LV14040B - Reactor for pyrolysis of biomass - Google Patents
Reactor for pyrolysis of biomass Download PDFInfo
- Publication number
- LV14040B LV14040B LVP-09-157A LV090157A LV14040B LV 14040 B LV14040 B LV 14040B LV 090157 A LV090157 A LV 090157A LV 14040 B LV14040 B LV 14040B
- Authority
- LV
- Latvia
- Prior art keywords
- reactor
- chamber
- biomass
- reactor chamber
- longitudinal axis
- Prior art date
Links
- 239000002028 Biomass Substances 0.000 title claims abstract description 63
- 238000000197 pyrolysis Methods 0.000 title claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 230000007246 mechanism Effects 0.000 claims description 7
- 230000010355 oscillation Effects 0.000 claims description 5
- 238000011068 loading method Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 16
- 239000002699 waste material Substances 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 5
- 239000000446 fuel Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007792 gaseous phase Substances 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000237858 Gastropoda Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B47/00—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
- C10B47/28—Other processes
- C10B47/30—Other processes in rotary ovens or retorts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B47/00—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
- C10B47/28—Other processes
- C10B47/32—Other processes in ovens with mechanical conveying means
- C10B47/48—Other processes in ovens with mechanical conveying means with tilting or rocking means
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/02—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B7/00—Rotary-drum furnaces, i.e. horizontal or slightly inclined
- F27B7/08—Rotary-drum furnaces, i.e. horizontal or slightly inclined externally heated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B7/00—Rotary-drum furnaces, i.e. horizontal or slightly inclined
- F27B7/14—Rotary-drum furnaces, i.e. horizontal or slightly inclined with means for agitating or moving the charge
- F27B7/16—Rotary-drum furnaces, i.e. horizontal or slightly inclined with means for agitating or moving the charge the means being fixed relatively to the drum, e.g. composite means
- F27B7/161—Rotary-drum furnaces, i.e. horizontal or slightly inclined with means for agitating or moving the charge the means being fixed relatively to the drum, e.g. composite means the means comprising projections jutting out from the wall
- F27B7/162—Rotary-drum furnaces, i.e. horizontal or slightly inclined with means for agitating or moving the charge the means being fixed relatively to the drum, e.g. composite means the means comprising projections jutting out from the wall the projections consisting of separate lifting elements, e.g. lifting shovels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B7/00—Rotary-drum furnaces, i.e. horizontal or slightly inclined
- F27B7/20—Details, accessories or equipment specially adapted for rotary-drum furnaces
- F27B7/22—Rotary drums; Supports therefor
- F27B7/224—Discharge ends
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B7/00—Rotary-drum furnaces, i.e. horizontal or slightly inclined
- F27B7/20—Details, accessories or equipment specially adapted for rotary-drum furnaces
- F27B7/32—Arrangement of devices for charging
- F27B7/3205—Charging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B7/00—Rotary-drum furnaces, i.e. horizontal or slightly inclined
- F27B7/20—Details, accessories or equipment specially adapted for rotary-drum furnaces
- F27B7/34—Arrangements of heating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/08—Screw feeders; Screw dischargers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
Izgudrojuma aprakstsDescription of the Invention
Izgudrojums attiecas uz biomasas pārvēršanu enerģijā, konkrētāk - uz biomasas pirolītisku pārvēršanu degvielā rotācijas tipa reaktorā.The invention relates to the conversion of biomass into energy, more particularly to the pyrolytic conversion of biomass into fuel in a rotary reactor.
ZINĀMĀ TEHNIKAS LĪMEŅA ANALĪZEANALYSIS OF THE KNOWN TECHNICAL LEVEL
Biomasas resursi var tikt izmantoti kā bioenerģija. Biomasa, ieskaitot augu un dzīvnieku, substances, mežkopības un ar to saistītu nozaru produktu, atkritumu un atlikumu bioloģiski sadalāmo daļu, vispār ir lauksaimniecības, kā arī rūpniecības un municipālo atkritumu bioloģiski sadalāmā daļa. Ir attīstīti trīs biomasas resursu izmantošanas veidi: biomasa apkurināšanas nolūkiem (bioapkure); biomasa elektroenerģijas ražošanai (bioelektroenerģija); biomasa transporta degvielai (transporta biodegviela).Biomass resources can be used as bioenergy. Biomass, including the biodegradable fraction of products of plant and animal, substance, forestry and related industries, waste and residues, is in general the biodegradable fraction of agricultural as well as industrial and municipal waste. Three uses of biomass resources have been developed: biomass for heating purposes (bio-heating); biomass for electricity generation (bioelectricity); biomass for transport fuels (transport biofuels).
