[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2195466C1 - Способ получения сополимера тетрафторэтилена с гексафторпропиленом - Google Patents

Способ получения сополимера тетрафторэтилена с гексафторпропиленом Download PDF

Info

Publication number
RU2195466C1
RU2195466C1 RU2001112834/04A RU2001112834A RU2195466C1 RU 2195466 C1 RU2195466 C1 RU 2195466C1 RU 2001112834/04 A RU2001112834/04 A RU 2001112834/04A RU 2001112834 A RU2001112834 A RU 2001112834A RU 2195466 C1 RU2195466 C1 RU 2195466C1
Authority
RU
Russia
Prior art keywords
copolymer
monomers
solvent
hexafluoropropylene
solution
Prior art date
Application number
RU2001112834/04A
Other languages
English (en)
Inventor
Л.М. Боровнев
А.С. Дедов
В.Ю. Захаров
Г.В. Кочеткова
И.М. Капустин
нов В.В. Лукь
В.В. Лукьянов
Е.Р. Пурецка
Е.Р. Пурецкая
В.В. Тишина
Original Assignee
Открытое акционерное общество "Кирово-Чепецкий химический комбинат им. Б.П.Константинова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Кирово-Чепецкий химический комбинат им. Б.П.Константинова" filed Critical Открытое акционерное общество "Кирово-Чепецкий химический комбинат им. Б.П.Константинова"
Priority to RU2001112834/04A priority Critical patent/RU2195466C1/ru
Application granted granted Critical
Publication of RU2195466C1 publication Critical patent/RU2195466C1/ru

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Изобретение относится к получению сополимера тетрафторэтилена с гексафторпропиленом и применяется в качестве электроизоляционного материала. Сополимер тетрафторэтилена с гексафторпропиленом получают путем сополимеризации указанных мономеров в среде сжиженного перфторуглерода - гексафторпропилена или октафторциклобутана, в присутствии инициатора полимеризации - перфтордиацилпероксида, который вводят в полимеризационную среду в виде 5-10%-ного по массе раствора в полифторированном растворителе с использованием загрузочной смеси указанных мономеров, при давлении, поддерживаемом путем добавления подпиточной смеси мономеров, с последующим отделением сополимера от реакционной массы путем отгонки летучих компонентов и сушки продукта обычными приемами. В качестве полифторированного растворителя перфтордиацилпероксида используют озонобезопасный растворитель, выбранный из группы, включающей перфторметилциклогексан и 1-гидро-4-хлороктафторбутан. Изобретение позволяет повысить термостабильность сополимера, а также упростить технологию утилизацию возвратного растворителя и мономеров и повысить безопасность процесса получения пероксидного инициатора. 2 табл.

