[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20240097529A - 전해액 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 및 리튬 이차 전지 - Google Patents

전해액 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 및 리튬 이차 전지 Download PDF

Info

Publication number
KR20240097529A
KR20240097529A KR1020220179660A KR20220179660A KR20240097529A KR 20240097529 A KR20240097529 A KR 20240097529A KR 1020220179660 A KR1020220179660 A KR 1020220179660A KR 20220179660 A KR20220179660 A KR 20220179660A KR 20240097529 A KR20240097529 A KR 20240097529A
Authority
KR
South Korea
Prior art keywords
carbonate
secondary battery
lithium secondary
paragraph
formula
Prior art date
Application number
KR1020220179660A
Other languages
English (en)
Inventor
양예지
박상우
김선대
김상훈
최현봉
박홍렬
김다현
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020220179660A priority Critical patent/KR20240097529A/ko
Priority to PCT/KR2023/002892 priority patent/WO2024135942A1/ko
Priority to US18/464,904 priority patent/US20240222704A1/en
Publication of KR20240097529A publication Critical patent/KR20240097529A/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/80Acids; Esters in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

화학식 1로 표시되는 전해액 첨가제, 및 이를 포함하는 리튬 이차 전지용 전해액 그리고 리튬 이차 전지를 제공한다.
상기 화학식 1에 대한 상세 내용은 명세서에 기재한 바와 같다.

