания).
Упомянутые выше особенности предлагаемого в настоящем изобретении материала расширяют возможности при разработке конструкции модуля и выборе материала для его изготовления. Так, например, изготовленное из композиционного материала Cu-Cu2O основание модуля, показанного на фиг.7, обладает большей теплопроводностью, чем основание, изготовленное из Мо. Иными словами, выбор такого материала для изготовления основания модуля обеспечивает более эффективный отвод тепла, выделяющегося при работе имеющихся в модуле полупроводниковых элементов. При этом снижается возникающая во время работы разность температур между краями полупроводникового элемента и его центральной частью. За счет этого полупроводниковый элемент может быть выполнен в 1,2 раза больше обычного модуля. Увеличение размеров полупроводникового элемента позволяет уменьшить количество имеющихся в модуле биполярных транзисторов с изолированным затвором с 30 до 24. Уменьшение количества транзисторов позволяет в свою очередь уменьшить габариты всего модуля. Одновременно с этим появляется возможность использовать подложку из оксида алюминия (в качестве изолирующей подложки), теплопроводность которой меньше (приблизительно на 20%) теплопроводности подложки, изготовленной из AlN. Оксид алюминия обладает по сравнению с AlN более высокой изгибной прочностью, и поэтому из него можно изготовить более крупную по размерам подложку. Пластина из оксида алюминия имеет больший, чем пластина из AlN, коэффициент теплового расширения и по этому показателю меньше отличается от основания модуля. За счет этого снижается деформация (искривление) всего модуля. Увеличение размеров подложки за счет ее изготовления из оксида алюминия позволяет увеличить количество размещаемых на ней полупроводниковых элементов. Иными словами, изготовление подложки из оксида алюминия позволяет уменьшить площадь, необходимую для изоляции каждой подложки, а также площадь, необходимую для изоляции одной подложки от другой. Тем самым создаются условия для уменьшения габаритов всего модуля.
На фиг.9А-9Г показаны схемы, иллюстрирующие последовательность операций, выполняемых при изготовлении предлагаемого в настоящем изобретении модуля.
На фиг.9А схематично показано изготовленное из композиционного материала Cu-Cu2O готовое основание 109 модуля, поверхность которого покрыта никелем. Основание имеет по существу плоскую форму и в таком виде используется в качестве готового элемента для изготовления модуля.
На фиг. 9Б схематично показано основание 109, соединенное припоем 205 с AlN-подложкой 103. На AlN-подложке расположены соединенные с ней припоем 102 полупроводниковые элементы 101. При охлаждении припоя основание 109, поскольку коэффициент его теплового расширения отличается от коэффициента теплового расширения AlN-подложки с собранными на ней полупроводниковыми элементами, деформируется. При этом обратная сторона модуля становится вогнутой.
На фиг. 9В схематично показан корпус 20$ модуля, собранный с использованием термореактивного клея. При охлаждении клея обратная сторона модуля становится практически плоской, поскольку коэффициент теплового расширения корпуса больше коэффициента теплового расширения сборки 301, состоящей из соединенных друг с другом пайкой основания модуля и подложки с полупроводниковыми элементами.
На фиг. 9Г схематично показан собранный модуль, заполненный силиконовым гелем 212 и термореактивной эпоксидной смолой 213. Из-за высокого коэффициента теплового расширения смолы обратная сторона модуля становится выпуклой.
На фиг. 10 показан график, на котором указана величина деформации (искривления) обратной стороны основания модуля на различных этапах технологического процесса его изготовления. Положительные значения деформации соответствуют вогнутой форме обратной стороны основания модуля, а отрицательные - выпуклой. Деформация модуля, основание которого изготовлено из предлагаемого в настоящем изобретении композиционного материала Cu-Cu2O, меньше (приблизительно в три раза) деформации обычного модуля, у которого основание изготовлено из Мо. Обратная сторона готового модуля с основанием из меди имеет вогнутую форму, и ее деформация, которая возникает на стадии (б) из-за большой разницы в коэффициентах теплового расширения основания и AlN-подложки, превышает 100 мкм (эти результаты на графике не отражены). Модуль, основание которого изготовлено из предлагаемого в настоящем изобретении композиционного материала Cu-Cu2O, деформируется незначительно, и поэтому он может быть выполнен более крупным, чем модули с основаниями, изготовленными из обычных материалов. При небольшой деформации модуля на этапах его сборки его деформация, связанная с изменениями температуры во время работы, также оказывается незначительной. Небольшая деформация модуля исключает возможность утечки консистентной смазки, которая находится между поверхностью его основания и прилегающим к ней радиатором.
