KR20230027649A - Non emitting iii-nitride semiconductor stacked structure and method of manufacturing the same - Google Patents
Non emitting iii-nitride semiconductor stacked structure and method of manufacturing the same Download PDFInfo
- Publication number
- KR20230027649A KR20230027649A KR1020210109671A KR20210109671A KR20230027649A KR 20230027649 A KR20230027649 A KR 20230027649A KR 1020210109671 A KR1020210109671 A KR 1020210109671A KR 20210109671 A KR20210109671 A KR 20210109671A KR 20230027649 A KR20230027649 A KR 20230027649A
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- nitride semiconductor
- group iii
- iii nitride
- substrate
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 161
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 243
- 150000004767 nitrides Chemical class 0.000 claims abstract description 168
- 238000000034 method Methods 0.000 claims abstract description 117
- 239000010409 thin film Substances 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 239000000919 ceramic Substances 0.000 claims abstract description 10
- 230000004888 barrier function Effects 0.000 claims description 17
- 238000002161 passivation Methods 0.000 claims description 15
- 230000002829 reductive effect Effects 0.000 claims description 10
- 239000010410 layer Substances 0.000 description 401
- 239000010408 film Substances 0.000 description 72
- 239000000463 material Substances 0.000 description 60
- 230000002265 prevention Effects 0.000 description 55
- 229910052594 sapphire Inorganic materials 0.000 description 44
- 239000010980 sapphire Substances 0.000 description 44
- 230000008569 process Effects 0.000 description 34
- 229910002704 AlGaN Inorganic materials 0.000 description 29
- 239000013078 crystal Substances 0.000 description 19
- 230000007547 defect Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 238000005530 etching Methods 0.000 description 15
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 206010053759 Growth retardation Diseases 0.000 description 9
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- 238000005240 physical vapour deposition Methods 0.000 description 9
- 239000004020 conductor Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 6
- 229910015269 MoCu Inorganic materials 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- 108091006149 Electron carriers Proteins 0.000 description 3
- 229910004205 SiNX Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000002942 anti-growth Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- -1 for example Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910017083 AlN Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910019912 CrN Inorganic materials 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 230000009036 growth inhibition Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000005533 two-dimensional electron gas Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910016048 MoW Inorganic materials 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- 229910019899 RuO Inorganic materials 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- 229910008599 TiW Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000001657 homoepitaxy Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66446—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
- H01L29/66462—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
Abstract
Description
본 개시(Disclosure)는 전체적으로 비발광 3족 질화물 반도체 적층체 내지 3족 질화물 반도체 소자 및 이를 제조하는 방법에 관한 것으로 특히, 전력소자(예: 다이오드, 트랜지스터, HEMT, JFET)와 같은 비발광(Non-emitting) 3족 질화물 반도체 적층체 내지 3족 질화물 반도체 소자 및 이를 제조하는 방법에 관한 것이다.The present disclosure generally relates to a
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).Here, background art related to the present disclosure is provided, and they do not necessarily mean prior art (This section provides background information related to the present disclosure which is not necessarily prior art).
도 1은 미국 등록특허공보 제7,230,284호에 제시된 3족 질화물 반도체 소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 소자는(예: AlGaN/GaN based HEMT)는 성장 기판(11; 예: 사파이어 기판, SiC 기판), 버퍼층(12; 예: AlxGa1-xN (0≤x≤1) 버퍼층), 채널층(20; 예: GaN 채널층), 2DEG(22; two-dimensional electron gas)(22), 배리어층(18; 예: AlGaN 배리어층), 절연층(24; SiN 절연층), 드레인 전극(14), 게이트 전극(16) 및 소스 전극(17)을 포함한다.1 is a view showing an example of a group III nitride semiconductor device presented in US Patent Registration No. 7,230,284, and the group III nitride semiconductor device (eg AlGaN / GaN based HEMT) is a
재료비와 결정성의 관점에서 성장 기판(11)으로 사파이어 기판을 활용하는 것이 바람직하지만, 방열의 관점에서 적합하지 않다. SiC 기판은 결정성의 관점과 방열의 관점에서 고려될 수 있지만, 재료비가 고가이며, 소자가 대면적화함에 따라 더 크게 문제될 수 있다. 재료비의 관점에서 저가인 Si 기판을 사용하는 것을 고려할 수 있는데, 그 위에 성장되는 3족 질화물 반도체층의 결정성을 향상하는 방안이 반드시 수반되어야만 한다. 이하에서, 성장의 과정에서 3족 질화물 반도체층의 결정성을 향상하는 방법을 먼저 살핀다.Although it is preferable to utilize a sapphire substrate as the
도 2는 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 c면 사파이어 기판(100), c면 사파이어 기판(100) 위에 형성된 SiO2로 된 성장 방지막(150), 그리고, 그 위에 선택 성장된(selectively grown) 3족 질화물 반도체층(310)을 포함한다. 이러한 성장법을 통해 3족 질화물 반도체 적층체 내의 결정 결함을 감소시킬 수 있다.2 is a view showing an example of a
도 3은 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 또 다른 일 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 c면 사파이어 기판(100), c면 사파이어 기판(100) 위에 미리 형성된 3족 질화물 반도체 템플릿(210), 3족 질화물 반도체 템플릿(210) 위에 형성된 SiO2로 된 성장 방지막(150), 그리고, 그 위에 선택 성장된(selectively grown) 3족 질화물 반도체층(310)을 포함한다. 3족 질화물 반도체 템플릿(210)은 종래에 c면 사파이어 기판(100)에 3족 질화물 반도체를 성장하는 방법에 의해 형성된다. 즉, 550℃ 부근의 성장온도와 수소 분위기에서, 씨앗층을 형성한 다음, 1050℃의 성장온도에서 GaN을 성장하는 방법에 의해 1~3um의 두께로 형성된다. 도면 부호 180은 결함(Defecsts; Treading Dislocations)을 나타내며, 성장 방지막(150) 아래의 결함의 전개가 차단됨으로써, 전체적으로 결정성의 향상을 가져오게 된다. 즉, 성장 방지막(150)은 도 1에 제시된 3족 질화물 반도체 적층체에서와 마찬가지로 ELOG(Epitaxially Lateral Overgrowth)가 가능하게 하는 한편, 아래쪽에서 발생한 결함(180)을 차단하는 역할을 한다.3 is a view showing another example of a
도 4는 미국 공개특허공보 제2003-0057444호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자는 사파이어 기판(100), 사파이어 기판(100) 위에 성장되는 n형 3족 질화물 반도체층(300), n형 3족 질화물 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 3족 질화물 반도체층(500)을 포함한다. 사파이어 기판(100)에는 돌기(110)가 형성되어 있으며, 돌기(110)는 사파이어 기판(100) 위에 성장되는 3족 질화물 반도체층(300,400,500)의 결정질(Growth Quality)을 향상시키는 한편, 활성층(400)에서 생성되는 빛을 발광소자 외부로 방출하는 효율을 향상시키는 산란면으로 기능한다. 이와 같이 돌기(110)가 형성된 사파이어 기판(100)을 패턴드 사파이어 기판(PSS; Patterned Sapphire Substrate)이라 한다.4 is a view showing an example of a group III nitride semiconductor light emitting device presented in US Patent Publication No. 2003-0057444, wherein the group III nitride semiconductor light emitting device is grown on a
도 5는 미국 공개특허공보 제2005-082546호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자는 돌기(111)가 형성된 사파이어 기판(101)과 3족 질화물 반도체층(301)을 포함한다. 도 4에 제시된 예와 달리 단면이 둥근 형태의 돌기(111)가 제시되어 있으며, 이는 도 4에서와 같은 돌기(110)를 이용하는 경우에, 돌기(110)의 바닥면(돌기(110)가 형성하는 요철에서 요부에 해당)과 돌기(110)의 상면 모두에서 에피 성장이 이루어지고 따라서 바닥면 및 상면 모두에서 결정 결함인 관통 전위(Threading Dislocation)가 발생하게 되는데, 단면이 둥근 형태의 돌기(111)를 이용함으로써 돌기(111) 상면에서의 에피 성장을 억제하여 관통 전위의 발생을 억제시키는 이점을 가지게 된다.5 is a view showing an example of a
도 6은 미국 공개특허공보 제2011-0042711호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자(10)는 사파이어 기판(11), 사파이어 기판(11) 위에 성장되는 n형 3족 질화물 반도체 영역(12a), n형 3족 질화물 반도체 영역(12a) 위에 성장되는 활성 영역(12b), 활성 영역(12b) 위에 성장되는 p형 3족 질화물 반도체 영역(12c)을 포함한다. 마찬가지로, 사파이어 기판(110)에는 돌기(13)가 마련되어 있다. 다만, 돌기(13)는 뾰족한 형태의 단면을 가진다. 뾰족한 형태의 돌기(13)를 구비함으로써, 돌기(13)의 상부가 점 또는 선 형태(돌기(13)가 원뿔 형상인 경우에 점이 되고, 돌기(13)가 뾰족한 스트라이프 형상인 경우에 선이 된다.)가 되어 그 상부에서의 관통 전위 형성을 억제하는 한편, 돌기(13)의 상부와 바닥면을 이어주는 측면에서의 에피 성장을 억제하여 돌기(13) 측면에서의 관통 전위 발생도 억제할 수 있게 된다.6 is a view showing an example of a
도 7은 미국 등록특허공보 제10,361,339호에 제시된 3족 질화물 반도체 적층체의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 사파이어 기판(10), 버퍼 영역(20) 및 3족 질화물 반도체 영역(35)을 포함하며, 도 6에 제시된 형태의 돌기를 구비하더라도 돌기의 상부는 여전히 관통 전위(35)을 형성됨을 보여준다.7 is a view showing an example of a
도 26 및 도 27은 미국 등록특허공보 제9,324,844호에 제시된 3족 질화물 반도체 적층체 내지 소자의 일 예를 나타내는 도면으로서, 비발광 3족 질화물 반도체 적층체 내지 소자로서 수직 구조의 접합형 전계효과 트랜지스터(1000; Vertical Juction Field Effect Transistor; JFET)가 제시되어 있다. 비발광 3족 질화물 반도체 소자(1000)는 드레인 영역(102), 드리프트 영역(103), 게이트 영역(104), 소스 영역(105), 드레인 전극(106), 게이트 전극(107) 그리고 소스 전극(108)을 포함한다. 도 26은 디폴트 모드인 off 상태를 나타내며, 공핍 영역(109)이 채널(121; 도 27 참조) 내에서 위치 120에 오버랩되어 전류가 흐르는 것을 막고 있다. 도 27은 on 상태를 나타내며, 게이트 전극(107)과 소스 전극(108)에 전압(VD,VS)이 인가될 때, 게이트 전압(VD)이 공핍 영역(109)의 크기를 감소시켜 전류가 흐를 수 있는 채녈(108)을 제공하여 수직 구조의 JFET(1000)을 on시키고, 공핍 영역(109)이 분리되어, 전류가 드레인 영역(102)으로부터 드리프트 영역(103) 및 채널 영역(121)을 거쳐 소스 영역(106)으로 수직 방향(122)으로 흐를 수 있게 된다.26 and 27 are diagrams showing an example of a group III nitride semiconductor laminate or device proposed in US Patent Registration No. 9,324,844, a junction-type field effect transistor having a vertical structure as a non-emitting group III nitride semiconductor laminate or device. (1000; Vertical Junction Field Effect Transistor; JFET) is presented. The non-emitting group III
도 41은 미국 등록특허공보 제7,388,236호에 제시된 비발광 3족 질화물 반도체 적층체 내지 소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 소자는(예: AlGaN/GaN based HEMT)는 도 1에 제시된 소자와 마찬가지로 성장 기판(11; 예: 사파이어 기판, SiC 기판), 버퍼층(12; 예: AlxGa1-xN (0≤x≤1) 버퍼층), 채널층(20; 예: GaN 채널층), 2DEG(22; two-dimensional electron gas)(22), 배리어층(18; 예: AlGaN 배리어층), 절연층(24; 예: SiN 절연층), 드레인 전극(14), 게이트 전극(16) 및 소스 전극(17)을 포함하며, 게이트 전극(16)에 게이트 필드 플레이트(25; Gate Field Plate)가 추가로 구비되어 있다. 한편, 게이트 전극(16)과 배리어층(17) 사이에 다른 도전성의 3족 질화물층(26; 예: p형 GaN)을 구비함으로써, D-mode (Depletion-mode) AlGaN/GaN HEMT(게이트 전압이 인가되지 않을 때 turn-on 상태, 즉 normally-on 상태인 소자)를 E-mode (Enhancement-mode) HEMT(게이트 전압이 인가되지 않을 상태에서 turn-off 상태, 즉 normally-off 상태인 소자)를 구현할 수 있게 된다. 게이트 필드 플레이트(25)는 높은 전기 에너지(고전압, 고주파수)를 게이트 전극(16)을 통해 인가(또는, 주입)할 때 큰 전기장이 게이트 전극(16) 주변에 집중되어 3족 질화물 반도체 소자 일부에 전기적 충격을 주어 소자의 수명 및 신뢰성에 악영향을 미치는데, 이를 방지하기 위해 게이트 전극(16)에서 연장된 전극 플레트 형태를 설계함으로써 집중된 전기장을 분산시켜 소자를 보호하는 기능을 한다.41 is a view showing an example of a non-emission Group III nitride semiconductor laminate or device proposed in US Patent Registration No. 7,388,236, and a Group III nitride semiconductor device (eg, AlGaN / GaN based HEMT) is shown in FIG. Similarly to the device, a growth substrate (11; ex: sapphire substrate, SiC substrate), a buffer layer (12; ex: Al x Ga 1-x N (0≤x≤1) buffer layer), a channel layer (20; ex: GaN channel layer) ), 2DEG (22; two-dimensional electron gas) 22, barrier layer (18; example: AlGaN barrier layer), insulating layer (24; example: SiN insulation layer),
이에 대하여 '발명을 실시하기 위한 구체적인 내용'의 후단에 기술한다.This will be described at the end of 'Specific Contents for Carrying Out the Invention'.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 실리콘(Si)을 함유하는 성장 기판을 준비하는 단계; 성장 기판에 복수의 돌기를 형성하는 단계; 성장 기판에 복수의 돌기를 덮도록 제1 버퍼층을 성장하는 단계; 제1 버퍼층 위에 복수의 성장 방지막을 형성하는 단계; 성장 방지막을 통해 노출된 제1 버퍼층으로부터 제2 버퍼층을 성장하는 단계; 그리고, 제2 버퍼층 위에 비발광 3족 질화물 반도체 적층체를 형성하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법이 제공된다.According to one aspect according to the present disclosure (According to one aspect of the present disclosure), in a method for manufacturing a non-emission Group III nitride semiconductor laminate, preparing a growth substrate containing silicon (Si); Forming a plurality of protrusions on the growth substrate; growing a first buffer layer to cover the plurality of protrusions on the growth substrate; Forming a plurality of growth prevention films on the first buffer layer; growing a second buffer layer from the first buffer layer exposed through the growth prevention layer; And, forming a non-emission group III nitride semiconductor laminate on the second buffer layer; there is provided a method for manufacturing a non-emission group III nitride semiconductor laminate including.
