[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2132761C1 - Устройство и способ лазерного спекания - Google Patents

Устройство и способ лазерного спекания Download PDF

Info

Publication number
RU2132761C1
RU2132761C1 RU96112154A RU96112154A RU2132761C1 RU 2132761 C1 RU2132761 C1 RU 2132761C1 RU 96112154 A RU96112154 A RU 96112154A RU 96112154 A RU96112154 A RU 96112154A RU 2132761 C1 RU2132761 C1 RU 2132761C1
Authority
RU
Russia
Prior art keywords
sintering
laser beam
powder
temperature
laser
Prior art date
Application number
RU96112154A
Other languages
English (en)
Other versions
RU96112154A (ru
Inventor
Джон А. Бенда
Эристотл Пэреско
Original Assignee
Юнайтид Текнолоджиз Копэрейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юнайтид Текнолоджиз Копэрейшн filed Critical Юнайтид Текнолоджиз Копэрейшн
Publication of RU96112154A publication Critical patent/RU96112154A/ru
Application granted granted Critical
Publication of RU2132761C1 publication Critical patent/RU2132761C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/368Temperature or temperature gradient, e.g. temperature of the melt pool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

Изобретение относится к металлургии, в частности к технологии лазерного спекания, и может найти применение в различных отраслях машиностроения. Многолучевое лазерное устройство для спекания формирует спекающий луч 64, имеющий фокальную точку на порошковом слое 68, и по меньшей мере один расфокусированный лазерный луч 116, падающий на область, находящуюся вблизи фокальной точки сфокусированного луча 64. Спекающий луч 64 повышает температуру порошка 84 до температуры спекания. Расфокусированный луч 116 повышает температуру материала, окружающего спекающий луч 64, до уровня ниже температуры спекания, уменьшая в соответствии с этим температурный градиент между зоной спекания и окружающим материалом. Тепловое излучение от одного или обоих лучей может быть измерено и использовано для регулирования мощности одного или обоих лучей, а мощность одного или обоих лучей может быть регулируемой для поддержания температуры на требуемом уровне. В альтернативном варианте для создания многоступенчатого температурного градиента либо для индивидуального регулирования температуры каждой области около точки спекания может быть использовано несколько расфокусированных лучей. Техническим результатом изобретения является уменьшение коробления полученных изделий. 2 с. и 33 з.п.ф-лы, 15 ил.