На фиг. 11 показан пример выполнения мощного преобразователя, в котором использован предлагаемый в настоящем изобретении полупроводниковый модуль. Показанный на этом чертеже преобразователь представляет собой двухуровневый инвертор. Образующие инвертор мощные полупроводниковые приборы 501 установлены на смазанной рассеивающей тепло консистентной смазкой 510 поверхности алюминиевого радиатора 511 и крепятся к нему стяжными болтами 512. Обычно два имеющихся в инверторе полупроводниковых модуля 501 крепятся на радиаторе симметрично друг относительно друга и соединяются с одной расположенной в средней части инвертора шиной 503 (точка Б). Напряжение на коллекторную шину 502 и эмиттерную шину 504 подается от источника 509 напряжения через соединенные с ними фазы U, V и W. Управление каждым БТИЗ-модулем 501 осуществляется по сигналам, подаваемым на него по проводу 505, идущему к затвору, вспомогательному проводу 506, идущему к эмиттеру, и вспомогательному проводу 507, идущему к коллектору. Нагрузка, на которую работает инвертор, обозначена на схеме позицией 508.
На фиг. 12А и 12Б показаны графики, характеризующие деформацию модуля. Графики, показанные на фиг. 13А и 13Б, характеризуют деформацию обратной стороны модуля (толщину консистентной смазки), измеренную до и после затяжки болтов крепления модуля. При этом на фиг.12А и 12Б показана деформация модуля, выполненного в соответствии с настоящим изобретением, а на фиг.13А и 13Б - деформация модуля, изготовленного по обычной технологии. У модуля с основанием, изготовленным из обычного материала (А1-SiC), максимальная деформация его выпуклой обратной стороны составляет около 100 мкм. Однако при нанесении на поверхность основания консистентной смазки и последующей затяжке болтов крепления модуля форма его деформированной обратной стороны меняется с выпуклой на вогнутую, поскольку во время затяжки болтов модуль отжимается от поверхности радиатора слоем нанесенной на него консистентной смазки. В результате этого толщина слоя консистентной смазки в центральной части модуля увеличивается и соответственно увеличивается и тепловое сопротивление в месте прилегания основания модуля к несущей поверхности блока. В отличие от этого у модуля, основание которого изготовлено из предлагаемого в настоящем изобретении композиционного материала Cu-Cu2O, начальная деформация обратной стороны основания составляет около 50 мкм и после нанесения консистентной смазки и затяжки болтов толщина смазки в центральной части модуля остается равной 50 мкм. Объясняется это достаточно высокой жесткостью основания. Таким образом, деформация предлагаемого в изобретении модуля оказывается в два раза меньше деформации обычного модуля с основанием, изготовленным из Al-SiC. Кроме того, в предлагаемом в изобретении модуле консистентная смазка имеет практически одинаковую толщину по всей поверхности его основания. Деформация основания модуля, связанная со сжатием консистентной смазки во время затяжки болтов крепления модуля, характерна для модуля с основанием, изготовленным из меди, которое имеет меньшую жесткость, чем основание, изготовленное из сплава Сu-Cu2О. Очевидно, что изготовление основания модуля из предлагаемого в настоящем изобретении сплава Cu-Cu2O решает эту проблему.
Из приведенных графиков следует, что основание, изготовленное из предлагаемого в настоящем изобретении сплава Сu-Сu2О, обладает меньшим тепловым сопротивлением и тепловым сопротивлением на поверхности контакта, чем основание, изготовленное из таких материалов, как Мо или Al-SiC, которые обычно используют в обладающих высокой надежностью модулях. Изготовление основания модуля из предлагаемого в настоящем изобретении композиционного материала позволяет повысить плотность компоновки модулей в показанном на фиг. 11 инверторе. С учетом того, что радиаторы с охлаждающими ребрами обладают высокой эффективностью охлаждения, использование предлагаемого в изобретении композиционного материала позволяет также уменьшить размеры пространства, необходимого для размещения силового преобразователя, собранного из предлагаемых в изобретении модулей. При снижении толщины слоя консистентной смазки поверхность радиатора с охлаждающими ребрами в преобразователе, собранном из предлагаемых в изобретении модулей, остается плоской, что позволяет увеличить размеры используемого для охлаждения преобразователя радиатора с ребрами. Охлаждать преобразователь можно также и другими способами, в частности с помощью охлаждающего воздуха. Такое дополнительное охлаждение преобразователя позволяет уменьшить его размеры и снизить уровень создаваемого им шума.
Пример 7
В этом примере описано использование предлагаемого в изобретении медного композиционного материала, рассмотренного выше в примерах 1-5, в показанном на фиг. 14 и 15 пластмассовом корпусе ИС. В варианте, показанном на фиг.14, пластинчатый радиатор закрыт и расположен внутри корпуса. В варианте, показанном на фиг.15, пластинчатый радиатор открыт и расположен на внешней поверхности корпуса.
Пластинчатый радиатор изготовлен из композиционного материала Сu-Сu2О с разным содержанием Сu2О, которое меняется в пределах от 20 до 55 об.%. В интервале температур от комнатной до 300oС коэффициент теплового расширения такого композиционного материала составляет от 9х10-6/oС до 14х10-6/oС. Приблизительно такой же коэффициент теплового расширения имеет и формовочная смола. Пластинчатый радиатор механически обработан и покрыт слоем никеля.
