KR960013624B1 - Manufacture of shallow junction semiconductor device - Google Patents
Manufacture of shallow junction semiconductor device Download PDFInfo
- Publication number
- KR960013624B1 KR960013624B1 KR1019920025020A KR920025020A KR960013624B1 KR 960013624 B1 KR960013624 B1 KR 960013624B1 KR 1019920025020 A KR1019920025020 A KR 1019920025020A KR 920025020 A KR920025020 A KR 920025020A KR 960013624 B1 KR960013624 B1 KR 960013624B1
- Authority
- KR
- South Korea
- Prior art keywords
- source
- drain
- junction
- polycrystalline silicon
- semiconductor device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 18
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 18
- 239000010703 silicon Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 125000006850 spacer group Chemical group 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 26
- 229920002120 photoresistant polymer Polymers 0.000 claims description 5
- 229920005591 polysilicon Polymers 0.000 abstract description 5
- 238000001704 evaporation Methods 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000001994 activation Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
제1도의 (가) 및 (나)는 종래의 얕은 접합의 반도체소자를 나타낸 단면도.1A and 1B are cross-sectional views showing a conventional shallow junction semiconductor device.
제2도의 (가) 내지 (사)는 본 발명의 얕은 접합의 반도체소자를 나타낸 단면도.2A to 2G are cross-sectional views of a shallow junction semiconductor device of the present invention.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1,11 : 규소기판(silicon substrate) 2,12 : 필드 산화막(field oxide)1,11 silicon substrate 2,12 field oxide
4,13 : 게이트 산화막(gate oxide)4,13: gate oxide
3,14 : 다결정 규소게이트(polysilicon gate)3,14 polysilicon gate
5,15 : 사이드 월 스페이서(side wall spacer)5,15: side wall spacer
6,16 : n-소오스/드레인 접합(n-source/drain junction)6,16 n-source / drain junction
7,7-1 : 추가 규소층(additional Silicon layer)7,7-1: additional silicon layer
8,8-1 : 포토레지스터(photo-resister)8,8-1: photo-resister
9,17 : n+소오스/드레인 접합(n+source/drain junction)9,17: n + source / drain junction
10 : 저온 산화막(low-temperature oxide)10: low-temperature oxide
11 : 알루미늄계 배선금속 12 : 장벽 금속(barrier metal)11 aluminum-based wiring metal 12 barrier metal
본 발명은 초고집적 반도체장치의 제조방법에 관한 것으로, 특히 아주 얕은 접합(shallow junction)의 소오스/드레인을 갖는 반도체장치의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for manufacturing an ultra-high density semiconductor device, and more particularly, to a method for manufacturing a semiconductor device having a very shallow source / drain of a shallow junction.
최근 반도체 기술이 초고속화, 초고집적화됨에 따라, 소오스/드레인 형성기술에서도 더욱더 고도의 기술을 요구하고 있으며, 극히 얕은 소오스/드레인 접합 형성기술은 초고집적 반도체소자 제조에서 필수적으로 개발되어야 할 핵심기술이다. 종래의 얕은 접합 형성방법(제1도의 (가) 및 (나) 참조)을 보면, 소오스/드레인 영역(16)에 이온주입기를 사용하여 낮은 에너지로 고농도의 불순물을 이온주입하여 보다 얕은 접합의 소오스/드레인을 형성시켜 왔다.Recently, as semiconductor technology becomes very high speed and ultra high integration, source / drain formation technology requires more advanced technology, and extremely shallow source / drain junction formation technology is a core technology that must be developed in the manufacture of ultra-high density semiconductor devices. . In the conventional shallow junction formation method (refer to (a) and (b) of FIG. 1), a source of shallower junction is ion-implanted with a low energy by using ion implanter in the source / drain region 16 at low energy. / Drain has been formed.
그러나, 초고집적 반도체장치의 제조에서는 접합깊이 100nm 이하의 얕은 접합형성이 요구되는데, 종래의 소오스/드레인 접합 형성방법으로는 얕은 접합 형성이 극히 어려우며, 또한 어떻게하여 얕은 접합의 소오스/드레인 접합을 형성하였다 하더라도, 소오스/드레인 영역의 면저항 및 금속배선과 소오스/드레인 영역사이의 접촉저항이 아주 크게 되므로 반도체소자 특성이 불량하게 된다.However, in the fabrication of ultra-high density semiconductor devices, shallow junction formation having a junction depth of 100 nm or less is required. In the conventional source / drain junction formation method, shallow junction formation is extremely difficult, and how to form a shallow junction source / drain junction Even so, the sheet resistance of the source / drain regions and the contact resistance between the metal wiring and the source / drain regions become very large, resulting in poor semiconductor device characteristics.