Description

Изобретение относится к лазерному спеканию, в частности к двухлучевому лазерному спеканию для уменьшения коробления.
Известен способ стереолитографии, предназначенный для быстрого изготовления опытных образцов пресс-форм или самих изделий. Как известно, в способе стереолитографии используют ультрафиолетовый лазер для сканирования и избирательной полимеризации мономера (то есть для отверждения жидкой пластмассы) с целью получения детали послойным наращиванием (или последовательным нанесением линий) по заданной модели. В частности, лазер фокусируют на часть ванны с жидкой смолой, которую заставляют полимеризоваться (или отверждаться) в том месте, где фокальная точка лазера контактирует с жидкостью (то есть лазерный луч падает на поверхность жидкости). Такая технология обеспечивает возможность быстрого получения детали, для изготовления которой иным способом, например литьем, потребовалось бы много времени.
Известен также способ быстрого изготовления опытных образцов при использовании инфракрасного лазера для избирательного спекания порошка. Как известно, спекание является процессом, в котором температуру порошкообразного материала повышают до температуры его размягчения нагревом с помощью лазера, заставляя частицы порошка спекаться в этой нагреваемой области. Температура, необходимая для спекания, зависит от спекаемого материала, но чем выше температура, тем быстрее материал спекается. Например, железный порошок плавится при температуре 1500oC, но спечется при температуре 1000oC, если порошок выдержать при этой температуре в течение достаточно длительного времени.
В процессе спекания лазерный луч при практически постоянном уровне мощности направляют на слой порошка и многократным сканированием лазерного луча вдоль последовательных линий по слою порошка до тех пор, пока не будет просканирован весь слой получают крайний слой детали. Лазер включают в тех точках, где порошок должен быть спечен, а в других - лазер отключают. Когда завершают формирование одного слоя, поверхность спеченного слоя опускают, наносят другой слой порошка поверх предыдущего, уже спеченного слоя, и сканируют следующий слой. Процесс повторяют до тех пор, пока не получат готовую деталь.
Недостатком лазерного спекания является склонность спеченных слоев к короблению вследствие температурного градиента (разности температур), существующего между фокальной точкой лазерного луча в зоне спекания, имеющей малый диаметр и высокую интенсивность излучения, и окружающим материалом.
Одним из способов, используемых для устранения этого недостатка, является подогрев всего слоя порошка до некоторой температуры меньше температуры спекания, уменьшая таким образом температурный градиент между лазерным лучом и окружающим материалом. Хотя этот способ может быть приемлем для некоторых полимерных порошков, при использовании для металлических или керамических порошков он намного менее эффективен вследствие более высоких температур спекания и плавления. Уменьшение эффективности связано, во- первых, с тем, что трудно поддерживать равномерную температуру в слое порошка. Во-вторых, если порошок нагревают до температуры, равной примерно половине температуры плавления, то в течение нескольких часов он спечется сам. Если температура порошкового слоя менее половины температуры плавления, то проблема коробления вообще не решается.
Таким образом, возникает необходимость в разработке устройства для спекания, которое не требовало бы нагрева всего порошкового слоя, но в то же время уменьшало коробление спекаемого материала.
Целью настоящего изобретения является разработка устройства для спекания, которое уменьшало бы коробление спекаемого материала.
В соответствии с настоящим изобретением устройство для лазерного спекания содержит спекающий лазерный луч, падающий на поверхность порошка в зоне спекания; по меньшей мере один расфокусированный лазерный луч, падающий на расфокусированную область вблизи зоны спекания; причем расфокусированный луч обеспечивает возможность получения заданного температурного градиента между зоной спекания и окружающим порошком.
Расфокусированный луч может перекрывать спекающий луч на поверхности порошка. В другом варианте спекающий луч может проходить внутри расфокусированного луча заданное расстояние до того, как достичь порошока.
Спекающий луч может быть поляризован в направлении перпендикулярном поляризации расфокусированного луча. Спекающий и расфокусированный лучи могут формироваться из одного лучевого источника.
Для определения температуры порошка в точке вблизи расфокусированной области может быть предусмотрен детектор. Детектор также может содержать средства для определения температуры порошка во множестве точек вокруг зоны спекания. Для регулирования мощности расфокусированного лазерного луча может быть предусмотрено средство управления лазером, чувствительное к сигналам детектора. Детектор также может измерять тепловые излучения из порошка.
Изобретение значительно совершенствует предшествующие технологии спекания, благодаря уменьшению коробления спекаемых деталей. Кроме того, изобретение исключает также необходимость нагрева всего порошкового слоя до высокой температуры для уменьшения коробления. Согласно изобретению используются два луча: узко сфокусированный луч, спекающий порошок, и более широко сфокусированный луч, подогревающий область вокруг узко сфокусированного спекающего луча. Таким образом, изобретение снижает температурный градиент между спекающим лучом и окружающим материалом, значительно уменьшая этим эффект коробления.
Изобретение также предусматривает измерение теплового излучения и, таким образом, температуры как спекающего луча, так и более широко сфокусированного луча. Это дает возможность точно по температуре регулировать мощности обоих лучей и зависимых от этого температурных градиентов. Кроме того, при использовании двух лучей с различными поляризациями или двух различных лазеров изобретение позволяет исключить проблему интерференции когерентных волн между лучами и связанного с ней широкого разброса результирующей интенсивности излучения. Помимо этого настоящее изобретение уменьшает склонность порошка к "комкованию" (или "образовыванию агломератов") при спекании.
Указанные выше и другие цели, признаки и преимущества настоящего изобретения станут более понятными при рассмотрении приведенного ниже подробного описания иллюстративных вариантов его воплощения со ссылкой на сопроводительные чертежи.
Краткое описание чертежей.
Фиг. 1 - блок-схема двухлучевого лазерного устройства для спекания в соответствии с настоящим изобретением.
Фиг. 2 - оптическая схема измерения теплового излучения большего и меньшего лучей, иллюстрирующая также альтернативный вариант отвода тепловых излучений.
Фиг. 3 - принципиальная схема другой конструкции двухлучевого устройства для спекания с лазером, луч которого поляризуется только в одном направлении.
Фиг. 4 - принципиальная схема двухлучевого лазерного устройства для спекания с двумя независимыми лазерами, каждый из которых формирует отдельный луч.
Фиг. 5 - оптическая схема образования второго луча для варианта, в котором два фокусируемых луча не проходят один в другом.
Фиг. 6 - принципиальная схема альтернативной конструкции двухлучевого лазерного устройства для спекания.
Фиг. 7 - увеличенное поперечное сечение двух лучей на поверхности спекающегося порошка: (a) меньший луч соосен с большим; (b) меньший луч несоосен с большим; и (c) меньший луч эллиптического сечения находится вблизи центра большего луча.
Фиг. 8 - схематическое поперечное сечение оптического изображения на фотодетекторе, используемом для определения температуры спекемого слоя.
Фиг. 9 - схематическое поперечное сечение спекающего луча и нескольких расфокусированных лучей, падающих на спекаемый слой.
Фиг. 10 - схематическое поперечное сечение спекающего луча и нескольких соосных расфокусированных лучей, падающих на спекаемый слой.
Фиг. 11 - схема спекающего луча и расфокусированного луча, имеющего фокальную точку ниже поверхности спекаемого слоя.
Фиг. 12 - схема спекающего луча и расфокусированного луча, имеющего фокальную точку на поверхности спекаемого слоя.
Фиг. 13 - изометрическое изображение прямоугольной спекаемой детали в соответствии с настоящим изобретением.
Фиг. 14 - вид с торца детали, показанной на фиг. 13: (a) деталь, полученная спеканием в соответствии с изобретением; (b) деталь, полученная спеканием с помощью известной предшествующей технологии.
Фиг. 15 - демонстрирует сравнительную кривизну верхней поверхности деталей, показанных на фиг. 13 и фиг. 14, полученных с помощью известной технологии спекания и в соответствии с настоящим изобретением.
Наилучший вариант воплощения изобретения.
Как показано на фиг. 1, лазер 10 формирует коллимированный выходной луч 12 с вертикальной и горизонтальной поляризованными составляющими. Коллимированный луч 12 попадает на светоделитель, который пропускает свет, поляризованный вдоль горизонтальной оси, как показано стрелками 18, и отражает свет, поляризованный вдоль оси, перпендикулярной оси 18 (то есть перпендикулярной плоскости страницы), как показано точкой 20. Следовательно, светоделитель 16 отражает свет 22, имеющий поляризацию вдоль оси 20, и пропускает свет 24, имеющий поляризацию вдоль оси 18.
Прошедший свет 24 попадает на затвор 26, управляемый сигналом по проводу 28 из схемы 30 управления спеканием (описываемой ниже). Затвор 26 имеет два положения, открытое и закрытое, и пропускает свет без ослабления, если находится в открытом положении, и блокирует весь свет, если находится в закрытом. Сигнал, поступающий по проводу 28 из схемы управления спеканием, является сигналом открыть/закрыть.
Затвор пропускает выходной луч 32 к оптическому модулятору 34. Модулятор 34 изменяет мощность луча, поляризованого вдоль оси 18, в ответ на сигнал по проводу 36 из схемы 38 регулирования мощности (описываемой ниже) и выдает модулированный луч 40. Луч 40 попадает на дихроичный светоделитель 42, который пропускает (или передает) луч 44 при длине волны лазера.
Световой луч 44 попадает на расширитель 46 луча, обеспечивающий десятикратное расширение луча (10 : 1). Расширитель 46 луча содержит пару изогнутых зеркал 48, 50. Луч 44 проходит через зеркало 48 к зеркалу 50, которое направляет расходящийся луч 52 к зеркалу 48. Зеркало 48 преобразует расходящийся луч 46 в коллимированный луч 54, который отражается от фокусирующего оптического элемента (изогнутого зеркала) 56. Зеркало 56 направляет сфокусированный луч 58 к сканирующим зеркалам 60, 62. Зеркала 60, 62 отражают сфокусированный лазерный луч 58 и направляют управляемый сфокусированный (или спекающий) луч 64, который сфокусирован на спекающемся порошковом слое 68 и который спекает порошок.
Сканирующие зеркала 60, 62 направляют спекающий луч 64 для сканирования по линиям на порошковом слое 68 для избирательного спекания требуемых зон. Сканирующие зеркала 60, 62 приводят в движение посредством гальванометрических приводов 66, 67 соответственно, например, модели G325DT производства General Scanning Inc. в ответ на управляющие сигналы по проводам 70, 72 соответственно из схемы 30 управления спеканием. Приводы 66, 67 направляют также позиционные сигналы обратной связи по проводам 74, 76 соответственно к схеме 30 управления спеканием. Провода 70, 72, 74, 76 обобщенно показаны как провод 78, соединенный со схемой 30 управления спеканием.
Процесс спекания осуществляют в камере 80, в которой предварительно создают газовую среду или вакуум. В камере 80 расположен контейнер 82, вмещающий порошок 84, спекаемый в заданных зонах для формирования детали 85 заданной формы. Контейнер 82 имеет способную перемещаться нижнюю часть, содержащую поршень 88, с помощью которого устанавливают глубину контейнера 82. Когда слой порошка спечен, поршень 88 опускается и ролик 90 накатывает еще порошка 84 поверх спеченного слоя 68. Положение поршня 88 регулируют посредством электродвигателя 92, которым управляют с помощью электрического сигнала по проводу 94 из схемы 30 управления спеканием.
Спекающий луч 64 падает на порошковый слой 68 в точке 96. Тепло лазерного луча побуждает частицы порошка 84 сплавляться (или спекаться), поскольку благодаря энергии спекающего луча 64 повышается температура (как описано выше).
Схема 30 управления спеканием направляет выходной сигнал по проводу 28 для приведения в действие затвора 26, по проводу 94 для приведения в действие электродвигателя 92, движущего поршень 88, и по проводам 70, 72 для приведения в движение сканирующих зеркал 60, 62 соответственно. Схема 30 управления спеканием устанавливает спекающий луч 64 в заданное положение на порошковом слое 68 и управляет сканированием спекающего луча 64 по порошковому слою 68. Кроме того, схема 30 управления спеканием открывает и закрывает затвор 26 в соответствующие промежутки времени для спекания заданных участков скана для получения требуемой детали.
Схема 30 управления спеканием может быть представлена цифровым компьютером, имеющим в своем запоминающем устройстве топологию послойного формирования (или топологию каждого скана) получаемой детали, который определяет, когда лазер должен быть включен или выключен с помощью затвора 26. Схема 30 управления спеканием может быть выполнена во множестве разных вариантов и конкретный тип используемой схемы управления не относится к настоящему изобретению. Схема 30 управления спеканием хорошо известна в технике, как описано в одновременно поданной заявке WO 95/11100.
Отраженный коллимированный световой луч 22 из светоделителя 16, поляризованный только вдоль оси 20, попадает на поворачивающее зеркало (или пластину) 100. Зеркало 100 направляет отраженный луч 102 к затвору 104, аналогичному вышеописанному затвору 26, который пропускает или блокирует входной луч 102 в ответ на сигнал по проводу 104 из схемы 30 управления спеканием. Затвор 104 направляет выходной луч 106 к оптическому модулятору 108, аналогичному вышеописанному модулятору 34, который изменяет мощность входного луча 106 в ответ на сигнал по проводу 110 из описываемой ниже схемы 38 регулирования мощности.
Модулятор 108 направляет выходной луч 110 к фокусирующему зеркалу 112, которое направляет сфокусированный луч 114, который проходит через отверстие в зеркале 56 к сканирующим зеркалам 60, 62, которые направляют расфокусированный луч 116. Луч 116 имеет фокальную точку 118 выше спекаемого слоя 68 и, таким образом, имеет диаметр на поверхности слоя 68, который больше диаметра спекающего луча 64.
При использовании второго расфокусированного луча 116 температурный градиент между спекающим лучом 64 и окружающим материалом уменьшается, уменьшая в соответствии с этим эффект коробления. Мы также установили, что это также уменьшает склонность расплавленного материала "комковаться" или "образовывать агломераты", при спекании порошка.
Для лучшей работы расфокусированный луч 116 должен быть включен до включения узко сфокусированного луча 64, что обеспечит предварительный нагрев некоторой области прежде, чем спекающий луч 64 высокой интенсивности излучения упадет на поверхность. Однако лучи могут быть отключены одновременно. Таким образом, схема 30 управления спеканием, которая управляет обоими затворами 26, 104, должна предусматривать разное время включения.
Схема 38 регулирования мощности управляет модуляторами 34, 108 для регулирования мощности спекающего луча 64 и расфокусированного луча 116 соответственно на основе теплового излучения, измеряемого модулем 120 фотодетектора. В частности, порошок испускает тепловое инфракрасное излучение в той области, где лучи 64, 116 нагревают порошок. Это излучение проходит через сканирующие зеркала и попадает на зеркало 56, как показано стрелкой 122, направленной обратно ходу лучей. Это излучение отражается от зеркала 56, как показано стрелкой 124. Излучение 124 уменьшается в размере в масштабе 10 : 1 посредством телескопической оптической системы (противоположного направления) и появляется как меньший луч, указанный стрелкой 126. Излучение 126 попадает на дихроичный светоделитель, который отражает свет при длинах волн излучения 126 и направляет отраженный луч 128 на модуль 120 фотодетектора.
Модуль 120 фотодетектора формирует электрические выходные сигналы, направляемые по проводам 122, 124 к схеме 38 регулирования мощности. Схема 38 регулирует мощность соответствующих лучей 64, 116 до заданных опорных пороговых значений для обеспечения практически постоянной температуры спекания и практически постоянного температурного градиента между спекающим лучом 64 и расфокусированным лучом 116 и между расфокусированным лучом 116 и окружающим материалом. Схема 38 регулирования мощности (элементы не показаны) аналогична схеме, описанной в вышеупомянутой, одновременно поданной заявке на патент (фиг. 3); однако эта схема для настоящего изобретения имеет два контура управления вместо одного, по одному для каждого выходного луча. При необходимости могут быть использованы другие технические средства управления.
Очевидно, что два луча 64, 116, падающие на порошковый слой 68 имеют перпендикулярные поляризации. Это сделано для предотвращения проблемы интерференции когерентных волн (проблемы когерентных помех) между лучами, которая может вызвать значительное изменение (например, 3 : 1) мощности сфокусированного луча из-за очень небольших изменений (например, на четверть длины волны) в разности длин оптического пути между двумя лучами 64, 116. Это происходит, поскольку складываются амплитуды поля, а не интенсивности этих двух лучей.
Из фиг. 2, на которой приведена подробная схема модуля 120 фотодетектора, показано тепловое излучение 130 от спекающего луча 64 и тепловое излучение от расфокусированного луча 116. Модуль 120 фотодетектора содержит фокусирующую линзу 136, которая фокусирует как излучение 130 от спекающего луча 64, так и излучение 132 от расфокусированного луча 116, на диафрагме 140 с отражательной наружной поверхностью. Отверстие 142 в диафрагме 140 дает возможность излучению с поверхности порошка в области спекающего луча 64 отразиться в детектор 144. Детектор 144 по проводу 122 подает электрический выходной сигнал, определяющий уровень мощности излучения из области спекающего луча 64.
Тепловое излучение 132 от расфокусированного луча 116 отражается поверхностью диафрагмы 140 как луч 146, который попадает на фокусирующую линзу 148. Линза 148 направляет сфокусированный световой луч 149, который формирует оптическое изображение 150 области вокруг сфокусированного луча на втором детекторе 152. Детектор 152 по проводу 124 подает электрический выходной сигнал, определяющий уровень мощности излучения из области расфокусированного луча 116.
На фиг. 2 также показан альтернативный вариант отвода излучения при размещении дихроичного светоделителя 42 между сканирующими зеркалами 60, 62 и фокусирующим зеркалом 56. Вместо применения дихроичного светоделителя 42 для отражения теплового излучения при необходимости может быть использовано специальное зеркало, имеющее отверстие в области, где будут проходить лучи 58, 114.
На фиг. 3 показано, что вместо использования лазера, направляющего выходной луч с двумя поляризациями, может быть использован лазер 200, который направляет выходной луч 202, поляризованный в одном направлении, как показано стрелками 204. Луч 202 попадает на обычный светоделитель 206. Светоделитель 206 отражает часть светового луча 202, показанную как луч 102, а остальная часть луча 202 проходит через светоделитель 206, образуя луч 210. Как известно, количество отражаемого света 208 зависит от соответствующих характеристик покрытий и подложки светоделителя.