Description

Сополимер тетрафторэтилена (ТФЭ) с гексафторпропиленом (ГФП) по свойствам близок к политетрафторэтилену, но способен перерабатываться из расплава и применяется в качестве электроизоляционного материала в таких областях техники, как авиация и строительство, в оборудовании для бурения глубоких нефтяных скважин, а также в качестве защитных пленок и покрытий в химической аппаратуре, для изготовления трубок, волокон и листов в машиностроении и в медицине.
Известен способ получения сополимера ТФЭ с ГФП путем сополимеризации указанных мономеров в среде 1,1,2-трифтортрихлорэтана (хладона 113) в присутствии инициатора полимеризации - перфторпропионилпероксида, который вводят в полимеризационную среду в виде 1,5%-ного (по массе) раствора в хладоне 113 или в циклическом димере ГФП. Сополимеризацию проводят при температуре 30-85oС и избыточном давлении 0,1-6,9 МПа, которое поддерживают добавлением ТФЭ. Первоначально вводят 0,1 г инициатора (40 мл раствора в хладоне 113), а после начала полимеризации через каждые 10 мин добавляют по 0,03 г инициатора, растворенного в хладоне 113. Через 60 мин реакцию прерывают, полимеризационную смесь выгружают и отделяют сополимер. В результате сушки получают сополимер в виде тонковорсистого порошка, годного для прессования тонких пленок (патент США 3528954, кл.260-87.5, 1970). Указанный способ имеет недостаток, вызванный использованием в качестве полимеризационной среды хладона 113, в котором сополимер набухает и образует густую желеобразную массу, что приводит к трудностям при перемешивании и выделении сополимера. На практике обнаружена невозможность выделения механическим путем более чем 80-85 мас.% растворителя, что значительно повышает стоимость процесса. Оставшийся на сополимере растворитель выделяется при сушке и загрязняет атмосферу, что требует специальной системы для его улавливания и возвращения в цикл. Другой недостаток известного способа состоит в том, что периодическая подача в реактор инициатора приводит к расширению молекулярно-массового распределения сополимера, в результате изделия из такого сополимера разбухают при переработке.
Наиболее близким по совокупности существенных признаков к предлагаемому является способ получения сополимера ТФЭ с ГФП путем сополимеризации указанных мономеров в среде сжиженного перфторуглерода - гексафторпропилена или октафторциклобутана, в присутствии инициатора полимеризации - перфтордиацилпероксида, который вводят в полимеризационную среду в виде 10-22%-ного (по массе) раствора в полифторированном галогенуглеводородном растворителе - 1,1,2-трифтортрихлорэтане (хладоне 113), с использованием загрузочной смеси указанных мономеров, при давлении, поддерживаемом путем добавления подпиточной смеси мономеров, в присутствии регулятора молекулярной массы - метанола, с последующим отделением сополимера от реакционной массы путем отгонки летучих компонентов и сушки продукта обычными приемами (патент РФ 2109761, кл. С 08 F 214/26, 214/28, 1998). При осуществлении известного способа по окончании процесса сополимеризации непрореагировавшую смесь мономеров с растворителем сдувают в отдельную емкость. Смесь после сдувки без специальной очистки может использоваться многократно (до 7-10 раз) для приготовления загрузочной и подпиточной смесей мономеров. При накоплении примесей возвратную смесь мономеров подвергают ректификации.
Известный способ имеет следующие недостатки:
1. Анализ возвратной смеси мономеров показал, что она является многокомпонентной, и ее повторное использование в процессе сополимеризации ограничено накоплением в ней примесей хладона 113, метанола и продуктов распада пероксида. Выделение из такой смеси ТФЭ и ГФП, пригодных для сополимеризации, легко достигается перегонкой. Авторами настоящего изобретения установлено, что разделение смеси хладона 113 с метанолом не достигается не только перегонкой, но даже при использовании ректификации, что приводит к образованию неутилизируемого отхода, содержащего фторорганическое вещество. Это делает неизбежным загрязнение окружающей среды.
2. Поскольку отходы в основе содержат хладон 113, то для снижения количества отходов в известном способе предусмотрено использование инициатора в виде достаточно концентрированного раствора (до 22 мас.%) в хладоне 113. Однако применение такого раствора создает повышенную опасность при получении, хранении и использовании этого инициатора, поскольку известно, что растворы перфторпероксидов в хладоне 113 в диапазоне концентраций от 13 до 99 мас. % взрывоопасны.
Снижение концентрации пероксида до 10 мас.% приводит к увеличению количества неутилизируемых отходов хладона 113. Кроме того, хладон 113 считается озоноразрушающим, и его применение в настоящее время запрещено.
3. Поскольку сополимер ТФЭ с ГФП набухает в хладоне 113, наличие в поверхностном слое частиц порошка сополимера следов хладона 113 с растворенными в нем остатками пероксида и продуктов его распада вместе с оставшимся метанолом ухудшает термостойкость конечного продукта во время сушки сополимера при высокой температуре.