본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 성장 기판을 준비하는 단계; 성장 기판에 복수의 돌기를 형성하는 단계; 성장 기판에 복수의 돌기를 덮도록 제1 버퍼층을 성장하는 단계; 제1 버퍼층 위에 복수의 성장 억제막을 형성하는 단계; 복수의 성장 억제막으로부터 노출된 제1 버퍼층으로부터 제2 버퍼층을 성장하는 단계; 그리고, 제2 버퍼층 위에 비발광 3족 질화물 반도체 적층체를 형성하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법이 제공된다.According to another aspect according to the present disclosure (According to another aspect of the present disclosure), in a method for manufacturing a non-emission Group III nitride semiconductor laminate, preparing a growth substrate; Forming a plurality of protrusions on the growth substrate; growing a first buffer layer to cover the plurality of protrusions on the growth substrate; forming a plurality of growth inhibiting films on the first buffer layer; growing a second buffer layer from the first buffer layer exposed from the plurality of growth suppression films; And, forming a non-emission group III nitride semiconductor laminate on the second buffer layer; there is provided a method for manufacturing a non-emission group III nitride semiconductor laminate including.
본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 성장 기판을 준비하는 단계; 성장 기판에 제1 버퍼층을 성장하는 단계; 제1 버퍼층에 제1 버퍼층으로 된 복수의 돌기를 형성하는 단계; 제1 버퍼층 위에 제2 버퍼층을 성장하는 단계; 제2 버퍼층 위에 비발광 3족 질화물 반도체 적층체를 형성하는 단계; 그리고, 제2 버퍼층을 성장하는 단계에 앞서, 복수의 돌기 위에 제2 버퍼층의 성장을 느리게 하거나 방지하는 물질층을 형성하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법이 제공된다.According to another aspect according to the present disclosure (According to another aspect of the present disclosure), in a method for manufacturing a non-emission Group III nitride semiconductor laminate, preparing a growth substrate; growing a first buffer layer on the growth substrate; Forming a plurality of protrusions made of the first buffer layer on the first buffer layer; growing a second buffer layer over the first buffer layer; Forming a non-emission Group III nitride semiconductor laminate on the second buffer layer; And, prior to the step of growing the second buffer layer, forming a material layer on the plurality of protrusions to slow down or prevent the growth of the second buffer layer; Provided.
본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 비발광 3족 질화물 반도체 적층체에 있어서, 순차로 적층된 드레인 영역; 드리프트 영역; 및 게이트 영역; 드레인 영역에 전기적으로 연결되는 지지 기판; 게이트 영역에 전기적으로 연결되는 게이트 전극; 게이트 영역을 통해 노출된 드리프트 영역이 형성하는 채널에 전기적으로 연결되는 소스 전극; 게이트 전극과 소스 전극이 위치하는 적층체 전체를 덮고 있으며, 복수의 개구가 형성되어 있는 패시베이션 층; 복수의 개구 중 하나를 통해 게이트 전극에 전기적으로 연결되는 본딩용 게이트 전극; 그리고, 복수의 개구 중 다른 하나를 통해 소스 전극에 전기적으로 연결되는 본딩용 소스 전극;을 포함하는, 비발광 3족 질화물 반도체 적층체가 제공된다.According to another aspect according to the present disclosure (According to another aspect of the present disclosure), in a non-emitting group III nitride semiconductor laminate, a sequentially stacked drain region; drift area; and a gate region; a support substrate electrically connected to the drain region; a gate electrode electrically connected to the gate region; a source electrode electrically connected to a channel formed by the drift region exposed through the gate region; a passivation layer covering the entire stack where the gate electrode and the source electrode are positioned and having a plurality of openings; a gate electrode for bonding electrically connected to the gate electrode through one of the plurality of openings; And, a source electrode for bonding electrically connected to the source electrode through the other one of the plurality of openings; including, a non-emitting group III nitride semiconductor laminate is provided.
본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 성장 기판에 비발광 3족 질화물 적층체를 형성하는 단계; 성장 기판과 대향하는 적층체 측에 임시 기판을 부착하는 단계; 성장 기판을 제거하는 단계; 성장 기판이 제거된 적층체 측에 전기절연성 세라믹층과 금속층을 포함하는 다층 박막을 세라믹층, 금속층 순으로 형성하는 단계; 다층 박막에 지지 기판을 부착하는 단계; 그리고, 임시 기판을 제거하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법이 제공된다.According to another aspect according to the present disclosure (According to another aspect of the present disclosure), in a method for manufacturing a non-emissive group III nitride semiconductor laminate, forming a non-emissive group III nitride semiconductor laminate on a growth substrate; attaching a temporary substrate to the side of the stack facing the growth substrate; removing the growth substrate; forming a multi-layered thin film including an electrically insulating ceramic layer and a metal layer on a side of the stack from which the growth substrate is removed, in that order; attaching a support substrate to the multilayer thin film; In addition, there is provided a method for manufacturing a non-emission Group III nitride semiconductor laminate including the step of removing the temporary substrate.
본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 비발광 3족 질화물 반도체 소자용 적층체에 있어서, 순차로 적층된, 지지 기판; 전기절연성 세라믹층과 금속층으로 구성된 다층 박막; 버퍼층, 채널층, 및 배리어층으로 구성된 비발광 3족 질화물 반도체 영역; 비발광 3족 질화물 반도체 영역에 전기적으로 연결된 게이트 전극, 소스 전극 및 드레인 전극; 소스 전극, 드레인 전극 및 게이트 전극이 위치하는 비발광 3족 질화물 반도체 영역를 덮고 있으며, 외부와의 전기적 연결이 가능하도록 소스 전극, 드레인 전극 및 게이트 전극을 개방하고 있는 패시베이션 층; 그리고, 소스 전극 및 게이트 전극 중의 하나와 전기적으로 연결되도록 패시베이션 층 상부에 구비되는 필드 플레이트;를 포함하는, 비발광 3족 질화물 반도체 적층체가 제공된다.According to another aspect according to the present disclosure (According to another aspect of the present disclosure), in a laminate for a non-emission Group III nitride semiconductor device, sequentially laminated, a support substrate; a multilayer thin film composed of an electrically insulating ceramic layer and a metal layer; a non-emitting group III nitride semiconductor region composed of a buffer layer, a channel layer, and a barrier layer; a gate electrode, a source electrode, and a drain electrode electrically connected to the non-emitting group III nitride semiconductor region; a passivation layer covering a non-emitting group III nitride semiconductor region where the source electrode, the drain electrode, and the gate electrode are positioned, and opening the source electrode, the drain electrode, and the gate electrode to enable electrical connection with the outside; And, a field plate provided on top of the passivation layer to be electrically connected to one of the source electrode and the gate electrode; including, a non-emitting group III nitride semiconductor laminate is provided.
이에 대하여 '발명을 실시하기 위한 구체적인 내용'의 후단에 기술한다.This will be described at the end of 'Specific Contents for Carrying Out the Invention'.
도 1은 미국 등록특허공보 제7,230,284호에 제시된 3족 질화물 반도체 소자의 일 예를 나타내는 도면,
도 2는 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 일 예를 나타내는 도면,
도 3은 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 또 다른 일 예를 나타내는 도면,
도 4는 미국 공개특허공보 제2003-0057444호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 5는 미국 공개특허공보 제2005-082546호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 6은 미국 공개특허공보 제2011-0042711호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 7은 미국 등록특허공보 제10,361,339호에 제시된 3족 질화물 반도체 적층체의 일 예를 나타내는 도면,
도 8은 본 개시에 따른 3족 질화물 반도체 적층체 내지 소자의 일 예를 나타내는 도면,
도 9는 본 개시에 따른 돌기와 성장 방지막의 배치 관계의 일 예를 나타내는 도면,
도 10은 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 일 예를 나타내는 도면,
도 11은 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 또 다른 예를 나타내는 도면,
도 12는 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 또 다른 예를 나타내는 도면,
도 13은 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 또 다른 예를 나타내는 도면,
도 14는 도 12에 제시된 돌기를 형성하는 방법의 구체 예를 나타내는 도면,
도 15 내지 도 17은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면,
도 18은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면,
도 19는 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면,
도 20는 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면,
도 21 내지 도 23은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면,
도 24 및 도 25는 본 개시에 따른 3족 질화물 반도체 적층체 내지 소자의 또 다른 예를 나타내는 도면
도 26 및 도 27은 미국 등록특허공보 제9,324,844호에 제시된 3족 질화물 반도체 적층체 내지 소자의 일 예를 나타내는 도면,
도 28 내지 도 37은 본 개시에 따라 3족 질화물 반도체 적층체 내지 소자를 제조하는 방법의 또 다른 예를 나타내는 도면,
도 38 내지 도 40은 도 37에 제시된 적층체에 사용되는 지지 기판의 일 예를 설명하는 도면,
도 41은 미국 등록특허공보 제7,388,236호에 제시된 비발광 3족 질화물 반도체 적층체 내지 소자의 일 예를 나타소자의 일 예를 나타내는 도면,
도 42 내지 도 46은 도 41에 제시된 비발광 3족 질화물 반도체 적층체 내지 소자를 제조하는 방법의 일 예를 나타내는 도면.1 is a view showing an example of a group III nitride semiconductor device presented in US Patent Registration No. 7,230,284;
2 is a view showing an example of a group III nitride semiconductor laminate presented in US Patent Publication No. 2005-0156175;
3 is a view showing another example of a group III nitride semiconductor laminate presented in US Patent Publication No. 2005-0156175;
4 is a view showing an example of a group III nitride semiconductor light emitting device presented in US Patent Publication No. 2003-0057444;
5 is a view showing an example of a group III nitride semiconductor light emitting device presented in US Patent Publication No. 2005-082546;
6 is a view showing an example of a group III nitride semiconductor light emitting device presented in US Patent Publication No. 2011-0042711;
7 is a view showing an example of a group III nitride semiconductor laminate presented in US Patent Registration No. 10,361,339;
8 is a view showing an example of a group III nitride semiconductor laminate or device according to the present disclosure;
9 is a view showing an example of the arrangement relationship between protrusions and growth prevention films according to the present disclosure;
10 is a view showing an example of a method of forming protrusions on a growth substrate according to the present disclosure;
11 is a view showing another example of a method of forming protrusions on a growth substrate according to the present disclosure;
12 is a view showing another example of a method of forming protrusions on a growth substrate according to the present disclosure;
13 is a view showing another example of a method of forming protrusions on a growth substrate according to the present disclosure;
14 is a view showing a specific example of a method of forming a protrusion shown in FIG. 12;
15 to 17 are views showing another example of a method of forming a growth prevention film according to the present disclosure;
18 is a view showing another example of a method of forming a growth prevention film according to the present disclosure;
19 is a view showing another example of a method of forming a growth prevention film according to the present disclosure;
20 is a view showing another example of a method of forming a growth prevention film according to the present disclosure;
21 to 23 are views showing another example of a method of forming a growth prevention film according to the present disclosure;
24 and 25 are views showing another example of a group III nitride semiconductor laminate or device according to the present disclosure;
26 and 27 are diagrams showing an example of a group III nitride semiconductor laminate or device presented in US Patent Registration No. 9,324,844;
28 to 37 are views showing another example of a method for manufacturing a group III nitride semiconductor laminate or device according to the present disclosure;
38 to 40 are views for explaining an example of a support substrate used in the laminate shown in FIG. 37;
41 is a view showing an example of a device that shows an example of a non-emission Group III nitride semiconductor laminate or device presented in US Patent Registration No. 7,388,236;
42 to 46 are diagrams illustrating an example of a method of manufacturing the non-emission Group III nitride semiconductor laminate or device shown in FIG. 41;
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).Hereinafter, the present disclosure will now be described in detail with reference to the accompanying drawing(s).