Световой луч 210 попадает на пару зеркал 212, 214 и направляет отраженный луч 24, имеющий поляризацию, как показано точкой 218 (перпендикулярную плоскости страницы), которая повернута на 90 градусов относительно направления поляризации луча 210.
Световые лучи 24, 102 попадают на те же самые оптические элементы и регулирующие приборы, которые установлены в показанном пунктиром контуре 220 на фиг. 1, описанной выше.
Фиг. 4 иллюстрирует альтернативный способ преодоления проблемы когерентных помех простым использованием двух независимых лазеров 230, 232. Так, вместо формирования лучей 24, 102 из одного лазера 10, как показано на фиг. 1, или 200, как показано на фиг. 3, их получают с помощью двух независимых лазеров 230, 232, направленных на элементы в контуре 220 (фиг. 1). Использование двух независимых (несинхронизированных) лазеров 230, 232 предотвращает возможность интерференции когерентных волн (когерентных помех). В этом случае нет нужды иметь перпендикулярные поляризации или вообще поляризовать лучи 24, 102, если это не требуется для оптических модуляторов или других оптических элементов.
Из фиг. 5 следует, что вместо фокусирующего зеркала 56 (фиг. 1), имеющего отверстие для прохождения луча 114, для отражения и фокусирования обоих лучей 54, 110 может быть использован более крупный фокусирующий элемент 250. Луч 54 отражается от зеркала 250 как сфокусированный луч 252. Луч 252 отражается от сканирующего зеркала 62 как луч 254 и отражается от другого сканирующего зеркала 60 как спекающий луч 64, который попадает на порошковый слой 68 в фокальной точке 96.
Луч 110 и луч 54 попадают на зеркало 250 в разных его частях. Луч 110 отражается от зеркала 250 как сфокусированный луч 260. Луч 260 отражается от сканирующего зеркала 62 как луч 262 и отражается от другого сканирующего зеркала 60 как расфокусированный луч 116, имеющий фокальную точку 118, расположенную слева от спекающего луча 64. Однако расфокусированный луч 116 еще соосен со спекающим лучом на порошковом слое 68.
На фиг. 5 в увеличенном масштабе показано действие сканирующих зеркал 60, 62 для направления лучей на порошковый слой 68 и по порошковому слою 68.
Там, где расфокусированный луч падает под углом к сфокусированному лучу, например, как показано на фиг.5, когда сканирующее зеркало 60 или 62 поворачивается, эти два луча 64, 116 более не будут соосными, поскольку порошковый слой больше не находится в фокусе. Для небольших углов сканирования это не оказывает большого влияния. Однако для больших углов это влияние может оказаться значительным. Чтобы избежать этого, зеркало 250 может быть перемещено влево при соответствующем повороте сканирующего зеркала 60, сохраняя в соответствии с этим расстояние вдоль пути луча между зеркалом 250 и порошковым слоем 68 постоянным.
На фиг. 6 показана еще одна возможная конструкция двухлучевого устройства для спекания, которое имеет лазер 300, формирующий луч 301, имеющий линейную поляризацию, которая не является ни горизонтальной, ни вертикальной, например под углом 45 градусов. Оптические элементы, расположенные вне корпуса 302, аналогичны описанным выше элементам на фиг. 1. Луч 301 попадает на светоделитель 16, который направляет луч 22, поляризованный по оси 20 и луч 24, поляризованный по оси 18, аналогично тому, как показано на фиг. 1. Выходной луч 110 из модулятора 108 попадает на фокусирующую линзу 303, которая направляет сфокусированный луч 304 к поворачивающему зеркалу (или плоскому зеркалу) 306. Линза 303 предназначена для смещения фокальной точки светового луча, поляризованного по оси 20, посредством чего образуется расфокусированный луч 116.
Зеркало 306 направляет отраженный световой луч 308 к другому светоделителю 310, аналогичному светоделителю 16, причем светоделители 310 и 16 ориентированы в одном направлении. Луч 40 из модулятора попадает также на светоделитель 310. Светоделитель 310 отражает луч 308 как луч 312 и пропускает световой луч 40 как луч 314.
Лучи 312 и 314 вместе проходят к дихроичному светоделителю 316, который пропускает свет с длиной волны лазера. Лучи 312, 314 падают на расширитель луча 318, который преобразует сходящиеся лучи 312, 314 в расходящиеся лучи 320, 322, соответственно расширяя их. Расходящиеся лучи 320, 322 падают на фокусирующий оптический элемент 324, который направляет соответственно сфокусированные лучи 114, 58, как показано на фиг. 6. Лучи 114, 58 падают на сканирующие зеркала 60, 62, которые формируют спекающий луч 64 и расфокусированный луч 116, как описано выше.
Для изменения соотношения мощностей лучей 64 и 116 при использовании схемы, показанной на фиг. 6, оптические элементы в корпусе 330 могут быть повернуты вокруг общей оптической оси 332 входящего луча 301 и выходящих лучей 312, 314. Как описано выше в связи с фиг. 1, такой поворот может производиться вручную или автоматически посредством системы управления.
Как показано на фиг. 7 (a), круглая фокальная точка 352 спекающего луча 64 (фиг. 1) имеет диаметр, равный приблизительно 0,3 мм, и обеспечивает спекание. Круглое поперечное сечение 350 расфокусированного луча 116 (фиг. 1) имеет диаметр около 3,0 мм, то есть в десять раз больше, и обеспечивает нагрев в области вокруг спекаемой зоны, уменьшая в соответствии с этим температурные градиенты между сфокусированным лучом и окружающим материалом. Для соотношения диаметров 10:1 отношение мощности сфокусированного луча 64 к мощности расфокусированного луча 116 также можно установить около 10:1. Однако могут быть использованы другие диаметры фокальной точки и сечения расфокусированного луча и при необходимости могут быть использованы другие постоянные или переменные соотношения мощностей лучей.
На описываемом ниже примере поясняются параметры, которые должны быть учтены при определении диаметров лучей. Если мощность сфокусированного луча составляет 10 Вт, а площадь поперечного сечения этого луча - 1 мм2, интенсивность излучения сфокусированного луча составляет 10 Вт/мм2. Таким же образом, если мощность расфокусированного луча составляет 10 Вт, а площадь поперечного сечения 10 мм2, интенсивность излучения расфокусированного луча составит 1 Вт/мм2, или одну десятую сфокусированного луча. Однако поскольку расфокусированный луч в десять раз больше сфокусированного, некоторый участок на спекающемся слое порошка будет подвергаться воздействию расфокусированного луча такой интенсивности в течение приблизительно в десять раз большего времени, когда лучи сканируют по участку. Таким образом, для этого примера, суммарный нагрев от расфокусированного луча будет приблизительно такой же, что и от сфокусированного.
Как показано на фиг. 7 (b), поперечное сечение 352 спекающего луча 64 может быть несоосно с поперечным сечением 350 расфокусированного луча 116 на порошковом слое 68 (фиг. 1), так что более или менее расфокусированный луч 116 выдвинут в направлении сканирования или в противоположном направлении для обеспечения при необходимости дополнительного опережающего или завершающего нагрева.
Как показано на фиг. 7 (c), поперечное сечение 352 спекающего луча 64 может иметь эллиптическую форму внутри поперечного сечения 350 расфокусированного луча 116 в зависимости от угла, под которым узко сфокусированный луч падает на порошковый слой 68. Поперечное сечение расфокусированного луча 116 также может быть немного эллиптическим по форме.
Как показано на фиг. 2 и фиг. 8, вместо использования одного детектора 152 для измерения температуры порошка в области расфокусированного луча, может быть использовано несколько детекторов для детектирования отображения излучений по частям. Например, если круг 360 представляет собой отображение 150 на детекторе 152 (фиг. 2), температура областей (или квадрантов) 362-368 вокруг сфокусированного луча может быть определена измерением каждого квадранта с помощью отдельного детектора. Это дает возможность схеме регулирования мощности, которая регулирует мощность расфокусированного луча 116, функционировать на основе более конкретной и направленной информации. Например, мощность расфокусированного луча 116 может нуждаться в увеличении только в том случае, когда три из четырех четвертей круга показывают, что температура мала. Это позволяет избежать увеличения температуры всего луча из-за наличия очень низкой температуры только в одной области, что может вызвать нагрев другой области до температуры спекания просто при поддержании температуры квадранта выше некоторого порогового значения. При необходимости может быть использовано соответствующее число чувствительных элементов для детектирования большего или меньшего числа областей вокруг спекающего луча 64.
На фиг. 9 показано, что для более точного контроля температуры в областях вокруг спекающего луча 64, описанных на фиг. 8, для нагрева областей, окружающих спекающий луч 64 на спекающемся слое 68, может быть использовано несколько расфокусированных лучей 370-376. Это позволяет более точно контролировать температуру каждой из областей, измеряемую с помощью детектора(ов) 152. Очевидно, что, если используют такую схему и имеется только один лазер, лучи не должны перекрываться во избежание создания интерференционных полос, как обсуждалось выше. Однако, если необходимо перекрытие двух или более лучей, то для предотвращения создания интерференционных полос, аналогичных описанным выше, перекрывающиеся лучи должны быть сформированы с помощью независимых лазеров, или быть перпендикулярно поляризованными.
На фиг. 10 показано, что вместо использования спекающего луча 64 и одного расфокусированного луча 116 при необходимости может быть использовано много соосных (или несоосных) расфокусированных лучей. Такая схема дает несколько ступеней температурных градиентов, которые обеспечивают более плавное изменение температуры между спекающим лучом и материалом в порошковом слое. Очевидно, что если применяют такую схему, для предотвращения создания интерференционных полос перекрывающиеся лучи должны быть сформированы из независимых лазеров или различным образом поляризованы. Можно также использовать неперекрывающиеся лучи тороидальной формы.
На фиг. 11 показано, что лучи тороидальной формы для предотвращения когерентных помех могут также использоваться и в двухлучевом способе, показанном на фиг. 1 и фиг. 3. В этом случае фокальная точка 118 расфокусированного луча 116 находится ниже спекающего слоя 68. Это дает возможность избежать необходимости двойной поляризаций лучей или необходимости использования двух лазеров.
Из фиг. 1 и фиг. 12 очевидно, что подогревающий луч не обязательно должен быть расфокусированным, но фокальная точка 118 подогревающего луча 116 может быть расположена на спекающемся слое 68 аналогично фокальной точке спекающего луча 64. Этого достигают, используя телескопическое устройство 46 с соотношением 10 : 1 для увеличения диаметра коллимированной части 44 спекающего луча до десятикратного диаметра коллимированной части 110 подогревающего луча перед попаданием их на фокусирующие элементы 56, 112 соответственно. Такое расширение луча дает возможность спекающему лучу 64 иметь диаметр фокального пятна d в десять раз меньший диаметра фокального пятна подогревающего луча 116. Этот результат основан на известном уравнении: d = 2λf/D, где D - диаметр выходного луча к фокусирующему оптическому прибору, f - фокусное расстояние фокусирующего прибора, d - диаметр фокального пятна, λ - длина волны света.
Таким образом, хотя больший луч 116 назван "подогревающим" лучом, он может быть фактически сфокусирован в той же точке, что и спекающий луч 64.
Из фиг. 13, фиг. 14 и фиг. 15 следует, что использование способа двухлучевого спекания в соответствии с настоящим изобретением значительно уменьшает коробление, возникающее из-за температурных градиентов между спекающим лучом 64 и окружающим материалом. В частности, при спекании прямоугольной пластины 400 предварительно смешанного порошка железо-бронза, имеющей длину l, равную приблизительно 1,5 см, ширину w, равную приблизительно 1 см, и высоту h, равную приблизительно 1 мм, с использованием известной однолучевой технологии получаемая деталь будет иметь коробление в направлении вдоль оси Z, как показано пунктирными линиями 402. Этот эффект очевиден, если смотреть вдоль оси Y, как показано на фиг. 13. Деталь с фиг. 13, спеченная по предлагаемой технологии, показана на фиг. 14 (а), а деталь, спеченная при использовании обычной технологии спекания, показана на фиг. 14 (b). Как показано на графике фиг. 15, с помощью двухлучевого способа спекания было получено уменьшение коробления вдоль оси Z приблизительно на 0,4 мм по сравнению с той же деталью, спеченной с помощью обычного однолучевого спекания. На этой иллюстрации не учтены небольшие поверхностные дефекты и шероховатость.
Прямоугольная пластина 400 (фиг. 13) была получена с помощью технологии двухлучевого спекания по настоящему изобретению при использовании приблизительно 40 смежных сканов вдоль длины 1 (1,5 см) на толщину двух слоев. Каждый слой имеет толщину обычно около 0,25 мм, однако первый слой, как правило, толще, поскольку его формируют из свежего порошка. При необходимости может быть использована другая ширина и глубина скана. Типичным также является то, что, если спекают много слоев, верхняя поверхность детали будет склонна к выравниванию вследствие того, что каждый новый порошковый слой распределяется по детали (то есть заполняет углубление, создаваемое в результате коробления), образуя в соответствии с этим деталь с полуплоской верхней поверхностью, изогнутой нижней поверхностью и центральной областью, имеющей большую толщину, чем толщина на двух концах.
Обнаружено также, что многолучевое спекание уменьшает склонность порошка к "комкованию" или "образованию агломератов" при спекании.
Вместо применения двух модуляторов 34, 108 на пути луча 12 может быть помещен один модулятор (не показан). В этом случае соотношение мощностей двух лучей 64, 116 задают компоновкой оптических элементов. Вместо применения двух затворов 26, 106 на пути луча 12 может быть также помещен один затвор (не показан) для включения и выключения лучей, когда в этом возникает необходимость.
Очевидно, что изобретение может быть использовано с любой технологией позиционирования луча на поверхности порошка. Например, вместо применения сканирующих зеркал 60, 62 переменного шага (фиг. 1) для установки координат и сканирования лазерного луча может быть использовано устройство типа двухкоординатного графопостроителя. В этом случае направляющие оптические элементы размещают на устанавливаемом с возможностью скольжения корпусе, который монтируют на направляющей, аналогично той, которая описана в связи с фиг. 10 и фиг. 11 вышеупомянутой публикации номер WO 95/11100. В этом случае фокусирующие зеркала 56, 112 (для схемы на фиг. 1), или зеркало 250 (для схемы на фиг. 5), или оптические элементы 318, 324 (для схемы на фиг. 6) устанавливают на монтируемой с возможностью скольжения части устройства. В этом случае оптические детекторы 144, 152 (фиг. 2) также могут быть установлены на монтируемом с возможностью скольжения корпусе, как описано в вышеупомянутой, одновременно поданной заявке на патент.
Вместо перемещающихся зеркал платформа для спекания сама может перемещаться в одном или нескольких горизонтальных направлениях. Кроме того, изобретение будет действовать также и без схемы 38 регулирования мощности.
Кроме того, хотя настоящее изображение показано как детектирование теплового излучения через сканирующие зеркала отражением теплового излучения назад через сканирующие зеркала к фотодетектору, очевидно, что приемлема любая методика измерения температуры одного или обоих лучей на порошковом слое 68.
Изобретение может быть использовано для любого типа спекаемых материалов, например, пластмасс, воска, металлов, керамики и других. Можно спекать также два или более порошковых компонента, например металл-бронза. Кроме того, вместо сходящихся лучей для спекающего луча 64 и расфокусированного луча 116 можно использовать коллимированный луч (один или оба) при условии, что будут получены соответствующие величины мощности и диаметров лучей.
Хотя модуляторы 34, 108, затворы 26, 104 и лазер показаны как отдельные элементы, очевидно, что некоторые или все элементы могут находиться в одном лазерном модуле, который обеспечивает регулирование уровня мощности и/или быстрое управление включением/выключением луча для каждой поляризации, например газовый лазер модели Duo-Lase 57-2 с высокочастотным возбуждением CO2, производимый фирмой Synrad. В случае применения двух независимых лазеров 230, 232 (фиг. 4) затворы и/или модуляторы могут входить в состав соответствующих лазеров 230, 232.
Очевидно также, что мощность обоих лучей может быть модулирована одновременно одним модулятором или двумя модуляторами, управляемыми одним сигналом возбуждения. Однако в этом случае соотношение мощностей двухлучей 64, 116 является постоянным. Модулятор(ы) и/или затвор(ы) могут также быть установлены в любом месте в системе при условии, что лучи модулируются и коммутируются, обеспечивая требуемое спекание.
Кроме того, вместо детектирования температуры точно в той точке, где данный луч попадает на порошковый слой 68, чувствительный элемент может детектировать температуру в точках перед, за или сбоку от фокальной точки луча, чтобы помочь предсказать или иным образом определить адекватную мощность лазерного луча, чтобы обеспечить требуемые спекание или компенсацию температурного градиента. При необходимости также может определяться температура вследствие нагрева только от одного из двух лучей 64, 116.
Для получения сходящихся лучей 64, 116 на пути лучей 54, 110 соответственно (фиг. 1) могут быть также помещены фокусирующие зеркала 56, 112 вместо поворачивающих луч плоских зеркал и фокусирующих линз (не показаны). Кроме того, как показано на фиг.5, фокусирующее зеркало 250 может быть использовано вместо фокусирующей линзы (не показано), которая направляет сфокусированные лучи 252, 260 на сканирующие зеркала 60, 62. В этом случае световой луч будет прямо проходить через линзу (без изменения направлений, как на фиг. 5) и сканирующие зеркала 60, 62 будут справа от зеркала 250.
Кроме того, хотя настоящее изобретение описано для тех случаев, когда определение температуры основано на измерении теплового излучения, очевидно, что вместо или помимо измерения теплового излучения могут определяться другие параметры, связанные с температурой, например плазма (излучение энергии при переходе в основное состояние возбужденных лазером атомов окружающего газа) или факел (свечение вследствие нагрева или флуоресценции испаренного вещества или частичек материала, вылетевших из порошкового слоя). Например, спекающий луч может детектироваться при использовании плазмы или факела, а расфокусированный луч - при использовании тепловых излучений.
Хотя настоящее изобретение было описано и пояснено относительно иллюстративных вариантов его воплощения, специалисту очевидно, что без отклонения от духа и объема настоящего изобретения могут быть сделаны указанные и другие изменения, упрощения и добавления.