Конструкция корпуса показана на фиг.14. Внутри этого корпуса расположен покрытый никелем пластинчатый радиатор 33, изготовленный из предлагаемого в настоящем изобретении медного композиционного материала. К пластинчатому радиатору 33 изоляционной полиимидной лентой 32 крепится выводная рамка 31. Сверху к пластинчатому радиатору 33 припаяна ИС 34. Выводная рамка соединена изготовленным из золота проводником 35 с Аl-электродом ИС. Все эти элементы модуля, за исключением некоторой части выводной рамки, залиты формовочной смолой 36, состоящей по существу из эпоксидной смолы, наполнителя из двуокиси кремния и отвердителя. Корпус с открытым пластинчатым радиатором, показанный на фиг. 15, отличается от корпуса, показанного на фиг.14, тем, что пластинчатый радиатор 33 открыт и расположен вне залитой формовочной смолой внутренней части корпуса.
У описанных выше корпусов с ИС измеряли величину деформации пластинчатого радиатора и одновременно их проверяли на наличие трещин в месте соединения пластинчатого радиатора с формовочной смолой. При этом было установлено, что при разнице коэффициентов теплового расширения пластинчатого радиатора и формовочной смолы, не превышающей 0,5х10-6/oС, деформации пластинчатого радиатора оказываются столь незначительными, что в месте его соединения с формовочной смолой никаких трещин не возникает, и формовочная смола остается целой. При этом также было установлено, что композиционный материала при содержании в нем Сu2О в пределах 20-35 об.% имеет высокий (200 Вт/(м•K)) коэффициент теплопроводности.
Пример 8
В этом примере рассмотрен керамический корпус ИС с пластинчатым радиатором, изготовленным из предлагаемого в настоящем изобретении медного композиционного материала, рассмотренного выше в примерах 1-5. На фиг.16 и 17 показаны поперечные сечения керамического корпуса. На фиг.16 показана ИС 41, которая полиимидной смолой соединена с покрытым слоем никеля пластинчатым радиатором 42. Пластинчатый радиатор 42 припаян к изготовленному из Al2O3 корпусу 43. В корпусе имеются медные проводники и штырьковые контакты 44 для соединения ИС с монтажной платой. Расположенные внутри корпуса медные проводники соединены с алюминиевым электродом ИС алюминиевым проводом 45. Все эти элементы залиты смолой. К корпусу содержащим серебро припоем припаяно сварочное кольцо 46, изготовленное из сплава ковар. С помощью роликового электрода к этому сварочному кольцу приварена крышка 47, также изготовленная из сплава ковар. На фиг.17 показан керамический корпус (выполненный аналогично корпусу, показанному на фиг.16) с установленным на нем радиатором 48 с охлаждающими ребрами.
Пример 9
В этом примере рассмотрен корпус с пластинчатым радиатором, изготовленным из предлагаемого в настоящем изобретении медного композиционного материала, рассмотренного выше в примерах 1-5. Изготовлен этот корпус по методу TAB (автоматизированное присоединение кристаллов к балочным выводам на ленточном носителе). На фиг.18 и 19 показаны поперечные сечения такого корпуса.
На фиг.18 показана ИС 51, которая теплопроводящей смолой 52 соединена с покрытым слоем никеля пластинчатым радиатором 53. ИС имеет выводы, на которых выполнен контактный столбик 54 с покрытием из золота. Контактный столбик 54 с покрытием из золота соединен с выполненным по методу TAB соединением 55. Это соединение 55 соединено в свою очередь тонкой токопроводящей пленкой 56 с выводной рамкой 57. Герметичность ИС обеспечивается керамической подложкой 59, кольцом 60, уплотняющим слоем стекла 61 и расположенной между ИС и керамической подложкой силиконовой резиной 58.
Герметично залитый смолой корпус показан на фиг.19. ИС 65 припаяна изготовленным из сплава Au-Si припоем 66 к покрытому слоем никеля пластинчатому радиатору 67, изготовленному из предлагаемого в настоящем изобретении композиционного материала. Пластинчатый радиатор 67 теплопроводящей смолой 68 соединен с заземленной медной пластинкой 69, которая в свою очередь такой же смолой соединена с покрытым слоем никеля и изготовленным из предлагаемого в настоящем изобретении композиционного материала пластинчатым радиатором 70. Расположенный на другой стороне ИС вывод через покрытый золотом контактный столбик 71 соединен с выполненным по методу TAB соединением 72 и вместе с ними залит смолой 73. Выводная рамка 57 и пластинчатый радиатор не полностью залиты смолой и имеют видимые участки. Выполненное по методу TAB соединение крепится к медной заземляющей пластинке, изготовленной на основе эпоксидной смолы и содержащей серебро пастой 74.
Пример 10
В этом примере рассмотрен многокристальный модуль, пластинчатый радиатор которого изготовлен из предлагаемого в настоящем изобретении медного композиционного материала, рассмотренного выше в примерах 1-5. На фиг.20 показано поперечное сечение такого многокристального модуля. Имеющийся в этом модуле пластинчатый радиатор 83 изготовлен прессованием из спеченной заготовки (либо после прокатки, либо вообще без прокатки).
ИС 81 соединена изготовленным из золота проводником 82 с выполненным на покрытой слоем никеля поверхности пластинчатого радиатора 83, изготовленного из предлагаемого в настоящем изобретении композиционного материала, в виде тонкой пленки проводником 84. ИС соединена также изготовленным из золота проводником с разводкой, выполненной в изготовленном из AlN корпусе 85. Выполненная в корпусе разводка соединена с внешним выводом 86. ИС герметично закрыта крышкой 87, которая соединена с рамкой 88 из изготовленного из Au-Sn сплава припоя, расположенной между маталлизированными слоями корпуса.