도 8은 본 개시에 따른 3족 질화물 반도체 적층체 내지 소자의 일 예를 나타내는 도면으로서, 예시로 HEMT가 제시되어 있다. 3족 질화물 반도체 소자는 돌기(41)가 구비된 성장 기판(42; 6인치 또는 8인치 Si 기판), 제1 버퍼층(43), 성장 방지막(44; 예: SiO2, SiNx와 같은 유전체 물질), 제2 버퍼층(45), 채널층(46; 예: 3㎛ 두께의 GaN 채널층), 2DEG(47), 인터레이어(48; 예: 10nm 두께의 thin AlN 층, 생략가능), 배리어층(49; 예: 10~50nm 두께의 AlxGa1-xN (0.2≤x≤0.3~0.6) 배리어층 또는 AlGaInN 배리어층 또는 AlScN 배리어층), 캡층(50; 예: 5~20nm 두께의 GaN 캡층, n층 또는 p층으로 도핑 가능, 생략 가능), 소스 전극(51), 게이트 전극(52), 그리고 드레인 전극(53)을 포함한다.8 is a diagram showing an example of a group III nitride semiconductor laminate or device according to the present disclosure, in which HEMT is presented as an example. The group III nitride semiconductor device includes a growth substrate 42 (6-inch or 8-inch Si substrate) having
실리콘(Si)으로 된 성장 기판(42; 이하, Si 성장 기판(42))의 경우에, 불투명 기판이므로, 사파이어 기판에 사용되는 돌기(도 4 내지 도 7 참조, 이 돌기는 1차적으로 발광소자(LED)에 있어서 3족 질화물 반도체층의 굴절률과 사파이어 기판의 굴절률 차이에 인한 내부 전반사를 해소하기 위한 스캐터(scatter; 광 산란)로 기능하며, 2차적으로 돌기가 ELOG에서 성장 방지막(도 2 및 도 3 참조)처럼 기능하여 막질의 향상을 가져온다.)를 필요로 하지 않지만, 본 개시에 따른 비발광 3족 질화물 반도체 소자 내지 적층체에서는 막질의 향상을 위해 Si 성장 기판(42)임에도 돌기(41)를 채용하고 있다. 또한, 앞서 지적한 바와 같이, 돌기(41)를 채용하더라도 돌기(41)의 상부 내지 상면(41a)과 성장 기판(42)의 바닥면 내지 돌기(41)의 바닥면(42a)으로부터 제1 버퍼층(43)에 결정 결함, 구체적으로 관통 전위(54,55; Treading Dislocations)가 발생하며, 고품위 즉, 107/㎠ 이하의 TDD(Theading Dislocation Density)가 요구되는 경우에는 이에 이르기가 쉽지 않다. 본 개시는 이러한 문제점을 해소하기 위해, Si 성장 기판(42)에 돌기(41)를 채용하는 한편, 제1 버퍼층(43) 위에 성장 방지막(44)을 형성하여 제1 버퍼층(43)에 존재하는 관통 전위(54,55)의 일부를 차단하고, 그 위에 제2 버퍼층(45), 채널층(46), 배리어층(48)을 포함하는 3족 질화물 반도체 적층체를 형성함으로써, 이들의 막질이 107/㎠ 이하의 TDD(Theading Dislocation Density)를 갖도록 한다. 소자에 높은 방열 사양이 요구되는 경우에, 성장 기판(42)은 Si 성장 기판에서 SiC 성장 기판으로 변경될 수 있으며, 따라서 성장 기판(42)으로 Si을 포함하는 성장 기판(Si 성장 기판, SiC 성장 기판)이 사용될 수 있다. 돌기(41)는 도 4 내지 도 7에 제시된 다양한 형태를 가질 수 있으며, 돌기(41)의 상부 내지 상면(41a)에서의 관통 전위(54)를 최소화하기 위해, 종단면이 뾰족한 형상을 가지는 것이 바람직하다. 돌기(41)의 구조와 형상에 따라 돌기(41)를 구성하고 있는 물질은 성장 기판(42)과 동일한 물질(예: Si, SiC)이거나 성장 기판(42)과 다른 물질(예: AlN, AlNO, AlGaN, 또는 GaN)일 수 있다.In the case of the
도 9는 본 개시에 따른 돌기와 성장 방지막의 배치 관계의 일 예를 나타내는 도면으로서, 성장 기판(42) 또는 성장 기판(42)의 바닥면(42a)에 구비된 돌기(41)를 위에서 본 도면이며, 횡단면이 원형인 원뿔형의 돌기(41)가 대각선 방향으로 일정한 간격으로 두고 배치되어 있고, 돌기(41) 위에 위치하는 성장 방지막(44)이 44a로 표시되어 있으며, 바닥면(42a) 위에 위치하는 성장 방지막(44)이 44b로 표시되어 있다. 성장 방지막(44a)에 의해 관통 전위(54)가 차단되며, 성장 방지막(44b)에 의해 관통 전위(55)의 일부가 차단된다. 성장 방지막(44a)의 크기는 바닥면(42a)에서의 돌기(41)의 횡단면의 크기보다 작은 것이 바람직한데, 지나치게 커지면 제2 버퍼층(45)이 성장할 영역이 지나치게 축소되기 때문이다.9 is a view showing an example of the arrangement relationship between the protrusions and the growth preventing film according to the present disclosure, and is a view from above of the
돌기(41)는 0.1~2㎛의 높이, 0.2~3.0㎛의 너비, 0.1~1.0㎛의 간격을 가질 수 있으며, 종단면이 콘(Cone), 스퀘어 피라미드(Square Pyramid), 돔(Dome), 트런케이티드 콘/피라미드(Truncated Cone/ Pyramid) 등의 형상을 가질 수 있다.The
제1 버퍼층(43)을 성장하기에 앞서, 성장 기판(42)의 종류(Si, SiC)에 따라 돌기(41) 유무에 무관하게 (도 10 및 도 11에 제시되 예에서 돌기(41)가 먼저 형성되고, 도 12 및 도 13에 제시된 예에서 돌기(41)가 이후에 형성됨) 20nm 전후 두께를 갖는 GaN, AlN, AlNO, 또는 AlGaN 씨드층(미도시; Seed Layer)을 CVD(MOCVD, ALD, MBE) 내지 PVD(Sputter, PLD) 방식으로 성막할 수 있다. 특히 Si 성장 기판(42) 상부에 AlN 씨드층을 CVD 방식을 사용하여 성막할 경우, 알루미늄(Al) 공급원인 TMAl 가스를 질소(N) 공급원인 암모니아(NH3) 가스 공급없이 단독으로 공급하는 프리씨딩(Pre-seeding) 공정을 도입하는 것도 바람직하다. Si 성장 기판(42) 상부에 3족 질화물 반도체로 된 제1 버퍼층(43)을 성장시키기 위해서는 최소 실제 성장 온도가 800℃ 이상의 고온이기 때문에 Si 성장 기판(42) 표면에서 Si 원자 탈착(Atomic Debonding & Desorption)되어 빠져나오게 되며, 또한 고온의 질소 분위기에서 Si 표면에는 Si-N 결합에 의한 미세한 비정질 물질 입자들이 발생하게 되어 고품질 3족 질화물 반도체 박막을 얻는 데 어려움이 있다. 이를 효과적으로 억제하기 위해서 Si 성장 기판(42) 표면에 수 초에서 수십 초까지 알루미늄(Al) 프리씨딩(Pre-seeding) 공정을 도입하면 3족 질화물 반도체 박막을 성장하는 데 유리하다. Si 성장 기판(42) 상부에 씨드층(미도시) 형성한 후, 연이은 후속 공정에서 제1 버퍼층(43)을 GaN 단층, AlN 단층 또는 다층 박막으로 TMGa, TMAl와 NH3를 소스 가스로, 수소(H2)를 캐리어 가스로 사용하여 실제 성장온도 800~1100℃ 구간에서 각각 상대적으로 높은 압력(예: 250mbar)에서 GaN 내지 Ga-rich AlGaN로 성장하고, 반면에 상대적으로 낮은 압력(예: 50mbar)에서 AlN 내지 Al-rich AlGaN로 성장할 수 있다. 경우에 따라 GaN와 AlN 물질을 합금화시킨 AlGaN층을 제1 버퍼층(43)의 일부로 도입할 수 있다. 즉, 제1 버퍼층(43)은 성장 기판(42) 상부에 GaN, GaN/AlGaN, AlN, AlN/AlGaN, AlN/AlGaN/GaN, 또는 GaN/AlGaN/AlN 등으로 구성될 수 있다.Prior to growing the
제1 버퍼층(43)의 두께는 돌기(41)의 높이보다 높아야 하며, 성장 기판(42)과의 격자상수 차이로부터 발생되는 관통 전위를 일차적으로 차폐 감소시키기 위해서는 돌기(41)의 높이와 적어도 동등 또는 두껍게 성장 후, 측면(수평 방향)으로의 성장 속도를 수직 방향으로의 성장 속도보다 크게 하여 성장과 나란히 수직 방향으로 이동하는 관통 전위를 벤딩(Bending, 휘어지게)하게 만드는 것이 매우 중요하다. 돌기(41)의 높이까지 성장하는 조건은 측면으로의 성장 속도보다 수직 방향으로의 성장 속도를 크게하는 것이 바람직하다. 성장 기판(42)에 제1 버퍼층(43)이 성장된 웨이퍼 상태에서 휨(Bowing)이 발생할 수 있으며, 이는 성장 방지막(44)의 정확한 위치결정을 방해할 수 있다. 이러한 휨을 고려하는 하는 경우에, 제1 버퍼층(43)의 두께를 3㎛ 미만으로 제한할 수 있으며, 따라서 돌기(41)의 높이로 제1 버퍼층(43)의 두께 이하로 제한될 수 있다.The thickness of the
성장 방지막(44)은 1nm~1㎛의 두께로 형성될 수 있으며, 제2 버퍼층(45)의 성장을 억제할 수 있다면, 그 두께가 특별히 제한되지 않는다. 성장 방지막(44)의 형상(Shape)과 위치(Position)는 종래 ELOG 내지 유사 3족 질화물 성장 공정(예; Pendeo Epitaxy)에서 SiO2 또는 SiNx와 같은 유전체를 사용한 스트립 마스크(Strip Mask) 형상으로 이들의 위치는 성장 방지막(44a)이 위치하는 돌기(41) 중심과 정렬된 영역과 성장 방지막(44b)이 위치하는 돌기(41) 간의 성장 기판(42)의 바닥면과 정렬된 영역이다. 예를 들어, 돌기(41)는 원형, 3각, 4각 또는 6각 등 다각형(Polygon)의 다양한 디멘젼(Dimension)의 고립(Isolation) 또는 섬(Island) 형상을 갖는다. 돌기(41)와 정렬된 성장 방지막(44a)의 너비와 폭은 돌기(41)의 형상과 디멘젼에 맞춰 우선적으로 결정하되, 최종적으로는 제1 버퍼층(43) 성장 시에 형성된 관통 전위의 위치와 분포를 고려하여 설정하는 것이 바람직하다.The
제2 버퍼층(45)은 제1 버퍼층(42)과 마찬가지로, GaN 단층, AlN 단층 또는 다층 박막으로 TMGa, TMAl와 NH3를 소스 가스로 수소(H2)를 캐리어 가스로 사용하여 실제 성장온도 800~1100℃ 구간에서 각각 상대적으로 높은 압력(250mbar)에서 GaN 내지 Ga-rich AlGaN로 성장하고, 반면에 상대적으로 낮은 압력(50mbar)에서 AlN 내지 Al-rich AlGaN으로 성장할 수 있다. 경우에 따라 GaN와 AlN 물질을 합금화시킨 AlGaN층을 제2 버퍼층(45)의 일부로 도입할 수 있다. 즉, 제2 버퍼층(45)은 제1 버퍼층(43)과 성장 방지막(44) 상부에 GaN, GaN/AlGaN, AlN, AlN/AlGaN, AlN/AlGaN/GaN, 또는 GaN/AlGaN/AlN 등으로 구성될 수 있다. 제2 버퍼층(45)의 두께는 기본적으로 성장 방지막(44)의 두께보다 두껍다. 일반적으로 제2 버퍼층(45)는 1-5㎛의 두께를 갖도록 성장할 수 있다. 성장 방지막(44)에 의해 성장 기판(420)에서 발생되는 관통 전위들은 이차적으로 차폐 소멸하고, 성장 방지막(44) 형성되지 않은 제1 버퍼층(43) 영역에서 관통 전위가 상당히 적은 3족 질화물 반도체가 재성장되어 ELOG 내지 이와 유사한 성장 공정을 통해 제2 버퍼층(45)을 형성한다. 본 개시의 목표인 관통 전위 밀도(TDD)가 107/㎠ 이하를 갖는 3족 질화물 반도체 적층체 내지 3족 질화물 반도체 소자를 제작할 수 있는 기반을 만들 수 있다.Like the
도 10은 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 일 예를 나타내는 도면으로서, 먼저 성장 기판(42)을 준비한 다음, 식각 마스크(60)를 형성하고, 성장 기판(42) 자체를 건식 식각 또는 습식 식각을 통해 돌기(41)를 형성한다. 일 예로, Si 성장 기판의 (100), (110), 또는 (111) 표면에 SiO2, SiNx 등으로 식각 마스크(60)를 형성한 다음, KOH 습식 용액과 건식 식각을 결합하면 다양한 형상 및 디멘젼으로 돌기(41)를 형성할 수 있다.10 is a diagram showing an example of a method of forming protrusions on a growth substrate according to the present disclosure. First, a
도 11은 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 도 10에 제시된 방법에 추가하여, 돌기(41)가 구비된 성장 기판(42) 전면을 덮도록 씨드층 내지 씨앗층(70; Seed Layer, AlN, AlNO, Al2O3, 또는 Ga2O3)을 형성한다. 씨드층(70)은 PVD법으로 형성될 수 있으며, CVD법(예: MOCVD법)으로 성장되는 제1 버퍼층(43)의 성장을 도와주는 역할을 한다.FIG. 11 is a diagram showing another example of a method of forming protrusions on a growth substrate according to the present disclosure. In addition to the method shown in FIG. A layer to a seed layer (70; Seed Layer, AlN, AlNO, Al 2 O 3 , or Ga 2 O 3 ) is formed. The