Claims (35)

1. Устройство для лазерного спекания, содержащее лазерное средство, отличающееся тем, что лазерное средство выполнено с возможностью формирования спекающего лазерного луча и по меньшей мере одного подогревающего лазерного луча, причем по меньшей мере один подогревающий лазерный луч расфокусирован или сфокусирован более широко, чем спекающий лазерный луч.
2. Устройство по п.1, отличающееся тем, что содержит детектор для определения температуры порошка в точке вблизи зоны спекания.
3. Устройство по п.2, отличающееся тем, что содержит средство управления лазером для регулирования мощности спекающего лазерного луча, чувствительное к сигналу из детектора.
4. Устройство по п.3, отличающееся тем, что средство управления лазером содержит средство регулирования мощности спекающего лазерного луча, выполненное с возможностью поддержания температуры порошка на постоянном уровне.
5. Устройство по п.1, отличающееся тем, что содержит детектор для определения температуры порошка в точке вблизи подогреваемой области.
6. Устройство по п.5, отличающееся тем, что детектор содержит средство определения температуры порошка во множестве точек вокруг зоны спекания.
7. Устройство по п.6, отличающееся тем, что содержит средство управления лазером для регулирования мощности подогревающего лазерного луча, чувствительное к сигналу из детектора.
8. Устройство по п.2 или 5, отличающееся тем, что детектор выполнен с возможностью определения теплового излучения от порошка.
9. Устройство по п.8, отличающееся тем, что содержит оптические элементы для направления тепловых излучений к детектору.
10. Устройство по п.8, отличающееся тем, что содержит сканирующие средства для сканирования лазерного луча по порошку и оптические элементы для направления тепловых излучений через сканирующие средства к детектору.
11. Устройство по п.3, отличающееся тем, что средство управления лазером содержит чувствительный к сигналу детектора процессор сигналов, выполненный с возможностью формирования сигнала регулирования мощности, указывающего требуемую мощность спекающего лазерного луча.
12. Устройство по п.11, отличающееся тем, что средство управления лазером содержит модулятор регулирования мощности спекающего лазерного луча, чувствительный к сигналу регулирования мощности.
13. Устройство по п.3, отличающееся тем, что средство управления лазером содержит чувствительный к сигналу детектора процессор сигналов, выполненный с возможностью формирования сигнала регулирования мощности, указывающего требуемую мощность подогревающего лазерного луча.
14. Устройство по п.13, отличающееся тем, что средство управления лазером содержит модулятор регулирования мощности подогревающего лазерного луча, чувствительный к сигналу регулирования мощности.
15. Устройство по п.1, отличающееся тем, что лазерное средство выполнено с возможностью формирования множества расфокусированных лучей.
16. Устройство по п.1, отличающееся тем, что оно содержит средство для отдельной регулировки мощности каждого из подогревающих лазерных лучей.
17. Способ лазерного спекания, при котором на поверхность порошка в зону спекания направляют спекающий лазерный луч, отличающийся тем, что в область вблизи зоны спекания направляют по меньшей мере один подогревающий лазерный луч, причем подогревающий лазерный луч расфокусируют или фокусируют более широко, чем спекающий лазерный луч, обеспечивая уменьшение температурного градиента между зоной спекания и окружающим порошком до величины, при которой уменьшается коробление спеченной из порошка детали.
18. Способ по п.17, отличающийся тем, что определяют температуру порошка в точке вблизи зоны спекания.
19. Способ по п.18, отличающийся тем, что мощность спекающего лазерного луча регулируют по температуре порошка в точке вблизи зоны спекания.
20. Способ по п.17, отличающийся тем, что определяют температуру порошка в точке вблизи подогреваемой области.
21. Способ по п.17, отличающийся тем, что мощность подогревающего лазерного луча регулируют по температуре порошка в точке вблизи подогреваемой области.
22. Способ по п. 17, отличающийся тем, что подогревающий лазерный луч формируют в виде расфокусированного лазерного луча.
23. Способ по п. 17, отличающийся тем, что подогревающий лазерный луч формируют в виде лазерного луча, сфокусированного более широко, чем спекающий лазерный луч.
24. Способ по п.17, отличающийся тем, что спекают порошок, содержащий частицы железа.
25. Способ по п. 17, отличающийся тем, что подогревающий лазерный луч направляют на поверхность порошка с перекрытием спекающего лазерного луча.
26. Способ по п. 17, отличающийся тем, что подогревающий лазерный луч направляют на поверхность порошка без перекрытия спекающего лазерного луча.
27. Способ по п.17, отличающийся тем, что спекающий лазерный луч совмещают с подогревающим лазерным лучом перед подачей на порошок.
28. Способ по п.17, отличающийся тем, что спекающий лазерный луч направляют отдельно от подогревающего лазерного луча.
29. Способ по п.17, отличающийся тем, что спекающий лазерный луч поляризуют в направлении, перпендикулярном поляризации подогревающего лазерного луча.
30. Способ по п.17, отличающийся тем, что в зону спекания направляют неполяризованные спекающий и подогревающий лазерные лучи.
31. Способ по п.17, отличающийся тем, что спекающий лазерный луч и подогревающий лазерный луч формируют из одного источника излучения.
32. Способ по п.17, отличающийся тем, что подогревающий лазерный луч формируют сходящимся лучом.
33. Способ по п.17, отличающийся тем, что спекающий лазерный луч формируют сходящимся лучом.
34. Способ по п. 17, отличающийся тем, что подогревающий лазерный луч формируют в виде расфокусированного лазерного луча.
35. Способ по п. 17, отличающийся тем, что подогревающий лазерный луч фокусируют более широко, чем спекающий луч.
RU96112154A 1993-10-20 1994-10-20 Устройство и способ лазерного спекания RU2132761C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US139,375 1993-10-20
US08/139,375 US5393482A (en) 1993-10-20 1993-10-20 Method for performing multiple beam laser sintering employing focussed and defocussed laser beams
PCT/US1994/012112 WO1995011101A1 (en) 1993-10-20 1994-10-20 Multiple beam laser sintering

Publications (2)

Publication Number Publication Date
RU96112154A RU96112154A (ru) 1998-08-20
RU2132761C1 true RU2132761C1 (ru) 1999-07-10

Family

ID=22486323

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96112154A RU2132761C1 (ru) 1993-10-20 1994-10-20 Устройство и способ лазерного спекания