Kā minēts, pārvēršanai enerģijā ir pieejama daudzu tipu biomasa. Biomasas pārvēršanas enerģijā efektivitāti nosaka pielietotās biomasas pārvēršanas tehnoloģijas specifiskās īpašības.As mentioned, many types of biomass are available for energy conversion. The efficiency of biomass conversion to energy is determined by the specific characteristics of the biomass conversion technology used.
Pašlaik biomasas pārvēršanai elektroenerģijā tiek pielietotas šādas tehnoloģijas:Currently, the following technologies are used for the conversion of biomass into electricity:
- sadedzināšana boileros (parasti Fluid Bed- pseidosašķidrinātā slāņa tipa) ar tvaika ražošanu un tā izmantošanu Renkina ciklā; šīs metodes pielietošanu ierobežo nepieciešamība savākt lielus daudzumus biomasas un radītais gaisa piesārņojums, pie kam izdalītie sadegšanas produkti, par spīti sarežģītām un dārgām attīrīšanas un gāzes aizvadīšanas sistēmām, satur lielus daudzumus piesārņojošu vielu;- incineration in boilers (usually Fluid Bed pseudo-liquefied bed type) with steam production and use in the Renkin cycle; the use of this method is limited by the need to collect large quantities of biomass and the resulting air pollution, whereby the resulting combustion products, despite the complex and expensive purification and degassing systems, contain large amounts of pollutants;
- biomasas gazificēšana un tālāka gāzu sadedzināšana gāzes turbīnās vai dzinējos; tās efektivitāti nopietni ierobežo iegūto degvielas gāzu zemā siltumspēja;- gasification of biomass and further gas combustion in gas turbines or engines; its efficiency is seriously limited by the low calorific value of the resulting fuel gas;
- biomasas pirolīzes metode, ja tā ir veiksmīga, ļauj iegūt gāzveida vai šķidru degvielu ar lielu siltumspēju enerģijas ģenerēšanai un, šķiet, ir īpaši piemērota mazas jaudas iekārtām, kas paredzētas siltuma ģenerēšanai in situ.- the biomass pyrolysis method, if successful, allows for the production of gaseous or liquid fuels with high calorific power for power generation and seems to be particularly suitable for low-capacity in situ heat generators.
Ir zināmas dažādas pirolīzes iekārtas, it īpaši rotējoši pirolīzes reaktori, dažāda tipa biomasas pārvēršanai enerģijā. Piemēram, ASV patentā US 5,688,117 „Rotatable Heating Chamber with Internai Tubes for Waste” (Rotējoša karsēšanas kamera ar iekšējām caurulēm atkritumiem), izgudrotājs Meijs un citi, ir aprakstīts relatīvi garš rotējošs zemas temperatūras karbonizēšanas cilindrs, kuram iekšā ir daudzas paralēlas karsēšanas caurules, kurās atkritumi tiek karsēti gandrīz pilnīgi bez gaisa klātbūtnes. Zemas temperatūras karbonizācijas kamerā (pirolīzes reaktorā) atkritumi, kurus piegādā pa atkritumu konveijeru, tiek pārveidoti par zemas temperatūras karbonizācijas gāzi un pirolīzes atlikumiem. Šāda karsēšanas metode neļauj kontrolēt temperatūras gradientu pa cilindra garumu.Various pyrolysis plants, in particular rotary pyrolysis reactors, for converting different types of biomass into energy are known. For example, U.S. Patent No. 5,688,117 to "Rotatable Heating Chamber with Internal Tubes for Waste", by Mayor and others, describes a relatively long rotating low temperature carbonization cylinder having a plurality of parallel heating tubes inside the waste is heated almost completely in the absence of air. In the low temperature carbonation chamber (pyrolysis reactor), the waste delivered via a waste conveyor is converted into low temperature carbonation gas and pyrolysis residues. This method of heating does not allow controlling the temperature gradient along the length of the cylinder.
Citā ASV patentā US5,657,705, izgudrotājs Martins un citi, ir aprakstīta krāsns atkritumu materiālu pirolīzes pārstrādei, kas satur būtībā cilindrisku dobumu atkritumu materiālu pirolīzes veikšanai, griežot to ap tās garenisko asi. Apkārt dobumam ir novietota sadedzināšanas kamera un inžektori degvielas un degšanas uzturētāju ievadīšanai sadedzināšanas kamerā.Another US patent US5,657,705 to Martin and others discloses a pyrolysis process for furnace waste material which comprises a substantially cylindrical cavity for pyrolysis of waste material by rotating it about its longitudinal axis. A combustion chamber and injectors are provided around the cavity for injecting fuel and combustion retention into the combustion chamber.