Description

전해액 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 및 리튬 이차 전지{ADDITIVE FOR ELECTROLYTE, ELECTROLYTE FOR RECHARGEABLE LITHIUM BATTERY, AND RECHARGEABLE LITHIUM BATTERY INCLUDING THE SAME}
본 기재는 전해액 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지에 관한 것이다.
리튬 이차 전지는 재충전이 가능하며, 종래 납 축전지, 니켈-카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등과 비교하여 단위 중량당 에너지 밀도가 3배 이상 높고 고속 충전이 가능하기 때문에 노트북이나 핸드폰, 전동공구, 전기자전거용으로 상품화되고 있으며, 추가적인 에너지 밀도 향상을 위한 연구 개발이 활발하게 진행되고 있다.
이러한 리튬 이차 전지는 리튬을 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)할 수 있는 양극 활물질을 포함하는 양극과 리튬을 인터칼레이션 및 디인터칼레이션할 수 있는 음극 활물질을 포함하는 음극을 포함하는 전지 셀에 전해액을 주입하여 사용된다.
상기 전해액은 음극과 양극 사이에서 리튬 이온을 이동시키는 매질 역할을 하고, 일반적으로 리튬염이 용해된 유기 용매가 사용되고 있으며, 이러한 전해액은 리튬 이차 전지의 안정성 및 성능을 결정하는데 중요하다.
상기 전해액은 예를 들면, 프로필렌카보네이트, 에틸렌카보네이트 등의 고유전성 환형 카보네이트와 디에틸카보네이트, 에틸메틸카보네이트, 디메틸카보네이트 등의 선형 카보네이트의 혼합 용매에, LiPF6, LiBF4, LiFSI 등의 리튬염을 첨가한 것이 범용되고 있다. 다양한 분야의 전지 개발이 활성화됨에 따라 넓은 온도 영역에서 고출력, 고 안정성이 확보된 전지의 개발이 중요시되고 있으며, 전해액의 측면에서도 고출력, 장수명 특성, 고온에서의 저장 특성 및 스웰링, 용량 저하, 저항 증가를 억제할 수 있는 유기 용매와 첨가제의 최적 조합의 개발이 중요시되고 있다.
일 구현예는 고온 특성이 우수한 전해액 첨가제를 제공하는 것이다.
다른 일 구현예는 상기 첨가제를 포함하는 리튬 이차 전지용 전해액을 제공하는 것이다.
또 다른 일 구현예는 상기 전해액을 포함하는 리튬 이차 전지를 제공하는 것이다.
본 발명의 일 구현예는 하기 화학식 1로 표시되는 전해액 첨가제를 제공한다.
[화학식 1]
Figure pat00001
상기 화학식 1에서,
X1 및 X2는 각각 독립적으로 N 또는 CRa이고,
X1 및 X2 중 적어도 하나는 N이고,
Ra 및 R1 내지 R3은 각각 독립적으로 수소, 또는 치환 또는 비치환된 C1 내지 C10 알킬기이며,
n은 1 내지 3의 정수 중 하나이다.
상기 n은 1 또는 2의 정수일 수 있다.
상기 R1 내지 R3은 각각 독립적으로 수소 또는 치환 또는 비치환된 C1 내지 C5 알킬기일 수 있다.
상기 R3은 수소일 수 있다.
상기 전해액 첨가제는 하기 그룹 1에 나열된 화합물에서 선택되는 하나일 수 있다.
[그룹 1]
Figure pat00002
Figure pat00003
본 발명의 다른 일 구현예는 비수성 유기 용매, 리튬염, 및 상기 전해액 첨가제를 포함하는 리튬 이차 전지용 전해액을 제공한다.
상기 전해액 첨가제는 리튬 이차 전지용 전해액의 전체 100 중량부에 대하여 0.05 내지 5.0 중량부로 포함될 수 있다.
상기 전해액 첨가제는 리튬 이차 전지용 전해액의 전체 100 중량부에 대하여 0.05 내지 3.0 중량부로 포함될 수 있다.
상기 리튬 이차 전지용 전해액은 비닐렌 카보네이트(VC), 플루오로에틸렌 카보네이트 (FEC), 디플루오로에틸렌 카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트, 비닐에틸렌 카보네이트(VEC), 아디포나이트릴 (AN), 숙시노나이트릴 (SN), 1,3,6-헥산 트리시아나이드(HTCN), 프로펜술톤(PST), 프로판술톤(PS), 리튬테트라플루오로보레이트(LiBF4), 리튬 디플루오로포스페이트(LiPO2F2) 및 2-플루오로 바이페닐(2-FBP) 중 적어도 1종의 기타 첨가제를 더 포함할 수 있다.
상기 비수성 유기 용매는 사슬형 카보네이트로만 구성될 수 있다.
상기 사슬형 카보네이트는 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure pat00004
상기 화학식 2에서
R4 및 R5는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기이다.
상기 비수성 유기 용매는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 및 에틸메틸 카보네이트(EMC) 중 적어도 2종일 수 있다.
본 발명의 또 다른 일 구현예는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전술한 리튬 이차 전지용 전해액을 포함하는 리튬 이차 전지를 제공한다.
상기 양극 활물질은 코발트-free 리튬 니켈망간계 산화물을 포함할 수 있다.
상기 코발트-free 리튬 니켈망간계 산화물은 하기 화학식 4로 표시되는 리튬 복합 산화물을 포함할 수 있다.
[화학식 4]
LiaNixMnyM1zM2wO2±bXc
상기 화학식 4에서,
0.9 ≤ a < 1.2, 0 ≤ b < 0.1, 0 ≤ c < 0.1, 0 ≤ w < 0.1, 0.6 ≤ x < 1.0, 0 < y < 0.4, 0 < z < 0.1, w + x + y + z = 1이고,
M1 및 M2는 각각 독립적으로 Al, Mg, Ti, Zr, Cr, Sr, V, B, W, Mo, Nb, Si, Ba, Ca, Ce, Cr, Fe 및 Nb에서 선택되는 하나 이상의 원소이고, X는 S, F, P 및 Cl에서 선택되는 하나 이상의 원소이다.
상기 화학식 4는하기 화학식 4-1로 표시될 수 있다.
[화학식 4-1]
LiaNix1Mny1Alz1M2w1O2±bXc
상기 화학식 4-1에서,
0.9 ≤ a < 1.2, 0 ≤ b < 0.1, 0 ≤ c < 0.1, 0 ≤ w1 < 0.1, 0.6 ≤ x1 < 1.0, 0 < y1 < 0.4, 0 < z1 < 0.1, w1 + x1 + y1 + z1 = 1이며, M2는 각각 독립적으로 Mg, Ti, Zr, Cr, Sr, V, B, W, Mo, Nb, Si, Ba, Ca, Ce, Cr, Fe 및 Nb에서 선택되는 하나 이상의 원소이고, X는 S, F, P 및 Cl에서 선택되는 하나 이상의 원소이다.
상기 화학식 4-1의 x1은 0.6 ≤ x1 ≤0.79, y1은 0.2 ≤ y1 ≤0.39, z1은 0.01 ≤ z1 < 0.1일 수 있다.
상기 음극 활물질은 흑연 및 Si 복합체 중 적어도 1종을 포함할 수 있다.
상기 Si 복합체는 Si계 입자를 포함하는 코어 및 비정질 탄소 코팅층을 포함할 수 있다.
상기 Si계 입자는 Si 입자, Si-C 복합체, SiOx(0 < x ≤ 2) 및 Si alloy 중 1종 이상을 포함할 수 있다.
고온 저장 시 전지의 저항 증가를 억제하고 우수한 사이클 수명 특성이 구현되는 리튬 이차 전지를 제공한다.
도 1은 본 발명의 일 구현예에 따른 리튬 이차 전지를 도시한 개략도이다.
도 2는 실시예 및 비교예에 따른 전해액의 상온에서의 음극 순환전압전류(cyclic voltammetry, CV) 결과를 나타낸 그래프이다.
이하, 본 발명의 일 구현 예에 따른 리튬 이차 전지에 대하여 첨부된 도면을 참조하여 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 "치환"이란 별도의 정의가 없는 한, 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C30 아민기, 니트로기, 치환 또는 비치환된 C1 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C6 내지 C30 아릴실릴기, C3 내지 C30 시클로알킬기, C3 내지 C30 헤테로시클로알킬기, C6 내지 C30 아릴기, C2 내지 C30 헤테로아릴기, C1 내지 C20 알콕시기, C1 내지 C10 플루오로알킬기, 시아노기, 또는 이들의 조합으로 치환된 것을 의미한다.