특히 피모스(PMOS) 및 상보성모스(CMOS) 등과 같이 확산속도가 큰 붕소(B)를 이용한 P+소오스/드레인 형성이 요구되는 경우, 종래의 얕은 접합 형성방법으로는 초고집적 소자에서 요구되는 수준의 얕은 접합 형성이 더욱 불가능한 실정이다.In particular, when P + source / drain formation using boron (B) having a high diffusion rate such as PMOS and complementary moss (CMOS) is required, the conventional shallow junction formation method requires a level of the level required for ultra-high density devices. It is more impossible to form a shallow junction.
본 발명은 종래의 이러한 문제점을 해결하기 위하여 창안한 것으로, 면저항 및 접촉저항을 줄여 반도체장치의 특성을 향상시키는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve these problems in the prior art, and improves the characteristics of the semiconductor device by reducing the sheet resistance and the contact resistance.
위와 같은 목적을 달성하기 위하여 본 발명에서는 P형 규소기판에 게이트 절연막을 형성하고 다결정 규소(poly-silicon)을 증착한 다음, 열처리 기술로 다결정 규소의 결정특성을 규소기판의 단결정 특성과 유사한 수준으로 결정화시키고, 에치-벡공정으로 추가증착된 규소층중 소오스/드레인 영역의 규소만 남게하고, 이를 이용하여 얕은 접합을 형성한다.In order to achieve the above object, in the present invention, a gate insulating film is formed on a P-type silicon substrate, poly-silicon is deposited, and the crystalline characteristics of the polycrystalline silicon are heat treated to a level similar to that of the single crystal of the silicon substrate. Crystallization, leaving only silicon in the source / drain regions of the silicon layer further deposited by the etch-beck process, is used to form a shallow junction.
이와같이 하면, 소오스/드레인 영역이 접합깊이는 규소기판 자체의 접합깊이에 추가증착된 규소층의 두께가 합하여지므로, 전체 접합깊이는 깊으나, 당초 규소기판에서의 접합깊이, 즉 유효접합깊이가 얕게 형성된다.In this way, since the source / drain regions have a junction depth of the silicon substrate itself and the thickness of the additionally deposited silicon layer is added, the total junction depth is deep, but the junction depth, that is, the effective junction depth in the original silicon substrate is shallow. Is formed.
이제부터 제2도를 참조하면서 본 발명의 바람직한 실시예에 대하여 상세히 설명하겠다.A preferred embodiment of the present invention will now be described in detail with reference to FIG. 2.
제2도의 (가) 내지 (사)는 본 발명에 따라 NMOS를 제조하는 공정순서를 나타낸 다면도이다.(A) to (g) of FIG. 2 is a side view showing the process sequence for manufacturing an NMOS according to the present invention.
먼저, 제2도(가)와 같이, P형 규소기판(1)을 사용하여, 사진식각법으로 활성화/비활성화 영역의 패턴을 형성하고, 필드문턱전압 조절용 이온주입공정 및 필드산화막층(2) 성장, 3-50nm 정도의 게이트 절연막(4)형성, 트랜지스터의 문턱전압 조절용 이온주입공정, 200-500nm 정도의 다결정 규소게이트(3) 형성 및 정의, n-소오스/드레인 접합형성, 20-300nm 정도의 사이드 월 스페이서(5) 형성공정을 순차로 수행한다.First, as shown in FIG. 2A, a P-type silicon substrate 1 is used to form a pattern of an activation / deactivation region by photolithography, and an ion implantation process and a field oxide layer 2 for field threshold voltage control are performed. Growth, formation of gate insulating film 4 of about 3-50 nm, ion implantation process for controlling threshold voltage of transistor, formation and definition of polycrystalline silicon gate 3 of about 200-500 nm, formation of n-source / drain junction, about 20-300 nm The process of forming the sidewall spacers 5 is performed sequentially.
이어, 얕은 접합 형성용 다결정 규소막의 형성 및 결정화공정이 수행되는데, 이 공정에서는 저압화학기상증착법으로 웨이퍼 전면에 얕은 접합 형성용 다결정 규소막(7)를 20-300nm 정도 증착하고(제2도(나)), 500-900℃ 정도의 온도에서 열처리하여 얕은 접합 형성용 다결정 규소막을 고체상 에피성장으로 결정화시킨다.Subsequently, a process of forming and crystallizing a polycrystalline silicon film for forming a shallow junction is performed. In this process, a low-pressure chemical vapor deposition method deposits about 20-300 nm of the shallow junction-forming polycrystalline silicon film 7 on the entire surface of the wafer (FIG. B)), The polycrystalline silicon film for shallow junction formation is crystallized by solid epitaxial growth by heat treatment at a temperature of about 500-900 ° C.