Esošie risinājumi, uz kuriem šeit dotas atsauces, kā arī citi risinājumi nespēj nodrošināt efektīvu pirolīzes iekārtu radīšanu biomasas pārvēršanai enerģijā. Vēl vairāk, līdz šim zināmās iekārtās optimāls režīms var tikt sasniegts tikai ar noteikta tipa biomasu, un biomasas produktu mainīguma dēļ līdz šim zināmo iekārtu darbības raksturlielumi ir tāli no optimāliem.The existing solutions referred to here, as well as other solutions, fail to provide efficient pyrolysis plants for the conversion of biomass into energy. Moreover, in known plants, optimum treatment can only be achieved with certain types of biomass, and due to the variability of biomass products, the performance of known plants is far from optimal.
RISINĀMA TEHNISKĀ PROBLĒMATECHNICAL PROBLEM TO BE SOLVED
Šī izgudrojuma mērķis ir piedāvāt reaktoru biomasas pirolītiskai pārvēršanai enerģijā, tādā kā elektroenerģija un siltumenerģija, ar uzlabotu sistēmas efektivitāti, kurā tiek pārstrādāta biomasa ar dažādām ķīmiskām un fiziskām īpašībām. Cits šī izgudrojuma mērķis ir piedāvāt reaktoru biomasas pirolītiskai pārvēršanai enerģijā, kas notiek in situ, un tādā veidā tiek novērstas ar biomasas transportēšanu saistītās augstās izmaksas.The object of the present invention is to provide a reactor for the pyrolytic conversion of biomass into energy, such as electricity and heat, with improved system efficiency in which biomass is recycled with various chemical and physical properties. Another object of the present invention is to provide a reactor for the pyrolytic conversion of biomass into energy that occurs in situ, thereby eliminating the high costs associated with the transportation of biomass.
ii
IZGUDROJUMA IZKLĀSTSSUMMARY OF THE INVENTION
Izgudrojuma mērķi tiek sasniegti ar tādu biomasas pirolīzes reaktoru, kas satur: reaktora kameru biomasas pirolītiskai pārvēršanai, kurai ir ieejas gals un tam pretī esošs izkraušanas gals, un gareniska ass, ap kuru reaktora kamera tiek griezta; apkārt reaktora kamerai novietotu karsēšanas kameru biomasas karsēšanai reaktora kamerā; hermētisku iekraušanas piltuvi saistībā ar reaktora kameras ieejas galu biomasas ievadīšanai reaktora kamerā; hermētisku piegādes kameru saistībā ar reaktora kameras izkraušanas galu biomasas pirolīzes produktu izvadīšanai; piedziņas mezglu reaktora kameras griešanai ap tās garenisko asi. Piedāvātais reaktors raksturīgs ar to, ka reaktors ir uzstādīts uz pamata tā, ka tie var svārstīties viens attiecībā pret otru un reaktora slīpuma leņķis attiecībā pret pamatu var tikt brīvi mainīts, tādējādi mainot reaktora kameras gareniskās ass orientāciju vertikālā plaknē. Ir vēlams, ka reaktors satur svārstīšanas mehānismu slīpuma leņķa mainīšanai.The objects of the invention are achieved by a biomass pyrolysis reactor comprising: a reactor chamber for pyrolytic conversion of biomass having an inlet end and an opposite discharge end and a longitudinal axis around which the reactor chamber is rotated; a heating chamber positioned around the reactor chamber for heating the biomass in the reactor chamber; an airtight loading funnel in relation to the inlet end of the reactor chamber for introducing biomass into the reactor chamber; a sealed delivery chamber in connection with the discharge end of the reactor chamber for discharge of biomass pyrolysis products; a drive assembly for rotating the reactor chamber around its longitudinal axis. The proposed reactor is characterized in that the reactor is mounted on a substrate such that they can oscillate with respect to one another and the angle of inclination of the reactor relative to the base can be freely changed, thereby changing the orientation of the longitudinal axis of the reactor chamber in the vertical plane. It is desirable that the reactor comprises a swinging mechanism for changing the inclination.
Ir vēlams, ka reaktora kameras būtiskās daļas šķērsgriezums pakāpeniski samazinās. Piemēram, reaktora kamerai var būt būtībā koniska forma vai būtībā piramidāla forma, vai jebkāda cita forma, kurai ir šķērsgriezums, kas pakāpeniski samazinās.It is desirable that the substantial part of the reactor chamber be gradually reduced in cross-section. For example, the reactor chamber may have a substantially conical shape or a substantially pyramidal shape, or any other shape having a gradually decreasing cross section.
Izvēlētajā realizācijas variantā reaktors satur grozu, kas novietots piegādes kamerā un ir saistīts ar reaktora kameras izkraušanas galu.In a preferred embodiment, the reactor comprises a basket positioned in the delivery chamber and connected to the discharge end of the reactor chamber.
Reaktoram, vēlams, ir daudzas radzes, kas izvietotas uz reaktora kameras iekšējās virsmas, lai veicinātu biomasas virzīšanu un maisīšanu.The reactor preferably has a plurality of studs disposed on the inside surface of the reactor chamber to facilitate biomass flow and mixing.