본 발명의 일 예에서, "치환"은 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C6 내지 C30 아릴실릴기, C3 내지 C30 시클로알킬기, C3 내지 C30 헤테로시클로알킬기, C6 내지 C30 아릴기, C2 내지 C30 헤테로아릴기, C1 내지 C10 플루오로알킬기 또는 시아노기로 치환된 것을 의미한다. 또한, 본 발명의 구체적인 일 예에서, "치환"은 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, C1 내지 C20 알킬기, C6 내지 C30 아릴기, C1 내지 C10 플루오로알킬기 또는 시아노기로 치환된 것을 의미한다. 또한, 본 발명의 구체적인 일 예에서, "치환"은 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, C1 내지 C5 알킬기, C6 내지 C18 아릴기, C1 내지 C5 플루오로알킬기 또는 시아노기로 치환된 것을 의미한다. 또한, 본 발명의 구체적인 일 예에서, "치환"은 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 시아노기, 할로겐기, 메틸기, 에틸기, 프로필기, 부틸기, 페닐기, 바이페닐기, 터페닐기, 트리플루오로메틸기 또는 나프틸기로 치환된 것을 의미한다.
리튬 이차 전지는 사용하는 분리막과 전해액의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지 등으로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
여기서는 리튬 이차 전지의 일 예로 원통형 리튬 이차 전지를 예시적으로 설명한다. 도 1은 일 구현예에 따른 리튬 이차 전지의 구조를 개략적으로 나타낸 것이다. 도 1을 참고하면, 일 구현예에 따른 리튬 이차 전지(100)는 양극(114), 양극(114)과 대향하여 위치하는 음극(112), 양극(114)과 음극(112) 사이에 배치되어 있는 세퍼레이터(113) 및 양극(114), 음극(112) 및 세퍼레이터(113)를 함침하는 전해액(도시하지 않음)을 포함하는 전지 셀과, 상기 전지 셀을 담고 있는 전지 용기(120) 및 상기 전지 용기(120)를 밀봉하는 봉입 부재(140)를 포함한다.
이하, 일 구현예에 따른 전해액 첨가제에 대해 설명한다.
본 발명의 일 구현예에 따른 첨가제는 하기 화학식 1로 표시된다.
[화학식 1]
Figure pat00005
상기 화학식 1에서,
X1 및 X2는 각각 독립적으로 N 또는 CRa이고,
X1 및 X2 중 적어도 하나는 N이고,
Ra 및 R1 내지 R3은 각각 독립적으로 수소, 또는 치환 또는 비치환된 C1 내지 C10 알킬기이며,
n은 1 내지 3의 정수 중 하나이다.
상기 화학식 1에 포함된 피리딘 또는 피리미딘과 알카이닐기는 lone pair electron donor로서 PF5 -를 캡쳐할 수 있다.
리튬 이차전지는 초기 충방전 시에 비수전해액이 분해되면서, 양극 및 음극 표면에 부동태 능력을 가지는 피막이 형성되어 고온 저장 특성을 향상시킬 수 있는 반면, 상기 피막은 리튬 이온 전지에 널리 사용되는 리튬염(LiPF6 등)의 열분해로 생성되는 HF-와 PF5 -와 같은 산에 의해 열화될 수 있다. 이러한 산의 공격에 의하여 양극에서는 전이금속 원소의 용출이 발생하면서 표면의 구조의 변화로 전극의 표면 저항이 증가하고, 레독스 센터인 금속 원소들이 소실되면서 이론 용량이 감소하므로, 발현 용량이 감소할 수 있다. 또한, 이렇게 용출된 전이금속 이온은 강한 환원 전위 대역에서 반응하는 음극에 전착되어, 전자를 소모할 뿐만 아니라, 전착될 때 피막을 파괴하여, 음극 표면을 노출시키기 때문에 추가적인 전해액 분해 반응을 야기한다. 그 결과, 음극의 저항이 증가하고, 비가역 용량이 증가되면서 셀의 용량이 지속적으로 저하되는 문제가 존재한다. 본 발명에서는 전술한 화학식 1로 표시되는 첨가제의 피리딘 또는 피리미딘과 알카이닐기가 비공유 전자쌍을 제공함으로써 리튬염의 분해로 인하여 야기되는 산을 제거하여, 고온 저장 시 SEI 막의 열화나 양극에서의 전이금속 용출 등을 방지하면서, 음극 표면의 SEI 막을 강화시킬 수 있다.
특히, 피리딘 또는 피리미딘의 N은 아세테이트기와 meta-위치일 때 더욱 유리한 비공유 전자쌍 donor로 작용할 수 있다.
전술한 바와 같이 전해액의 분해, 그리고 전해액과의 부반응 억제 효과는 후술하는 코발트-free 리튬 니켈망간계 산화물을 포함하는 양극과 함께 사용함으로서 극대화될 수 있다.
일 예로 상기 n은 1 내지 3의 정수 중 하나일 수 있고, 예컨대 n은 1 또는 2의 정수일 수 있다.
n이 상기 범위 내인 경우 알카인과 아세테이트 사이에 위치하는 알킬렌 체인이 적절한 길이를 유지함에 따라 SEI 막 두께에 따른 저항 증가를 억제할 수 있다.
일 예로 상기 R1 내지 R3은 각각 독립적으로 수소 또는 치환 또는 비치환된 C1 내지 C5 알킬기일 수 있다.
일 예로 상기 R3은 수소일 수 있다.
일 실시예에서 상기 화학식 1로 표시되는 첨가제는 하기 그룹 1에 나열된 화합물에서 선택될 수 있다.
[그룹 1]
Figure pat00006
Figure pat00007
본 발명의 다른 일 구현예에 따른 리튬 이차 전지용 전해액은 비수성 유기 용매, 리튬염 및 전술한 전해액 첨가제를 포함한다.
상기 첨가제는 리튬 이차 전지용 전해액의 전체 100 중량부에 대하여 0.05 내지 5.0 중량부로 포함될 수 있다.
일 예로 상기 첨가제는 리튬 이차 전지용 전해액의 전체 100 중량부에 대하여 0.05 내지 3.0 중량부로 포함될 수 있다.
첨가제의 함량 범위가 상기와 같은 경우 고온에서의 저항 증가를 방지하여 수명 특성 및 출력 특성이 개선된 리튬 이차 전지를 구현할 수 있다.
상기 리튬 이차 전지용 전해액은 비닐렌 카보네이트(VC), 플루오로에틸렌 카보네이트 (FEC), 디플루오로에틸렌 카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트, 비닐에틸렌 카보네이트(VEC), 아디포나이트릴 (AN), 숙시노나이트릴 (SN), 1,3,6-헥산 트리시아나이드(HTCN), 프로펜술톤(PST), 프로판술톤(PS), 리튬테트라플루오로보레이트(LiBF4), 리튬 디플루오로포스페이트(LiPO2F2) 및 2-플루오로 바이페닐(2-FBP) 중 적어도 1종의 기타 첨가제를 더 포함할 수 있다.
상기한 기타 첨가제를 더욱 포함함으로써 수명이 더욱 향상되거나 고온 저장 시 양극과 음극에서 발생하는 가스를 효과적으로 제어할 수 있다.
상기 기타 첨가제는 상기 리튬 이차 전지용 전해액의 전체 100 중량부에 대하여 0.2 내지 20 중량부의 함량으로 포함될 수 있고, 구체적으로 0.2 내지 15 중량부, 예컨대 0.2 내지 10 중량부로 포함될 수 있다.
기타 첨가제의 함량이 상기와 같은 경우 피막 저항 증가를 최소화하여 전지 성능 향상에 기여할 수 있다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 비수성 유기 용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 또는 비양성자성 용매를 사용할 수 있다.
상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 에틸메틸 카보네이트(EMC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있다. 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, t-부틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 프로필프로피오네이트, 데카놀라이드(decanolide), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있다. 또한, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R1-CN(R1은 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 나이트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
일 예로, 상기 비수성 유기 용매는 사슬형(chain) 카보네이트로만 구성될 수 있다. 이 경우 고온 저장 시 저항 증가율이 현저히 완화됨에 따라 우수한 고온 저장 특성을 구현할 수 있다.
본 명세서에서 사슬형 카보네이트로만 구성된다는 의미는, 환형 카보네이트 등과 혼합되지 않고 사슬형 카보네이트의 범주에 속하는 유기 용매를 단독 또는 조합하여 포함하는 것을 의미한다.
구체적인 일 예로 상기 사슬형 카보네이트는 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure pat00008
상기 화학식 2에서
R4 및 R5는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기이다.
일 예로 상기 화학식 2의 R4 및 R5는 각각 독립적으로 치환 또는 비치환된 C1 내지 C10 알킬기일 수 있고, 예컨대 상기 R4 및 R5는 각각 독립적으로 치환 또는 비치환된 C1 내지 C5 알킬기일 수 있다.
일 실시예에서 상기 화학식 2의 R4 및 R5는 각각 독립적으로 치환 또는 비치환된 메틸기, 치환 또는 비치환된 에틸기, 치환 또는 비치환된 n-프로필기, 치환 또는 비치환된 n-부틸기, 치환 또는 비치환된 n-펜틸기, 치환 또는 비치환된 iso-부틸기, 치환 또는 비치환된 neo-펜틸기일 수 있다.