Пример 11
В этом примере рассмотрен электростатический аттрактор с диэлектрической пластиной, изготовленной из предлагаемого в настоящем изобретении композиционного материала. На фиг.21 показано поперечное сечение такого аттрактора.
Показанный на фиг.21 электростатический аттрактор используется в качестве подставки или стола в установке для напыления с вакуумной камерой 95, в которой в условиях разрежения обрабатывается деталь 90, изготовленная либо из токопроводящего материала, либо из полупроводникового материала. При подаче напряжения (около 500 В) от источника 91 постоянного тока на электрод 94 электростатического аттрактора между диэлектрической пластиной 92 и обрабатываемой деталью 90 возникает электростатическое усилие притяжения. Под действием этого усилия обрабатываемая деталь 90 притягивается к поверхности диэлектрической пластины. В данном случае диэлектрическая пластина изготовлена из композиционного материала, описанного выше в примерах 1-5.
Деталь 90, на которую напылением наносится покрытие, устанавливается на диэлектрическую пластину электростатического аттрактора. После этого в вакуумной камере 95 с помощью соединенного с ее вытяжным патрубком 97 вакуум-насоса создается необходимое разрежение (порядка 1х10-3Па). Установленный на соединенной с впускным патрубком 96 камеры магистрали клапан открывается и в вакуумную камеру 95 с объемным расходом около 10 см3 подается газ (аргон или другой), в атмосфере которого происходит процесс напыления. В этот момент разрежение в вакуумной камере падает приблизительно до 2х10-2Па.
Затем на электрод 94 электростатического аттрактора подается напряжение высокой частоты (13,56 МГц, при мощности около 4 кВт) и в вакуумной камере между этим электродом и другим (не показан) образуется плазма. Напряжение, подаваемое на электрод электростатического аттрактора, составляет 2 кВ (V) и 4 кВ (Vpp). Для согласования полных сопротивлений источника напряжения и вакуумной камеры и эффективного использования мощности источника напряжения для образования в вакуумной камере плазмы предназначен согласующий блок 98, установленный между электродом 94 электростатического аттрактора и источником 93 высокочастотного напряжения.
Во время напыления температура обрабатываемой детали 90 повышается до 450oС. При такой температуре изготовленная из предлагаемого в изобретении композиционного материала диэлектрическая пластина 92 электростатического аттрактора остается целой и не растрескивается (что могло бы привести к напылению на обрабатываемую деталь постороннего вещества). Таким образом, предлагаемый в изобретении электростатический аттрактор позволяет повысить надежность процесса напыления (и качество полученного при напылении покрытия).
Следует отметить, что предлагаемый в изобретении электростатический аттрактор можно с равным успехом использовать и в других установках, предназначенных для обработки различных проводников или полупроводников (например кремниевых подложек) в условиях разрежения. Изготовленную из предлагаемого в изобретении композиционного материала диэлектрическую пластину можно использовать в качестве стола или подставки в установках для химического осаждения из паровой (газовой) фазы, установках для конденсации из паровой фазы, установках для измельчения, установках для травления, установках для ионного легирования и в других установках подобного типа.
Используемая в электростатическом аттракторе диэлектрическая пластина, изготовленная из предлагаемого в изобретении композиционного материала, при необходимом тепловом сопротивлении обладает также достаточно высокой диэлектрической прочностью. Использование в установленном в предназначенной для обработки различных деталей вакуумной камере электростатическом аттракторе изготовленной из предлагаемого в настоящем изобретении композиционного материала диэлектрической пластины в качестве стола или подставки исключает вероятность растрескивания диэлектрической пластины и уменьшает вероятность попадания в напыляемое на обрабатываемую деталь покрытие постороннего вещества.
Предлагаемый в настоящем изобретении композиционный материал обладает низким тепловым расширением, высокой теплопроводностью и хорошо обрабатывается давлением. Поэтому его можно успешно использовать для массового изготовления различных изделий при сравнительно низком количестве технологических операций.
Предлагаемый в настоящем изобретении композиционный материал имеет смешанную структуру и состоит из медной (Сu) фазы (обладающей очень высокой теплопроводностью) и фазы из оксида одновалентной меди (Сu2О) (обладающей низким тепловым расширением), и поэтому он одновременно обладает свойствами обоих своих компонентов (т.е. и высокой теплопроводностью, и низким тепловым расширением). Предлагаемый в настоящем изобретении композиционный материал при соответствующем содержании в нем меди (Сu) и оксида одновалентной меди (Сu2О) имеет низкий коэффициент теплового расширения и высокий коэффициент теплопроводности. Предлагаемый в настоящем изобретении композиционный материал может найти применение при изготовлении пластинчатых радиаторов для полупроводниковых приборов и диэлектрических пластин для электростатических аттракторов.