위와 같이하여 다결정 규소막의 결정화를 이루고 나면 얕은 접합 형성용 규소층 형성공정이 수행된다.After the crystallization of the polycrystalline silicon film is performed as described above, the step of forming a shallow junction silicon layer is performed.
이 공정에서는, 전 공정 제2도(나)이 수행된 후에 평탄화 특성이 우수한 포토레지스터(8)를 웨이퍼 전면에 도포하고(제3도(다)), 포트레지스터(8)를 식각하여, 소오스/드레인 영역의 포토레지스터(8-1)만 남기고 나머지는 모두 제거한다(제2도(라)).In this step, the photoresist 8 having excellent planarization characteristics is applied to the entire surface of the wafer (FIG. 3 (c)) after the second step (b) of the previous step is performed, and the photoresist 8 is etched to obtain a source. Only the photoresist 8-1 of the / drain region remains, and all the rest are removed (Fig. 2 (d)).
이어, 에치백(etch-back) 공정으로 도면 제2도(마)와 같이 추가증착 규소층중 활성화 영역의 규소층(7-1)만 남기고 나머지는 모두 제거한다.Subsequently, as shown in FIG. 2 (e), only the silicon layer 7-1 of the active region of the additionally deposited silicon layer is left as an etch-back process, and all the others are removed.
이상과 같이하여 접합을 위한 규소층(7-1)를 형성한 후에는 이온주입기를 사용하여 인(P) 또는 비소(As) 등의 불순물을 소오스/드레인 영역에 고농도로 이온주입하여 n+소오스/드레인 접합(9)을 형성한 다음, 급속 열처리나 전기로 열처리를 사용하여 고온활성화한다(제2도(바)).As described above, after the silicon layer 7-1 for bonding is formed, impurities such as phosphorus (P) or arsenic (As) are ion-implanted at high concentration into the source / drain region by using an ion implanter, and then n + source / After the drain junction 9 is formed, it is activated at high temperature using rapid heat treatment or an electric furnace heat treatment (FIG. 2 (bar)).
이 공정에 의하면 전체 접합깊이는 깊으나, 유효접합깊이는 100nm 이하의 얕은 n+소오스/드레인 접합이 형성된다.According to this process, the total junction depth is deep, but a shallow n + source / drain junction having an effective junction depth of 100 nm or less is formed.
위의 활성화공정은 본 실시예에서는 이후에 수행될 BPSG 절연막 증착공정후에 수행하여도 된다.The above activation process may be performed after the BPSG insulation film deposition process to be performed later in this embodiment.
이 활성화 공정이후에는 BPSG 절연막 증착 및 고온에서의 리프로우 공정, 접촉홀 정의 공정, 장벽금속과 배선금속막 증착 및 패턴 형성공정, 합금화(alloy) 공정, 경면처리(passivation) 공정, 또는 추가될 수 있는 다층금속배선 형성공정 등이 통상적인 공정순서에 따라 수행된다.After this activation process, a BPSG insulating film deposition and reflow process at high temperature, a contact hole defining process, a barrier metal and wiring metal film deposition and pattern forming process, an alloying process, a passivation process, or an addition may be added. A multi-layered metal wiring forming process and the like are carried out in the usual process sequence.
본 명세서에서는, 전술한 바와같이, n+소오스/드레인을 형성하는 경우에 대해서만 방법을 상세히 설명하였는데, 피모스(PMOS) 및 상보성모스(CMOS) 제조에 필요한 얕은 접합의 P+소오스/드레인을 형성하고자 할 경우, 얕은 접합의 n+소오스/드레인을 형성하는 동일한 방법으로 실시하되, 이온주입 불순물로서 P 또는 As 대신 B 또는 BF2가 사용된다.In the present specification, as described above, the method has been described in detail only in the case of forming n + source / drain, and the shallow junction P + source / drain required for PMOS and complementary moss (CMOS) is to be formed. In this case, the same method of forming a shallow junction of n + source / drain is performed, but B or BF 2 is used instead of P or As as an ion implantation impurity.
이상과 같은 본 발명을 활용할 경우 기대되는 기술적인 효과는 다음과 같다.The technical effects expected when using the present invention as described above are as follows.