예컨대 구체적인 일 실시예에 따른 비수성 유기 용매는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 및 에틸메틸 카보네이트(EMC) 중 적어도 2종일 수 있다.
가장 구체적인 일 실시예에 따른 비수성 유기 용매는 디메틸 카보네이트(DMC) 및 에틸메틸 카보네이트(EMC)의 혼합 용매일 수 있다.
상기 비수성 유기 용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 용매는 1:1 내지 30:1의 부피비로 혼합될 수 있다.
상기 방향족 탄화수소계 용매로는 하기 화학식 3의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 3]
Figure pat00009
상기 화학식 3에서, R7 내지 R12는 서로 동일하거나 상이하며 수소, 할로겐, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 할로알킬기 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 방향족 탄화수소계 용매의 구체적인 예로는 벤젠, 플루오로벤젠, 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 톨루엔, 플루오로톨루엔, 2,3-디플루오로톨루엔, 2,4-디플루오로톨루엔, 2,5-디플루오로톨루엔, 2,3,4-트리플루오로톨루엔, 2,3,5-트리플루오로톨루엔, 클로로톨루엔, 2,3-디클로로톨루엔, 2,4-디클로로톨루엔, 2,5-디클로로톨루엔, 2,3,4-트리클로로톨루엔, 2,3,5-트리클로로톨루엔, 아이오도톨루엔, 2,3-디아이오도톨루엔, 2,4-디아이오도톨루엔, 2,5-디아이오도톨루엔, 2,3,4-트리아이오도톨루엔, 2,3,5-트리아이오도톨루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 리튬염은 비수성 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, Li(FSO2)2N(리튬 비스플루오로설포닐이미드 (lithium bis(fluorosulfonyl)imide): LiFSI), LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiPO2F2, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수이며, 예를 들면 1 내지 20의 정수임), LiCl, LiI, LiB(C2O4)2(리튬 비스(옥살레이토) 보레이트(lithium bis(oxalato) borate): LiBOB), LiDFOB (리튬 디플루오로(옥살레이토)보레이트) 및 Li[PF2(C2O4)2](리튬 디플루오로(비스 옥살레이토) 포스페이트(lithium difluoro (bis oxalato) phosphate)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 들 수 있다. 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
본 발명의 또 다른 일 구현예는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전술한 전해액을 포함하는 리튬 이차 전지를 제공한다.
상기 양극은 양극 집전체 및 상기 양극 집전체에 상에 위치하는 양극 활물질 층을 포함하며, 상기 양극 활물질 층은 양극 활물질을 포함한다.
상기 양극 활물질은 코발트-free 리튬 니켈망간계 산화물을 포함할 수 있다.
본 명세서에서 양극 활물질로서 코발트-free 리튬 니켈망간계 산화물이란, 양극 활물질 조성 중에 코발트를 포함하지 않고 니켈, 망간 등이 주성분으로 구성된 양극 활물질을 의미한다.
일 예로 상기 코발트-free 리튬 니켈망간계 산화물은 하기 화학식 4로 표시되는 리튬 복합 산화물 중 적어도 1종을 포함할 수 있다.
[화학식 4]
LiaNixMnyM1zM2wO2±bXc
상기 화학식 4에서,
0.9 ≤ a < 1.2, 0 ≤ b < 0.1, 0 ≤ c < 0.1, 0 ≤ w < 0.1, 0.6 ≤ x < 1.0, 0 < y < 0.4, 0 < z < 0.1, w + x + y + z = 1이고,
M1 및 M2는 각각 독립적으로 Al, Mg, Ti, Zr, Cr, Sr, V, B, W, Mo, Nb, Si, Ba, Ca, Ce, Cr, Fe 및 Nb에서 선택되는 하나 이상의 원소이고, X는 S, F, P 및 Cl에서 선택되는 하나 이상의 원소이다.
물론 상기 리튬 복합 산화물의 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 리튬 복합 산화물과 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 이 코팅층은 코팅 원소의 옥사이드, 코팅 원소의 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트 및 코팅 원소의 하이드록시카보네이트로 이루어진 군에서 선택되는 적어도 하나의 코팅 원소 화합물을 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
일 예로 상기 화학식 4는 하기 화학식 4-1로 표시될 수 있다.
[화학식 4-1]
LiaNix1Mny1Alz1M2w1O2±bXc
상기 화학식 4-1에서,
0.9 ≤ a < 1.2, 0 ≤ b < 0.1, 0 ≤ c < 0.1, 0 ≤ w1 < 0.1, 0.6 ≤ x1 < 1.0, 0 < y1 < 0.4, 0 < z1 < 0.1, w1 + x1 + y1 + z1 = 1이며, M2는 각각 독립적으로 Mg, Ti, Zr, Cr, Sr, V, B, W, Mo, Nb, Si, Ba, Ca, Ce, Cr, Fe 및 Nb에서 선택되는 하나 이상의 원소이고, X는 S, F, P 및 Cl에서 선택되는 하나 이상의 원소이다.
상기 화학식 4-1의 x1은 0.6 ≤ x1 ≤0.79, y1은 0.2 ≤ y1 ≤0.39, z1은 0.01 ≤ z1 < 0.1일 수 있다.
상기 양극 활물질의 함량은 양극 조성물의 전체 중량에 대하여 90 중량% 내지 98 중량%일 수 있다.
상기 도전재 및 바인더의 함량은 양극 조성물의 전체 중량에 대하여 각각 1 중량% 내지 5 중량%일 수 있다.
상기 도전재는 양극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 양극 집전체로는 Al을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 음극은 음극 집전체 및 이 음극 집전체 위에 형성되는 음극 활물질을 포함하는 음극 활물질 층을 포함한다.
상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬에 도프 및 탈도프 가능한 물질 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상 (flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬에 도프 및 탈도프 가능한 물질로는 Si, Si-C 복합체, SiOx(0 < x < 2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, Si를 제외한 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소), Sn, SnO2, Sn-R11(상기 R11은 알칼리 금속, 알칼리 토금속, 13족 원소, Sn을 제외한 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다.
상기 원소 Q 및 R11로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 또는 리튬 티타늄 산화물 등을 들 수 있다.
구체적인 일 실시예에서 상기 음극 활물질은 흑연 및 Si 복합체 중 적어도 1종을 포함할 수 있다.
상기 Si 복합체는 Si계 입자를 포함한 코어 및 비정질 탄소 코팅층을 포함하며, 예컨대 상기 Si계 입자는 Si 입자, Si-C 복합체, SiOx(0 < x ≤ 2) 및 Si alloy 중 1종 이상을 포함할 수 있다.
일 예로 상기 Si계 입자를 포함하는 코어의 중심부에 공극을 포함하고, 상기 중심부의 반지름은 상기 Si 복합체의 반지름의 30% 내지 50%에 해당하며, 상기 Si 복합체의 평균 입경은 5㎛ 내지 20㎛이며, 상기 Si계 입자의 평균 입경은 10nm 내지 200nm일 수 있다.
본 명세서에서, 평균 입경은 누적 분포 곡선(cumulative size-distribution curve)에서 부피비로 50%에서의 입자 크기 (D50)일 수 있다.