Техническая задача настоящего изобретения состоит в упрощении технологии утилизации возвратного растворителя и мономеров, снижении выброса вредных веществ, повышении безопасности процесса получения перфтордиацилпероксида и использовании его при получении сополимера, а также в улучшении качества сополимера.
Поставленная задача решается тем, что в способе получения сополимера тетрафторэтилена с гексафторпропиленом путем сополимеризации указанных мономеров в среде сжиженного перфторуглерода - гексафторпропилена или октафторциклобутана, в присутствии инициатора полимеризации - перфтордиацилпероксида, который вводят в полимеризационную среду в виде раствора в полифторированном галогенуглеводородном растворителе, с использованием загрузочной смеси указанных мономеров, при давлении, поддерживаемом путем добавления подпиточной смеси мономеров, с последующим отделением сополимера от реакционной массы путем отгонки летучих компонентов и сушки продукта обычными приемами, согласно изобретению в качестве полифторированного галогенуглеводородного растворителя перфтордиацилпероксида используют озонобезопасный растворитель, выбранный из группы, включающей перфторметилциклогексан и 1-гидро-4-хлороктафторбутан.
Перфтордиацилпероксид могут вводить в виде 5-10%-ного по массе раствора в выбранном растворителе.
Осуществление способа подтверждено лабораторными примерами.
Пример 1. Инициатор полимеризации - перфтордициклогексаноилпероксид (ДАП-ц) получают в стеклянном аппарате, охлаждаемом рассолом, снабженном перемешивающим устройством и дозаторами для подачи реагентов. Инициатор получают путем взаимодействия фторангидрида перфторциклогексанкарбоновой кислоты с 32%-ным (по массе) водным раствором пероксида водорода в смеси 17%-ного (по массе) водного раствора гидроксида натрия и органического растворителя - перфторметилциклогексана (хладона 350) при температуре -10-15oС. По окончании реакции органический слой отделяют от водного и промывают охлажденной водой. Полученный раствор пероксида ДАП-ц в хладоне 350 анализируют иодометрически и используют в качестве инициатора полимеризации при получении сополимера.
Сополимер получают в реакторе из хромоникелевой стали вместимостью 1,6 л, снабженном высокоскоростной пропеллерной мешалкой (1500 об/мин), рубашкой для обогрева, капельницей и шприцевым устройством для ввода инициатора полимеризации и регулятора молекулярной массы. Реактор герметизируют, охлаждают до температуры -25oС и вакуумируют до остаточного давления 0,001 МПа. В охлажденную до той же температуры капельницу помещают 1 г инициатора ДАП-ц в виде 10%-ного (по массе) раствора в хладоне 350, капельницу герметизируют и содержимое ее сливают в реактор. Затем в реактор загружают 600 г сжиженного растворителя, одновременно являющегося сомономером - гексафторпропилена (ГФП). Содержимое реактора при перемешивании нагревают до заданной температуры, соответствующей выбранному инициатору, в данном примере 47oС. В реактор подают 55 г ТФЭ и проводят сополимеризацию при постоянной температуре и установившемся давлении, добавляя в реактор подпиточную смесь, содержащую 87-90 мол. % ТФЭ и 10-13 мол. % ГФП, до исходного давления каждый раз при снижении его на 0,02 МПа. По израсходовании 50 г подпиточной смеси в реактор добавляют 14 мг метанола в качестве регулятора молекулярной массы сополимера. Процесс сополимеризации ведут до израсходования 210 г подпиточной смеси в течение 4,4 ч. Затем реакцию прекращают, газовую смесь анализируют. Непрореагировавшие мономеры и растворитель сдувают в предварительно охлажденную и отвакуумированную емкость, где их конденсируют. Сконденсированную многокомпонентную смесь перегоняют для повторного использования в следующих опытах. Целевую фракцию, содержащую ГФП и ТФЭ с незначительной примесью метанола и хладона 350, используют в последующих опытах для загрузки в реактор и для приготовления подпиточной смеси, а кубовый остаток, содержащий хладон 350, накапливают и используют для приготовления раствора инициатора. Сополимер в реакторе прогревают при температуре 50oС для удаления большей части летучих компонентов, затем реактор охлаждают и вскрывают. Полученный сополимер выгружают из реактора, сушат при температуре 120oС в течение 24 ч и определяют его свойства. Получают 200 г белого порошка сополимера ТФЭ с ГФП. Свойства полученного сополимера определяют следующим образом:
- состав сополимера - методом ИК-спектроскопии пленок толщиной 50 мкм;
- показатель текучести расплава (ПТР) - по ГОСТ 11645-73 на экструзионном пластометре при температуре 370oС и нагрузке 5 кг;
- физико-механические показатели: прочность при разрыве и относительное удлинение при разрыве - по ГОСТ 11262-80;
- термостабильность при 300oС в течение 3 ч (Т300) и при 370oС в течение 1 ч (Т370) - гравиметрически по потере массы порошка.
Условия сополимеризации, состав и свойства сополимера, полученного по примеру 1 и последующим примерам, представлены в табл.1. Результаты перегонки возвратной смеси - в табл.2.