첫째로, 소오스/드레인 영역의 유효접합 깊이를 100nm 이하의 얕은 접합으로 만들 수 있으며, 둘째로, 소오스/드레인 영역의 불순물 농도 및 불순물 농도구배(濃度勾配)를 용이하게 조절할 수 있으며, 셋째로, 소오스/드레인 영역의 최종 접합깊이가 깊어지고, 또한 소오스/드레인 영역의 불순물을 고농도로 형성할 수 있으므로, 면저항 및 접촉저항을 우수한 특성으로 되어 소자특성을 향상시킬 수 있으며, 넷째로, 종래의 구조에 비해 소오스/드레인 영역에서의 표면높이가 다결정 규소막 두께만큼 높게되어 게이트 영역과의 높이차가 감소되므로, 반도체 소자의 평탄화 특성이 향상되고, 다섯째, 소오스/드레인 영역의 표면높이의 상승결과로 인해 소오스/드레인 영역의 심폭비(aspect ratio)가 다결정 규소막 두께만큼 감소되므로 배선금 속의 스텝커버리지가 향상되고 접촉 및 금속배선의 신뢰성이 우수하게 되는 특징이 있다.Firstly, the effective junction depth of the source / drain regions can be made into a shallow junction of 100 nm or less, and secondly, the impurity concentration and the impurity concentration gradient of the source / drain regions can be easily adjusted. Since the final junction depth of the source / drain regions can be deepened, and impurities in the source / drain regions can be formed at high concentration, the sheet resistance and contact resistance can be made excellent, and the device characteristics can be improved. The surface height of the source / drain regions is increased by the thickness of the polysilicon film, and the height difference from the gate region is reduced, thereby improving the planarization characteristics of the semiconductor device. Fifth, the surface height of the source / drain regions increases. Step coverage in the wiring metal as the aspect ratio of the source / drain regions is reduced by the thickness of the polycrystalline silicon film. Improved and is characterized in that the superior reliability of the contact and metal wiring.
끝으로, 본 발명을 실시함에 있어서 VLSI 반도체 회로와 같이 활성화 영역(gate-to-field)의 크기가 작을수록 유리한데, 이것은 최고집적 소자에서 집적도를 높일 수 있는 효과가 있다.Finally, the smaller the size of the gate-to-field as in the VLSI semiconductor circuit in implementing the present invention, it is advantageous, which has the effect of increasing the density in the highest integrated device.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019920025020A KR960013624B1 (en) | 1992-12-22 | 1992-12-22 | Manufacture of shallow junction semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019920025020A KR960013624B1 (en) | 1992-12-22 | 1992-12-22 | Manufacture of shallow junction semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR940016466A KR940016466A (en) | 1994-07-23 |
KR960013624B1 true KR960013624B1 (en) | 1996-10-10 |
Family
ID=19346210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019920025020A KR960013624B1 (en) | 1992-12-22 | 1992-12-22 | Manufacture of shallow junction semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR960013624B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100602609B1 (en) * | 2002-12-03 | 2006-07-20 | (주)씨제이이엔지 | Method for dividing core |
-
1992
- 1992-12-22 KR KR1019920025020A patent/KR960013624B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR940016466A (en) | 1994-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63141373A (en) | Mos field effect transistor structure, integrated circuit and manufacture of the same | |
KR20000053506A (en) | Fabrication of semiconductor device having shallow junctions | |
EP0459398B1 (en) | Manufacturing method of a channel in MOS semiconductor devices | |
JPH0697192A (en) | Manufacture of semiconductor device | |
KR940011482B1 (en) | Mos type semiconductor device | |
KR100212455B1 (en) | Process for fabricating semiconductor device with dual gate structure | |
JP3524461B2 (en) | Process for fabricating a dual gate structure for a CMOS device | |
TWI420591B (en) | Semiconductor substrate, semiconductor device and method of manufacturing the same | |
KR19980018188A (en) | Method for Manufacturing Self Aligned POCl₃ for Submicron Microelectronics Applications Using Amorphized Polysilicon | |
KR960013624B1 (en) | Manufacture of shallow junction semiconductor device | |
JP2733082B2 (en) | MOS device manufacturing method | |
JP3394083B2 (en) | Semiconductor device and manufacturing method thereof | |
KR100408000B1 (en) | Method for Forming Semiconductor Device | |
KR100552592B1 (en) | Method of manufacturing the semiconductor device | |
KR19980070637A (en) | Semiconductor device and manufacturing method thereof | |
KR19980025506A (en) | Semiconductor device manufacturing method | |
JPS63275181A (en) | Manufacture of semiconductor device | |
KR100504192B1 (en) | Method for manufacturing semiconductor device | |
KR100431298B1 (en) | method for fabricating a semiconductor device | |
KR19980056177A (en) | Manufacturing Method of Semiconductor Device | |
KR0130626B1 (en) | Structure and fabrication of mosfet | |
KR100219065B1 (en) | Method of manufacturing mosfet of semiconductor device | |
KR100724146B1 (en) | method for manufacturing a semiconductor device | |
JPH11186546A (en) | Semiconductor device and manufacture thereof | |
KR100314272B1 (en) | Method for forming silicide in semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20091001 Year of fee payment: 14 |
|
LAPS | Lapse due to unpaid annual fee |