Country Status (10)

Country Link
US (2) US5393482A (ru)
EP (1) EP0724494B1 (ru)
JP (1) JP3645262B2 (ru)
KR (1) KR100298059B1 (ru)
CN (1) CN1057033C (ru)
CA (1) CA2174635C (ru)
DE (2) DE724494T1 (ru)
ES (1) ES2119358T3 (ru)
RU (1) RU2132761C1 (ru)
WO (1) WO1995011101A1 (ru)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795584B2 (en) 2005-07-13 2010-09-14 Sca Hygiene Products Ab Automated dispenser with sensor arrangement
RU2446047C2 (ru) * 2006-05-26 2012-03-27 Пера Инновейшн Лимитед Способ и устройство для изготовления формуемых изделий
RU2477219C2 (ru) * 2008-12-02 2013-03-10 Эос Гмбх Электро Оптикал Системз Способ получения идентифицируемого объема порошка и способ изготовления объекта
US8796624B2 (en) 2005-07-13 2014-08-05 Sca Hygiene Products Ab Automated dispenser sensor arrangement
US8895893B2 (en) 2006-03-28 2014-11-25 Eos Gmbh Electro Optical Systems Process chamber and method for processing a material by a directed beam of electromagnetic radiation, in particular for a laser sintering device
RU2558019C1 (ru) * 2014-03-12 2015-07-27 Российская Федерация в лице Министерства промышленности и торговли РФ (МИНПРОМТОРГ РОССИИ) Способ изготовления сопла электродугового сварочного плазматрона
RU2569279C2 (ru) * 2014-04-23 2015-11-20 Олег Леонидович Головков Способ лазерного спекания и устройство для его осуществления
RU2587367C2 (ru) * 2011-01-05 2016-06-20 Юки Инжиниринг Систем Ко. Лтд. Устройство для лучевой обработки
WO2017039478A1 (ru) * 2015-08-28 2017-03-09 Владимир Валентинович ПАВЛОВ Способ обработки материалов с использованием многолучевого лазерного сканирования
WO2017052417A1 (ru) * 2015-09-25 2017-03-30 Общество С Ограниченной Ответственностью "Адирут" Способ и устройство аддитивного изготовления деталей
RU2627796C2 (ru) * 2015-12-10 2017-08-11 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) Способ послойного электронно-лучевого спекания изделий из керамического порошка
RU2639200C1 (ru) * 2016-10-14 2017-12-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ двухлучевой лазерной сварки
RU2641945C2 (ru) * 2013-04-29 2018-01-23 Марк С. ЗЕДИКЕР Устройства, системы и способы трехмерной печати
RU2695687C1 (ru) * 2013-12-06 2019-07-25 Сафран Эркрафт Энджинз Способ изготовления детали посредством выборочного расплавления порошка
RU2708727C2 (ru) * 2015-05-26 2019-12-11 АйПиДжи Фотоникс Корпорейшен Многолучевая лазерная система и способы сварки
US10562132B2 (en) 2013-04-29 2020-02-18 Nuburu, Inc. Applications, methods and systems for materials processing with visible raman laser
US10656328B2 (en) 2016-04-29 2020-05-19 Nuburu, Inc. Monolithic visible wavelength fiber laser
RU2737286C1 (ru) * 2017-02-22 2020-11-26 СЛМ Солюшенз Груп АГ Устройство и способ управления системой облучения для изготовления изделий
US10971896B2 (en) 2013-04-29 2021-04-06 Nuburu, Inc. Applications, methods and systems for a laser deliver addressable array
RU2750781C2 (ru) * 2016-07-06 2021-07-02 Адиге С.П.А. Способ лазерной обработки металлического материала с управлением положением оптической оси лазера относительно потока защитного газа, включая установку и компьютерную программу для реализации упомянутого способа
RU2763703C1 (ru) * 2020-08-17 2021-12-30 Общество с ограниченной ответственностью «Термолазер» Устройство для лазерной сварки
US11980970B2 (en) 2016-04-29 2024-05-14 Nuburu, Inc. Visible laser additive manufacturing