Claims (4)

1. Композиционный материал, состоящий из металла и неорганических частиц с меньшим, чем у металла, коэффициентом теплового расширения, отличающийся тем, что неорганические частицы диспергированы в металле таким образом, что по меньшей мере 95% частиц по площади, занимаемой ими в поперечном сечении, образуют соединенные между собой агрегаты сложной формы.
2. Композиционный материал, состоящий из металла и неорганических частиц с меньшим, чем у металла, коэффициентом теплового расширения, отличающийся тем, что он содержит не более 100 отдельных неорганических частиц на 100 мкм2 площади поперечного сечения материала, при этом остальные частицы, диспергированные в металле, образуют соединенные между собой агрегаты сложной формы.
3. Композиционный материал, состоящий из металла и неорганических частиц с меньшим, чем у металла, коэффициентом теплового расширения, отличающийся тем, что в диапазоне 20-150oС его коэффициент теплового расширения увеличивается в среднем на (0,025-0,035)•10-6/oС при изменении коэффициента теплопроводности при 20oС на 1 Вт/(м•К).
4. Композиционный материал, состоящий из меди и частиц оксида меди, отличающийся тем, что частицы оксида меди диспергированы в меди таким образом, что по меньшей мере 95% частиц по площади, занимаемой ими в поперечном сечении, образуют соединенные между собой агрегаты сложной формы.
RU2001119053/02A 1998-12-07 1998-12-07 Композиционный материал RU2216602C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/005527 WO2000034539A1 (fr) 1998-12-07 1998-12-07 Materiau composite et son utilisation