Atbilstoši izgudrojuma vienam realizācijas variantam svārstīšanas mehānisms satur asi un bīdītāju, citā variantā svārstīšanas mehānisms tiek vadīts elektroniski.According to one embodiment of the invention, the oscillation mechanism comprises an axis and a slider, in another embodiment the oscillation mechanism is electronically controlled.
Atbilstoši izgudrojuma vēl citam variantam piedziņas mezgls reaktora griešanai ir piemērots, lai nepārtraukti mainītu griešanas ātrumu un virzienu, pie kam piedziņas mezgls var tikt vadīts elektroniski.According to yet another embodiment of the invention, the drive unit for cutting the reactor is adapted to continuously change the cutting speed and direction at which the drive unit can be electronically controlled.
Izvēlētajā realizācijas variantā reaktors satur elektronisku kontrolieri griešanas ātruma, virziena un gareniskās ass orientācijas mainīšanai, lai vadītu biomasas virzīšanu, tādējādi regulējot pirolītiskās reakcijas parametrus.In the preferred embodiment, the reactor includes an electronic controller for changing the cutting speed, direction and longitudinal axis orientation to control the biomass propulsion, thereby regulating the pyrolytic reaction parameters.
ZĪMĒJUMU APRAKSTS UN TAJOS IZMANTOTO APZĪMĒJUMU SPECIFIKĀCIJADESCRIPTION OF THE DRAWINGS AND SPECIFICATION OF THE DRAWINGS USED IN THEM
1. zīm. ir attēlots reaktora skats gareniskā šķērsgriezumā atbilstoši šim izgudrojumam; 2. zīm. ir attēlots reaktora skats šķērsgriezumā pa līniju Χ-Χ; 3. zīm. ir attēlots rotējošā reaktora iekšējās sienas palielināts skats.Fig. 1 a longitudinal sectional view of the reactor according to the present invention; Fig. 2 a cross-sectional view of the reactor along line Χ-Χ; Fig. 3 is an enlarged view of the inner wall of a rotating reactor.
Zīmējumos izmantoti sekojoši apzīmējumi: 1 - vibrējošā piltuve biomasas ielādēšanai; 2 - kamera ievadīšanai gliemežtransportierī; 3 - motors gliemežtransportiera darbināšanai; 4 - gliemežtransportieris biomasas ievadīšanai; 5 - motors ar invertoru piedziņas mezgla darbināšanai; 6 - piedziņas mezgls reaktora kameras griešanai; 7 - izolēti daudzslāņu elementi reaktora siltumizolācijai; 8 grupa dzesētu gultņu reaktora kameras griešanai; 9 - karsēšanas kameras izolēts elements; 10 - siltumizolācijas daudzslāņu elements; 11 - ventiļi karstās gāzes plūsmai un atkārtotai izmantošanai; 12 - ventiļi karstās gāzes iesūknēšanai; 13 bīdītājs reaktora kameras slīpuma regulēšanai; 14 - atbalsts (šarnīra ass) reaktora svārstīšanai; 15 - atloku savienojumi stiprināšanai; 16 - karsēšanas kameras elementu savienošanas stiprinājums; 17 - karsēšanas kamera; 18 - reaktora kamera; 19 - radzes uz reaktora kameras iekšējās virsmas; 20 - ventiļi sintētiskās gāzes iegūšanai; 21 - grozs ar režģi pārogļotās substances savākšanai; 22 piegādes kamera pirolīzes produktu savākšanai; 23 - rotoru grupas rotācijas vārpsta; 24 - piltuve pārogļotās substances savākšanai; 25 - atloki reaktora kameras elementu savienošanai; 26 - pamats.The following designations are used in the drawings: 1 - vibrating funnel for loading biomass; 2 - a chamber for introduction into the auger; 3 - motor for propelling the auger; 4 - Snail conveyor for biomass injection; 5 - motor with inverter for driving the drive unit; 6 - drive unit for cutting the reactor chamber; 7 - insulated multilayer elements for thermal insulation of the reactor; Group 8 of cooled bearing reactor chamber cutting; 9 - insulated element of the heating chamber; 10 - multilayer thermal insulation element; 11 - valves for hot gas flow and reuse; 12 - valves for hot gas injection; 13 slider for adjusting the slope of the reactor chamber; 14 - support (pivot axis) for reactor oscillation; 15 - Flange connections for fastening; 16 - attachment bracket for heating chamber elements; 17 - heating chamber; 18 - reactor chamber; 19 - studs on the inside surface of the reactor chamber; 20 - valves for producing synthetic gas; 21 - grid basket for collecting charcoal; 22 a supply chamber for collecting pyrolysis products; 23 - rotary shaft rotor group; 24 - Funnel for collecting charcoal; 25 - flanges for connecting reactor chamber elements; 26 - plea.