Families Citing this family (261)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529951A (en) * 1993-11-02 1996-06-25 Sony Corporation Method of forming polycrystalline silicon layer on substrate by large area excimer laser irradiation
US5900170A (en) * 1995-05-01 1999-05-04 United Technologies Corporation Containerless method of producing crack free metallic articles by energy beam deposition with reduced power density
US5914059A (en) * 1995-05-01 1999-06-22 United Technologies Corporation Method of repairing metallic articles by energy beam deposition with reduced power density
DE19619339B4 (de) * 1995-05-26 2005-02-24 BLZ Bayerisches Laserzentrum Gemeinnützige Forschungsgesellschaft mbH Laserstrahl-Bearbeitungsvorrichtung mit zwei Teilstrahlen
US5745834A (en) * 1995-09-19 1998-04-28 Rockwell International Corporation Free form fabrication of metallic components
US5640667A (en) * 1995-11-27 1997-06-17 Board Of Regents, The University Of Texas System Laser-directed fabrication of full-density metal articles using hot isostatic processing
US6291797B1 (en) * 1996-08-13 2001-09-18 Nippon Sheet Glass Co., Ltd. Laser machining method for glass substrate, diffraction type optical device fabricated by the machining method, and method of manufacturing optical device
CA2227672A1 (en) * 1997-01-29 1998-07-29 Toyota Jidosha Kabushiki Kaisha Method for producing a laminated object and apparatus for producing the same
US6007764A (en) * 1998-03-27 1999-12-28 United Technologies Corporation Absorption tailored laser sintering
US6333485B1 (en) * 1998-12-11 2001-12-25 International Business Machines Corporation Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed beam
US7649153B2 (en) * 1998-12-11 2010-01-19 International Business Machines Corporation Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed laser beam
US6127005A (en) 1999-01-08 2000-10-03 Rutgers University Method of thermally glazing an article
DE19953000C2 (de) * 1999-11-04 2003-04-10 Horst Exner Verfahren und Einrichtung zur schnellen Herstellung von Körpern
DE10007711C1 (de) * 2000-02-19 2001-08-16 Daimler Chrysler Ag Vorrichtung und Verfahren zum Sintern eines Pulvers mit einem Laserstrahl
SE521124C2 (sv) * 2000-04-27 2003-09-30 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
US6482576B1 (en) * 2000-08-08 2002-11-19 Micron Technology, Inc. Surface smoothing of stereolithographically formed 3-D objects
US6607689B1 (en) 2000-08-29 2003-08-19 Micron Technology, Inc. Layer thickness control for stereolithography utilizing variable liquid elevation and laser focal length
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
DE10050280A1 (de) * 2000-10-10 2002-04-11 Daimler Chrysler Ag Verfahren zum selektiven Lasersintern
US7270724B2 (en) 2000-12-13 2007-09-18 Uvtech Systems, Inc. Scanning plasma reactor
US6773683B2 (en) * 2001-01-08 2004-08-10 Uvtech Systems, Inc. Photocatalytic reactor system for treating flue effluents
TW552645B (en) 2001-08-03 2003-09-11 Semiconductor Energy Lab Laser irradiating device, laser irradiating method and manufacturing method of semiconductor device
JP3903761B2 (ja) * 2001-10-10 2007-04-11 株式会社日立製作所 レ−ザアニ−ル方法およびレ−ザアニ−ル装置
ATE518242T1 (de) 2002-03-12 2011-08-15 Hamamatsu Photonics Kk Methode zur trennung von substraten
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
US7225044B2 (en) * 2002-11-11 2007-05-29 Micron Technology, Inc. Methods for supporting substrates during fabrication of one or more objects thereon by programmable material consolidation techniques
SE524432C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
SE524439C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
SE524420C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
DE10261422B4 (de) * 2002-12-30 2014-04-03 Volkswagen Ag Laserschweiß- und lötverfahren sowie Vorrichtung dazu
WO2004076102A1 (ja) 2003-02-25 2004-09-10 Matsushita Electric Works, Ltd. 三次元形状造形物の製造装置及び製造方法
DE10309519B4 (de) * 2003-02-26 2006-04-27 Laserinstitut Mittelsachsen E.V. Verfahren und Vorrichtung zur Herstellung von Miniaturkörpern oder mikrostrukturierten Körpern
US6815636B2 (en) * 2003-04-09 2004-11-09 3D Systems, Inc. Sintering using thermal image feedback
US20050058837A1 (en) * 2003-09-16 2005-03-17 Farnworth Warren M. Processes for facilitating removal of stereolithographically fabricated objects from platens of stereolithographic fabrication equipment, object release elements for effecting such processes, systems and fabrication processes employing the object release elements, and objects which have been fabricated using the object release elements
CN100563894C (zh) * 2003-10-03 2009-12-02 住友电气工业株式会社 金属加热方法
US20050172894A1 (en) * 2004-02-10 2005-08-11 Farnworth Warren M. Selective deposition system and method for initiating deposition at a defined starting surface
DE102004009127A1 (de) * 2004-02-25 2005-09-15 Bego Medical Ag Verfahren und Vorrichtung zum Herstellen von Produkten durch Sintern und/oder Schmelzen
DE102004012682A1 (de) * 2004-03-16 2005-10-06 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels Lasertechnik und Auftragen eines Absorbers per Inkjet-Verfahren
US7261542B2 (en) * 2004-03-18 2007-08-28 Desktop Factory, Inc. Apparatus for three dimensional printing using image layers
US7216009B2 (en) * 2004-06-14 2007-05-08 Micron Technology, Inc. Machine vision systems for use with programmable material consolidation system and associated methods and structures
US6930278B1 (en) 2004-08-13 2005-08-16 3D Systems, Inc. Continuous calibration of a non-contact thermal sensor for laser sintering
JP4800661B2 (ja) * 2005-05-09 2011-10-26 株式会社ディスコ レーザ光線を利用する加工装置
CN100387380C (zh) * 2006-03-01 2008-05-14 苏州大学 一种激光变斑熔覆成型工艺及用于该工艺的同轴喷头
JP2009000708A (ja) * 2007-06-20 2009-01-08 Nikon Corp 光照射装置と、これを具備するレーザ加工装置
DE102007045922A1 (de) * 2007-09-26 2009-04-02 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
EP2231352B1 (en) 2008-01-03 2013-10-16 Arcam Ab Method and apparatus for producing three-dimensional objects
GB0816308D0 (en) 2008-09-05 2008-10-15 Mtt Technologies Ltd Optical module
US8206637B2 (en) * 2008-10-14 2012-06-26 The Boeing Company Geometry adaptive laser sintering system
WO2010092374A1 (en) * 2009-02-10 2010-08-19 Bae Systems Plc Method of fabricating an object
CN102470439B (zh) 2009-07-15 2016-03-02 阿卡姆股份公司 制造三维物体的方法和设备
EP2292357B1 (en) 2009-08-10 2016-04-06 BEGO Bremer Goldschlägerei Wilh.-Herbst GmbH & Co KG Ceramic article and methods for producing such article
FR2951971B1 (fr) * 2009-11-03 2011-12-09 Michelin Soc Tech Plateau de support pour dispositif de frittage laser et procede de frittage ameliore
ES2514520T3 (es) * 2009-12-04 2014-10-28 Slm Solutions Gmbh Unidad de irradiación óptica para una planta para la producción de piezas de trabajo mediante la irradiación de capas de polvo con radiación de láser
DE202010005162U1 (de) * 2010-04-17 2010-11-04 Evonik Degussa Gmbh Vorrichtung zur Verkleinerung des unteren Bauraums einer Lasersinteranlage
DE102010050531A1 (de) 2010-09-08 2012-03-08 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur generativen Herstellung zumindest eines Bauteilbereichs
DE102010048335A1 (de) * 2010-10-13 2012-04-19 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur generativen Herstellung
DE102011008809A1 (de) * 2011-01-19 2012-07-19 Mtu Aero Engines Gmbh Generativ hergestellte Turbinenschaufel sowie Vorrichtung und Verfahren zu ihrer Herstellung
RU2553796C2 (ru) * 2011-01-28 2015-06-20 Аркам Аб Способ изготовления трехмерного тела
EP2565294A1 (en) * 2011-08-29 2013-03-06 Siemens Aktiengesellschaft Manufacturing a component of single crystal or directionally solidified material
CN102432302B (zh) * 2011-09-08 2013-04-17 大连理工大学 一种激光束近净成形陶瓷结构的方法
JP5803532B2 (ja) * 2011-10-04 2015-11-04 ソニー株式会社 赤外線光学系、赤外線撮像装置
US20130101746A1 (en) * 2011-10-21 2013-04-25 John J. Keremes Additive manufacturing management of large part build mass
CH705662A1 (de) * 2011-11-04 2013-05-15 Alstom Technology Ltd Prozess zur Herstellung von Gegenständen aus einer durch Gamma-Prime-Ausscheidung verfestigten Superlegierung auf Nickelbasis durch selektives Laserschmelzen (SLM).
US20130112672A1 (en) * 2011-11-08 2013-05-09 John J. Keremes Laser configuration for additive manufacturing
DE102011086889A1 (de) 2011-11-22 2013-05-23 Mtu Aero Engines Gmbh Generatives Herstellen eines Bauteils
CN104023948B (zh) 2011-12-28 2016-07-06 阿卡姆股份公司 用于在无模成形中检测缺陷的方法和设备
US10189086B2 (en) 2011-12-28 2019-01-29 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
GB201205591D0 (en) 2012-03-29 2012-05-16 Materials Solutions Apparatus and methods for additive-layer manufacturing of an article
FR2998819B1 (fr) * 2012-11-30 2020-01-31 Association Pour La Recherche Et Le Developpement De Methodes Et Processus Industriels "Armines" Procede de fusion de poudre avec chauffage de la zone adjacente au bain
GB2522388B (en) 2012-12-17 2017-08-23 Arcam Ab Additive manufacturing method and apparatus
US9842665B2 (en) 2013-02-21 2017-12-12 Nlight, Inc. Optimization of high resolution digitally encoded laser scanners for fine feature marking
KR102020912B1 (ko) 2013-02-21 2019-09-11 엔라이트 인크. 다층 구조의 레이저 패터닝
US10464172B2 (en) 2013-02-21 2019-11-05 Nlight, Inc. Patterning conductive films using variable focal plane to control feature size
US9308583B2 (en) 2013-03-05 2016-04-12 Lawrence Livermore National Security, Llc System and method for high power diode based additive manufacturing
US10710161B2 (en) * 2013-03-11 2020-07-14 Raytheon Technologies Corporation Turbine disk fabrication with in situ material property variation
WO2014144630A1 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Cartridge for an additive manufacturing apparatus and method
US9550207B2 (en) 2013-04-18 2017-01-24 Arcam Ab Method and apparatus for additive manufacturing
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
US9415443B2 (en) * 2013-05-23 2016-08-16 Arcam Ab Method and apparatus for additive manufacturing
EP3007879B1 (en) * 2013-06-10 2019-02-13 Renishaw Plc. Selective laser solidification apparatus and method
DE102013213547A1 (de) * 2013-07-10 2015-01-15 Eos Gmbh Electro Optical Systems Kalibriereinrichtung und Kalibrierverfahren für eine Vorrichtung zum schichtweisen Herstellen eines Objekts
DE102013011676A1 (de) 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur generativen Bauteilfertigung
US9676033B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
EP2865465B1 (en) * 2013-09-27 2018-01-17 Ansaldo Energia IP UK Limited Method for manufacturing a metallic component by additive laser manufacturing
TWI624350B (zh) 2013-11-08 2018-05-21 財團法人工業技術研究院 粉體成型方法及其裝置
EP2878409B2 (en) 2013-11-27 2022-12-21 SLM Solutions Group AG Method of and device for controlling an irradiation system
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
DE102013114003B4 (de) * 2013-12-13 2017-03-16 Bundesanstalt für Materialforschung und -Prüfung (BAM) Verfahren zur Sinterherstellung eines dreidimensionalen strukturierten Objektes und Sintervorrichtung hierzu
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
US10328685B2 (en) 2013-12-16 2019-06-25 General Electric Company Diode laser fiber array for powder bed fabrication or repair
US10532556B2 (en) 2013-12-16 2020-01-14 General Electric Company Control of solidification in laser powder bed fusion additive manufacturing using a diode laser fiber array
US20150165693A1 (en) * 2013-12-17 2015-06-18 Kabir Sagoo Systems and Methods for Rapid Qualification of Products Created by Additive Manufacturing Processes with Doped Materials
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
CN106061714B (zh) 2014-01-16 2019-07-12 惠普发展公司,有限责任合伙企业 基于辐射率的温度确定
CN105916663B (zh) 2014-01-16 2019-03-05 惠普发展公司,有限责任合伙企业 产生三维对象
WO2015108560A1 (en) * 2014-01-16 2015-07-23 Hewlett-Packard Development Company, L.P. Temperature determination based on emissivity
DE112014006196T5 (de) * 2014-01-16 2016-10-27 Hewlett-Packard Development Company, L.P. Erzeugen dreidimensionaler Objekte
US10889059B2 (en) 2014-01-16 2021-01-12 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
DE112014006185B4 (de) 2014-01-16 2023-08-24 Hewlett-Packard Development Company, L.P. Vorrichtung zum Erstellen von dreidimensionalen Gegenständen
WO2015108555A1 (en) * 2014-01-16 2015-07-23 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
EP3096938B1 (en) * 2014-01-24 2023-09-20 Verrana, Llc Article and method making use of 3d printing for anticounterfeiting
WO2015120168A1 (en) * 2014-02-06 2015-08-13 United Technologies Corporation An additive manufacturing system with a multi-energy beam gun and method of operation
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
WO2015153400A1 (en) * 2014-03-30 2015-10-08 Stanley Korn System, method and apparatus for 3d printing
JP6273578B2 (ja) * 2014-03-31 2018-02-07 日本電子株式会社 3次元積層造形装置及び3次元積層造形方法
JP6254036B2 (ja) * 2014-03-31 2017-12-27 三菱重工業株式会社 三次元積層装置及び三次元積層方法
TWI686290B (zh) * 2014-03-31 2020-03-01 光引研創股份有限公司 三維物件形成裝置與方法
US20150283613A1 (en) 2014-04-02 2015-10-08 Arcam Ab Method for fusing a workpiece
KR20150115596A (ko) * 2014-04-04 2015-10-14 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 3차원 조형 장치 및 3차원 형상 조형물의 제조 방법
US10004292B2 (en) 2014-04-09 2018-06-26 Nike, Inc. Selectively applied adhesive particulate on nonmetallic substrates
US9707727B2 (en) * 2014-04-09 2017-07-18 Nike, Inc. Selectively applied adhesive particulate on nonmetallic substrates
CN103978307B (zh) * 2014-04-30 2015-08-05 中国科学院化学研究所 一种用于精确控温的高分子材料紫外激光3d打印方法及装置
US20150314532A1 (en) 2014-05-01 2015-11-05 BlueBox 3D, LLC Increased inter-layer bonding in 3d printing
US10069271B2 (en) 2014-06-02 2018-09-04 Nlight, Inc. Scalable high power fiber laser
US10618131B2 (en) 2014-06-05 2020-04-14 Nlight, Inc. Laser patterning skew correction
GB2531625B (en) * 2014-06-20 2018-07-25 Velo3D Inc Apparatuses, systems and methods for three-dimensional printing
JP6316991B2 (ja) 2014-06-20 2018-04-25 ヴェロ・スリー・ディー・インコーポレイテッド 3次元物体を生成するための方法
US10310201B2 (en) 2014-08-01 2019-06-04 Nlight, Inc. Back-reflection protection and monitoring in fiber and fiber-delivered lasers
CN105318718B (zh) * 2014-08-01 2020-09-11 深圳光峰科技股份有限公司 一种激光烧结装置及方法
WO2016023246A1 (zh) * 2014-08-15 2016-02-18 深圳市华星光电技术有限公司 低温多晶硅薄膜的制备方法、制备设备及低温多晶硅薄膜
CN104190928A (zh) * 2014-08-18 2014-12-10 中国科学院重庆绿色智能技术研究院 一种多波长激光选区快速成形系统及方法
US9341467B2 (en) 2014-08-20 2016-05-17 Arcam Ab Energy beam position verification
WO2016048375A1 (en) * 2014-09-26 2016-03-31 Hewlett-Packard Development Company, L.P. 3-dimensional printing
EP3197668B1 (en) 2014-09-26 2020-02-12 Hewlett-Packard Development Company, L.P. 3-dimensional printing
KR101612254B1 (ko) * 2014-10-30 2016-04-15 한국생산기술연구원 단방향으로 회전하는 폴리곤미러를 구비하는 입체조형장비의 멀티채널헤드어셈블리 및 이를 이용하는 입체조형장비.
WO2016077250A1 (en) * 2014-11-10 2016-05-19 Velo3D, Inc. Systems, apparatuses and methods for generating three-dimensional objects with scaffold features
CN117429052A (zh) * 2014-11-14 2024-01-23 株式会社 尼康 造型装置及造型方法
CN111112618B (zh) * 2014-11-14 2022-09-16 株式会社尼康 造形装置及造形方法
US20160167303A1 (en) 2014-12-15 2016-06-16 Arcam Ab Slicing method
CN104466033B (zh) 2014-12-15 2017-05-31 京东方科技集团股份有限公司 一种激光烧结设备及烧结方法
TWI564099B (zh) 2014-12-24 2017-01-01 財團法人工業技術研究院 複合光束產生裝置及其用於粉體熔融或燒結的方法
US9721755B2 (en) 2015-01-21 2017-08-01 Arcam Ab Method and device for characterizing an electron beam
US9837783B2 (en) 2015-01-26 2017-12-05 Nlight, Inc. High-power, single-mode fiber sources
DE102015202964A1 (de) * 2015-02-18 2016-08-18 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
DE102015103127A1 (de) * 2015-03-04 2016-09-08 Trumpf Laser- Und Systemtechnik Gmbh Bestrahlungssystem für eine Vorrichtung zur generativen Fertigung
JP6450017B2 (ja) * 2015-03-05 2019-01-09 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3次元物体の生成
DE102015104411B4 (de) 2015-03-24 2017-02-16 Scansonic Mi Gmbh Laserstrahlfügeverfahren und Laserbearbeitungsoptik
US10050404B2 (en) 2015-03-26 2018-08-14 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
GB201505458D0 (en) 2015-03-30 2015-05-13 Renishaw Plc Additive manufacturing apparatus and methods
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
KR20180017081A (ko) 2015-06-10 2018-02-20 아이피지 포토닉스 코포레이션 다중 빔 적층 제조
CN107924023B (zh) 2015-07-08 2020-12-01 恩耐公司 具有用于增加的光束参数乘积的中心折射率受抑制的纤维
EP3117985A1 (en) * 2015-07-13 2017-01-18 Airbus Operations GmbH Additive manufacturing system and method for performing additive manufacturing on thermoplastic sheets
CN105081320A (zh) * 2015-08-05 2015-11-25 马承伟 3d打印装置
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US11571748B2 (en) 2015-10-15 2023-02-07 Arcam Ab Method and apparatus for producing a three-dimensional article
EP3156153B1 (en) * 2015-10-16 2019-05-22 SLM Solutions Group AG Apparatus for producing a three-dimensional work piece which includes a heating system
KR102290893B1 (ko) 2015-10-27 2021-08-19 엘지전자 주식회사 연속 레이저 조형이 가능한 레이저 신터링 장치
US11691341B2 (en) 2015-10-30 2023-07-04 Seurat Technologies, Inc. Part manipulation using printed manipulation points
EP3370948A4 (en) * 2015-11-06 2019-07-24 Velo3d Inc. PROFESSIONAL THREE-DIMENSIONAL PRINTING
CN108463300A (zh) 2015-11-16 2018-08-28 瑞尼斯豪公司 用于增材制造设备和方法的模块
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
EP3978184A1 (en) 2015-11-23 2022-04-06 NLIGHT, Inc. Method and apparatus for fine-scale temporal control for laser beam material processing
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
US10074960B2 (en) 2015-11-23 2018-09-11 Nlight, Inc. Predictive modification of laser diode drive current waveform in order to optimize optical output waveform in high power laser systems
US10688733B2 (en) * 2015-11-25 2020-06-23 The Boeing Company Method and apparatus for three-dimensional printing
CN108698126A (zh) 2015-12-10 2018-10-23 维洛3D公司 精湛的三维打印
EP3181336A1 (de) * 2015-12-17 2017-06-21 Lilas GmbH 3d-druck-vorrichtung für die herstellung eines räumlich ausgedehnten produkts
EP3181337A1 (de) * 2015-12-17 2017-06-21 Lilas GmbH 3d-druck-vorrichtung für die herstellung eines räumlich ausgedehnten produkts
US11278988B2 (en) 2015-12-17 2022-03-22 Eos Of North America, Inc. Additive manufacturing method using large and small beam sizes
DE102016107052A1 (de) * 2015-12-17 2017-06-22 Lilas Gmbh 3D-Druck-Vorrichtung für die Herstellung eines räumlich ausgedehnten Produkts
US10583529B2 (en) 2015-12-17 2020-03-10 Eos Of North America, Inc. Additive manufacturing method using a plurality of synchronized laser beams
CN108698312A (zh) * 2015-12-18 2018-10-23 极光实验室有限公司 3d打印方法和设备
US10295820B2 (en) 2016-01-19 2019-05-21 Nlight, Inc. Method of processing calibration data in 3D laser scanner systems
US20180065179A1 (en) * 2016-01-21 2018-03-08 Technology Research Association For Future Additive Manufacturing Three-dimensional shaping apparatus, control method of three-dimensional shaping apparatus, and control program of three-dimensional shaping apparatus
US11701819B2 (en) * 2016-01-28 2023-07-18 Seurat Technologies, Inc. Additive manufacturing, spatial heat treating system and method
WO2017132668A1 (en) 2016-01-29 2017-08-03 Seurat Technologies, Inc. Additive manufacturing, bond modifying system and method
US10747033B2 (en) 2016-01-29 2020-08-18 Lawrence Livermore National Security, Llc Cooler for optics transmitting high intensity light
WO2017138915A1 (en) 2016-02-08 2017-08-17 Hewlett-Packard Development Company, L.P. Build layer temperature control
DE102017102355A1 (de) * 2016-02-09 2017-08-10 Jtekt Corporation Herstellungsvorrichtung und herstellungsverfahren für geformten gegenstand
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
JP6551275B2 (ja) * 2016-03-18 2019-07-31 株式会社豊田中央研究所 レーザ加工装置、三次元造形装置、及びレーザ加工方法
EP3448622B1 (en) * 2016-04-29 2023-11-15 Nuburu, Inc. Method of visible laser beam welding of electronic packaging, automotive electrics, battery and other components
CN106098596B (zh) * 2016-05-13 2020-01-03 电子科技大学 激光加热装置及激光加热系统
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
CN105834427B (zh) * 2016-05-27 2018-01-05 西安交通大学 采用多束激光辅助控温3d打印定向晶零件的装置及方法
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10596754B2 (en) * 2016-06-03 2020-03-24 The Boeing Company Real time inspection and correction techniques for direct writing systems
EP3258219A1 (en) 2016-06-15 2017-12-20 Eidgenössische Materialprüfungs- und Forschungsanstalt EMPA In-situ and real time quality control in additive manufacturing process
CN105880593B (zh) * 2016-06-17 2018-04-03 哈尔滨福沃德多维智能装备有限公司 多激光直线束印刷式扫描快速成形制造零件的设备及方法
US10252336B2 (en) 2016-06-29 2019-04-09 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10953470B2 (en) * 2016-08-31 2021-03-23 Raytheon Technologies Corporation Scanning mirror navigation apparatus and method
US10732439B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Fiber-coupled device for varying beam characteristics
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
CN109791252B (zh) 2016-09-29 2021-06-29 恩耐公司 可调整的光束特性
WO2018064349A1 (en) 2016-09-30 2018-04-05 Velo3D, Inc. Three-dimensional objects and their formation
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
DE102016122368A1 (de) * 2016-11-21 2018-05-24 Cl Schutzrechtsverwaltungs Gmbh Verfahren zur additiven Herstellung eines dreidimensionalen Objekts
DE102016124695A1 (de) * 2016-12-16 2018-06-21 Cl Schutzrechtsverwaltungs Gmbh Belichtungseinrichtung für eine Vorrichtung zur additiven Herstellung dreidimensionaler Objekte
EP3554794B1 (en) 2016-12-18 2022-04-27 Csir Preheating of material in an additive manufacturing apparatus
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
US20180186081A1 (en) 2017-01-05 2018-07-05 Velo3D, Inc. Optics in three-dimensional printing
GB201700170D0 (en) * 2017-01-06 2017-02-22 Rolls Royce Plc Manufacturing method and apparatus
GB201701355D0 (en) 2017-01-27 2017-03-15 Renishaw Plc Direct laser writing and chemical etching
RU2664010C2 (ru) * 2017-02-14 2018-08-14 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В.Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - "ЦНИИ КМ "Прометей") Способ получения сотового тонкостенного энергопоглотителя с помощью лазерного спекания
US10357829B2 (en) 2017-03-02 2019-07-23 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
DE102017105056A1 (de) * 2017-03-09 2018-09-13 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur additiven Herstellung dreidimensionaler Objekte
US20180281237A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
CN110392628A (zh) * 2017-03-29 2019-10-29 惠普发展公司,有限责任合伙企业 增材制造的能量剂量
EP3607389B1 (en) 2017-04-04 2023-06-07 Nlight, Inc. Optical fiducial generation for galvanometric scanner calibration
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
CN110869210B (zh) 2017-05-11 2022-09-13 速尔特技术有限公司 用于增材制造的图案化光的开关站射束路由
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
US11407034B2 (en) 2017-07-06 2022-08-09 OmniTek Technology Ltda. Selective laser melting system and method of using same
DE102017212565A1 (de) * 2017-07-21 2019-01-24 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Erzeugen eines zusammenhängenden Flächenbereichs, Bestrahlungseinrichtung und Bearbeitungsmaschine
EP3444100B1 (en) * 2017-08-16 2022-06-08 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing three-dimensional objects
EP3446855B1 (en) * 2017-08-25 2021-11-24 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing of three-dimensional objects
KR102151445B1 (ko) * 2017-08-30 2020-09-03 가부시키가이샤 소딕 적층 조형 장치 및 적층 조형물의 제조 방법
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
DE102017219982A1 (de) * 2017-11-09 2019-05-09 Trumpf Laser- Und Systemtechnik Gmbh Bearbeitungsmaschine zum schichtweisen Herstellen von dreidimensionalen Bauteilen und Verfahren zum Erwärmen eines Pulvers
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
US10987825B2 (en) 2017-11-16 2021-04-27 The Boeing Company Topological insulator nanotube device and methods of employing the nanotube device
US10887996B2 (en) 2017-11-16 2021-01-05 The Boeing Company Electronic components coated with a topological insulator
US10444883B2 (en) 2017-11-16 2019-10-15 The Boeing Company Touch screen display including topological insulators
US10845506B2 (en) 2017-11-16 2020-11-24 The Boeing Company Topological insulator protected optical elements
US10405465B2 (en) 2017-11-16 2019-09-03 The Boeing Company Topological insulator thermal management systems
US10186351B1 (en) 2017-11-16 2019-01-22 The Boeing Company Topological insulator tubes applied to signal transmission systems
US10814600B2 (en) 2017-11-16 2020-10-27 The Boeing Company Methods of and systems for forming coatings that comprise non-carbon-based topological insulators
WO2019100067A1 (en) * 2017-11-20 2019-05-23 Ipg Photonics Corporation System and method laser for processing of materials
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
WO2019108491A2 (en) 2017-11-30 2019-06-06 Applied Materials, Inc. Additive manufacturing with overlapping light beams
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
WO2019147218A1 (en) * 2018-01-23 2019-08-01 Hewlett-Packard Development Company, L.P. Carriage assembly for an additive manufacturing system
US11458682B2 (en) 2018-02-27 2022-10-04 Arcam Ab Compact build tank for an additive manufacturing apparatus
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
JP6577081B1 (ja) * 2018-03-30 2019-09-18 株式会社フジクラ 照射装置、金属造形装置、金属造形システム、照射方法、及び金属造形物の製造方法
JP6534470B1 (ja) * 2018-03-30 2019-06-26 株式会社フジクラ 照射装置、金属造形装置、金属造形システム、照射方法、及び金属造形物の製造方法
DE102018205689A1 (de) * 2018-04-13 2019-10-17 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zur Verbesserung der Bauteilhomogenität von durch ein additives Herstellverfahren hergestellten Objekten
FR3080321B1 (fr) * 2018-04-23 2020-03-27 Addup Appareil et procede pour fabriquer un objet tridimensionnel
GB201807830D0 (en) 2018-05-15 2018-06-27 Renishaw Plc Laser beam scanner
EP3569388B1 (en) 2018-05-15 2023-05-03 Howmedica Osteonics Corp. Fabrication of components using shaped energy beam profiles
EP3597405A1 (en) * 2018-07-18 2020-01-22 Concept Laser GmbH Apparatus for additively manufacturing three-dimensional objects
EP3597404A1 (en) * 2018-07-18 2020-01-22 Concept Laser GmbH Method for operating an apparatus for additively manufacturing three-dimensional objects
WO2020016726A1 (en) * 2018-07-18 2020-01-23 Cl Schutzrechtsverwaltungs Gmbh Method for operating an apparatus for additively manufacturing three-dimensional objects
EP3597406B1 (en) * 2018-07-18 2023-08-30 Concept Laser GmbH Apparatus for additively manufacturing three-dimensional objects
EP3860830A4 (en) * 2018-10-05 2022-06-22 Velo3d Inc. COORDINATED CONTROL TO MANUFACTURE THREE-DIMENSIONAL OBJECTS
US10994337B2 (en) * 2018-12-12 2021-05-04 Lawrence Livermore National Security, Llc Controlling AM spatter and conduction
US12011873B2 (en) 2018-12-14 2024-06-18 Seurat Technologies, Inc. Additive manufacturing system for object creation from powder using a high flux laser for two-dimensional printing
MX2021007145A (es) 2018-12-19 2021-11-03 Seurat Tech Inc Sistema de fabricacion aditiva utilizando un laser modulado de pulsos para impresion bidimensional.
US20210370596A1 (en) * 2019-02-20 2021-12-02 Hewlett-Packard Development Company, L.P. Controlling an energy source of an additive manufacturing system
KR20220031745A (ko) 2019-07-26 2022-03-11 벨로3디, 인크. 3차원 물체 형상화에 대한 품질 보증
EP3778071B1 (en) * 2019-08-13 2023-04-26 Volvo Car Corporation System and method for large scale additive manufacturing
EP4037852A1 (en) * 2019-09-30 2022-08-10 SLM Solutions Group AG System and method
GB201918601D0 (en) 2019-12-17 2020-01-29 Renishaw Plc Powder bed fusion additive manufacturing methods and apparatus
CN111619118B (zh) * 2019-12-26 2022-03-04 南京铖联激光科技有限公司 一种应用于3d打印设备的焦平面调节闭环控制系统及控制方法
CN111390168B (zh) * 2020-03-16 2021-05-18 大连理工大学 激光熔化沉积粉末流离焦量在线监测与负反馈状态识别方法
US11472120B2 (en) 2020-05-07 2022-10-18 Kyndryl, Inc. Light-based 3D printing
CN111842892B (zh) * 2020-07-03 2024-02-20 华南理工大学 一种原位能量控制的激光选区熔化装置及方法
CN112338202A (zh) * 2020-10-15 2021-02-09 上海交通大学 基于混合激光源的金属材料3d打印方法、系统及设备
JP2022072568A (ja) * 2020-10-30 2022-05-17 セイコーエプソン株式会社 三次元造形装置
WO2023077282A1 (zh) * 2021-11-02 2023-05-11 广东汉邦激光科技有限公司 激光3d打印方法及激光3d打印设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892488A (en) * 1974-02-22 1975-07-01 Us Air Force Laser site marking system
US3952180A (en) * 1974-12-04 1976-04-20 Avco Everett Research Laboratory, Inc. Cladding
US5026964A (en) * 1986-02-28 1991-06-25 General Electric Company Optical breakthrough sensor for laser drill
JPS6343788A (ja) * 1986-08-07 1988-02-24 Mitsubishi Electric Corp レ−ザ溶接方法
BR8707510A (pt) * 1986-10-17 1989-02-21 Univ Texas Metodo e aparelhagem para produzir pecas por sinterizacao seletiva
US5296062A (en) * 1986-10-17 1994-03-22 The Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
JPH0730362B2 (ja) * 1987-03-20 1995-04-05 株式会社日立製作所 電子部品及びその製造方法
US5070072A (en) * 1987-05-04 1991-12-03 Eastman Kodak Company Conductive articles and processes for their preparation
NL8800334A (nl) * 1988-02-11 1989-09-01 Philips Nv Werkwijze voor het in tweeen delen van een voorwerp vervaardigd van een bros materiaal in het bijzonder een ringkern van ferromagnetisch materiaal voor een afbuigeenheid voor een beeldbuis en afbuigeenheid voor een beeldbuis voorzien van een ringkern gedeeld volgens zulk een werkwijze.
JPH02258693A (ja) * 1989-03-31 1990-10-19 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center 酸化物超電導体の製造方法
JPH02258697A (ja) * 1989-03-31 1990-10-19 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center 酸化物超電導体の製造方法
AU643700B2 (en) * 1989-09-05 1993-11-25 University Of Texas System, The Multiple material systems and assisted powder handling for selective beam sintering
US5135695A (en) * 1989-12-04 1992-08-04 Board Of Regents The University Of Texas System Positioning, focusing and monitoring of gas phase selective beam deposition
US5155321A (en) * 1990-11-09 1992-10-13 Dtm Corporation Radiant heating apparatus for providing uniform surface temperature useful in selective laser sintering
US5316720A (en) * 1992-11-20 1994-05-31 Rockwell International Corporation Laser shock and sintering method for particulate densification
US5352405A (en) * 1992-12-18 1994-10-04 Dtm Corporation Thermal control of selective laser sintering via control of the laser scan