Пример 2. В качестве инициатора полимеризации используют перфтор-2-метил-3-оксагексаноилпероксид (ПФОГ), который получают, как описано в примере 1, но при этом в качестве исходного фторангидрида берут фторангидрид перфтор-2-метил-3-оксагексановой кислоты. Процесс сополимеризации проводят аналогично примеру 1, при этом для инициирования процесса используют 1 г указанного пероксида в виде 5%-ного (по массе) раствора в хладоне 350. Процесс сополимеризации ведут в течение 4,5 ч до израсходования 210 г подпиточной смеси. После прогрева и сушки получают 200 г белого порошка сополимера. Сконденсированную газовую смесь перегоняют, как описано в примере 1.
Пример 3. В качестве инициатора полимеризации используют перфтор-2,5-диметил-3,6-диоксанонаноилпероксид (ПФДОН), который получают, как описано в примере 1, но при этом в качестве исходного фторангидрида берут фторангидрид перфтор-2,5-диметил-3,6-диоксанонановой кислоты. Процесс сополимеризации проводят аналогично примеру 1, при этом для инициирования процесса используют 1 г указанного пероксида (ПФДОН) в виде 5%-ного (по массе) раствора в хладоне 350. Процесс сополимеризации ведут в течение 4,8 ч до израсходования 230 г подпиточной смеси. После прогрева и сушки получают 220 г белого порошка сополимера. Сконденсированную газовую смесь перегоняют, как описано в примере 1.
Пример 4. Процесс сополимеризации проводят аналогично примеру 1, но при получении раствора инициатора в качестве растворителя используют 1-гидро-4-хлороктафторбутан (хладон 328). Инициатор ДАП-ц в количестве 1 г вводят в реактор в виде 8%-ного (по массе) раствора в хладоне 328. Процесс сополимеризации ведут в течение 6 ч до израсходования 240 г подпиточной смеси. После прогрева и сушки получают 230 г белого порошка сополимера ТФЭ с ГФП, а сконденсированную газовую смесь перегоняют с целью утилизации остатков растворителя и мономеров для повторного использования, как описано в примере 1. Результаты перегонки - в табл.2.
Пример 5 (контрольный, по прототипу). Для сравнения проводят процесс в условиях, приближенных к прототипу. Точное воспроизведение условий - применение инициатора в виде концентрированного 22%-ного раствора ДАП-ц в хладоне 113 - затруднительно, т.к. при использовании раствора пероксида с концентрацией выше 15% взрывоопасность процесса резко повышается.
Раствор инициатора получают, как описано в примере 1, но при этом в качестве органического растворителя используют хладон 113. Процесс сополимеризации проводят аналогично примеру 1, при этом для инициирования процесса используют 1 г перфтордициклогексаноилпероксида (ДАП-ц) в виде 10%-ного (по массе) раствора в хладоне 113. Процесс сополимеризации ведут в течение 5,5 ч до израсходования 260 г подпиточной смеси. После прогрева и сушки получают 250 г белого порошка сополимера ТФЭ с ГФП. Сконденсированную газовую смесь перегоняют, как описано в примере 1. Результаты перегонки - в табл.2.
Пример 6 (контрольный, по прототипу). Приготовление раствора инициатора и процесс сополимеризации осуществляют, как описано в примере 5. При этом в течение 5 ч расходуют 255 г подпиточной смеси. Получают 250 г сополимера. Сконденсированную в конце опыта многокомпонентную смесь подвергают ректификации на лабораторной колонке эффективностью 40 т.т. с отбором легкой и целевой фракций, содержащих ТФЭ и ГФП с примесью метанола и хладона 113. Кубовый остаток содержит хладон 113 с примесью метанола. Результаты сополимеризации и свойства полученного сополимера - в табл.1. Результаты ректификации - в табл.2.
Из табл. 1 видно, что сополимер, полученный по предлагаемому способу, имеет более высокую термостабильность (т.е. меньшую потерю массы при температуре переработки), чем в контрольных примерах по известному способу. При этом скорость полимеризации и качество продукта (текучесть расплава, разрушающее напряжение и относительное удлинение) не ухудшаются. Сополимер, полученный с использованием в качестве растворителя хладона 328, имеет наилучшую термостабильность, т.к. хладон 328 имеет низкую температуру кипения и полнее удаляется с порошка сополимера при сушке.
Из табл.2 видно, что кубовый остаток от перегонки сконденсированной возвратной смеси по предлагаемому способу содержит только один компонент: хладон 350 или хладон 328, и не требует дополнительной очистки при повторном использовании в качестве растворителя для приготовления раствора инициатора. Кубовый остаток в примерах по известному способу содержит два компонента - хладон 113 и метанол, образующие азеотропную смесь. Утилизировать хладон 113 из кубового остатка в чистом виде не удается даже на высокоэффективной ректификационной колонне, он загрязнен метанолом и не пригоден для повторного использования в качестве растворителя для пероксидного инициатора в связи с опасностью взрыва.
Таким образом, предлагаемый способ позволяет повысить качество сополимера, а именно его термостабильность, а также упростить технологию утилизации возвратного растворителя и мономеров и повысить безопасность процесса получения пероксидного инициатора, используемого при сополимеризации. Для осуществления предлагаемого способа не требуется дополнительного оборудования.