Publications (2)

Publication Number Publication Date
RU2001119053A RU2001119053A (ru) 2003-05-27
RU2216602C2 true RU2216602C2 (ru) 2003-11-20

Family

ID=14209560

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001119053/02A RU2216602C2 (ru) 1998-12-07 1998-12-07 Композиционный материал

Country Status (8)

Country Link
US (1) US6909185B1 (ru)
EP (1) EP1167559B1 (ru)
JP (1) JP3690278B2 (ru)
KR (3) KR20020035631A (ru)
CN (1) CN1093565C (ru)
DE (1) DE69833788D1 (ru)
RU (1) RU2216602C2 (ru)
WO (1) WO2000034539A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486580B2 (en) 2008-04-18 2013-07-16 The Regents Of The University Of California Integrated seal for high-temperature electrochemical device
CN105945288A (zh) * 2016-04-28 2016-09-21 昌利锻造有限公司 一种粉末冶金胀断连杆

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690171B2 (ja) 1999-03-16 2005-08-31 株式会社日立製作所 複合材料とその製造方法及び用途
JP3865557B2 (ja) * 2000-01-28 2007-01-10 株式会社ルネサステクノロジ 半導体装置
JP3906767B2 (ja) * 2002-09-03 2007-04-18 株式会社日立製作所 自動車用電子制御装置
EP1443546A3 (en) * 2003-01-28 2009-05-06 Hitachi Ltd. Working method of metal material and semiconductor apparatus fabricated by the method
JP2005223165A (ja) * 2004-02-06 2005-08-18 Sanyo Electric Co Ltd 窒化物系発光素子
FR2877491B1 (fr) * 2004-10-29 2007-01-19 Soitec Silicon On Insulator Structure composite a forte dissipation thermique
US7528006B2 (en) * 2005-06-30 2009-05-05 Intel Corporation Integrated circuit die containing particle-filled through-silicon metal vias with reduced thermal expansion
AT503270B1 (de) * 2006-03-09 2008-03-15 Arc Seibersdorf Res Gmbh Verbundwerkstoff und verfahren zu seiner herstellung
TWI449137B (zh) * 2006-03-23 2014-08-11 Ceramtec Ag 構件或電路用的攜帶體
JP2012122132A (ja) * 2010-11-18 2012-06-28 Mitsubishi Materials Corp 焼結体形成用の粘土状組成物、焼結体形成用の粘土状組成物用粉末、焼結体形成用の粘土状組成物の製造方法、銅焼結体及び銅焼結体の製造方法
US20130199831A1 (en) * 2012-02-06 2013-08-08 Christopher Morris Electromagnetic field assisted self-assembly with formation of electrical contacts
JP6050075B2 (ja) * 2012-09-26 2016-12-21 株式会社オプトニクス精密 半導体デバイスの製造方法および半導体デバイス
KR101432640B1 (ko) * 2014-04-10 2014-08-21 천재영 Cu/Ag 합금을 이용한 LED조명등 방열구조체 및 이의 제조방법
CN104976597A (zh) * 2014-04-10 2015-10-14 株式会社唻迪克世 利用机械合金化方法的led照明灯散热结构体及其制造方法
WO2017082122A1 (ja) * 2015-11-12 2017-05-18 三菱電機株式会社 パワーモジュール
CN106711261B (zh) * 2015-11-16 2018-05-29 上海空间电源研究所 一种空间用可伐/银金属层状复合材料及其制备方法
CN106711262B (zh) * 2015-11-16 2018-07-03 上海空间电源研究所 一种空间用钼/钛/银金属层状复合材料及其制备方法
CN110106466B (zh) * 2019-04-28 2021-12-31 北京工业大学 一种超薄散热薄膜及其制备方法和应用
CN115287491B (zh) * 2022-08-11 2023-08-18 江西博钦纳米材料有限公司 一种AlN和Al2O3混杂增强铜基复合材料及其制备方法
US11802330B1 (en) * 2022-08-22 2023-10-31 The Royal Institution for the Advancement of Learning/McGill Concordia University Gas turbine engine component with copper oxide coating