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795584B2 (en) 2005-07-13 2010-09-14 Sca Hygiene Products Ab Automated dispenser with sensor arrangement
US8796624B2 (en) 2005-07-13 2014-08-05 Sca Hygiene Products Ab Automated dispenser sensor arrangement
US8895893B2 (en) 2006-03-28 2014-11-25 Eos Gmbh Electro Optical Systems Process chamber and method for processing a material by a directed beam of electromagnetic radiation, in particular for a laser sintering device
RU2446047C2 (ru) * 2006-05-26 2012-03-27 Пера Инновейшн Лимитед Способ и устройство для изготовления формуемых изделий
RU2477219C2 (ru) * 2008-12-02 2013-03-10 Эос Гмбх Электро Оптикал Системз Способ получения идентифицируемого объема порошка и способ изготовления объекта
RU2587367C2 (ru) * 2011-01-05 2016-06-20 Юки Инжиниринг Систем Ко. Лтд. Устройство для лучевой обработки
US10081075B2 (en) 2011-01-05 2018-09-25 Yuki Engineering System Co. Ltd. Beam processor
RU2641945C2 (ru) * 2013-04-29 2018-01-23 Марк С. ЗЕДИКЕР Устройства, системы и способы трехмерной печати
US10971896B2 (en) 2013-04-29 2021-04-06 Nuburu, Inc. Applications, methods and systems for a laser deliver addressable array
US10940536B2 (en) 2013-04-29 2021-03-09 Nuburu, Inc. Devices, systems and methods for three-dimensional printing
US10562132B2 (en) 2013-04-29 2020-02-18 Nuburu, Inc. Applications, methods and systems for materials processing with visible raman laser
RU2695687C1 (ru) * 2013-12-06 2019-07-25 Сафран Эркрафт Энджинз Способ изготовления детали посредством выборочного расплавления порошка
RU2558019C1 (ru) * 2014-03-12 2015-07-27 Российская Федерация в лице Министерства промышленности и торговли РФ (МИНПРОМТОРГ РОССИИ) Способ изготовления сопла электродугового сварочного плазматрона
RU2569279C2 (ru) * 2014-04-23 2015-11-20 Олег Леонидович Головков Способ лазерного спекания и устройство для его осуществления
RU2708727C2 (ru) * 2015-05-26 2019-12-11 АйПиДжи Фотоникс Корпорейшен Многолучевая лазерная система и способы сварки
WO2017039478A1 (ru) * 2015-08-28 2017-03-09 Владимир Валентинович ПАВЛОВ Способ обработки материалов с использованием многолучевого лазерного сканирования
CN108136500A (zh) * 2015-09-25 2018-06-08 阿迪鲁特有限责任公司 用于部件的增材制造的方法和装置
RU2627527C2 (ru) * 2015-09-25 2017-08-08 Анатолий Евгеньевич Волков Способ и устройство аддитивного изготовления деталей методом прямого осаждения материала, управляемого в электромагнитном поле
US11358329B2 (en) 2015-09-25 2022-06-14 Obschestvo S Ogranichennoy Otvetstvennostyu “Adirut” Method and device for the additive manufacturing of components
WO2017052417A1 (ru) * 2015-09-25 2017-03-30 Общество С Ограниченной Ответственностью "Адирут" Способ и устройство аддитивного изготовления деталей
RU2627796C2 (ru) * 2015-12-10 2017-08-11 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) Способ послойного электронно-лучевого спекания изделий из керамического порошка
US11980970B2 (en) 2016-04-29 2024-05-14 Nuburu, Inc. Visible laser additive manufacturing
US10656328B2 (en) 2016-04-29 2020-05-19 Nuburu, Inc. Monolithic visible wavelength fiber laser
RU2750781C2 (ru) * 2016-07-06 2021-07-02 Адиге С.П.А. Способ лазерной обработки металлического материала с управлением положением оптической оси лазера относительно потока защитного газа, включая установку и компьютерную программу для реализации упомянутого способа
RU2639200C1 (ru) * 2016-10-14 2017-12-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ двухлучевой лазерной сварки
RU2737286C1 (ru) * 2017-02-22 2020-11-26 СЛМ Солюшенз Груп АГ Устройство и способ управления системой облучения для изготовления изделий
RU2763703C1 (ru) * 2020-08-17 2021-12-30 Общество с ограниченной ответственностью «Термолазер» Устройство для лазерной сварки