도 12는 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 도 11에 제시된 방법과 달리, 성장 기판(42)을 준비한 다음, 돌기 베이스층(71)을 형성한 다음, 그 위에 식각 마스크(60)를 형성한 후, 식각을 통해 돌기 베이스층(71)의 일부를 식각하여 돌기(41)를 형성한다. 따라서 돌기(41)는 성장 기판(42)을 구성하는 물질이 아니라 성장 기판(42)에 성막된 돌기 베이스층(71)을 구성하는 물질로 이루어진다. 이때 성장 기판(42)이 노출되지 않도록 식각함으로써, 제1 버퍼층(43)이 전체적으로 돌기 베이스층(71) 위에서 형성되므로, 양질의 막질을 구현할 수 있는 이점을 가진다. 돌기 베이스층(71)은 씨드층(70; 도 11 참조)과 그 위에 구비되는 3족 질화물 반도체층(예: AlGaN 및 GaN 등)으로 이루어질 수 있으며, 씨드층(70)은 전술한 바와 같이, PVD 또는 CVD 방법으로 200nm 이하의 두께를 갖는 AlN, AlNO, Al2O3, 또는 Ga2O3로 이루질 수 있고, 3족 질화물 반도체층은 CVD 방법으로 3㎛ 이하의 두께를 가지는 AlGaN 및 GaN 등으로 순차적이고 다층으로 이루어진 막으로 구성될 수 있으며, 스트레인 제어층(Strain Control Layer)으로 기능한다. 돌기(41) 형성을 위한 돌기 베이스층(71)의 식각은 씨드층(70)이 노출될 때까지 행해질 수 있다. 일 예로, 성장 기판(42) 상부에 씨드층(70)으로 CVD(MOCVD) 방법으로 150nm 두께의 AlN(경우에 따라 TMAl 가스로 프리씨딩 공정 도입 가능)를 성막하고, 이어서 3족 질화물 반도체층을 두 영역(제1, 제2)으로 구성된 다층으로 성막 구성할 수 있다. 제1 층은 500nm 두께의 AlxGa1-xN로 구성될 수 있으며, 알루미늄(Al) 조성(x)을 80%에서 20%까지 순차적으로 감소시키면서 성막하여 일차적으로 인장 응력(Tensile Stress)을 완화시키는 역할을 하게 한다. 제2 층은 2㎛ 두께의 GaN으로 구성될 수 있다. 이어서, SiO2 또는 SiNx와 같은 물질로 된 식각 마스크(60)를 형성한 후, 건식 식각을 통해 돌기(41)를 형성한다.FIG. 12 is a diagram showing another example of a method of forming protrusions on a growth substrate according to the present disclosure. Unlike the method shown in FIG. 11, a
도 13은 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 도 11 및 도 12에 제시된 방법과 달리, 씨드층(70; 도 11 참조)을 형성하되, 식각을 이용하지 않고, 리프트 오프법(Lift-off)을 통해 형성하는 방법이 제시되어 있다. 성장 기판(42)을 준비한 다음, 패터닝된 포토레지스트 막(80; PR)를 형성하고, PVD법을 통해 돌기 베이스층(71; 예: 2㎛ 이하의 두께를 가지는 AlN층, AlNO층, Al2O3층 또는 Ga2O3층, 71a로 표시)의 일부를 형성하고, 포토레지스트 막(80)을 제거하면, 포토레지스트 막(80) 위에 형성된 돌기 베이스층(71a)도 함께 제거되어, 남겨진 돌기 베이스층(71a)이 돌기(41)의 형태로 성장 기판(42)에 남겨지며, 여기에 재차 PVD법을 통해 씨드층(70; 도 11 참조)으로 기능하는 돌기 베이스층(71; 예: 1㎛ 이하의 두께를 가지는 AlN층, AlNO층, Al2O3층 또는 Ga2O3층, 71b로 표시)을 형성하여, 돌기 베이스층(71b)이 성장 기판(42) 전체를 덮도록 하여, 제1 버퍼층(43)의 성장을 돕는다. 돌기 베이스층(71)을 구성하는 층(71a,71b)의 두께는 성장 기판(42)의 스트레스로 인한 웨이퍼 휨을 최소화하도록 설계 고려하여 설정하는 것이 바람직하다. 일 예로, 포토레지스트 막(80) 위에 성막되는 돌기 베이스층(71a)의 두께는 500nm일 수 있으며, 돌기 베이스층(71a)의 두께는 20nm일 수 있다.13 is a diagram showing another example of a method of forming protrusions on a growth substrate according to the present disclosure. Unlike the methods shown in FIGS. 11 and 12, a seed layer 70 (see FIG. 11) is formed, but etching is not performed. A method of forming through a lift-off method without using it has been proposed. After preparing the
도 14는 도 12에 제시된 돌기를 형성하는 방법의 구체 예를 나타내는 도면으로서, 성장 기판(42)에 씨드층(70; 예: 200nm 이하 두께의 AlN), 제1 층(71c; 예: 500nm 두께의 AlxGa1-xN) 및 제2 층(71d; 예: 2㎛ 두께의 GaN)으로 된 돌기 베이스층(71)을 순차로 성막한 다음, 돌기 베이스층(71)으로 이루어진 돌기(41)를 형성하는 공정이 제시되어 있다. 여기서 돌기(41)는 제2 층(71d)만으로 이루어지거나(Case I), 제1층(71c)-제2 층(71d)으로 이루어지거나(Case II), 씨드층(70)-제1층(71c)-제2 층(71d)으로 이루어질 수 있다(Case III).FIG. 14 is a diagram showing a specific example of the method of forming the protrusions shown in FIG. 12, wherein a seed layer 70 (eg: AlN having a thickness of 200 nm or less), a
도 15 내지 도 17은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 설명하는 도면으로서, 도 15에는 성장 기판(42)과, 그 위에 성장된 제1 버퍼층(43)이 도시되어 있다. 성장 기판(42)에는 돌기(41; 도 8 참조)가 형성되어 있지 않으며, 관통 전위(55)는 성장 기판(41)의 바다면(42a) 전체에 걸쳐서 제1 버퍼층(43)을 관통하는 형태로 형성되어 있다. 도 16에는 돌기(41)가 형성된 성장 기판(42)과 그 위에 성장된 제1 버퍼층(43)이 도시되어 있다. 돌기(41)가 형성되지 않은 성장 기판(42)의 바닥면(42a) 영역(A)에는 도 15에서와 마찬가지로 관통 전위(55)가 제1 버퍼층(43)을 관통하는 형태로 형성되어 있으며, 돌기(41)의 상부 내지 상면(41a) 영역(B)에도 관통 전위(54)가 제1 버퍼층(43)을 관통하는 형태로 형성되어 있다. 관통 전위(54)는 상부 내지 상면(41a)으로부터 직접 발생하거나 바닥면(42a)으로부터 성장되는 제1 버퍼층(43)이 돌기(41)의 상부 내지 상면(41a) 즉, 영역(B)에서 합체(Coalescence)되면서 발생할 수 있고, 돌기(42)의 상부 내지 상면(41a)을 뾰족한 형태로 형성함으로써, 상부 내지 상면(41a)으로부터 직접 발생하는 관통 전위(54)를 최소화할 수 있다. 영역(A)과 영역(B) 사이의 영역(C)에는 휘어진 관통 전위(56)가 형성되어 있으며, 관통 전위(56)는 성장 기판(42)의 바닥면(42a)으로부터 성장되는 제1 버퍼층(43)이 돌기(42)와 돌기(42) 사이의 공간(오목부)을 메우는 과정에서 휘어지는 형태로 형성되며, 성장 조건을 적절히 조절하면 대부분이 제1 버퍼층(43)의 상부로 이어지지 않게 되어, 그 위에 형성되는 제2 버퍼층(45; 도 8 참조)에서는 결정 결함으로 고려되지 않게 된다. 한편, 관통 전위가 돌기(41)의 측면(즉, 바닥면(42a)과 상부 내지 상면(41a) 사이의 돌기(41) 영역)에서 발생할 수 있는데, 이는 도 5 내지 도 7에 도시된 바와 같이, 돌기(41)의 측면이 결정면(예를 들어, 사파이어로 된 성장 기판(41)의 경우에, 바닥면(42a)으로 주로 c면을 사용한다.)이 되지 않도록 함으로써 최소화할 수 있다. 즉, 돌기(41)의 측면이 횡단면이 원형이고, 종단면이 직선 또는 위로 볼록한 곡선이 되게 하거나, 돌기(41)의 측면에 러프닝(roughning)을 주는 등의 방식으로 돌기(41)의 측면에서의 제1 버퍼층(43)의 성장을 방해할 수 있다. 따라서, 돌기(41)가 구비된 성장 기판(42)에 제1 버퍼층(43)을 성장시킬 때, 영역(C)을 영역(A) 및 영역(B)에 비해 결정 결함이 적은 영역으로 성장시킬 수 있음을 알 수 있다. 따라서, 도 17에 제시된 예에서는 영역(A)과 영역(B)에 성장 방지막(44)이 구비된 것을 특징으로 하며, 성장 기판(42)을 구성하는 물질은 Si, SiC에 더하여, 사파이어(Al2O3)로 확장될 수 있고, 나아가 HCP 결정 구조를 가지는 Sapphire, AlN, AlGaN, GaN 등으로 확장될 수 있으며, 성장이 이루어지는 면, 즉 바닥면(42a)으로 C면이 사용될 수 있다. 영역(A; 도 16 참조) 위에 위치하는 성장 방지막(44)이 관통 전위(55)를 차단하고, 영역(B; 도 16 참조) 위에 위치하는 성장 방지막(44)이 관통 전위(54)를 차단하며, 영역(C; 도 16 참조)에서 발생한 관통 전위(56)는 휘어져서 대부분 제1 버퍼층(43)을 관통하지 못하므로, 제1 버퍼층(43)의 상면에서 관통 전위는 최소화되고, 따라서 성장 방지막(44)을 통해 노출된 제1 버퍼층(43), 즉 영영(C)에서 해당하는 제1 버퍼층(43)으로부터 성장되는 제2 버퍼층(45)에서의 관통 전위(57,58)는 107/㎠ 이하의 TDD(Theading Dislocation Density)를 갖도록 최소화될 수 있다. 관통 전위(57)는 노출된 제1 버퍼층(43)으로부터 발생하는 관통 전위이며, 노출된 제1 버퍼층(43)이 이미 결정 결함이 최소화된 막질을 가지고, 이로부터 성장되므로 결정 결함의 수가 대폭 감소된다. 관통 전위(58)는 노출된 제1 버퍼층(43)으로부터 성장된 제2 버퍼층(45)이 성장 방지막(44) 위에서 합체(coalescence)되면서 형성되는 결정 결함이며, 성장 방지막(44)에 의해 차단되는 관통 전위(55)에 비해 대폭 감소된 수를 가진다. 돌기(42)는 폭과 높이가 1㎛ 이상인 마이크로 스케일(예: 폭-2.5㎛, 높이-1.6㎛, 돌기간 간격-0.4㎛)을 가질 수 있고, 폭과 높이가 1㎛ 미만인 나노 스케일(예: 폭-500nm 높이-500nm, 돌기간 간격-50nm)을 가질 수도 있다. 돌기(42)의 배치는 스트라이프 형상 또는 도트(dot) 형상일 수 있으며, 도트 형상일 경우에 하나의 돌기(41)를 중심으로 6개의 돌기(41)가 6각형의 꼭지점을 위치하는 배치를 가질 수 있고(돌기(42)의 열(an array of dots)의 관점에서 보면, 이웃한 열에 속하는 돌기(42)가 서로 정렬되지 않고, 지그재그 형태로 배치), 제1 버퍼층(43)이 성장될 수 있는 것을 전제로 성장이 이루어지는 바닥면(42a)이 최소화되는 것이 바람직하다.15 to 17 are diagrams for explaining another example of a method of forming a growth prevention film according to the present disclosure, and FIG. 15 shows a
성장 방지막(44)은 전술한 바와 같이 SiO2 또는 SiNx와 같은 유전체(두께: 1~1000nm)로 형성하여, 성장 방지막(44) 위에서 제2 버퍼층(45)을 억제하거나, 제2 버퍼층(45)의 성장이 가능한 물질로 구성하되, 제1 버퍼층(43)의 상부를 구성하는 물질(예: GaN)보다는 제2 버퍼층(45)의 성장 속도가 느린 물질(예: AlN, AlNO, AlO)로 구성함(이는 PVD(Sputter, ALD, PLD) 장치로 소정의 두께(예: 1~100nm)로 AlN, AlNO, 또는 AlO를 증착한 후, 패터닝함으로써 형성)으로써, 성장 방지막(44) 위에서 제2 버퍼층(45)의 성장을 지연시키는 형태로 구성할 수 있다. 제2 버퍼층(45)의 성장 속도가 느린 물질(예: AlN, AlNO, AlO)로 된 성장 방지막(44)을 이용하는 경우에, 유전체로 된 성장 방지막(44)을 이용할 때와 마찬가지로, 노출된 제1 버퍼층(44)으로부터 성장되는 제2 버퍼층(45)이 성장 방지막(44) 위로 전개되지만, 성장 방지막(44)에서도 제2 버퍼층(45)의 성장이 이루어지므로(성장 방지막(44)이 제2 버퍼층(45)의 씨드층(Seed Layer)으로 기능), 유전체(SiO2, SiNx) 성장 방지막(44) 위에서 제2 버퍼층(45)이 합체(coalescence)하는 과정에서 생성된 관통 전위의 생성 메커니즘과는 다른 거동을 나타낸다.As described above, the