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766634A (en) 1972-04-20 1973-10-23 Gen Electric Method of direct bonding metals to non-metallic substrates
DE2310784B2 (de) * 1973-03-03 1975-03-13 Fa. Dr. Eugen Duerrwaechter Doduco, 7530 Pforzheim Verfahren zur Herstellung eines duktilen Silber-Metalloxid-Halbzeugs
JPS5486276A (en) 1977-12-21 1979-07-09 Hitachi Ltd Resin mold type semiconductor device
US4385310A (en) * 1978-03-22 1983-05-24 General Electric Company Structured copper strain buffer
US4270266A (en) * 1978-09-14 1981-06-02 General Motors Corporation Method of making a dielectric containing material for RF suppression
US4290080A (en) * 1979-09-20 1981-09-15 General Electric Company Method of making a strain buffer for a semiconductor device
JPS57109205A (en) * 1980-12-26 1982-07-07 Tanaka Precious Metal Ind Sealing electric contact material and method of manufacturing same
JPS57181344A (en) 1981-05-02 1982-11-08 Tanaka Kikinzoku Kogyo Kk Electrical contact material for sealing
JPS58137285A (ja) * 1982-02-10 1983-08-15 株式会社日立製作所 金属板付セラミック基板の製造法
JPS6412404A (en) 1987-07-06 1989-01-17 Hitachi Ltd Conductor material
JPS6464245A (en) 1987-09-03 1989-03-10 Nec Corp Semiconductor device
JPH07105460B2 (ja) * 1987-10-20 1995-11-13 株式会社日立製作所 半導体装置
JP2788510B2 (ja) * 1989-10-27 1998-08-20 第一工業製薬株式会社 銅ペースト組成物
JPH03271339A (ja) * 1990-03-22 1991-12-03 Honda Motor Co Ltd セラミックス・銅複合体およびその製造方法
GB2243160B (en) * 1990-02-13 1994-08-10 Honda Motor Co Ltd A method of producing a moulded article
JPH03286558A (ja) 1990-04-02 1991-12-17 Hitachi Ltd 半導体装置およびその製造方法並びにそれに使用されるリードフレーム
JPH0441601A (ja) * 1990-06-06 1992-02-12 Mitsubishi Heavy Ind Ltd 複合粉末製造法
US5045972A (en) 1990-08-27 1991-09-03 The Standard Oil Company High thermal conductivity metal matrix composite
US5158912A (en) 1991-04-09 1992-10-27 Digital Equipment Corporation Integral heatsink semiconductor package
US5292478A (en) * 1991-06-24 1994-03-08 Ametek, Specialty Metal Products Division Copper-molybdenum composite strip
JP3267671B2 (ja) 1992-04-16 2002-03-18 株式会社メガチップス 半導体装置
JPH06334068A (ja) 1993-05-24 1994-12-02 Toyota Autom Loom Works Ltd ヒートスプレッダを内蔵した半導体パッケージ
JPH0741359A (ja) 1993-07-30 1995-02-10 Asahi Glass Co Ltd 静電チャック用セラミックス及びその製造用組成物
JPH0790413A (ja) 1993-09-22 1995-04-04 Sumitomo Special Metals Co Ltd 複合材料
US5432675A (en) * 1993-11-15 1995-07-11 Fujitsu Limited Multi-chip module having thermal contacts
US5490627A (en) * 1994-06-30 1996-02-13 Hughes Aircraft Company Direct bonding of copper composites to ceramics
JPH0878578A (ja) 1994-09-08 1996-03-22 Sanyo Special Steel Co Ltd 放熱基板用材料及びその製造方法
JP2655124B2 (ja) * 1995-03-06 1997-09-17 日本電気株式会社 不揮発性半導体記憶装置およびその製造方法
JPH0995745A (ja) 1995-10-03 1997-04-08 Hitachi Metals Ltd 低熱膨張・高熱伝導性銅複合材料及びその製造方法
JP3426827B2 (ja) 1995-12-25 2003-07-14 京セラ株式会社 半導体装置
JPH09209058A (ja) 1996-01-30 1997-08-12 Kyocera Corp 高熱伝導性複合材料とその製造方法
JPH10154780A (ja) 1996-09-26 1998-06-09 Toshiba Corp 放熱部品とその製造方法、およびそれを用いた半導体装置
JP3438496B2 (ja) 1996-12-04 2003-08-18 ソニー株式会社 ウエハステージとその製造方法およびドライエッチング装置
JPH1129379A (ja) * 1997-02-14 1999-02-02 Ngk Insulators Ltd 半導体ヒートシンク用複合材料及びその製造方法
JP3618032B2 (ja) 1997-02-17 2005-02-09 京セラ株式会社 静電チャック