상기 Si계 입자의 평균 입경이 상기 범위에 포함되는 경우, 충방전시 발생하는 부피 팽창을 억제할 수 있고, 충방전시 입자 파쇄에 의한 전도성 경로(conductive path)의 단절을 막을 수 있다.
상기 Si계 입자를 포함하는 코어는 비정질 탄소를 추가로 포함하고, 이 때 상기 중심부는 비정질 탄소를 포함하지 않으며, 비정질 탄소는 Si 복합체의 표면부에만 존재할 수 있다.
이때, 표면부란, 중심부의 최표면으로부터 Si 복합체의 최표면까지의 영역을 의미한다.
또한, Si계 입자는 Si 복합체에 전체적으로 실질적으로 균일하게 포함되는 것으로서, 즉 중심부와 표면부에 실질적으로 균일한 농도로 존재할 수 있다.
상기 비정질 탄소는 소프트 카본, 하드 카본, 메조페이스 핏치 탄화물, 소성된 코크스 또는 이들의 조합일 수 있다.
예를 들어 상기 Si-C 복합체는 Si 입자 그리고 결정질 탄소를 포함할 수 있다.
상기 Si 입자는 상기 Si-C 복합체의 전체 중량에 대하여 1 내지 60 중량%로 포함될 수 있으며, 예컨대 3 내지 60 중량%로 포함될 수 있다.
상기 결정질 탄소는 예컨대 흑연일 수 있으며, 구체적으로는 천연 흑연, 인조 흑연, 또는 이들의 조합일 수 있다.
상기 결정질 탄소의 평균 입경은 5 ㎛ 내지 30 ㎛일 수 있다.
상기 음극 활물질이 흑연 및 Si 복합체를 함께 포함하는 경우, 상기 흑연 및 Si 복합체는 혼합물의 형태로 포함될 수 있으며, 이 경우 상기 흑연 및 Si 복합체는 99 : 1 내지 50 : 50의 중량비로 포함될 수 있다.
더욱 구체적으로는 상기 흑연 및 Si 복합체는 97 : 3 내지 80 : 20, 또는 95 : 5 내지 80 : 20의 중량비로 포함될 수 있다.
상기 비정질 탄소 전구체로는 석탄계 핏치, 메조페이스 핏치, 석유계 핏치, 석탄계 오일, 석유계 중질유 또는 페놀 수지, 퓨란 수지, 폴리이미드 수지 등의 고분자 수지를 사용할 수 있다.
상기 음극 활물질 층에서 음극 활물질의 함량은 음극 활물질 층 전체 중량에 대하여 95 중량% 내지 99 중량%일 수 있다.
상기 음극 활물질 층은 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다. 상기 음극 활물질 층에서 바인더의 함량은 음극 활물질 층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다. 또한 도전재를 더욱 포함하는 경우에는 음극 활물질을 90 중량% 내지 98 중량%, 바인더를 1 중량% 내지 5 중량%, 도전재를 1 중량% 내지 5 중량%로 포함할 수 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더로는 비수용성 바인더, 수용성 바인더 또는 이들의 조합을 사용할 수 있다.
상기 비수용성 바인더로는 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리아미드이미드, 폴리이미드 또는 이들의 조합을 들 수 있다.
상기 수용성 바인더로는 고무계 바인더 또는 고분자 수지 바인더를 들 수 있다. 상기 고무계 바인더는 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버(SBR), 아크릴로나이트릴-부타디엔 러버, 아크릴 고무, 부틸고무, 불소고무 및 이들의 조합에서 선택되는 것일 수 있다. 상기 고분자 수지 바인더는 폴리테트라플루오로에틸렌, 에틸렌프로필렌공중합체, 폴리에틸렌옥시드, 폴리비닐피롤리돈, 폴리에피크로로히드린, 폴리포스파젠, 폴리아크릴로니트릴, 폴리스틸렌, 에틸렌프로필렌디엔공중합체, 폴리비닐피리딘, 클로로설폰화폴리에틸렌, 라텍스, 폴리에스테르수지, 아크릴수지, 페놀수지, 에폭시 수지, 폴리비닐알콜으로 및 이들의 조합에서 선택되는 것일 수 있다.
상기 음극 바인더로 수용성 바인더를 사용하는 경우, 점성을 부여할 수 있는 셀룰로즈 계열 화합물을 더욱 포함할 수 있다. 이 셀룰로즈 계열 화합물로는 카르복시메틸 셀룰로즈, 하이드록시프로필메틸 셀룰로즈, 메틸 셀룰로즈, 또는 이들의 알칼리 금속염 등을 1종 이상 혼합하여 사용할 수 있다. 상기 알칼리 금속으로는 Na, K 또는 Li를 사용할 수 있다. 이러한 증점제 사용 함량은 음극 활물질 100 중량부에 대하여 0.1 중량부 내지 3 중량부일 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 음극 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수도 있다. 이러한 세퍼레이터는 다공성 기재이거나; 또는 복합 다공성 기재일 수 있다.
다공성 기재는 공극을 포함하는 기재로서 상기 공극을 통하여 리튬 이온이 이동할 수 있다. 상기 다공성 기재는 예컨대 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
상기 복합 다공성 기재는 다공성 기재 및 상기 다공성 기재 상에 위치하는 기능층을 포함하는 형태일 수 있다. 상기 기능층은 추가적인 기능 부가가 가능하게 되는 관점에서, 예를 들면 내열층, 및 접착층 중 적어도 하나일 수 있으며, 예컨대 상기 내열층은 내열성 수지 및 선택적으로 필러를 포함할 수 있다.
또한, 상기 접착층은 접착성 수지 및 선택적으로 필러를 포함할 수 있다.
상기 필러는 유기 필러이거나 무기 필러일 수 있다.
상기 리튬 이차 전지는 충전 상한 전압이 4.45V 이상일 수 있다. 예를 들어, 충전 상한 전압은 4.45 V 내지 4.55 V일 수 있다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
(합성예: 첨가제의 합성)
합성예 1: 화학식 1a의 합성
[반응식 1]
Figure pat00010
Nicotinic Acid를 DCC(N,N’-디시클로헥실카보디이미드), 및 DMAP(4-Dimethylaminopyridine) in MC(디클로로메탄)에서 먼저 30분 반응시킨다. 이때, N2 charging 환경에서 Propargyl alcohol을 천천히 dropping 한다.
filter 후 여액에서 용매를 제거한 다음, Silica filter 하여 화학식1a를 얻는다.
비교합성예 1: 화학식 C1의 합성
Nicotinic Acid 를 Pyridine-2-carboxylic Acid로 변경하여 상기 합성예 1과 동일한 방법으로 하기 화학식 C1로 표시되는 화합물을 얻었다.
[화학식 C1]
Figure pat00011
비교합성예 2: 화학식 C2의 합성
Nicotinic Acid 를 Isonicotinic Acid로 변경하여 상기 합성예 1과 동일한 방법으로 하기 화학식 C2로 표시되는 화합물을 얻었다.
[화학식 C2]
Figure pat00012
(실시예: 리튬 이차 전지의 제작)
실시예 1
양극 활물질로서 LiNi0.75Mn0.23Al0.02O2, 바인더로서 폴리비닐리덴 플루오라이드 및 도전재로서 아세틸렌 블랙을 각각 96:3:1의 중량비로 혼합하여, N-메틸 피롤리돈에 분산시켜 양극 활물질 슬러리를 제조하였다.
상기 양극 활물질 슬러리를 15 ㎛ 두께의 Al 포일 위에 코팅하고, 100℃에서 건조한 후, 압연(press)하여 양극을 제조하였다.
음극 활물질로서 인조 흑연과 Si-C 복합체가 93:7의 중량비로 혼합된 혼합물을 사용하였으며, 음극 활물질과 스티렌-부타디엔 고무 바인더 및 카르복시메틸셀룰로오스를 각각 98:1:1의 중량비로 혼합하여, 증류수에 분산시켜 음극 활물질 슬러리를 제조하였다.
상기 Si-C 복합체는 인조 흑연 및 실리콘 입자를 포함하는 코어 및 상기 코어의 표면에 석탄계 핏치가 코팅된 것을 사용하였다.
상기 음극 활물질 슬러리를 10㎛ 두께의 Cu 포일 위에 코팅하고, 100℃에서 건조한 후, 압연(press)하여 음극을 제조하였다.
상기 제조된 양극 및 음극과 두께 10㎛의 폴리에틸렌 재질의 세퍼레이터를 조립하여 전극 조립체를 제조하고 전해액을 주입하여 리튬 이차 전지를 제조하였다.
전해액 조성은 하기와 같다.
(전해액 조성)
염: LiPF6 1.5 M
용매: 에틸렌 카보네이트: 에틸메틸 카보네이트: 디메틸 카보네이트 (EC:EMC:DMC=20:10:70의 부피비)
첨가제: 상기 화학식 1a로 표시되는 화합물 0.25 중량부, 플루오로에틸렌카보네이트(FEC: fluoroethylene carbonate) 10 중량부 및 숙시노니트릴(SN: succinonitrile) 0.5 중량부
(단, 상기 전해액 조성에서 “중량부”는 첨가제를 제외한 전해액의 전체(리튬염+비수성 유기 용매) 100 중량에 대한 첨가제의 상대적인 중량을 의미한다.)
실시예 2 및 3
상기 화학식 1a로 표시되는 화합물의 함량을 0.5 중량부 및 1.0 중량부로 각각 변경하여 전해액을 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
실시예 4 내지 6
전해액 조성의 용매를 에틸메틸 카보네이트(EMC) : 디메틸 카보네이트(DMC)= 60:40의 부피비로 변경하여 전해액을 제조한 것을 제외하고는 상기 실시예 1 내지 3과 각각 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 1