Claims (1)

  1. Способ получения сополимера тетрафторэтилена с гексафторпропиленом путем сополимеризации указанных мономеров в среде сжиженного перфторуглерода - гексафторпропилена или октафторциклобутана, в присутствии инициатора полимеризации - перфтордиацилпероксида, который вводят в полимеризационную среду в виде 5-10%-ного по массе раствора в полифторированном растворителе, с использованием загрузочной смеси указанных мономеров, при давлении, поддерживаемом путем добавления подпиточной смеси мономеров, с последующим отделением сополимера от реакционной массы путем отгонки летучих компонентов и сушки продукта обычными приемами, отличающийся тем, что в качестве полифторированного растворителя перфтордиацилпероксида используют озонобезопасный растворитель, выбранный из группы, включающей перфторметилциклогексан и 1-гидро-4-хлороктафторбутан.
RU2001112834/04A 2001-05-08 2001-05-08 Способ получения сополимера тетрафторэтилена с гексафторпропиленом RU2195466C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001112834/04A RU2195466C1 (ru) 2001-05-08 2001-05-08 Способ получения сополимера тетрафторэтилена с гексафторпропиленом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001112834/04A RU2195466C1 (ru) 2001-05-08 2001-05-08 Способ получения сополимера тетрафторэтилена с гексафторпропиленом

Publications (1)

Publication Number Publication Date
RU2195466C1 true RU2195466C1 (ru) 2002-12-27

Family

ID=20249513

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001112834/04A RU2195466C1 (ru) 2001-05-08 2001-05-08 Способ получения сополимера тетрафторэтилена с гексафторпропиленом

Country Status (1)

Country Link
RU (1) RU2195466C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2463312C1 (ru) * 2011-05-05 2012-10-10 Общество с ограниченной ответственностью "ГалоПолимер Кирово-Чепецк" (ООО "ГалоПолимер Кирово-Чепецк") Способ получения термоперерабатываемых сополимеров тетрафторэтилена с гексафторпропиленом

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2463312C1 (ru) * 2011-05-05 2012-10-10 Общество с ограниченной ответственностью "ГалоПолимер Кирово-Чепецк" (ООО "ГалоПолимер Кирово-Чепецк") Способ получения термоперерабатываемых сополимеров тетрафторэтилена с гексафторпропиленом

Similar Documents

Publication Publication Date Title
JP2985600B2 (ja) 低分子量ポリテトラフルオロエチレンの製造方法
EP0606482A1 (en) Method of removing hydrogen fluoride
RU2195465C1 (ru) Способ получения сополимера тетрафторэтилена с перфторпропилвиниловым эфиром
KR102609322B1 (ko) 지방족 카르복실산의 tert-부틸 에스테르의 제조
US2600802A (en) Plasticization of perhalocarbon polymers
RU2195466C1 (ru) Способ получения сополимера тетрафторэтилена с гексафторпропиленом
KR20180092986A (ko) 에틸렌계 불포화 카르복실산의 tert-부틸 에스테르의 제조
JP3048292B2 (ja) 含フッ素共重合体の製造方法
KR19990030175A (ko) 폴리올레핀을 제조하기 위한 현탁 중합
US2405962A (en) Process for polymerizing ethylene
EP1538168A1 (en) Method of obtaining perfluorosulphonate polymers containing sulphonyl functional groups
US2396791A (en) Process for the preparation of ethylene polymers
CH375145A (fr) Procédé de préparation d'une composition catalytique pour la polymérisation d'hydrocarbures polymérisables
US2748098A (en) Plasticization of perhalocarbon polymers
RU2206580C1 (ru) Способ получения сополимеров тетрафторэтилена с гексафторпропиленом
Jing et al. Synthesis of 1, 2-diiodotetrafluoroethane with pyrolysis gas of waste polytetrafluoroethylene as raw material
JP2009256249A (ja) 2−シアノアクリレートの連続製造方法
RU2345099C1 (ru) Способ выделения полисилоксан-поликарбоната из метиленхлоридного раствора
RU2463312C1 (ru) Способ получения термоперерабатываемых сополимеров тетрафторэтилена с гексафторпропиленом
RU2109761C1 (ru) Способ получения сополимеров тетрафторэтилена с 12-15 мол.% гексафторпропилена
JP6237898B2 (ja) ハイドロフルオロカーボンの回収方法
US10059640B2 (en) Apparatus and process for the preparation of acetylene and synthesis gas
BE641380A (fr) Procédé de fabrication de l'acide acétique et de l'acétate de butyle
KR0163991B1 (ko) 테트라플루오르에틸렌/불화탄소 비닐 에테르 공중합체의 제조방법
RU2213730C1 (ru) Способ получения перфтор-2-метил-3-оксагексаноилпероксида

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20050315

PC4A Invention patent assignment

Effective date: 20060329

QZ4A Changes in the licence of a patent

Effective date: 20050315

PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180509