IZGUDROJUMA ĪSTENOŠANAS PIEMĒRA DETALIZĒTS IZKLĀSTSDETAILED DESCRIPTION OF THE EXAMPLE OF THE INVENTION
Kā parādīts 1. zīm. un 2. zīm., biomasa B tiek iespiesta vibrējošā piltuvē 1 un ievadīšanas kamerā 2 tā, lai krasi samazinātu gaisa (O2) klātbūtni. Biomasas ievadīšana caur gliemežtransportieri 4 ir pastāvīga un nepārtraukta, lai novērstu gaisa klātbūtni reaktora kamerā 18. Gliemežtransportierī 4 biomasas materiāls tiek iepriekš sasildīts un bīdīts tālāk iekšā reaktora kamerā 18. Gliemežtransportieri 4 darbina motors 3. Piltuve 1, ievadīšanas kamera 2 un gliemežtransportieris veido hermētisku iekraušanas piltuvi, kas ir saistīta ar reaktora kameras 18 ieejas galu, lai ievadītu biomasu reaktora kamerā 18.As shown in Fig. 1. 1 and 2, the biomass B is pressed into a vibrating funnel 1 and an injection chamber 2 so as to drastically reduce the presence of air (O 2 ). Feeding the biomass through the auger conveyor 4 is continuous and continuous to prevent the presence of air in the reactor chamber 18. In the auger conveyor 4, the biomass material is preheated and pushed further inside the reactor chamber 18. The auger conveyor 4 is driven by a motor 3. Funnel 1, feed chamber 2 and a funnel connected to the inlet end of the reactor chamber 18 for introducing biomass into the reactor chamber 18.
Rotējošai reaktora kamerai 18 vai rotoram var būt cilindra, konusa vai piramīdas forma, lai apstrādātu biomasu atbilstoši tās raksturlielumiem (īpatnējais svars, granulācija, utt.). Izvēlētajā realizācijas variantā reaktora kamerai ir forma, kas pakāpeniski sašaurinās virzienā uz izkraušanas galu.The rotating reactor chamber 18 or rotor may be in the form of a cylinder, cone or pyramid to process the biomass according to its characteristics (specific gravity, granulation, etc.). In the preferred embodiment, the reactor chamber has a shape that gradually narrows toward the discharge end.
Uz reaktora kameras 18 iekšējās virsmas izvietotās daudzās radzes 19 nodrošina biomasas nepārtrauktu maisīšanu un tās pakāpenisku pārvietošanu reaktora kameras 18 garumā virzienā uz grozu 21 un piegādes kameru 22. Radzes 19 ir izvietotas uz reaktora kameras 18 iekšējās sienas un ir piestiprinātas spirālveidīgā izkārtojumā un tām ir projektā noteikti izmēri. To piramidālā forma, kas palielināti parādīta 3. zīm. ar to virsmu dažādiem slīpumiem, ļauj biomasas materiālu maisīt un virzīt gareniskās ass virzienā, kamēr, griežot reaktora kameru 18 pretējā virzienā, biomasas materiāla virzīšana tiek palēnināta.The plurality of studs 19 located on the inner surface of the reactor chamber 18 provide continuous mixing of biomass and its gradual displacement along the length of the reactor chamber 18 towards the basket 21 and the delivery chamber 22. The studs 19 are disposed on the inner wall of the reactor chamber 18 certain sizes. Their pyramidal shape, enlarged in Fig. 3. with varying inclinations of their surfaces, allows the biomass material to be stirred and directed in the longitudinal axis, while the rotation of the reactor chamber 18 in the opposite direction slows the flow of biomass material.
Piegādes kamerā 22 novietotais grozs 21, kas atrodas saistībā ar reaktora kameras 18 izkraušanas galu, ir uzbūvēts ar īpašu režģi, lai zināmu laiku noturētu pārogļotās substances cieto fāzi pirms tās savākšanas piltuvē 24. Tādējādi tiek veicināta tālāka sintētiskās gāzes atdalīšana no pārogļotās substances. Piltuves 24 izkraušana ir nepārtraukta un tiek regulēta tā, lai samazinātu sintētiskās gāzes S zudumus kopā ar pārogļoto substanci. Sintētiskā gāze tiek sūknēta ārā caur ventili 20 un nogādāta uz galveno agregātu izmantošanai.The basket 21 disposed in the delivery chamber 22, which is located in connection with the discharge end of the reactor chamber 18, is constructed with a special grid to hold the solid phase of the charred substance for a certain time before collecting it in the hopper 24. This facilitates further separation of synthetic gas from the char. The discharge of the funnel 24 is continuous and controlled to minimize the loss of synthetic gas S along with the charred substance. The synthetic gas is pumped out through valve 20 and conveyed to the main unit for use.