첨가제를 포함하지 않은 전해액을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 2 및 3
상기 화학식 1a로 표시되는 화합물 대신 화학식 C1로 표시되는 화합물 및 화학식 C2로 표시되는 화합물을 각각 첨가제로 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
상기 실시예 1 내지 6 및 비교예 1 내지 3에 따른 전해액 첨가제 조성을 하기 표 1에 나타내었다.
첨가제
(중량부)
기타 첨가제 용매 (부피비)
FEC
(중량부)
SN
(중량부)
EC EMC DMC
실시예 1 화학식 1a
(0.25)
10 0.5 20 10 70
실시예 2 화학식 1a(0.5) 10 0.5 20 10 70
실시예 3 화학식 1a(1.0) 10 0.5 20 10 70
실시예 4 화학식 1a(0.25) 10 0.5 - 60 40
실시예 5 화학식 1a(0.5) 10 0.5 - 60 40
실시예 6 화학식 1a(1.0) 10 0.5 - 60 40
비교예 1 - 10 0.5 20 10 70
비교예 2 화학식 C1
(0.25)
10 0.5 20 10 70
비교예 3 화학식 C2(0.25) 10 0.5 20 10 70
평가 1: CV 특성 평가
비교예 1 및 실시예 1에 따른 전해액의 전기화학적 안정성을 평가하기 위해, 순환전압전류법 (cyclic voltammetry, CV) 측정을 하였고, 그 결과를 도 2에 나타내었다.
작업 전극으로는 그래파이트 음극을, 기준 전극과 상대 전극으로는 Li 금속을 이용한 삼전극 전기화학셀을 이용하여 음극 CV 측정을 수행하였다. 이때 스캔은 3V에서 0V로, OV에서 3V로 3 사이클을 진행하였고, 스캔 속도는 0.1mV/sec로 진행하였다.
도 2는 실시예 1 및 비교예 1에 따른 전해액의 상온에서의 음극 순환전압전류(cyclic voltammetry, CV) 결과를 나타낸 그래프이다.
도 2에서 보는 바와 같이, 본 발명에 따른 첨가제를 포함하는 실시예 1에 따른 전해액은 약 1.0 V 이상에서 환원 분해 피크가 나타남을 확인할 수 있다.
반면, 첨가제를 포함하지 않는 비교예 1에 따른 전해액은 이보다 낮은 전위에서 환원 분해 피크가 나타나는 것을 확인할 수 있다.
이는 본 발명의 일 실시예에 따른 첨가제를 포함하는 전해액이 상대적으로 높은 환원 전위에서 용매와 교호 작용을 일으킨다는 증거가 되며, 이로 인해 실시예 1에 따른 전해액은 음극에 리튬 이온이 삽입되는 충전 과정 동안 용매 분해가 일어나기 전에 넓은 전압 영역에 걸쳐 음극에 초기 SEI막이 형성되었을 것으로 예상할 수 있다. 따라서, 초기 SEI막이 형성되지 않은 비교예 1에 따른 전해액을 채용한 리튬 이차전지에 비해 본원 실시예 1에 따른 전해액을 채용한 리튬 이차전지는 우수한 전지 성능을 가질 것으로 예상된다.
평가 2: 상온 충방전 사이클 특성 평가
실시예 1 내지 6, 및 비교예 1 내지 3에 따른 리튬 이차 전지를 다음과 같은 조건으로 충방전 후 사이클 특성을 평가하였고, 그 결과를 표 2에 나타내었다.
25℃, 0.33C 충전 (CC/CV, 4.45V, 0.025C Cut-off) /1.0C 방전 (CC, 2.5V Cut-off) 조건에서 200 사이클 충방전 진행 후 용량 유지율, 및 직류내부저항(DC-IR: Direct current internal resistance)의 변화를 측정하였다.
DC-IR은 SOC 50C의 전류를 30초간 인가하여 방전하며 변화된 전압을바탕으로 하기 식 1 및 식 2에 따라 계산하여 그 결과를 하기 표 2에 나타내었다.
[식 1]
용량 유지율 = (200 cycle 후 용량 / 1 cycle 후 용량) * 100
[식 2]
직류내부저항 변화 = {(200 cycle 후 DC-IR - 1 cycle 후 DC-IR)/(1 cycle 후 DC-IR)} * 100
용량유지율
(@25℃, 200 Cycle)
초기저항
@25℃
(mΩ)
200cy 후
DC-IR
@25℃
(mΩ)
200cy 후
DC-IR 변화율
@25℃
(%)
비교예 1 87.1 41 84.5 206%
비교예 2 88.4 43.2 84.1 195%
비교예 3 88.2 43.1 84.5 196%
실시예 1 89.8 42.8 83.4 195%
실시예 2 91.5 43.3 82.7 191%
실시예 3 89.9 42.9 85.7 200%
실시예 4 91.7 43.4 84.2 194%
실시예 5 92.2 43.8 83.8 191%
실시예 6 91.1 44.1 86.3 196%
표 2를 참고하면, 본 발명에 따른 첨가제 사용 시 상온 수명 특성이 개선됨을 확인할 수 있다.
평가 3: 고온(45℃) 수명 특성 평가
실시예 1 내지 6 및 비교예 1 내지 3에서 제작된 리튬 이차전지를 45℃, 0.33C 충전 (CC/CV, 4.45V, 0.025C Cut-off) /1.0C 방전 (CC, 2.5V Cut-off) 조건에서 200 사이클 충방전 진행 후 용량 유지율, 및 직류내부저항(DC-IR: Direct current internal resistance)의 변화를 측정하였다.
DC-IR은 SOC 50C의 전류를 30초간 인가하여 방전하며 변화된 전압을바탕으로 상기 식 1 및 식 2에 따라 계산하여 그 결과를 하기 표 3에 나타내었다.
용량유지율
(@45℃, 200 Cycle)
초기저항
@45℃
(mΩ)
200cy 후
DC-IR
@45℃
(mΩ)
200cy 후
DC-IR 변화율
@45℃
(%)
비교예 1 85.0 47.6 106.3 223
비교예 2 86.0 51.2 110.0 215
비교예 3 86.1 49.6 108.0 218
실시예 1 87.7 49.4 105.2 213
실시예 2 89.4 49.9 104.5 209
실시예 3 87.8 49.5 107.5 217
실시예 4 89.6 50 106 212
실시예 5 90.1 50.4 105.6 210
실시예 6 89.0 50.7 108.1 213
표 3을 참고하면, 본 발명에 따른 첨가제 사용 시 고온 수명 특성이 개선됨을 확인할 수 있다.
평가 4: 고온 저장 특성 평가 (용량유지율/용량회복율/DC-IR)
실시예 1 내지 6, 및 비교예 1 내지 3에 따라 제작된 리튬 이차 전지에 대하여 0.33C로 1회 충방전을 실시하여 충방전 용량을 측정하였다(고온 저장전).
또한, 실시예 1 내지 6, 및 비교예 1 내지 3에 따라 제작된 리튬 이차 전지를 SOC100%(전지 전체 충전 용량을 100%로 하였을 때, 100% 충전 용량이 되도록 충전한 상태)로 충전을 실시한 후, 60℃에서 30일 동안 저장한 뒤, 0.33C로 3.0V까지 정전류조건으로 방전하여 초기 방전 용량을 측정하였다.
다시 0.33C로 4.3V까지 정전류로 하는 조건 및 0.02C를 종료 전류로 한 정전압 조건으로 재충전하고, 0.33C로 3.0V까지 정전류 조건으로 방전하여 2번의 방전 용량을 측정하였다. 상기 초기 방전 용량에 대한 첫 번째 방전 용량비를 용량 유지율 (retention capacity), 두 번째 방전 용량을 용량 회복율(recovery capacity)로 나타내었다.
실시예 1 내지 6 및 비교예 1 내지 3에 따라 제작된 리튬이차전지에 대하여 △V/△I(전압의 변화/전류의 변화) 값으로 초기 직류저항(DCIR)을 측정한 후, 전지 내부의 최대 에너지 상태를 만충전 상태(SOC 100%)로 만들고, 이 상태에서 고온(60℃)에서 30일간 보관한 후 직류저항을 측정하여, DCIR 증가율(%)을 하기 식 3에 따라 계산하여 그 결과를 하기 표 4에 나타내었다.
[식 3]
DCIR 증가율 =(30일 후 DCIR / 초기 DCIR) * 100
용량유지율
(@60℃, 300D)
용량회복율
(@60℃, 300D)
초기저항
(@25℃, mΩ)
DC-IR
@60℃, 30D
(mΩ)
DC-IR 변화율
(%)
비교예 1 86.2 89.6 41 96.3 235
비교예 2 87.1 90.4 42.5 97.7 230
비교예 3 87.8 91 42.5 96.9 228
실시예 1 88.9 92.3 42.8 95.2 222
실시예 2 90.6 94 43.3 94.5 218
실시예 3 89 92.4 42.9 97.5 227
실시예 4 90.8 94.2 43.4 96 221
실시예 5 91.3 94.7 43.8 95.6 218
실시예 6 90.2 93.6 44.1 98.1 222
상기 표 4를 참고하면, 실시예 1 내지 6에 따른 리튬 이차 전지는 비교예 1 내지 3과 비교하여 고온 저장 시 용량유지율과 용량회복율이 개선되고 저항변화율이 억제되는 것을 알 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
100: 리튬 이차 전지
112: 음극
113: 세퍼레이터
114: 양극
120: 전지 용기
140: 봉입 부재