도 18은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 앞선 예들과 달리, 성장 방지막(44)이 제1 버퍼층(43) 자체에 의해 형성되어 있다. 성장 방지막(44)은 성장 기판(42)에 형성된 돌기(41)와 같은 개념으로 돌기(44c)의 형태로 형성되며, 포토리소그라피 공정 및 식각 공정(플라즈마)을 통해 형성될 수 있다. 제2 버퍼층(45)에서 결정 결함이 감소되는 원리는 앞선 예들과 동일하다. 관통 전위(57)는 돌기(44c)가 형성되지 않은 제1 버퍼층(43) 위에서 제2 버퍼층(45)에 존재하는 관통 전위로서, 이 영역(영역(C; 도 16 참조)에서 제1 버퍼층(43)의 관통 전위(54)는 휘어져서 대부분 제1 버퍼층(43)의 위쪽까지 도달하지 못하므로 이 영역에서 제2 버퍼층(45)은 막질이 좋은 제1 버퍼층(43)으로부터 성장되어 감소된 관통 전위(57)를 가진다. 관통 전위(58)는 돌기(41)에 대응하는 위치에 위치하는 돌기(44c)의 상부 내지 상면(44d)에서 발생하는 관통 전위이며, 관통 전위(59)는 바닥면(42a)에 대응하는 위치에 위치하는 돌기(44c)의 상부 내지 상면(44d)에서 발생하는 관통 전위이며, 제1 버퍼층(43)에 존재하는 관통 전위(55)가 돌기(44c)까지 이어져 있지만, 돌기(44c)의 상부 내지 상면(44d)은 폭이 좁은 평면이거나, 뾰족하여 관통 전위(55)가 제2 버퍼층(45)에서도 존재하기는 어렵다. 관통 전위(58,59)는 일부는 관통 전위(54)와 관통 전위(55)에 의해 발생하고, 일부는 돌기(44c)가 형성되지 않은 제1 버퍼층(43) 위에서 성장되는 제2 버퍼층(45)이 돌기(44c)의 상부 내지 상면(44d)에서 합체(Coalescence)되면서 발생한다. 도 17에 제시된 예와 비교할 때, HCP 결정 구조를 가지는 GaN 또는 AlGaN 단결정(Epitaxy) 위에 상대적으로 쉬운 공정(포토리소그라피 및 식각(플라즈마))으로 돌기(44c)를 형성하고, 동일한 물질(GaN 또는 AlGaN)로 제2 버퍼층을 성장하는 호모에피택시(Homo-epitaxy) 성막 공정이기에 관통 전위 및 그 이외의 결정 결점을 최소화할 수 있는 이점을 가진다. 돌기(44c)는 성장 기판(42)에 구비되는 돌기(44a)와 동일, 유사한 디멘젼을 가질 수 있으며, 폭과 높이가 1㎛ 이상인 마이크로 스케일보다는 폭과 높이가 1㎛ 미만인 나노 스케일(예: 폭-500nm 높이-500nm, 돌기간 간격-50nm)을 가지는 것이 바람직하다.18 is a diagram showing another example of a method of forming a growth prevention film according to the present disclosure. Unlike the previous examples, the
도 19는 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 도 18에 제시된 예와 달리, 성장 방지막(44)을 형성하는 돌기(44c)가 성장 기판(42)의 바닥면(42a)에 대응하는 위치, 즉 영역(A)에 대응하는 위치에서 제1 버퍼층(43)에 형성되어 있다. 영역(A)에 존재하는 관통 전위(55)는 돌기(44c)로 이어져 있지만 돌기(44c)의 상부 내지 상면(44d)은 폭이 좁거나 뾰족하므로, 소멸되거나 제2 버퍼층(45)으로 일부만이 이어져서 관통 전위(59)를 형성한다. 영역(B)에 존재하는 관통 전위(54) 중 일부는 제2 버퍼층(45)으로 이어져서 관통 전위(58a)를 형성하거나 제2 버퍼층(45)이 돌기(44c) 사이의 공간을 메우는 과정에서 휘어진 형태의 관통 전위(58b)가 되어 제2 버퍼층(45) 내에서 소멸한다. 영역(C)에는 관통 전위가 많지 않으므로, 영역(C)으로부터 성장하는 제2 버퍼층(45)에도 결정 결함이 발생의 최소화된다.FIG. 19 is a view showing another example of a method of forming a growth prevention film according to the present disclosure. Unlike the example shown in FIG. It is formed on the
도 20은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 도 18에 제시된 예와 달리, 성장 방지막(44)을 형성하는 돌기(44c)가 돌기(41)의 상부 내지 상면(41a)에 대응하는 위치, 즉 영역(B)에 대응하는 위치에서 제1 버퍼층(43)에 형성되어 있다. 영역(A)에 존재하는 관통 전위(55) 중 일부는 제2 버퍼층(45)으로 이어져서 관통 전위(59b)로 존재하지만, 일부는 제2 버퍼층(45)이 돌기(44c) 사이의 공간을 메우는 과정에서 휘어진 형태의 관통 전위(59b)가 되어 제2 버퍼층(45) 내에서 소멸한다. 영역(B)에 존재하는 관통 전위(54)는 돌기(44c)로 이어져 있지만 돌기(44c)의 상부 내지 상면(44d)은 폭이 좁거나 뾰족하므로, 소멸되거나 제2 버퍼층(45)으로 일부만이 이어져서 관통 전위(58a)를 형성한다. 영역(C)에는 관통 전위가 많지 않으므로, 영역(C)으로부터 성장하는 제2 버퍼층(45)에도 결정 결함의 발생이 최소화된다.FIG. 20 is a view showing another example of a method of forming a growth preventing film according to the present disclosure. Unlike the example shown in FIG. It is formed on the
도 21 내지 도 23은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 도 21에는 도 18에 제시된 구성에 더하여, 돌기(44c)가 형성된 제1 버퍼층(43) 위에 AlN, AlNO, 또는 AlO로 된 물질층(45a)이 되어 형성되어 있다. 물질층(45a)은 도 17에 제시된 성장 방지막(44)과 동일한 물질로서 같은 방식(PVD(Sputter, ALD, PLD) 장치로 증착)으로 1~100nm의 두께로 형성될 수 있다. 도 22에는 물질층(45a)이 영역(A)에만 형성되어 있으며, 도 23에는 물질층(45a)이 적어도 돌기(44c)의 일부를 덮도록 형성되어 있다. 도 21 내지 도 23에 제시된 물질층(45a)은 도 19에 제시된 구성 및 도 20에 제시된 구성에도 마찬가지로 적용될 수 있다. 물질층(45a)을 도입함으로써, 성장 기판(42)에서 발생되어 제1 버퍼층(43) 표면에 노출된 관통 전위를 차단 감소시키는 한편, 두 영역(A, B; 도 16 참조)에서 성장되는 제2 버퍼층(45)은 AlN, AlNO, 또는 AlO로 된 물질층(45a)과의 격자 상수 차가 적어 관통 전위 생성을 억제하여 전반적으로 관통 전위 수를 최소화할 수 있게 된다. 도 17에 제시된 예에 물질층(45a)을 도입할 수 있음은 물론이다. 물질층(45a)은 성장 방지막(44) 및 돌기(44c)의 형성 공정에서 노출되는 제1 버퍼층(43)에 발생할 수 있는 손상을 회복하는 기능도 할 수 있다.21 to 23 are diagrams showing another example of a method of forming a growth prevention film according to the present disclosure, and in FIG. 21, in addition to the configuration shown in FIG. 18, AlN on the
도 17 내지 도 23에 제시된 예를 모두 고려할 때, 성장 방지막(44)은 제2 버퍼층(45)의 성장을 방지하거나 느리게 한다는 점에서 성장 억제막(44)이라 칭할 수 있다.Considering all the examples shown in FIGS. 17 to 23 , the
도 24 및 도 25는 본 개시에 따른 3족 질화물 반도체 적층체 내지 소자의 또 다른 예를 나타내는 도면으로서, 도 14에 제시된 형태의 돌기(41)와 도 21에 제시된 물질층(45a)이 결합된 형태의 예가 제시되어 있다. 도 14에 제시된 예의 관점에서, 성장 기판(42; 예: 사파이어 기판)에 성장 기판(42)을 구성하는 물질(Al2O3)로 된 돌기(41; 도 16 내지 도 23 참조)를 형성한 것이 아니라, 성막을 통해 돌기 베이층(71)을 형성한 다음, 이를 패터닝하여 돌기(41)를 형성한 다음, 그 위에 도 21에 제시된 물질층(45a)을 형성한 것이며, 이때 성장 방지막 내지 성장 억제층(44)은 생략될 수 있으며, 이때 돌기 베이스층(71)이 제1 버퍼층(43)에 대응하게 된다. 도 21에 제시된 예의 관점에서, 성장 기판(42)에 구비되는 돌기(41)를 생략하고, 제1 버퍼층(43)을 형성한 다음, 제1 버퍼층(43)에 성장 억제층(44)으로서 돌기(44c)를 형성하고, 그 위에 물질층(45a)을 형성한 것이다. 그 위에 제2 버퍼층(45)과 비발광 3족 질화물 반도체 적층체 내지 소자(A)를 적층한다. 도 22 및 도 23에 도시된 것과 같은 형태로 물질층(45a)이 부분적으로 형성될 수 있음은 물론이며, 도 23에 제시된 것과 같은 형태로 물질층(45a)을 형성하는 경우에, 물질층(45a)을 제2 버퍼층(45)의 성장 속도를 늦추는 AlN, AlNO, AlO와 같은 Al 함유 물질이 아니라, 돌기(41) 상에서 제2 버퍼층(45)의 성장을 방지하는 물질인 SiO2, SiNx와 같은 유전체 물질로 구성할 수 있음은 물론이다. 이러한 구조를 이용함으로써, 도 21 내지 도 23과 관련하여 설명한 바와 같이, 관통 전위를 줄일 수 있는 한편, 도 25에 도시된 바와 같이, 비발광 3족 질화물 반도체 적층체 내지 소자(A) 측에 지지 기판(S)을 구비한 다음, LLO(Laser Lift-Off)와 같은 공정을 통해 성장 기판(42)을 제거할 때, 성장 기판(42)과 동일한 물질로 된 돌기(41)를 구비한 경우에 비해 쉽게 성장 기판(42)을 비발광 3족 질화물 반도체 적층체 내지 소자(A) 측으로부터 분리할 수 있는 이점을 가진다. 3족 질화물 반도체를 이용한 수직 방향의 전류 흐름을 갖는 비발광 소자를 제작할 때, 사파이어 성장 기판(42)에 단파장 고밀도 레이저 빔(Shorter Wavelength & Higher Optical Flux Laser Beam)을 조사하여 광학적, 열적 및 기계적 손상(Damage)없이 분리 제거하는 공정(LLO 공정)과 후속하는 웨이퍼 본딩 공정을 통해 수직 방향의 전류 흐름을 갖는 비발광 소자(예; 트랜지스터 또는 다이오드) 성능(특히, Breakdown Voltage)과 신뢰성을 개선하는 것이 요구되는데, 사파이어 성장 기판(42)에 성장 기판(42)을 구성하는 물질(Al2O3)로 된 돌기(41)를 갖는 경우에 비발광 3족 질화물 반도체 적층체(A)를 성막한 후에 LLO 공정에서 단파장 고밀도 레이저 빔을 사파이어 성장 기판(42) 후면(Backplane)에 조사 분리할 때, 돌기(41)가 형성된 경계면에서 레이저 빔의 산란이 다량으로 발생하게 되어 사파이어 성장 기판(42)으로부터 비발광 3족 질화물 반도체 적층체(A)를 분리하는데 광 에너지 부족으로 어려움이 발생함과 동시에, 산란된 레이저 빔이 비발광 3족 질화물 반도체 적층체(A)까지 도달하게 되어 예기치않은 영향(Side Effect)을 미치게 된다. 따라서 사파이어 성장 기판(42)으로부터 비발광 3족 질화물 반도체 적층체(A)를 분리한 다음, 수직방향의 전류 흐름을 갖는 고품위 3족 질화물 반도체 비발광 소자를 제작하기 위해서는 돌기(41)를 제1 버퍼층(43) 상부에 형성하여 관통 전위(Threading Dislocation) 포함 결정 결함을 억제함과 동시에 후속하는 소자 제작 공정에서 손상을 최소화할 수 있게 된다. 돌기 베이스층(71) 내지 제1 버퍼층(43)은 앞선 예들에서와 마찬가지의 조성과 성장 조건으로 형성될 수 있으며, 씨드층을 형성한 다음, 관통 전위 포함 결정 결함(Crystalline Defect) 억제와 스트레스 스트레인을 조절하기 위한 물질층(GaN, AlN, AlGaN, SiNx) 또는 이들로 이루어진 다층 구조(Superlattice)가 도입될 수도 있다.24 and 25 are views showing another example of a group III nitride semiconductor laminate or device according to the present disclosure, in which the
도 28 내지 도 37은 본 개시에 따라 3족 질화물 반도체 적층체 내지 소자를 제조하는 방법의 또 다른 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체 내지 소자로서 도 26 및 도 27에 제시된 것과 같은 수직 구조의 접합형 전계효과 트랜지스터(Vertical Junction Field Effect Transistor)가 예시된다.28 to 37 are diagrams showing another example of a method of manufacturing a group III nitride semiconductor laminate or device according to the present disclosure, as shown in FIGS. 26 and 27 as a group III nitride semiconductor laminate or device. A junction type field effect transistor of the structure is exemplified.