Also Published As

Publication number Publication date
CA2174635C (en) 2006-01-03
KR960705647A (ko) 1996-11-08
US5508489A (en) 1996-04-16
CN1057033C (zh) 2000-10-04
ES2119358T3 (es) 1998-10-01
US5393482A (en) 1995-02-28
KR100298059B1 (ko) 2001-10-24
CA2174635A1 (en) 1995-04-27
DE69411280T2 (de) 1998-11-05
DE724494T1 (de) 1997-04-10
WO1995011101A1 (en) 1995-04-27
JP3645262B2 (ja) 2005-05-11
CN1135731A (zh) 1996-11-13
DE69411280D1 (de) 1998-07-30
EP0724494A1 (en) 1996-08-07
EP0724494B1 (en) 1998-06-24
JPH09504055A (ja) 1997-04-22

Similar Documents

Publication Publication Date Title
RU2132761C1 (ru) Устройство и способ лазерного спекания
RU2141887C1 (ru) Устройство и способ лазерного спекания порошка
US20230001645A1 (en) Method For Calibrating A Device For Producing A Three-Dimensional Object And Device Configured For Implementing Said Method
JP3520310B2 (ja) 3次元物体の製造方法及び装置
CN107438488B (zh) 增材制造设备和方法
RU2459704C2 (ru) Способ изготовления трехмерного объекта
RU96112154A (ru) Устройство и способ лазерного спекания
JP2001234206A (ja) レーザ光線を用いて粉体を焼結するための機械および方法
US20210387284A1 (en) Method and apparatus for irradiating a material with an energy beam
CN112654493A (zh) 增材制造三维物体的设备
US20240042691A1 (en) Additive manufacturing using light steering and/or dynamic beam shaping
JPS6383931A (ja) 発光素子
JPH0381082A (ja) レーザビーム径の制御方法とその装置
KR20240149962A (ko) 레이저 장치를 캘리브레이팅하기 위한 장치, 시스템 및 방법
RU2569279C2 (ru) Способ лазерного спекания и устройство для его осуществления
US20220161364A1 (en) Occulting device for optical system in additive manufacturing systems
KR101718280B1 (ko) 회전 광학 소자를 이용한 고출력 위상안정 유도 브릴루앙 산란 위상 공액 거울
CN118144270A (zh) 光学扫描系统和增材制造设备
JPH10208268A (ja) 光ディスクマーキング装置及び方法、並びに光ディスク
JPH0513857A (ja) 固体レーザ装置における光フアイバ集光補正装置
JPH03272022A (ja) 可逆光ディスクの初期化方法
JP2001188306A (ja) 画像露光装置
JP2002082297A (ja) レーザ照射装置及び照射方法