Claims (21)

  1. 하기 화학식 1로 표시되는 전해액 첨가제:
    [화학식 1]
    Figure pat00013

    상기 화학식 1에서,
    X1 및 X2는 각각 독립적으로 N 또는 CRa이고,
    X1 및 X2 중 적어도 하나는 N이고,
    Ra 및 R1 내지 R3은 각각 독립적으로 수소, 또는 치환 또는 비치환된 C1 내지 C10 알킬기이며,
    n은 1 내지 3의 정수 중 하나이다.
  2. 제1항에서,
    상기 n은 1 또는 2의 정수인 전해액 첨가제.
  3. 제1항에서,
    상기 R1 내지 R3은 각각 독립적으로 수소 또는 치환 또는 비치환된 C1 내지 C5 알킬기인, 전해액 첨가제.
  4. 제1항에서,
    상기 R3은 수소인, 전해액 첨가제.
  5. 제1항에서,
    하기 그룹 1에 나열된 화합물 중에서 선택되는 하나인, 전해액 첨가제:
    [그룹 1]
    Figure pat00014
    Figure pat00015
    .
  6. 비수성 유기 용매, 리튬염, 및 제1항에 따른 전해액 첨가제를 포함하는 리튬 이차 전지용 전해액.
  7. 제6항에서,
    상기 전해액 첨가제는 리튬 이차 전지용 전해액의 전체 100 중량부에 대하여 0.05 내지 5.0 중량부로 포함되는 것인, 리튬 이차 전지용 전해액.
  8. 제6항에서,
    상기 전해액 첨가제는 리튬 이차 전지용 전해액의 전체 100 중량부에 대하여 0.05 내지 3.0 중량부로 포함되는 것인, 리튬 이차 전지용 전해액.
  9. 제6항에서,
    비닐렌 카보네이트(VC), 플루오로에틸렌 카보네이트 (FEC), 디플루오로에틸렌 카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트, 비닐에틸렌 카보네이트(VEC), 아디포나이트릴 (AN), 숙시노나이트릴 (SN), 1,3,6-헥산 트리시아나이드(HTCN), 프로펜술톤(PST), 프로판술톤(PS), 리튬테트라플루오로보레이트(LiBF4), 리튬 디플루오로포스페이트(LiPO2F2) 및 2-플루오로 바이페닐(2-FBP) 중 적어도 1종의 기타 첨가제를 더 포함하는, 리튬 이차 전지용 전해액.
  10. 제6항에서,
    상기 비수성 유기 용매는 사슬형 카보네이트로만 구성되는 것인, 리튬 이차 전지.
  11. 제10항에서,
    상기 사슬형 카보네이트는 하기 화학식 2로 표시되는, 리튬 이차 전지:
    [화학식 2]
    Figure pat00016