먼저, 도 28에 도시된 바와 같이, 성장 기판(81) 위에 버퍼층(82)을 형성한다. 버퍼층(82)의 형성에는 도 8 내지 도 25에 걸쳐서 설명된 방식이 적용될 수 있음은 물론이다. 도 26 및 도 27에 제시된 소자와 비교할 때, GaN 성장 기판이 아니라, 이종 기판(예: Si 기판, Al2O3 기판)이 사용된다는 점에서 차이를 가진다. 버퍼층(82)은 low 107/㎠ 이하의 TDD를 가지는 un-doped GaN(uGaN)으로 이루어지는 것이 바람직하다. 버퍼층(82)의 두께는 결정 결함(관통 전위, Vacancy, Interstitial, Substitutional)을 최소화하는데 목적이 있기 때문에 이를 달성하는데 필요한 두께라면 제한을 두지 않는다. 도 8 내지 도 25에 걸쳐서 설명된 방식과 두께를 우선적으로 적용한다.First, as shown in FIG. 28 , a
다음으로, 도 29에 도시된 바와 같이, 드레인 영역(83)과 드리프트 영역(84)을 형성한다. 드레인 영역(83)은 드레인 전극과 접촉하는 영역으로서, 예를 들어 low 1018/㎤ 이상의 ND(유효 전자 캐리어 밀도)를 가지는 n+ GaN으로 이루어질 수 있으며, n+ (Al)GaN, n++ (Al)GaN, Superlattice(AlGaN/GaN, AlInN/GaN, GaInN/GaN) 등으로도 이루어질 수 있다. 드레인 영역(83)의 두께는 오믹접촉 전극을 형성하는데 필요한 두께와 도핑 농도가 중요하며, 예를 들어, 1nm ~ 100nm의 두께가 적용될 수 있다.Next, as shown in FIG. 29, a
드리프트 영역(84)은 드레인 영역(83)의 ND보다 낮은 유효 전자 캐리어 밀도를 가지는 것이 일반적이며, 그 두께가 두꺼워짐에 따라 높아질 수 있고, 예를 들어 low 1016/㎤ 이하의 ND, 바람직하게는 2x1014/㎤ ~ 2x016/㎤ 범위의 ND를 가지는 n- GaN으로 이루어질 수 있다. 두께는 3㎛ ~ 20㎛ 범위를 가질 수 있으며, 두껍게 형성할수록 감소되는 결정 결함과 함께 결정성 개선과 외부에서 인가된 전기적 스트레스(Electric Stress)를 분산 완화하여 소자가 파괴되는 임계 전압, 즉 항복 전압(Breakdown/Blocking Voltage)을 획기적으로 개선할 수 있는 것으로 알려져 있다.The
다음으로, 도 30에 도시된 바와 같이, 드리프트 영역(84) 위에 식각 마스크(91; 예: PR, 금속 및/또는 산화물(예: SiO2 등))를 형성하고, 식각(예: 건식 식각 및/또는 습식 식각)을 통해 드리프트 영역(84)의 일부를 제거하여 채널(85)을 형성한다. 남은 식각 마스크(91)는 제거한다. 전하(전기적 질량)를 갖는 전자 캐리어의 움직임 통로인 채널(85)의 높이는 100nm ~ 1000nm 범위이고 바람직하게는 500nm 전후이며, 단면 폭은 10nm 이하가 통상적이다. 바람직한 형상은 직사각형인데 정사각형 및 원형도 가능하다.Next, as shown in FIG. 30, an etching mask 91 (eg, PR, metal, and/or oxide (eg, SiO 2 )) is formed on the
다음으로, 도 31에 도시된 바와 같이, 게이트 영역(86)을 재성장(Regrowth)을 통해 형성한다. 그리고 소스 전극의 형성을 위해 채널(85) 상측의 게이트 영역(86)을 제거하여 채널(85)을 형성하는 드리프트 영역(84)이 노출되도록 한다. 게이트 영역(86)은 예를 들어, p GaN으로 이루어질 수 있으며, p+ (Al,In)GaN, p++ (Al,In)GaN 등으로도 이루어질 수 있다. 게이트 영역(86)과 드리프트 영역(84)의 도전성이 바뀔 수 있으나, 이종 기판을 이용하는 경우에 일반적이지는 않다. 여기서, n-는 ND ≤ 2x016/㎤, n,p는 2x016/㎤ ≤ ND,NA ≤ 2x018/㎤, n+,p+는 2x018/㎤ ≤ ND,NA ≤ 2x019/㎤, n++,p++는 2x019/㎤ ≤ ND,NA로 정의한다. 통상적으로 박막 단차를 완화하는 평탄화 작업은 액상의 포토레지스터(PR) 물질을 코팅 & 큐어링(Coating & Curing) 다음에 건식(Dry Etch) 공정을 통해 코팅된 PR 물질과 함께 돌기된 게이트 영역(86) 부분을 순차적으로 식각하여 채널(85)의 드리프트 영역(84)이 노출될 때까지 실행한다. Next, as shown in FIG. 31 , the
다음으로, 도 32에 도시된 바와 같이, 소스 전극(87)과 게이트 전극(88)을 형성한다. 소스 전극(87)은 드레인 영역(84)과 오믹 접촉하도록 형성되며, 게이트 전극(88)은 게이트 영역(86)과 오믹 또는 쇼키 접촉하도록 형성된다. 소스 전극(87)은 Cr, Ti, Al, V, W, Re, TiN, CrN, Ni, Pt, Au 물질 중에서 적어도 두 층 이상으로 형성될 있으며, 예를 들어, Cr/W/Pt/Au 또는 Ti/Cr/W/Pt/Au와 같이 4층 또는 5층으로 구성될 수 있다. 게이트 전극(88)은 Pd, Ni, Pt, Ru, Rh, Cr, Ti, TiN, NiO, RuO2, Au 물질 중에서 적어도 두 층 이상으로 형성될 수 있으며, 예를 들어, Pd/Ni/Pt/Au 또는 Cr/Ni/Pt/W/Au와 같이 4층 또는 5층으로 구성한다.Next, as shown in FIG. 32, a
다음으로, 도 33에 도시된 바와 같이, 소스 전극(87) 및 게이트 전극(88)이 위치하는 소자의 상면 전체를 덮도록 보호막으로 기능하는 패시베이션 층(89)을 형성한 다음, 임시 기판(92)을 접합층(93)을 이용하여 부착한다. 바람직하게는 임시 기판(92)과 접합층(93) 사이에는 이후 임시 기판(92)을 분리하기 위한 희생층(94)이 구비된다. 접합층(93)은 양측 또는 일측에 구비될 수 있다. 임시 기판(92)은 성장 기판(81)과 동일한 물질을 이용하는 것이 바람직하며, 예를 들어 성장 기판(81)이 사파이어 기판인 경우에 임시 기판(92) 또한 사파이어로 이루어질 수 있다. 이러한 기술의 상세는 국제 공개특허공보 WO2020/175971호 및 WO2021/112648호에 제시되어 있다.Next, as shown in FIG. 33, a
다음으로, 도 34에 도시된 바와 같이, 성장 기판(81)을 제거(예: LLO 공정 후, 성장 기판(81)의 제거 과정에 발생한 잔류물(Residue)과 함께 버퍼층(82)을 제거(예: 건식 식각 및/또는 습식 식각)하여, 드레인 영역(83)을 노출시킨다. Next, as shown in FIG. 34, the
다음으로, 도 35에 도시된 바와 같이, 성장 기판(81)과 버퍼층(82)이 제거되어 노출된 드레인 영역(83)에 오믹 접촉하도록 드레인 전극(95)을 형성한다. 노출된 드레인 영역(83)에는 버퍼층(82)을 제거하는 과정에서 표면 텍스쳐(Surface Texture)가 형성되도록 하여 드레인 전극(95)과의 접합 면적을 넓힐 수 있으며, 활성 가스 플라즈마 처리(Plasma Treatment)를 하는 것도 가능하다. 드레인 전극(95)은 노출된 드레인 영역(83) 전체에 걸쳐 형성된다. 드레인 전극(95) 물질은 소스 전극(87)과 같거나 유사하게 형성될 수 있으며, Cr, Ti, Al, V, W, Re, TiN, CrN, Ni, Pt, Au 물질 중에서 적어도 두 층 이상으로 형성될 수 있고, 예를 들어, Cr/W/Pt/Au 또는 Ti/Cr/W/Pt/Au와 같이 4층 또는 5층으로 구성될 수 있다.Next, as shown in FIG. 35 , the
다음으로, 도 36에 도시된 바와 같이, 접합층(96)을 통해 지지 기판(97)을 드레인 전극(95)에 부착한다. 접합층(96)은 양측 또는 일측에 구비될 수 있다. 지지 기판(97)은 세라믹 물질(예: Sapphire, AlN, Si), MC(Cu/Mo/Cu, u/MoCu/Cu), CIC(Cu/Invar/Cu) 등의 Composite 등으로 이루어질 수 있고, 임시 기판(92)과 열팽창 계수의 차이가 ±5ppm 미만인 물질이 바람직하며, 예를 들어, 임시 기판(92)이 사파이어 기판인 경우에 사파이어로 이루어질 수 있다. 그러나, 지지 기판(97)이 절연성 물질인 경우에, 수직 구조의 JFET을 구현할 수 없으므로, 지지 기판(97)에 열적 및 전기적 통로를 마련하는 것이 필요하며, 이에 대해서는 후술한다. 웨이퍼 본딩법을 이용하여 지지 기판(97)을 형성하는 것 이외에, 고속 PVD 증착기를 이용한 고방열 전기전도성 금속성 물질(예:Cu, MoCu)을 후막으로 성막하거나 도금을 이용하는 것이 가능하다. 다음으로, 희생층(94)에 레이저를 조사하여 임시 기판(92)을 분리하고, 접합층(93)을 제거하여, 패시베이션 층(89)을 노출시킨다.Next, as shown in FIG. 36 , the
다음으로, 도 37에 도시된 바와 같이, 패시베이션 층(89)에 개구(98)를 형성하고, 본딩용 소스 전극(99S)과 본딩용 게이트 전극(99G)을 증착을 통해 형성한다. 필요에 따라, 지지 기판(97)에 본딩용 드레인 전극(99D)을 증착을 통해 형성한다. 지지 기판(97)에 본딩용 전극(99D)을 형성하는 과정에 앞서, 지지 기판(97)의 두께를 연마 등의 방법을 통해 감소시키는 공정이 추가될 수 있으며, 이러한 공정들을 통해 본 개시에 따른 비발광 3족 질화물 적층제 내지 소자의 일 예로서 수직 구조의 JFET가 완성될 수 있다.Next, as shown in FIG. 37, an opening 98 is formed in the
도 38 내지 도 40은 도 37에 제시된 적층체에 사용되는 지지 기판의 일 예를 설명하는 도면으로서, 도 38에 도시된 바와 같이, 지지 기판(97; 예: 사파이어, AlN, Si 기판)은 그 상면에 다수의 트렌치 내지 비아(97T)를 구비하며, 트렌치 내지 비아(97T)는 도전성 물질(97C)로 메워져 있다. 도전성 물질(97C)은 지지 기판(97)이 절연성 물질로 이루어지는 경우에 열적 및 전기적 통로로 역할하며, 도전성 물질로 이루어지는 경우에도 더 향상된 열적 및/또는 전기적 통로로 역할할 수 있다. 접합층 내지 지지 기판 상부층(96)은 별도로 형성되거나, 도전성 물질(97C)을 형성하는 과정의 일부로서 형성될 수 있다. 트렌치 내지 비아(97T)를 형성하고, 이를 도전성 물질(97C)로 메우는 다양한 방법(도금, 와이어 본딩, 압입, 인서트 등)이 국제 특허공개공보 WO2020/262957호 및 WO2018/106070호에 제시되어 있다. 도 39는 도 37에서 제시된 것과 같이 지지 기판(97)이 연마되어 후면을 통해 도전성 물질(97C)이 노출된 상태를 보여준다. 이를 통해 도전성 물질(97C)이 지지 기판(97)에서 열적 및 전기적 통로로 역할 수 있게 된다. 도 40은 도 37에서 제시된 것과 같이 노출된 도전성 물질(97C)에 본딩용 드레인 전극(99D)을 형성한 상태를 보여준다.38 to 40 are diagrams for explaining an example of a support substrate used in the laminate shown in FIG. 37, and as shown in FIG. 38, the support substrate 97 (eg, sapphire, AlN, Si substrate) is A plurality of trenches or
도 42 내지 도 46은 도 41에 제시된 비발광 3족 질화물 반도체 적층체 내지 소자를 제조하는 방법의 일 예를 나타내는 도면으로서, 먼저, 도 42에 도시된 바와 같이, 성장 기판(42; 예: 사파이어 기판, Si 기판)에, 씨앗층(423; 예: AlN), 버퍼층(435), 채널층(46; 예: 2㎛ 두게의 GaN) 및 배리어층(49; 예: 20nm 이내의 AlGaN)을 순차로 형성한다. 도 8에 도시된 바와 같이, 인터레이어(48)와 캡층(50)이 구비될 수 있음은 물론이며, 도 41에 도시된 바와 같이, 3족 질화물층(26; 예: 20nm 이내의 p형 GaN)이 구비될 수 있음도 물론이다. 여기서, HEMT가 예시되었지만, 비발광 3족 질화물 소자로 확장될 수 있음은 물론이다. 바람직하게는, 도 8 내지 도 25에 걸쳐서 설명된 방식을 적용하여 버퍼층(435)을 형성할 수 있다. 다음으로, 버퍼층(435)이 노출되도록 배리어층(49)과 채널층(46)을 메사 식각(MESA Etching)하고, 이어서 배리어층(49) 상면에 소스 전극(51)과 드레인 전극(53)을 형성한다. 여기서, 소스 전극(51)과 드레인 전극(53)은 공기에 노출된 버퍼층(435) 또는 채널층(46) 상면에 직접 형성하는 것도 가능하다(미도시).42 to 46 are diagrams illustrating an example of a method of manufacturing the non-emission group III nitride semiconductor laminate or device shown in FIG. 41. First, as shown in FIG. 42, a growth substrate 42 (eg: sapphire) substrate, Si substrate), a seed layer 423 (eg: AlN), a
다음으로, 도 43에 도시된 바와 같이, 게이트 전극(52)을 형성하고, 소자의 상면 전체를 덮도록 보호막으로 기능하는 절연층 내지 패시베이션 층(61)을 형성한다. 필요에 따라, 패시베이션 층(61)에 필요한 개구를 형성하여 필드 플레이트(51F)를 형성하는 공정 등을 행한다. 도 42에서, 소스 전극(51)에 필드 플레이트(51F)가 형성되어 있지만, 도 41에 도시된 바와 같이, 게이트 전극(52)에도 필드 플레이트(26)가 구비될 수 있으며, 드레인 전극(53)에도 구비될 수 있음은 물론이다. 전극(51,52,53)을 형성하는 순서가 변경될 수 있음은 물론이다.Next, as shown in FIG. 43, a
다음으로, 도 44에 도시된 바와 같이, 도 33에서 설명된 것과 유사하게, 희생층(94)을 구비하는 임시 기판(92)을 접착층(93)을 통해 3족 질화물 반도체 적층체에 부착한다. 이때, 패시페이션 층(61)이 도 33의 패시베이션 층(89)과 동일하게 기능한다. 접착층(93)로 SOG, BCB, FOx와 같은 유기 접착제(Adhesive)가 사용될 ㅅ 있으며, 임시 기판(92)을 비발광 3족 질화물 소자용 적층체에 접합한 후, 250℃ 이상의 고온에서 후속 공정이 필요할 경우에 접착층(93)으로 금속(Sn, In, Zn, Au, Ag, Cu, Pd, Ni)을 포함한 물질이 바람직한데, 이러한 경우에는 게이트 전극(52) 및/또는 필드 플레이트(51F) 형성 공정을 지지 기판(97,97a)을 접합한 다음에 실행한다.Next, as shown in FIG. 44 , similar to that described in FIG. 33 , a
다음으로, 도 45에 도시된 바와 같이, 도 34에 도시된 것과 마찬가지로, 성장 기판(42)을 제거(예: 사파이어 기판의 경우는 LLO 공정, Si 기판의 경우는 CLO 공정)하고, 성장 기판(42)의 제거 과정에 발생한 잔류물과 함께 버퍼층(435)의 일부를 제거(예: 건식 식각 및/또는 습식 식각)하여 버퍼층(435; 예: undoped GaN(unGaN))을 노출시킨다. 바람직하게는, N극성 uGaN 일부 표면이 노출될 때까지 건식 식각하고, 접착력 강화를 위해 표면 텍스쳐링(Surface Texturing)을 통해 거친 표면 또는 표면 텍스쳐(435a)를 형성한다. 활성 가스 플라즈마 처리(Plasma Treatment)를 하는 것도 가능하다. 이어서, 절연파괴 방지와 고방열능을 강화하기 위해, 전기절연성 세라믹층과 금속층으로 구성된 다층 박막(62)을 형성한다. 다층 박막(62)은 버퍼층(435)에 최소 (세라믹/금속)을 1쌍(pair) 구성하되, 반복적으로 n쌍(pair) 진행하여 스트레스를 완충하는 기능을 할 수 있다. 전기절연성 세라믹층은 예를 들어, AlN, BN, Diamond, SiNx, SiO2로 이루어질 수 있으며, 금속층은 원자충진율과 열전도율이 우수한 Pt, W, Ru, Rh, Mo, Cu, Cr, TiW, MoW, CuW 등으로 이루어질 수 있다. 구체적으로, N극성 GaN(버퍼층)/AlN/Pt, N극성 GaN(버퍼층)/AlN/TiW, N극성 GaN(버퍼층)/SiNx/Pt 등으로 이루어질 수 있다. 이어서, 다층 박막(62)에, 도 36에서와 마찬가지로, 접합층(96)을 통해 지지 기판(97,97a)을 부착한다. 접합층(96)은 양측 또는 일측에 구비될 수 있다. 지지 기판(97,97a)은 세라믹 물질(예: Sapphire, AlN, Si), MC(Cu/Mo/Cu, Cu/MoCu/Cu), Cu/MoCu/Cu, CIC(Cu/Invar/Cu) 등의 Composite 등으로 이루어질 수 있고, 임시 기판(92)과 열팽창 계수의 차이가 ±5ppm 미만인 물질이 바람직하며, 예를 들어, 임시 기판(92)이 사파이어 기판인 경우에 사파이어로 이루어질 수 있다. 웨이퍼 본딩법을 이용하여 지지 기판(97)을 형성하는 것 이외에, 고속 PVD 증착기를 이용한 고방열 전기전도성 금속성 물질(예:Cu, MoCu)을 후막으로 성막하거나 도금을 이용하여 지지 기판(97a)을 형성하는 것도 가능하다.Next, as shown in FIG. 45, as shown in FIG. 34, the
다음으로, 도 46에 도시된 바와 같이, 도 36에 도시된 것과 마찬가지로, 임시 기판(92)을 제거(예: 사파이어 기판의 경우에 LLO 공정, Si 기판의 경우에 CLO 공정)한다. 이어서, 접착층(93)을 제거하여, 소자를 완성한다. 지지 기판(97)이 절연성 기판(예: 사파이어 기판, AlN 기판, Si 기판)으로 이루어지는 경우에, 도 37 내지 도 40에 도시된 것과 마찬가지로, 열적 통로가 마련된 지지 기판(97)을 이용하고, 두께를 폴리싱을 통해 감소시킨 다음, 여기에 본딩 패드(63)을 형성하여, 소자를 완성한다.Next, as shown in FIG. 46 , the
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.Hereinafter, various embodiments of the present disclosure will be described.