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486580B2 (en) 2008-04-18 2013-07-16 The Regents Of The University Of California Integrated seal for high-temperature electrochemical device
CN105945288A (zh) * 2016-04-28 2016-09-21 昌利锻造有限公司 一种粉末冶金胀断连杆

Also Published As

Publication number Publication date
KR20020035631A (ko) 2002-05-11
CN1275170A (zh) 2000-11-29
EP1167559B1 (en) 2006-03-08
KR20020035630A (ko) 2002-05-11
JP3690278B2 (ja) 2005-08-31
KR20010052078A (ko) 2001-06-25
EP1167559A1 (en) 2002-01-02
CN1093565C (zh) 2002-10-30
WO2000034539A1 (fr) 2000-06-15
KR100352993B1 (ko) 2002-09-18
DE69833788D1 (de) 2006-05-04
EP1167559A4 (en) 2003-02-05
US6909185B1 (en) 2005-06-21

Similar Documents

Publication Publication Date Title
RU2216602C2 (ru) Композиционный материал
EP1036849B1 (en) Metal matrix composite material, process for its production and use
US6833617B2 (en) Composite material including copper and cuprous oxide and application thereof
US7786486B2 (en) Double-sided package for power module
JP2001217363A (ja) 半導体装置とそのヒートシンク
Gurpinar et al. Analysis and evaluation of thermally annealed pyrolytic graphite heat spreader for power modules
JP3451979B2 (ja) 半導体装置
JP3938113B2 (ja) 複合材料及びその用途
JP3552587B2 (ja) 複合材料及び半導体装置
JP2004003023A (ja) 複合材料とその製造方法及び用途
JP2000313905A (ja) 複合材料及び各種用途
JP2000313904A (ja) 複合材料とその製造方法及び半導体装置
JP3736251B2 (ja) 複合材料とその製造方法
JP3552623B2 (ja) 複合材料及びそれを用いた半導体装置用放熱板
CN1402342A (zh) 复合材料及其应用
JP4277582B2 (ja) 半導体装置
JP2000311972A (ja) 半導体装置
JP2004221328A (ja) 半導体素子収納用パッケージおよび半導体装置
CN118866832A (zh) 具有高性能陶瓷衬底的电隔离分立封装
JP2021072363A (ja) パワー半導体装置およびパワー半導体装置の製造方法
JP2004296723A (ja) 半導体素子収納用パッケージおよび半導体装置
JPH03173166A (ja) 半導体用放熱基板
JP2002353389A (ja) 窒化ケイ素回路基板およびその製造方法
JP2000003974A (ja) 半導体用パッケージ

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20051208