    상기 화학식 2에서
    R4 및 R5는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기이다.
  12. 제6항에서,
    상기 비수성 유기 용매는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 및 에틸메틸 카보네이트(EMC) 중 적어도 2종인, 리튬 이차 전지.
  13. 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극; 및
    제6항 내지 제12항 중 어느 한 항에 따른 리튬 이차 전지용 전해액을 포함하는 리튬 이차 전지.
  14. 제13항에서,
    상기 양극 활물질은 코발트-free 리튬 니켈망간계 산화물을 포함하는, 리튬 이차 전지.
  15. 제13항에서,
    상기 코발트-free 리튬 니켈망간계 산화물은 하기 화학식 4로 표시되는 리튬 복합 산화물을 포함하는, 리튬 이차 전지:
    [화학식 4]
    LiaNixMnyM1zM2wO2±bXc
    상기 화학식 4에서,
    0.9 ≤ a < 1.2, 0 ≤ b < 0.1, 0 ≤ c < 0.1, 0 ≤ w < 0.1, 0.6 ≤ x < 1.0, 0 < y < 0.4, 0 < z < 0.1, w + x + y + z = 1이고,
    M1 및 M2는 각각 독립적으로 Al, Mg, Ti, Zr, Cr, Sr, V, B, W, Mo, Nb, Si, Ba, Ca, Ce, Cr, Fe 및 Nb에서 선택되는 하나 이상의 원소이고,
    X는 S, F, P 및 Cl에서 선택되는 하나 이상의 원소이다.
  16. 제15항에서,
    상기 화학식 4는 하기 화학식 4-1로 표시되는, 리튬 이차 전지:
    [화학식 4-1]
    LiaNix1Mny1Alz1M2w1O2±bXc
    상기 화학식 4-1에서,
    0.9 ≤ a < 1.2, 0 ≤ b < 0.1, 0 ≤ c < 0.1, 0 ≤ w1 < 0.1, 0.6 ≤ x1 < 1.0, 0 < y1 < 0.4, 0 < z1 < 0.1, w1 + x1 + y1 + z1 = 1이며,
    M2는 각각 독립적으로 Mg, Ti, Zr, Cr, Sr, V, B, W, Mo, Nb, Si, Ba, Ca, Ce, Cr, Fe 및 Nb에서 선택되는 하나 이상의 원소이고,
    X는 S, F, P 및 Cl에서 선택되는 하나 이상의 원소이다.
  17. 제16항에서,
    상기 화학식 4-1의 x1은 0.6 ≤ x1 ≤0.79, y1은 0.2 ≤ y1 ≤0.39, z1은 0.01 ≤ z1 < 0.1인, 리튬 이차 전지.
  18. 제13항에서,
    상기 음극 활물질은 흑연 및 Si 복합체 중 적어도 1종을 포함하는, 리튬 이차 전지.
  19. 제18항에서,
    상기 Si 복합체는 Si계 입자를 포함하는 코어 및 비정질 탄소 코팅층을 포함하는, 리튬 이차 전지.
  20. 제19항에서,
    상기 Si계 입자는 Si 입자, Si-C 복합체, SiOx(0 < x ≤ 2) 및 Si alloy 중 1종 이상을 포함하는, 리튬 이차 전지.
  21. 제13항에서,
    상기 리튬 이차 전지는 충전 상한 전압이 4.45V 인, 리튬 이차 전지.
KR1020220179660A 2022-12-20 2022-12-20 전해액 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 및 리튬 이차 전지 KR20240097529A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020220179660A KR20240097529A (ko) 2022-12-20 2022-12-20 전해액 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 및 리튬 이차 전지
PCT/KR2023/002892 WO2024135942A1 (ko) 2022-12-20 2023-03-03 전해액 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 및 리튬 이차 전지
US18/464,904 US20240222704A1 (en) 2022-12-20 2023-09-11 Additive for electrolyte, electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220179660A KR20240097529A (ko) 2022-12-20 2022-12-20 전해액 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 및 리튬 이차 전지

Publications (1)

Publication Number Publication Date
KR20240097529A true KR20240097529A (ko) 2024-06-27

Family

ID=91588983

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220179660A KR20240097529A (ko) 2022-12-20 2022-12-20 전해액 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 및 리튬 이차 전지

Country Status (3)

Country Link
US (1) US20240222704A1 (ko)
KR (1) KR20240097529A (ko)
WO (1) WO2024135942A1 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102192087B1 (ko) * 2014-02-26 2020-12-16 삼성전자주식회사 음극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
KR102103898B1 (ko) * 2017-01-23 2020-04-24 주식회사 엘지화학 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
KR102500815B1 (ko) * 2019-01-25 2023-02-17 주식회사 엘지에너지솔루션 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR102447200B1 (ko) * 2019-02-28 2022-09-26 주식회사 엘지에너지솔루션 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
CN111430683A (zh) * 2020-01-17 2020-07-17 蜂巢能源科技有限公司 锂离子电池的无钴正极材料及其制备方法和锂离子电池

Also Published As

Publication number Publication date
US20240222704A1 (en) 2024-07-04
WO2024135942A1 (ko) 2024-06-27

Similar Documents

Publication Publication Date Title
KR101754608B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR20220106578A (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR20220106579A (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR20230146375A (ko) 리튬 이차 전지
KR20230031007A (ko) 리튬 이차 전지
KR20150091712A (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR20240026851A (ko) 전해액 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 및 리튬 이차 전지
KR20220131696A (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR20240097529A (ko) 전해액 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 및 리튬 이차 전지
EP4343912A1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
KR102587915B1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
EP4383392A1 (en) Additive for electrolyte, electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
EP4328220A1 (en) Additive for electrolyte, and electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
EP4329030A1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
KR102614016B1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR102643670B1 (ko) 리튬 이차 전지
EP4239747A1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
EP4358185A1 (en) Rechargeable lithium battery
KR20240038464A (ko) 전해액 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 및 리튬 이차 전지
KR20240050130A (ko) 리튬 이차 전지
KR20230162879A (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 양극, 및 리튬 이차 전지
KR20240050129A (ko) 리튬 이차 전지
KR20240015482A (ko) 양극, 및 이를 포함하는 리튬 이차 전지
KR20240051747A (ko) 리튬 이차 전지
KR20240050128A (ko) 리튬 이차 전지