(1) 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 실리콘(Si)을 함유하는 성장 기판을 준비하는 단계; 성장 기판에 복수의 돌기를 형성하는 단계; 성장 기판에 복수의 돌기를 덮도록 제1 버퍼층을 성장하는 단계; 제1 버퍼층 위에 복수의 성장 방지막을 형성하는 단계; 성장 방지막을 통해 노출된 제1 버퍼층으로부터 제2 버퍼층을 성장하는 단계; 그리고, 제2 버퍼층 위에 비발광 3족 질화물 반도체 적층체를 형성하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(1) A method for manufacturing a non-emissive group III nitride semiconductor laminate, comprising: preparing a growth substrate containing silicon (Si); Forming a plurality of protrusions on the growth substrate; growing a first buffer layer to cover the plurality of protrusions on the growth substrate; Forming a plurality of growth prevention films on the first buffer layer; growing a second buffer layer from the first buffer layer exposed through the growth prevention layer; And, forming a non-emission Group III nitride semiconductor laminate on the second buffer layer; a method for manufacturing a non-emission Group III nitride semiconductor laminate.
(2) 성장 방지막을 형성하는 단계에서, 각 돌기의 상부 및 돌기와 돌기 사이에 위치하도록 복수의 성장 방지막을 형성하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(2) In the step of forming the growth prevention film, a plurality of growth prevention films are formed to be positioned on top of each protrusion and between the protrusions.
(3) 복수의 돌기와 성장 기판이 동일한 물질인, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(3) A method of manufacturing a non-luminescent group III nitride semiconductor laminate in which a plurality of protrusions and a growth substrate are made of the same material.
(4) 실리콘(Si)을 함유하는 성장 기판은 Si 성장 기판 및 SiC 성장 기판 중의 하나인, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(4) A method for manufacturing a non-luminescent group III nitride semiconductor laminate, wherein the growth substrate containing silicon (Si) is one of a Si growth substrate and a SiC growth substrate.
(5) 복수의 돌기와 성장 기판이 다른 물질인, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(5) A method for manufacturing a non-luminescent group III nitride semiconductor laminate in which the plurality of protrusions and the growth substrate are made of different materials.
(6) 복수의 돌기를 형성하는 단계에 앞서, 돌기 베이스층을 형성하는 단계;를 더 포함하며, 복수의 돌기는 돌기 베이스층을 식각하여 형성되는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(6) prior to the step of forming a plurality of protrusions, forming a protrusion base layer; further comprising, wherein the plurality of protrusions are formed by etching the protrusion base layer, to produce a non-emitting group III nitride semiconductor laminate method.
(7) 돌기 베이스층은 성장 기판에 형성되는 씨드층, 씨드층 위에 형성되는 3족 질화물 반도체층으로 이루어지는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(7) A method for manufacturing a non-emitting group III nitride semiconductor laminate, wherein the projection base layer is composed of a seed layer formed on the growth substrate and a group III nitride semiconductor layer formed on the seed layer.
(8) 식각을 통해 돌기 베이스층의 3족 질화물 반도체층이 노출되는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(8) A method for manufacturing a non-emissive group III nitride semiconductor laminate in which the group III nitride semiconductor layer of the protrusion base layer is exposed through etching.
(9) 식각을 통해 돌기 베이스층의 씨드층이 노출되는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(9) A method of manufacturing a non-emitting group III nitride semiconductor laminate in which the seed layer of the protrusion base layer is exposed through etching.
(10) 복수의 돌기를 형성하는 단계에 앞서, 돌기 베이스층을 형성하는 단계;를 더 포함하며, 복수의 돌기는 돌기 베이스층을 리프트-오프하여 형성되는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(10) prior to the step of forming a plurality of protrusions, forming a protrusion base layer; further comprising, the plurality of protrusions are formed by lifting-off the protrusion base layer, the non-emitting group III nitride semiconductor laminate How to manufacture.
(11) 리프트-오프된 돌기 베이스층과 리프트-오프되어 노출된 성장 기판을 덮는 씨드층을 형성하는 단계;를 더 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(11) forming a seed layer covering the lift-off protrusion base layer and the lift-off exposed growth substrate; a method for manufacturing a non-emission Group III nitride semiconductor laminate, further comprising the step.
(12) 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 성장 기판을 준비하는 단계; 성장 기판에 복수의 돌기를 형성하는 단계; 성장 기판에 복수의 돌기를 덮도록 제1 버퍼층을 성장하는 단계; 제1 버퍼층 위에 복수의 성장 억제막을 형성하는 단계; 복수의 성장 억제막으로부터 노출된 제1 버퍼층으로부터 제2 버퍼층을 성장하는 단계; 그리고, 제2 버퍼층 위에 비발광 3족 질화물 반도체 적층체를 형성하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(12) A method of manufacturing a non-emissive group III nitride semiconductor laminate, comprising: preparing a growth substrate; Forming a plurality of protrusions on the growth substrate; growing a first buffer layer to cover the plurality of protrusions on the growth substrate; forming a plurality of growth inhibiting films on the first buffer layer; growing a second buffer layer from the first buffer layer exposed from the plurality of growth suppression films; And, forming a non-emission Group III nitride semiconductor laminate on the second buffer layer; a method for manufacturing a non-emission Group III nitride semiconductor laminate.
(13) 복수의 성장 억제막을 형성하는 단계에서, 각 돌기의 상부 및 돌기와 돌기 사이에 위치하도록 복수의 성장 억제막을 형성하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(13) In the step of forming a plurality of growth suppression films, a plurality of growth suppression films are formed so as to be positioned on top of each protrusion and between the protrusions.
(14) 복수의 돌기와 성장 기판이 동일한 물질인, 비발광 3족 질화물 반도체 적층체를 제조하는 방법. (14) A method for manufacturing a non-luminescent group III nitride semiconductor laminate in which a plurality of protrusions and a growth substrate are made of the same material.
(15) 복수의 성장 억제막은 유전체 물질을 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법. (15) A method for manufacturing a non-luminescent group III nitride semiconductor laminate, wherein the plurality of growth suppression films contain a dielectric material.
(16) 복수의 성장 억제막은 그로부터 제2 버퍼층의 성장이 가능하되, 제1 버퍼층으로부터의 제1 버퍼층의 성장 속도보다 성장 속도가 느린 물질을 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(16) The plurality of growth suppression films are capable of growing a second buffer layer therefrom, but the growth rate of the first buffer layer is slower than the growth rate of the first buffer layer from the first buffer layer. method.
(17) 복수의 성장 억제막은 AlN, AlNO, AlO 중의 하나를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(17) A method for manufacturing a non-luminescent group III nitride semiconductor laminate, wherein the plurality of growth suppression films contain one of AlN, AlNO, and AlO.
(18) 복수의 성장 억제막은 제1 버퍼층을 구성하는 물질로 이루어지는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법. (18) A method for manufacturing a non-luminescent group III nitride semiconductor laminate, wherein the plurality of growth suppression films are made of a material constituting the first buffer layer.
(19) 제2 버퍼층을 성장하는 단계에 앞서, 제1 버퍼층로부터 제2 버퍼층이 성장하는 속도보다 제2 버퍼층의 성장 속도를 느리게 하는 물질층을 형성하는 단계;를 더 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(19) prior to the step of growing the second buffer layer, forming a material layer that slows the growth rate of the second buffer layer from the first buffer layer compared to the rate at which the second buffer layer grows; A method for manufacturing a nitride semiconductor laminate.
(20) 제2 버퍼층을 성장하는 단계에 앞서, 제1 버퍼층로부터 제2 버퍼층이 성장하는 속도보다 제2 버퍼층의 성장 속도를 느리게 하는 물질층을 형성하는 단계;를 더 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(20) prior to growing the second buffer layer, forming a material layer that slows the growth rate of the second buffer layer from the first buffer layer compared to the rate at which the second buffer layer grows; A method for manufacturing a nitride semiconductor laminate.
(21) 복수의 성장 억제막은 AlN, AlNO, AlO 중의 하나를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(21) A method for manufacturing a non-luminescent group III nitride semiconductor laminate, wherein the plurality of growth suppression films contain one of AlN, AlNO, and AlO.
(22) 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 성장 기판을 준비하는 단계; 성장 기판에 제1 버퍼층을 성장하는 단계; 제1 버퍼층에 제1 버퍼층으로 된 복수의 돌기를 형성하는 단계; 제1 버퍼층 위에 제2 버퍼층을 성장하는 단계; 제2 버퍼층 위에 비발광 3족 질화물 반도체 적층체를 형성하는 단계; 그리고, 제2 버퍼층을 성장하는 단계에 앞서, 복수의 돌기 위에 제2 버퍼층의 성장을 느리게 하거나 방지하는 물질층을 형성하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(22) A method for manufacturing a non-emissive group III nitride semiconductor laminate, comprising: preparing a growth substrate; growing a first buffer layer on the growth substrate; Forming a plurality of protrusions made of the first buffer layer on the first buffer layer; growing a second buffer layer over the first buffer layer; Forming a non-emission Group III nitride semiconductor laminate on the second buffer layer; And, prior to the step of growing the second buffer layer, forming a material layer to slow down or prevent the growth of the second buffer layer on a plurality of protrusions; including, a method for manufacturing a non-emission Group III nitride semiconductor laminate.
(23) 물질층은 제2 버퍼층의 성장을 느리게 하는 물질로 이루어지며, 복수의 돌기가 형성된 제1 버퍼층 전체에 걸쳐 형성되는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(23) A method of manufacturing a non-emission group III nitride semiconductor laminate, wherein the material layer is made of a material that slows down the growth of the second buffer layer and is formed over the entire first buffer layer in which a plurality of protrusions are formed.
(24) 제1 버퍼층은 성장 기판에 형성되는 씨드층, 씨드층 위에 형성되는 3족 질화물 반도체층으로 이루어지는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(24) A method for manufacturing a non-emitting group III nitride semiconductor laminate, wherein the first buffer layer is composed of a seed layer formed on the growth substrate and a group III nitride semiconductor layer formed on the seed layer.
(25) 성장 기판을 비발광 3족 질화물 반도체 적층체 측으로부터 분리하는 단계;를 더 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(25) Separating the growth substrate from the non-emission group III nitride semiconductor laminate side; a method for manufacturing a non-emission group III nitride semiconductor laminate, further comprising.