Rotējošā reaktora kamera 18 ir salikta no vairākiem elementiem, kas izgatavoti ar atlokiem 25. Katra elementa garums var būt no 3000 līdz 5000 mm, tā diametrs var būt no 1500 līdz 4000 mm atkarībā no vajadzīgās produktivitātes un pārstrādājamās biomasas veida. Reaktora kamera 18 ir nostiprināta gultņos 8, kas tiek dzesēti un ir hermētiski, lai samazinātu karstās gāzes zudumus no karsēšanas kameras 17. Piedziņas mezgls 6, kas satur motoru 5, griež reaktora kameru 18 ap tās garenisko asi. Piedziņas mezgls 6 ļauj mainīt rotācijas ātrumu un virzienu.The rotary reactor chamber 18 is composed of a plurality of elements made by flanges 25. Each element can have a length of 3000 to 5000 mm, a diameter of 1500 to 4000 mm, depending on the required productivity and the type of biomass to be recycled. The reactor chamber 18 is mounted in bearings 8, which are cooled and sealed to reduce the loss of hot gas from the heating chamber 17. The drive unit 6, containing the motor 5, rotates the reactor chamber 18 around its longitudinal axis. Drive unit 6 allows to change the speed and direction of rotation.
Karsēšanas kamera 17 ir salikta no daudzslāņu termoizolētiem elementiem 10, kas sastiprināti ar savienojumiem 16. Katra elementa garums var būt no 3000 līdz 6000 mm atkarībā no projektā paredzētā diametra.The heating chamber 17 is composed of multilayer thermally insulated elements 10, which are fastened to the joints 16. Each element can have a length of 3000 to 6000 mm depending on the diameter of the design.
Karsēšanas kamerā 17 temperatūra tiek regulēta ar karstās gāzes daudzumu, ko pievada caur ventiļiem 12, 11 (A - D).The temperature in the heating chamber 17 is controlled by the amount of hot gas supplied through valves 12, 11 (A - D).
Var tikt modificēts reaktora slīpums vai gareniskās ass sagāzums, griežot to ap šarnīra asi 14 grupas 13 iedarbībā. Izvēlētajā realizācijā grupa 13 ir svārstīšanas mehānisms, kas satur šarnīra asi 14 vai asi un bīdītāju.The slope of the reactor or the tilt of the longitudinal axis can be modified by rotating it around the pivot axis 14 under the influence of group 13. In the preferred embodiment, the group 13 is a swinging mechanism comprising a pivot axis 14 or an axis and a slider.
Pirolīzes gazifikācijas process notiek cilindriskā, koniskā vai piramidālā reaktora kamerā 18, kas griežas karsēšanas kamerā 17.The pyrolysis gasification process takes place in a cylindrical, conical or pyramidal reactor chamber 18 which rotates in a heating chamber 17.
Biomasa tiek nepārtraukti iepildīta karsēšanas kamerā ar grupas, kas satur vibrējošu piltuvi 1 un gliemežtransportieri 4, palīdzību. Šī sistēma novērš gaisa (O2) klātbūtni reaktorā.The biomass is continuously fed into the heating chamber by means of a group comprising a vibrating funnel 1 and a worm conveyor 4. This system eliminates the presence of air (O2) in the reactor.
Karstās gāzes cirkulācija karsēšanas kamerā 17 tiek nodrošināta ar virknes modulāru ventiļu 11-12 palīdzību, kas ierīkoti cilindriskajā virsmā un ir sadalīti gar garenisko asi tā, lai radītu temperatūras gradientu dažādās pirolīzes procesa fāzēs.The hot gas circulation in the heating chamber 17 is provided by a series of modular valves 11-12 arranged on a cylindrical surface and distributed along the longitudinal axis so as to create a temperature gradient during the various phases of the pyrolysis process.
Viss reaktors var griezties vai svārstīties vertikālajā plaknē ar svārstīšanas mehānisma 13 un 14 palīdzību abos virzienos (+/-) attiecībā pret horizontāli tā, lai vadītu biomasas virzīšanu un gāzes (sintētiskās gāzes) un derivātu - pārogļotās substances (cietā frakcija) un darvas (šķidrā frakcija) - ražošanu.The entire reactor can rotate or oscillate in the vertical plane by means of the oscillation mechanisms 13 and 14 in both directions (+/-) relative to the horizontal to guide the biomass and the gas (synthetic gas) and derivative carbon (solid fraction) and tar (liquid) fraction) - production.
Atkarībā no pārstrādājamās biomasas daudzuma un īpašībām tiek regulēti šādi reaktora darbības un pirolīzes procesa vadības parametri:Depending on the amount and nature of the biomass to be recycled, the following reactor operation and pyrolysis process control parameters are regulated:
- reaktora kameras 18 griešanas ātrums ar iespēju mainīt šīs kustības virzienu;- the rate of rotation of the reactor chamber 18 with the possibility of changing the direction of this movement;
-temperatūras gradients pa karsēšanas kameras 17 garumu;- temperature gradient along the length of the heating chamber 17;
- reaktora sagāzums vai slīpums (+/-) vertikālajā plaknē;- reactor tilt or slope (+/-) in vertical plane;
- sadedzinātās gāzes daudzums un šķērscirkulācija.- Quantity of gas burned and cross-circulation.
Pirolīze (organisko materiālu sadalīšana karsējot) var tikt veikta temperatūru diapazonā no 400 līdz 1000 °C, lai vajadzīgajā laikā saražotu paredzēto gāzes daudzumu.Pyrolysis (decomposition of organic materials by heating) can be carried out at temperatures between 400 and 1000 ° C to produce the intended amount of gas at the right time.
Reaktora pēdējā daļā ir ierīkota speciāla kamera 22, lai savāktu sintētisko gāzi un pirolīzes sekundāros produktus (pārogļoto substanci un darvu) izmantošanai galvenajā agregātā, lai ražotu vairāk enerģijas.A special chamber 22 is provided at the rear of the reactor to collect the synthetic gas and pyrolysis secondary products (carbonized material and tar) for use in the main unit to produce more energy.
Materiāli, kas izmantojami reaktora prototipa izgatavošanai, ir speciāls augstām temperatūrām paredzēts tērauds, nerūsošais tērauds, ugunsdroši materiāli, komponenti ar lielu izturību pret karstumu un nodilumu biomasas abrazīvas iedarbības rezultātā.Materials used in the construction of the reactor prototype are special high-temperature steels, stainless steel, refractory materials, components with high heat resistance and abrasion due to the abrasion of biomass.
Reaktora shēma, kas attēlota 1. zīm., ir indikatīva. Reaktora izmēri mainās atkarībā no biomasas daudzuma un īpašībām.The reactor diagram depicted in Fig. 1 is indicative. Reactor sizes vary with the amount and properties of biomass.
Pirolīzes procesu pārbauda sensori, mērīdami temperatūru karstās kameras 3 zonās ražotajai pārogļotajai substancei un sintētiskajai gāzei.The pyrolysis process is controlled by sensors that measure the temperature of the carbonaceous material and synthetic gas produced in the 3 zones of the hot chamber.
Elektronisks kontrolieris (dators), izvēlētajā realizācijas variantā PLC (programmējams loģisks kontrolieris), ar atbilstošu programmatūru vada visu procesu un izdod signālus par darbības anomālijām. Ielādētā programma vada visu procesa darbību atbilstoši izmantojamam biomasas veidam.The electronic controller (computer), in the chosen embodiment PLC (programmable logic controller), with the appropriate software controls the whole process and issues signals of operating anomalies. The loaded program guides all process activity according to the type of biomass used.
Automātiski tiek regulēts:Automatically adjusts:
- sadedzinātās gāzes daudzums,- quantity of gas burned,
- reaktora griešanās ātrums un sagāzums,- reactor rotation speed and rollover,
- biomasas daudzums,- amount of biomass,
- temperatūra, spiediens, utt.- temperature, pressure, etc.
Nepārtraukti analizējot saražotās gāzes (sintētiskās gāzes) maisījumu, elektroniskais kontrolieris kontrolē un koriģē procesa raksturīgos parametrus (temperatūras gradientu un biomasas karsēšanas laiku).By continuously analyzing the mixture of produced gas (synthetic gas), the electronic controller controls and corrects the process parameters (temperature gradient and biomass heating time).
Pirolīzes procesā biomasa tiek sadalīta tādā veidā, ka rodas cieta un gāzveida fāze, kur gāzveida fāze tiek sadedzināta, ģenerējot izplūdes gāzes tādos daudzumos, kas ir daudz mazāki nekā citos procesos, piemēram, atkritumu sadedzināšanas procesā.In the pyrolysis process, biomass is split in such a way that a solid and gaseous phase is formed, where the gaseous phase is incinerated, generating waste gases in much smaller quantities than in other processes, such as the waste incineration process.
Cietā fāze tiek padarīta inerta, izlietojot daļu ģenerēto gāzu pasivizēšanas procesā, tajā pašā laikā atgūstot lielāko daļu enerģijas, ko satur ogles, kas ir cietās fāzes galvenā sastāvdaļa.The solid phase is rendered inert by utilizing part of the gas generated in the passivation process, while recovering most of the energy contained in the coal, which is the main component of the solid phase.
Process ir variējams un var tikt viegli vadīts visās stadijās. Lietderības koeficients var pārsniegt 70%.The process is variable and can be easily managed at all stages. The efficiency may exceed 70%.
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LVP-09-157A LV14040B (en) | 2009-09-18 | 2009-09-18 | Reactor for pyrolysis of biomass |
PCT/LV2010/000010 WO2011034409A1 (en) | 2009-09-18 | 2010-09-17 | Reactor for pyrolysis of biomass |
EP10817478A EP2478069A1 (en) | 2009-09-18 | 2010-09-17 | Reactor for pyrolysis of biomass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LVP-09-157A LV14040B (en) | 2009-09-18 | 2009-09-18 | Reactor for pyrolysis of biomass |
Publications (2)
Publication Number | Publication Date |
---|---|
LV14040A LV14040A (en) | 2009-11-20 |
LV14040B true LV14040B (en) | 2009-12-20 |
Family
ID=41694568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LVP-09-157A LV14040B (en) | 2009-09-18 | 2009-09-18 | Reactor for pyrolysis of biomass |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2478069A1 (en) |
LV (1) | LV14040B (en) |
WO (1) | WO2011034409A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9624439B2 (en) * | 2014-08-10 | 2017-04-18 | PK Clean Technologies | Conversion of polymer containing materials to petroleum products |
CN104946277A (en) * | 2015-05-25 | 2015-09-30 | 华南农业大学 | Spiral drum type biomass continuous pyrolysis device |
CN104910936A (en) * | 2015-05-25 | 2015-09-16 | 华南农业大学 | Enhanced heat transfer-based biomass continuous pyrolysis device, and method |
WO2017192962A1 (en) * | 2016-05-06 | 2017-11-09 | Aemerge Llc | Rotating drum device for use with carbonizer system and process of use thereof |
DE102020115348A1 (en) * | 2020-06-09 | 2021-12-09 | CRR - Carbon Resources Recovery GmbH | Device and method for the pyrolysis of organic starting materials |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4329871A1 (en) * | 1993-09-03 | 1995-03-09 | Siemens Ag | Pipe-rotatable heating chamber for waste |
FR2721095B1 (en) * | 1994-06-10 | 1996-08-23 | Inst Francais Du Petrole | Waste heat treatment furnace and associated process. |
DE102006013617B4 (en) * | 2006-03-22 | 2008-07-03 | Universität Kassel | biomass gasifier |
RU2346026C2 (en) * | 2007-04-06 | 2009-02-10 | Общество с ограниченной ответственностью "Альтернативные энергетические системы" | Method of sng and coal char obtaining by pyrolysis reaction of biomass |
-
2009
- 2009-09-18 LV LVP-09-157A patent/LV14040B/en unknown
-
2010
- 2010-09-17 WO PCT/LV2010/000010 patent/WO2011034409A1/en active Application Filing
- 2010-09-17 EP EP10817478A patent/EP2478069A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
WO2011034409A1 (en) | 2011-03-24 |
LV14040A (en) | 2009-11-20 |
EP2478069A1 (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103842101B (en) | Reciprocating reactor and methods for thermal decomposition of carbonaceous feedstock | |
US8845769B2 (en) | Downdraft gasifier with improved stability | |
AU2012256032A1 (en) | Reciprocating reactor and methods for thermal decomposition of carbonaceous feedstock | |
CA2853099A1 (en) | Gasifying system and method, and waste-treatment system and method including the same | |
LV14040B (en) | Reactor for pyrolysis of biomass | |
KR101721823B1 (en) | Updraft gasification reactor using combustable waste and biomass resources | |
US11175036B2 (en) | Pyrolysis gasification apparatus for solid refuse fuel | |
CN106587060A (en) | Externally heated activation converter and method for producing activated carbon through same | |
US20140110242A1 (en) | Biomass converter and methods | |
KR200490378Y1 (en) | Biomass gasifier and treatment equipment for biomass having the same | |
CN111748364B (en) | Solid fuel spiral dry distillation machine | |
KR102175676B1 (en) | Fluidized bed pyrolysis apparatus and a pyloysis method of organic material using the same | |
CN107750196A (en) | It is pyrolyzed distillating method and device | |
KR102250690B1 (en) | Apparatus for producing charcoal using biomass and biomass treatment equipment having the same | |
EP3999258B1 (en) | Method and appartus for the treatment of waste material | |
CN111778052A (en) | Dry distillation production process for solid fuel | |
RU2596169C1 (en) | Fast pyrolysis reactor | |
RU209029U1 (en) | Installation for the production of activated carbon from carbonaceous raw materials | |
RU82214U1 (en) | CASSETTE PYROLYSIS INSTALLATION FOR COAL | |
JP7190641B1 (en) | Continuous carbonization equipment | |
WO2024209383A1 (en) | Plant for the treatment of material containing a carbonaceous matrix and its operation method | |
ITRM20110363A1 (en) | PIROLIZER PERFECTED | |
JPH1112573A (en) | Rotary carbonization oven |