(26) 비발광 3족 질화물 반도체 적층체에 있어서, 순차로 적층된 드레인 영역; 드리프트 영역; 및 게이트 영역; 드레인 영역에 전기적으로 연결되는 지지 기판; 게이트 영역에 전기적으로 연결되는 게이트 전극; 게이트 영역을 통해 노출된 드리프트 영역이 형성하는 채널에 전기적으로 연결되는 소스 전극; 게이트 전극과 소스 전극이 위치하는 적층체 전체를 덮고 있으며, 복수의 개구가 형성되어 있는 패시베이션 층; 복수의 개구 중 하나를 통해 게이트 전극에 전기적으로 연결되는 본딩용 게이트 전극; 그리고, 복수의 개구 중 다른 하나를 통해 소스 전극에 전기적으로 연결되는 본딩용 소스 전극;을 포함하는, 비발광 3족 질화물 반도체 적층체.(26) In a non-luminescent group III nitride semiconductor laminate, sequentially stacked drain regions; drift area; and a gate region; a support substrate electrically connected to the drain region; a gate electrode electrically connected to the gate region; a source electrode electrically connected to a channel formed by the drift region exposed through the gate region; a passivation layer covering the entire stack where the gate electrode and the source electrode are positioned and having a plurality of openings; a gate electrode for bonding electrically connected to the gate electrode through one of the plurality of openings; And, a source electrode for bonding electrically connected to the source electrode through the other one of the plurality of openings; including, a non-emitting group III nitride semiconductor laminate.
(27) 지지 기판은 성장 기판과 동일한 물질로 이루어지며, 복수의 열적 및 전기적 통로를 구비하고, 적층체는 지지 기판 하부에 구비되는 본딩용 드레인 전극;을 더 포함하는, 비발광 3족 질화물 반도체 적층체.(27) The support substrate is made of the same material as the growth substrate, has a plurality of thermal and electrical passages, and the laminate is a bonding drain electrode provided below the support substrate; further comprising a non-emitting group III nitride semiconductor. laminate.
(28) 지지 기판은 사파이어로 이루어지는, 비발광 3족 질화물 반도체 적층체.(28) A non-luminescent group III nitride semiconductor laminate in which the support substrate is made of sapphire.
(29) 지지 기판은 AlN로 이루어지는, 비발광 3족 질화물 반도체 적층체.(29) A non-luminescent group III nitride semiconductor laminate in which the support substrate is made of AlN.
(30) 지지 기판은 Si으로 이루어지는, 비발광 3족 질화물 반도체 적층체.(30) A non-luminescent group III nitride semiconductor laminate in which the support substrate is made of Si.
(31) 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 성장 기판에 비발광 3족 질화물 적층체를 형성하는 단계; 성장 기판과 대향하는 적층체 측에 임시 기판을 부착하는 단계; 성장 기판을 제거하는 단계; 성장 기판이 제거된 적층체 측에 전기절연성 세라믹층과 금속층을 포함하는 다층 박막을 세라믹층, 금속층 순으로 형성하는 단계; 다층 박막에 지지 기판을 부착하는 단계; 그리고, 임시 기판을 제거하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(31) A method for manufacturing a non-emissive group III nitride semiconductor laminate, comprising: forming a non-emissive group III nitride laminate on a growth substrate; attaching a temporary substrate to the side of the stack facing the growth substrate; removing the growth substrate; forming a multi-layered thin film including an electrically insulating ceramic layer and a metal layer on a side of the stack from which the growth substrate is removed, in that order; attaching a support substrate to the multilayer thin film; and removing the temporary substrate.
(32) 지지 기판은 열적 통로를 구비하며, 지지 기판의 두께를 감소시키는 단계; 및 두께가 감소된 지지 기판에 본딩 패드를 형성하는 단계;를 더 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(32) the support substrate has a thermal passage, reducing the thickness of the support substrate; and forming bonding pads on the support substrate having a reduced thickness.
(33) 임시 기판이 제거된 적층체 적어도 하나의 전극을 형성하는 단계;를 더 포함하는, 발광 3족 질화물 반도체 적층체를 제조하는 방법.(33) forming at least one electrode of the laminate from which the temporary substrate is removed;
(34) 비발광 3족 질화물 반도체 소자용 적층체에 있어서, 순차로 적층된, 지지 기판; 전기절연성 세라믹층과 금속층으로 구성된 다층 박막; 버퍼층, 채널층, 및 배리어층으로 구성된 비발광 3족 질화물 반도체 영역; 비발광 3족 질화물 반도체 영역에 전기적으로 연결된 게이트 전극, 소스 전극 및 드레인 전극; 소스 전극, 드레인 전극 및 게이트 전극이 위치하는 비발광 3족 질화물 반도체 영역를 덮고 있으며, 외부와의 전기적 연결이 가능하도록 소스 전극, 드레인 전극 및 게이트 전극을 개방하고 있는 패시베이션 층; 그리고, 소스 전극 및 게이트 전극 중의 하나와 전기적으로 연결되도록 패시베이션 층 상부에 구비되는 필드 플레이트;를 포함하는, 비발광 3족 질화물 반도체 적층체.(34) A laminate for a non-emissive group III nitride semiconductor element, comprising: a support substrate, which is sequentially laminated; a multilayer thin film composed of an electrically insulating ceramic layer and a metal layer; a non-emitting group III nitride semiconductor region composed of a buffer layer, a channel layer, and a barrier layer; a gate electrode, a source electrode, and a drain electrode electrically connected to the non-emitting group III nitride semiconductor region; a passivation layer covering a non-emitting group III nitride semiconductor region where the source electrode, the drain electrode, and the gate electrode are positioned, and opening the source electrode, the drain electrode, and the gate electrode to enable electrical connection with the outside; And, a field plate provided on top of the passivation layer so as to be electrically connected to one of the source electrode and the gate electrode; including, a non-emitting group III nitride semiconductor laminate.
본 개시에 따른 하나의 비발광 3족 질화물 반도체 적층체 내지 소자에 의하면, 107/㎠ 이하의 TDD(Theading Dislocation Density)를 가지는 적층체 내지 소자가 구현될 수 있게 된다.According to one non-emission group III nitride semiconductor laminate or device according to the present disclosure, a laminate or device having a theading dislocation density (TDD) of 10 7 /cm 2 or less can be implemented.
본 개시에 따른 또 다른 하나의 비발광 3족 질화물 반도체 적층체 내지 소자에 의하면, 새로운 형태의 수직 구조의 JFET가 구현될 수 있게 된다.According to another non-emissive group III nitride semiconductor laminate or device according to the present disclosure, a new type of vertical structure JFET can be implemented.
본 개시에 따른 또 다른 하나의 비발광 3족 질화물 반도체 적층체 내지 소자에 의하면, 107/㎠ 이하의 TDD(Theading Dislocation Density)를 가지는 수직 구조의 JFET가 구현될 수 있게 된다.According to another non-emissive group III nitride semiconductor laminate or device according to the present disclosure, a vertical structure JFET having a theading dislocation density (TDD) of 10 7 /cm 2 or less can be implemented.
돌기(41), 성장 기판(42), 제1 버퍼층(43), 성장 방지막(44), 제2 버퍼층(45), 채널층(46), 2DEG(47), 인터레이어(48), 배리어층(49), 캡층(50), 소스 전극(51), 게이트 전극(52), 드레인 전극(53)
Claims (4)
성장 기판에 비발광 3족 질화물 적층체를 형성하는 단계;
성장 기판과 대향하는 적층체 측에 임시 기판을 부착하는 단계;
성장 기판을 제거하는 단계;
성장 기판이 제거된 적층체 측에 전기절연성 세라믹층과 금속층을 포함하는 다층 박막을 세라믹층, 금속층 순으로 형성하는 단계;
다층 박막에 지지 기판을 부착하는 단계; 그리고,
임시 기판을 제거하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.In the method for manufacturing a non-luminescent group III nitride semiconductor laminate,
Forming a non-emissive group III nitride laminate on the growth substrate;
attaching a temporary substrate to the side of the stack facing the growth substrate;
removing the growth substrate;
forming a multi-layered thin film including an electrically insulating ceramic layer and a metal layer on a side of the stack from which the growth substrate is removed, in that order;
attaching a support substrate to the multilayer thin film; and,
A method for manufacturing a non-emission Group III nitride semiconductor laminate comprising: removing the temporary substrate.
지지 기판은 열적 통로를 구비하며,
지지 기판의 두께를 감소시키는 단계; 및
두께가 감소된 지지 기판에 본딩 패드를 형성하는 단계;를 더 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.The method of claim 1,
The supporting substrate has a thermal passage,
reducing the thickness of the supporting substrate; and
Forming a bonding pad on a support substrate having a reduced thickness; further comprising a method for manufacturing a non-light emitting group III nitride semiconductor laminate.
임시 기판이 제거된 적층체 적어도 하나의 전극을 형성하는 단계;를 더 포함하는, 발광 3족 질화물 반도체 적층체를 제조하는 방법.The method of claim 1,
A method of manufacturing a light emitting Group III nitride semiconductor laminate, further comprising: forming at least one electrode of the laminate from which the temporary substrate is removed.
순차로 적층된, 지지 기판; 전기절연성 세라믹층과 금속층으로 구성된 다층 박막; 버퍼층, 채널층, 및 배리어층으로 구성된 비발광 3족 질화물 반도체 영역; 비발광 3족 질화물 반도체 영역에 전기적으로 연결된 게이트 전극, 소스 전극 및 드레인 전극;
소스 전극, 드레인 전극 및 게이트 전극이 위치하는 비발광 3족 질화물 반도체 영역를 덮고 있으며, 외부와의 전기적 연결이 가능하도록 소스 전극, 드레인 전극 및 게이트 전극을 개방하고 있는 패시베이션 층; 그리고,
소스 전극 및 게이트 전극 중의 하나와 전기적으로 연결되도록 패시베이션 층 상부에 구비되는 필드 플레이트;를 포함하는, 비발광 3족 질화물 반도체 적층체.In the laminate for the non-emissive group III nitride semiconductor device,
sequentially laminated, supporting substrates; a multilayer thin film composed of an electrically insulating ceramic layer and a metal layer; a non-emitting group III nitride semiconductor region composed of a buffer layer, a channel layer, and a barrier layer; a gate electrode, a source electrode, and a drain electrode electrically connected to the non-emitting group III nitride semiconductor region;
a passivation layer covering a non-emitting group III nitride semiconductor region where the source electrode, the drain electrode, and the gate electrode are positioned, and opening the source electrode, the drain electrode, and the gate electrode to enable electrical connection with the outside; and,
A non-light emitting group III nitride semiconductor laminate comprising: a field plate provided on top of the passivation layer so as to be electrically connected to one of the source electrode and the gate electrode.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210109671A KR102556721B1 (en) | 2021-08-19 | 2021-08-19 | Non emitting iii-nitride semiconductor stacked structure and method of manufacturing the same |
US18/570,666 US20240282883A1 (en) | 2021-06-15 | 2022-06-15 | Method for manufactuing non-emitting iii-nitride semiconductor stacked structure |
PCT/KR2022/008481 WO2022265395A1 (en) | 2021-06-15 | 2022-06-15 | Method for manufactuing non-emitting iii-nitride semiconductor stacked structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210109671A KR102556721B1 (en) | 2021-08-19 | 2021-08-19 | Non emitting iii-nitride semiconductor stacked structure and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230027649A true KR20230027649A (en) | 2023-02-28 |
KR102556721B1 KR102556721B1 (en) | 2023-07-18 |
Family
ID=85326506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210109671A KR102556721B1 (en) | 2021-06-15 | 2021-08-19 | Non emitting iii-nitride semiconductor stacked structure and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102556721B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013084976A (en) * | 2006-03-29 | 2013-05-09 | Cree Inc | High efficiency and/or high power density wide bandgap transistors |
US20160380090A1 (en) * | 2014-12-12 | 2016-12-29 | Gan Systems Inc. | GaN SEMICONDUCTOR DEVICE STRUCTURE AND METHOD OF FABRICATION BY SUBSTRATE REPLACEMENT |
-
2021
- 2021-08-19 KR KR1020210109671A patent/KR102556721B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013084976A (en) * | 2006-03-29 | 2013-05-09 | Cree Inc | High efficiency and/or high power density wide bandgap transistors |
US20160380090A1 (en) * | 2014-12-12 | 2016-12-29 | Gan Systems Inc. | GaN SEMICONDUCTOR DEVICE STRUCTURE AND METHOD OF FABRICATION BY SUBSTRATE REPLACEMENT |
Also Published As
Publication number | Publication date |
---|---|
KR102556721B1 (en) | 2023-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1378012B1 (en) | Gallium nitride material devices including backside vias and methods of fabrication | |
US9130115B2 (en) | Light-emitting diode with textured substrate | |
KR20100068839A (en) | Fabricating method of light emitting element | |
US11362134B2 (en) | Vertical stacks of light emitting diodes and control transistors and method of making thereof | |
US20240282883A1 (en) | Method for manufactuing non-emitting iii-nitride semiconductor stacked structure | |
KR102556721B1 (en) | Non emitting iii-nitride semiconductor stacked structure and method of manufacturing the same | |
KR102549356B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor stacked structure | |
KR102591148B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor stacked structure | |
KR102712118B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor stacked structure | |
KR102570675B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor stacked structure | |
KR20230022482A (en) | Non emitting iii-nitride semiconductor stacked structure | |
KR102656083B1 (en) | Method of manufactuing non emitting iii-nitride semiconductor stacked structure | |
KR101600783B1 (en) | Method of fabricating light emitting diode with high efficiency | |
KR102591149B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor stacked structure | |
KR102591150B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor device | |
KR102591151B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor device | |
KR102591147B1 (en) | Method of manufactuing non emitting iii-nitride semiconductor stacked structure | |
KR102728898B1 (en) | Method of manufacturing a iii-nitride semiconductor lyaers | |
KR102618485B1 (en) | Method of manufactuing non emitting iii-nitride semiconductor stacked structure | |
KR20230149975A (en) | Method of manufacturing a iii-nitride semiconductor lyaers | |
KR101755670B1 (en) | Light emitting device and method for fabricating light emitting device | |
KR101295468B1 (en) | Light emitting device and method of fabricating the same | |
KR101765903B1 (en) | Light emitting device and method for fabricating the same and light emitting device package | |
US20210043796A1 (en) | Component, component group and production method for same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |